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Semiclassical trace formulas for two identical particles

Jamal Sakhr and Niall D. Whelan
Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1

~Received 24 January 2000; published 19 September 2000!

Semiclassical periodic orbit theory is used in many branches of physics. However, most applications of the
theory have been to systems that involve only single-particle dynamics. In this paper, we develop a semiclas-
sical formalism to describe the density-of-states for two noninteracting particles. This includes accounting
properly for particle exchange symmetry. As specific examples, we study two identical particles in a disk and
in a cardioid. In each case, we demonstrate that the semiclassical formalism correctly reproduces the quantum
densities.

PACS number~s!: 03.65.Sq, 73.40.Gk, 05.45.Mt, 05.45.2a
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I. INTRODUCTION

Semiclassical physics has experienced a resurgence o
terest, largely due to the work of Gutzwiller@1#, Balian and
Bloch @2#, and Berry and Tabor@3#. ~For recent reviews se
Refs. @4,5#.! These works showed that if we separate
density-of-states into smooth and oscillatory compone
then the oscillatory part is related to the dynamics of
underlying classical system via periodic orbits. This comp
ments the earlier work of Weyl, Wigner, Kirkwood and ot
ers who showed that the smooth component is related to
geometry of the classical phase space. Actually, the
components are related in a subtle way@6,7# since the com-
plete geometry imparts the full dynamics and vice versa.

Most of the theoretical work has concentrated on
single-particle density-of-states, however, there are some
table exceptions@8–10#. In Ref. @8#, the focus is on the av
erage level density and its extension to systems of iden
particles. Specifically, the authors consider a system oN
fermions in one dimension. Their Weyl formula for fermion
works well for attractive two-body interactions, but overe
timates the quantum staircase function when there are re
sive two-body interactions. The author of Ref.@9# develops a
generalization of the canonical periodic orbit sum for t
special case ofN interacting spinless fermions in one dime
sion. It is assumed the periodic orbits are isolated and th
fore it is most applicable to fully chaotic systems. The auth
also considers a system of noninteracting fermions
writes the many-body level density as a convolution integ
involving one body level densities. Finally, we mention R
@10#, which presents an expansion of the periodic orbit s
in terms of the particle number using ideas from Refs.@8#
and @9#.

Similarly, most of the applications of semiclassical theo
have been to systems that involve only single-particle
namics. Here, we mention some exceptions. The author
Ref. @11# extend the study of scars@12# to classically chaotic
few body systems of identical particles. A study of the eige
functions of an interacting two-particle system can be fou
in Ref. @13#. The semiclassical approach to the helium ato
which can be understood as two interacting electrons in
presence of a helium nucleus, has been studied in Ref.@14#.
We also mention the applications of semiclassical theory
mesoscopic physics@15#. For example, orbital magnetism
1050-2947/2000/62~4!/042109~15!/$15.00 62 0421
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has been studied semiclassically for diffusive systems in R
@16# and for ballistic systems in Refs.@17# and @18#. For
reviews, see Ref.@19#.

Ultimately, one would like to study systems with an arb
trary number of interacting particles. In the present paper,
begin by exploring the structure of the trace formula for tw
noninteracting particles including an examination of the d
composition into bosonic and fermionic spaces. This sets
stage for the interactingN-body problem to be explored in
future publication@20#. The method employed here uses t
fact that the two-particle density-of-states is the autocon
lution of the single-particle density-of-states. Subsequen
we decompose the semiclassical two-particle density
states into three distinct contributions and of particular int
est is the contribution that contains two-particle dynamic

Billiards have served as prominent model systems
quantum chaos. They combine conceptual simplicity~the
model of a free particle in a box! while allowing the full
range of classical dynamics, from integrable to chao
Therefore, as illustrations of the formalism, we consid
quantum billiards that contain two particles. As specific e
amples, we study two noninteracting identical particles in
disk and in a cardioid. The former problem is integrab
while the second is chaotic so these two examples provid
direct test of the formalism in the two limiting cases of cla
sical motion.

II. BACKGROUND THEORY

A. Single-particle semiclassical theory

In this section, we review the formalism for the semicla
sical decomposition of the single-particle density-of-stat
Let $e i% be the single-particle energies so that the sing
particle density-of-states is

r1~e!5(
i

d~e2e i !, ~1!

where the subscript 1 indicates that it is a single-parti
density. A fundamental property of the quantum density-
©2000 The American Physical Society09-1
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JAMAL SAKHR AND NIALL D. WHELAN PHYSICAL REVIEW A 62 042109
states is that it can be exactly decomposed into an ave
smooth part and an oscillatory part@2#:

r1~e!5 r̄1~e!1 r̃1~e!. ~2!

There are various approaches for calculating these quan
@5#. For example, in systems with analytic potentials, t
smooth part may be obtained from an extended Thom
Fermi calculation which is an asymptotic expansion in po
ers of\. In billiard systems, where the particle is confined
a spatial domain by the presence of infinitely steep poten
walls, the smooth part may be obtained from the Weyl
pansion. In two-dimensional billiards with piecewise smoo
boundaries and Dirichlet boundary conditions, the first th
terms of the Weyl expansion are@21#

r̄1~e!5S aA
4p

2
Aa

8p

L
Ae

D u~e!1Kd~e!1•••, ~3!

wherea52m/\2, A is the area,L is the perimeter, and

K5
1

12p R dlk~ l !1
1

24p(
i

p22u i
2

u i
~4!

is the average curvature integrated along the boundary
corrections due to corners with anglesu i . The oscillating
part is obtained from semiclassical periodic orbit theory, a
in particular the various trace formulas forr̃1(e) of the form
@5#

r̃1~e!'
1

p\(
G

AG~e!cosS 1

\
SG~e!2sG

p

2 D . ~5!

G denotes topologically distinct periodic orbits andSG(e) is
the classical action integral along the orbitG. The amplitude
AG(e) depends on energy, the period of the correspond
primitive orbit, the stability of the orbit, and whether it
isolated or nonisolated. The indexsG depends on the topo
logical properties of each orbit. For isolated orbits, it is ju
the Maslov index. For nonisolated orbits, there may be ad
tional phase factors in the form of odd multiples ofp/4
which we account for, in a slight abuse of notation, by
lowing sG to be half-integer. In the case of nonisolated o
bits, G denotes distinct families of degenerate orbits. T
amplitude of an isolated orbit is given by the Gutzwill
trace formula@1#

AG~e!5
Tg~e!

Audet~M̃G2I !u
, ~6!

where Tg(e) is the period of the primitive orbitg, corre-
sponding toG ~i.e., G is an integer repetition ofg) andM̃G

is the stability matrix of that orbit.

B. Quantum two-particle density-of-states

Suppose we have a system of two identical noninterac
particles. The total Hamiltonian is the sum of the sing
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particle Hamiltonians and it follows that the energies of t
composite system are just the sums of the single-particle
ergies. The analog of Eq.~1! is then

r2~E!5(
i , j

d@E2~e i1e j !#. ~7!

A useful relation is that the two-particle density-of-states
the autoconvolution of the single-particle density-of-state

r2~E!5E
0

E

der1~e!r1~E2e!5r1* r1~E!, ~8!

as can be verified by direct substitution. In fact, this wor
even if the particles are not identical, where the full dens
is still the convolution of the two distinct single-particle de
sities. This would also apply to a single particle in a sep
rable potential, which is mathematically equivalent. Rath
than encumber the notation to explicitly allow for this po
sibility, we defer this discussion to Appendix A, where som
formulas for nonidentical, noninteracting particles are p
sented.

We can decompose the two-particle density-of-states f
system of two identical particles into a symmetric and
antisymmetric density,

r2~E!5rS~E!1rA~E!. ~9!

We shall use the terms symmetric/antisymmetric a
bosonic/fermionic interchangeably. Each partial density m
be obtained using a projection operator onto the relev
subspaces resulting in

rS/A~E!5
1

2 Fr2~E!6
1

2
r1S E

2 D G . ~10!

We seek semiclassical approximations to these quantum
pressions, a topic which is pursued in the following sectio

III. SEMICLASSICAL CALCULATIONS
FOR THE TWO-PARTICLE SYSTEM

Decomposing the single-particle density into its smoo
and oscillatory components as in Eq.~2! gives a decomposi-
tion of the two-particle density-of-states into three distin
contributions,

r2
sc~E!5 r̄1* r̄1~E!12r̄1* r̃1~E!1 r̃1* r̃1~E!. ~11!

The first term is a smooth function of energy since the c
volution of two smooth functions results in a smooth fun
tion. This is followed by a cross term and finally by a pure
oscillating term. The cross term is also an oscillating fun
tion. At first, this may seem incorrect since the convoluti
of a smooth function with an oscillating function usual
yields a smooth function. As we will show, the oscillato
nature of the cross term is due to contributions from the e
points of the convolution integral. Physically, the smoo
term does not depend on dynamics since it correspond
the Weyl formula in the full two-particle space. The cro
9-2
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SEMICLASSICAL TRACE FORMULAS FOR TWO . . . PHYSICAL REVIEW A62 042109
term depends only on single-particle dynamics becaus
corresponds to the situation where one particle is station
and the other particle is evolving dynamically on a perio
orbit. It is only the last term that contains two-particle d
namics in the sense that both particles are evolving dyna
cally on periodic orbits. Hence, we will refer to the last ter
as the dynamical term.

We find a general expression forr̃1* r̃1(E) by substitut-
ing a generalized trace formula forr̃1 and then evaluating
the resulting convolution integral using stationary phase
ymptotics. Using Eq.~5!, the dynamical term can be writte
as

r̃1* r̃1~E!'
1

~p\!2 (
G1 ,G2

E
0

E

de AG1
~e!AG2

~E2e!

3cosS 1

\
SG1

~e!2sG1

p

2 D
3cosS 1

\
SG2

~E2e!2sG2

p

2 D . ~12!

To evaluate this asymptotically, we should include all critic
points in the integration domain. Specifically, this integ
has a stationary phase point within the integration dom
and finite valued end points. We shall show that the stati
ary phase point corresponds to the situation where both
ticles are evolving dynamically with the energy partition
between the two particles in a prescribed way. The end p
contributions must be evaluated at energies such that on
the particles has all of the energy while the other has
energy. However, this contradicts our assumption that b
particles are evolving—this is the definition of the dynamic
term. Moreover, if we were to evaluate this contribution, t
result would be meaningless since it involves using the tr
formula at zero energy where it is known to fail. So we sh
omit the contributions from the end points; this is discuss
more fully in Sec. IV D and in Appendix B, as well as i
Ref. @22#.

Hence, we evaluate the integral in Eq.~12! using only the
stationary phase point. To leading order, we can extend
integration limits over an infinite domain. Writing the cosin
functions as complex exponentials yields four integrals;
first is

E
2`

`

deAG1
~e!AG2

~E2e!expS i

\
@SG1

~e!1SG2
~E2e!# D

'AG1
~E0!AG2

~E2E0!

3A 2p\

uY~G1 ,G2 ,E0!u

3expS i

\
@SG1

~E0!1SG2
~E2E0!#1 in

p

4 D , ~13!

where
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Y~G1 ,G2 ,E0!5S ]2SG1
~e!

]e2
1

]2SG2
~E2e!

]e2 D U
E0

,

n5sign@Y~G1 ,G2 ,E0!#. ~14!

E0 is determined from the stationary phase condition

S ]SG1
~e!

]e
1

]SG2
~E2e!

]e
D U

E0

50⇒TG1
~E0!5TG2

~E2E0!,

~15!

where we have used the fact that the derivative of the ac
with respect to energy is the period.E0 is the energy of
particle 1,E2E0 is the energy of particle 2, andE is the
total energy of the composite system. The saddle energyE0
has a precise physical interpretation; Eq.~15! says that the
energies of the two particles are partitioned so that the p
ods of both periodic orbits are the same. In other words
E0, we have orbits that are periodic in the full two-partic
phase space since after the periodT, both particles return to
their initial conditions.

The next integral has the same stationary phase cond
as the first integral and is its complex conjugate. The th
integral is

E
2`

`

deAG1
~e!AG2

~E2e!expS 2
i

\
@SG1

~e!2SG2
~E2e!# D

~16!

and has no stationary phase point since setting the first
rivative of the action to zero yields the stationary phase c
dition

TG1
~E0!52TG2

~E2E0!. ~17!

The trace formula only involves orbits with positive perio
so we ignore this possibility. The last integral is the comp
conjugate of the third and will also be ignored.

Adding the contributions from the first two integrals, w
arrive at the two-particle trace formula:

r̃1* r̃1~E!'
2

~2p\!3/2 (
G1 ,G2

AG1
~E0!AG2

~E2E0!

AuY~G1 ,G2 ,E0!u

3cosS 1

\
@SG1

~E0!1SG2
~E2E0!#

2~sG1
1sG2

!
p

2
1n

p

4 D . ~18!

This result possesses the intuitive properties that, other
factors arising from the stationary phase analysis, the act
and Maslov indices are additive and the amplitudes are m
tiplicative. We note that this saddle-point analysis fails f
the harmonic oscillator, whereY50. This is because the
two-particle harmonic oscillator has a higher degree of sy
metry than we are accounting for here. This is a nongen
property specific to the harmonic oscillator. We also str
9-3
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JAMAL SAKHR AND NIALL D. WHELAN PHYSICAL REVIEW A 62 042109
that we have made no assumption about the stability or st
ture of the orbits. They can be isolated, stable or unstabl
come in families. There are also problems with coexist
isolated orbits and families, such as those of the equilat
triangle billiard @23,5#.

Note that the overall\ dependence is not multiplicativ
but picks up an additional factor of\1/2 from the stationary
phase integral. For isolated orbits, the amplitudesA are in-
dependent of\ and the expression~18! has a 1/\3/2 prefactor
as opposed to the 1/\ prefactor of the single-particle trac
formula ~5!. The fact that the\ dependence is different im
plies that the periodic orbits of the full system come in co
tinuous degenerate families rather than isolated trajecto
which in turn implies that there exists a continuous symm
try in the problem@24#. This is an important point which we
will address in a companion paper@20#. ~It was also noted in
Ref. @17#.! Nonetheless, it may be helpful to give a bri
explanation here. Imagine the full phase-space periodic o
G consists of particle 1 on a periodic orbitG1 with energyE0
and particle 2 on a distinct periodic orbitG2 with energyE
2E0. We can definet50 to be when particle 2 is at som
prescribed point onG2. Keeping particle 2 fixed, we ca
change the position of particle 1 onG1 to generate the initia
condition of a distinct but congruent periodic orbit in the fu
phase space. Continuous time translation of the initial con
tion on G1 generates a continuous family of congruent pe
odic orbits in the full phase space. Since the time tran
tional symmetry can be characterized by a sin
independent symmetry parameter, the\ dependence is
O(1/A\) stronger than for a system with isolated period
orbits @24,5#.

IV. TWO-PARTICLE QUANTUM BILLIARDS

Billiards are two-dimensional enclosures that constr
the motion of a free particle. Classically, a particle has ela
collisions with the walls and depending on the geome
properties of the domain, the dynamics are either regula
chaotic. We study billiard systems containing two nonint
acting particles. We ignore the possibility of the particl
colliding since such an event would constitute an interacti
This can be conceptualized by thinking of the particles
pure point objects.

In a billiard system, classical orbits possess simple sca
properties. For instance, the action of an orbitG, SG(e)
5A2meLG and the period of the orbit is

TG~e!5
]SG~e!

]e
5

A2mLG

2Ae
5

\Aa

2Ae
LG . ~19!

The parametera52m/\2 already appeared in Eq.~3!; it will
recur often. For example, the combinationaE occurs in all
final expressions; this is a result of the scaling property~the
quantityaE having the units of 1/length2). In the theoretical
development, it will be convenient to retaina and use it to
keep track of relative orders in the semiclassical expans
~since it contains\). However, once we have the final e
pressions, we are free to set it to unity for the purposes
numerical comparisons.
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We also mention that for billiards, it is common to e
press the density-of-states in terms of the wave numbek,
wheree5k2/a so thatr(k)52kr(e)/a. This is convenient
sincek is conjugate to the periodic orbit lengthsL. There-
fore, our numerical results will be quoted as a function ofk,
although it should be stressed that all convolution integr
must be done in the energy domain. Thus, we shall write

r2
sc~k!5~ r̄1* r̄1!~k!12~ r̄1* r̃1!~k!1~ r̃1* r̃1!~k!.

~20!

Here, it is understood that each of the functions in bracket
first evaluated in the energy domain and then converted
the k domain through the Jacobian relation above. This w
always be the case when the argument isk, so that we will
not always write brackets around the various functions.
terms of the wave numberk, the decomposition~10! be-
comes

rS/A~k!5
1

2 Fr2~k!6
1

A2
r1S k

A2
D G . ~21!

A. Smooth term

The smooth part is defined by the convolution integral

r̄1* r̄1~E!5E
0

E

der̄1~e!r̄1~E2e!, ~22!

wherer̄1 is given by the Weyl expansion. The expansion
Eq. ~3! is taken only to order\0. Hence, after expanding th
integrand in Eq.~22!, it is formally meaningless to include
terms that areO(1/\) since there are corrections of the sam
order in\ that have not been calculated. Ignoring these ter
and performing the necessary integrations, the smooth t
is found to be

r̄1* r̄1~E!'
a2A 2

16p2 E2
a3/2AL

8p2
AE1

aL 2

64p
1

aAK

2p
.

~23!

B. Cross term

We next convolver̄1 term by term withr̃1. Asymptoti-
cally, each convolution integral receives contributions fro
the upper and lower end points. However, we shall only
clude one of these, namely, the end point for which the tr
formula is not evaluated at zero energy. We neglect the o
end point for reasons explained in Sec. IV D and Ref.@22#.
This is also discussed in Appendix B, where we evaluate
various integrals for the cross term exactly using isola
billiard orbits and show explicitly that an appropria
asymptotic expansion of the exact expression leads to c
sistent results.

After convolution, we find the area term involves the i
tegral
9-4
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SEMICLASSICAL TRACE FORMULAS FOR TWO . . . PHYSICAL REVIEW A62 042109
ReH E
0

E

deAG~E2e!expS iAa~E2e!LG2 isG

p

2 D J .

~24!

The lower end pointe50 corresponds to the physicall
meaningful situation while the upper end point is spurious
the sense mentioned above and discussed in detail be
Hence, to leading order, we can remove the amplitude fa
from inside the integral, Taylor expand the argument of
exponential, and extend the upper limit to infinity. This lea
to

I A~E!'
aA
4p2 (

G

AG

TG
cosS QG2

p

2 D , ~25!

whereQG5AaELG2sG(p/2). By similar logic, the perim-
eter and curvature terms are

I L~E!'2
AaL

8p3/2A\
(
G

AG

ATG

cosS QG2
p

4 D ,

~26!

I K~E!'
K

p\ (
G

AGcos~QG!.

Note that all amplitudes and periods in Eqs.~25! and~26! are
evaluated at the system energyE. Recall a}1/\2 so that
after convolution the sequence is an expansion in power
A\ and not in powers of\ as for the original Weyl series~3!.
We also note that the first correction toI A may be of the
same order asI K ~as happens for the disk@25#! and should be
included if this is the case. We then have

r̄1* r̃1~E!'I A~E!1I L~E!1I K~E!. ~27!

C. Dynamical term

As an application of the two-particle trace formula~18!,
we now derive a general expression for the dynamical te
that is valid for any billiard problem. To this end, the fir
task is to determine the saddle energy from the station
phase condition. Inserting Eq.~19! into Eq. ~15! yields

LG1

AE0

5
LG2

AE2E0

, ~28!

which implies

E0

E
5

LG1

2

LG1

2 1LG2

2
,

E2E0

E
5

LG2

2

LG1

2 1LG2

2
~29!

and

Y~G1 ,G2 ,E0!52A 2m

4E3/2

~LG1

2 1LG2

2 !5/2

LG1

2 LG2

2
. ~30!
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Clearly n521. We then substitute these results into E
~18! to obtain the two-particle trace formula for billiards

r̃1* r̃1~E!'
4E3/4

A\a1/4~2p\!3/2

3 (
G1 ,G2

LG1
LG2

~LG1

2 1LG2

2 !5/4
AG1

~E0!AG2
~E2E0!

3cosSAaEALG1

2 1LG2

2 2~sG1
1sG2

!
p

2
2

p

4 D .

~31!

If the single-particle periodic orbits are not isolated, then o
must make direct use of the corresponding single-part
amplitudes in Eq.~5! evaluated at the appropriate energie
We will show an explicit example of this when we analy
the disk billiard. Since the amplitudesAG typically have an
energy dependence, one cannot make any general statem
about the energy dependence of this term except that
greater the dimensionality of the periodic orbit families, t
greater the energy prefactor. For example, for the disk
turns out to beE1/4.

If the single-particle periodic orbits are isolated, the a
plitudes are given by Eq.~6!, which for billiards is

AG~e!5
\Aa

2Ae

Lg

Audet~M̃G2I !u
. ~32!

In this case, the Gutzwiller amplitudes are evaluated atE0
and E2E0, so we again make use of Eq.~29!. After some
algebra and simplification, we find

r̃1* r̃1~E!'
a3/4

~2p!3/2E1/4

3 (
G1 ,G2

Lg1
Lg2

~LG1

2 1LG2

2 !21/4

Audet~M̃G1
2I !uudet~M̃G2

2I !u

3cosFAaEALG1

2 1LG2

2 2~sG1
1sG2

!
p

2
2

p

4
G .

~33!

Note theE21/4 prefactor, which implies the amplitude, de
cays weakly with energy. This is the same prefactor t
occurs in the single-particle trace formula of the disk. This
not a coincidence, but arises from the fact that in both pr
lems, the periodic orbits come in one parameter families
formula~33!, one must be careful to distinguish betweenLG ,
the length of a periodic orbit andLg , the length of the cor-
responding primitive periodic orbit. In generalLG5nGLg
wherenG is the repetition index of that orbit.
9-5
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D. Spurious end-point contributions

As mentioned above, when confronted with convoluti
integrals, it is natural to analyze them asymptotically. T
involves identifying the critical points and doing appropria
expansions in their neighborhoods. In our paper, these c
cal points are either stationary phase points or end po
The power of semiclassical methods is that each crit
point can be given an immediate physical interpretation.
example, the stationary phase point in the dynamical term
found to be that energy such that the two particles have
same period so that the motion is periodic in the full tw
particle phase space. This is intuitively reasonable. Howe
the same integral also has end points with finite valued c
tributions. We could do an asymptotic calculation in the
cinity of these points, but we can argue immediately that
result is spurious and not physically meaningful.

Recall the trace formulas are asymptotic in\, which typi-
cally also means asymptotic in energy. At the end points,
of the trace formulas is evaluated at small energy where
known to be invalid. Alternatively, we can substitute for t
trace formula any expression that is asymptotically equi
lent to it and expect all meaningful results to be invariant
leading order. If we do this, we will find the end point co
tribution changes while the stationary phase contribution
mains invariant, to leading order.

A further argument is that the structure of the end po
contribution will be incorrect. Typically, it will be a sinusoi
with an argument that does not depend on energy, but o
depends on the properties of one of the orbits. Hence, it
have the same asymptotic structure as the cross term. H
ever, we know that the cross term completely describes
such contributions and any further contribution with t
same structure must be spurious.

Similarly, when we evaluate the cross term, we have t
end point contributions. At one of these, we are evaluat
the trace formula at some finite energy, which is reasona
This end point corresponds to orbits that are periodic in
full phase space and in which one particle evolves o
single-particle periodic orbit with all the energy, while th
other remains fixed at some point in phase space with z
energy. At the other end point, we are evaluating the tr
formula at zero energy, which is problematic. This cor
sponds to the contradictory situation in which the evolvi
particle has zero energy while the fixed particle has all
energy. In addition, upon inspection of this end point con
bution, we find a function that is not oscillatory in energ
and therefore has the same asymptotic structure as
smooth term. However, the smooth term already comple
describes the average behavior of the two-particle density
states and any further contributions with the same struc
must be spurious.

These situations are further examples of a general si
tion described in Ref.@22# where it was shown that whe
integrating over the trace formula to obtain physical qua
ties, one should include all critical points except ones
which the trace formula is evaluated at zero energy. S
contributions should simply be ignored as spurious. In R
@22#, the application was to thermodynamic calculations,
the principle is precisely the same. In Appendix B, we sh
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the result of evaluating the cross term exactly for isola
orbits. An asymptotic analysis of this result leads to tw
terms that we can identify as coming from the two e
points. One has the form used in this paper while the othe
clearly spurious.

V. TWO-PARTICLE DISK BILLIARD

In this section, we apply our results to the problem of tw
identical noninteracting particles moving in a two
dimensional disk of radiusR. Quantum mechanically, this
problem is a simple extension of the one-body proble
Nevertheless, the spectrum has some interesting features
we discuss below.

A. Quantum mechanics

For the disk billiard, a general two-particle state can
written as

um1 n1 ,m2 n2&5um1 n1& ^ um2 n2&, ~34!

where the azimuthal quantum numbersm1 , m250,61,
62, . . . and the radial quantum numbersn1 , n2
51,2,3, . . . . We shall also use a more compact notati
uN1 ,N2&5um1 n1 ,m2 n2& whereN denotes a pair of integer
(m,n). We can immediately write down the wave numbe
of the two-particle system as

kN1N2
5AS ZN1

R
D 2

1S ZN2

R
D 2

, ~35!

whereZN denotes thenth zero of themth Bessel function
Jm(z). The set of all two-particle states is given b
$uN1 ,N2&%.

The spectrum is highly degenerate. A typical sta
uN1 ,N2& is eightfold degenerate since we can reverse
sign of eitherm1 or m2 or interchange the two particles an
the resultant state has the same energy. However, if eithem1
or m2 is zero or ifN15N2 (mÞ0) then the state is fourfold
degenerate. Ifm15m250 andN1ÞN2, then the state is two-
fold degenerate whereas ifm15m250 andN15N2, then the
state is nondegenerate. If the particles are in distinct sta
the degenerate multiplets divide evenly between the symm
ric and antisymmetric spaces. However, if the particles ar
the same state,N15N2, it is somewhat less trivial. IfN1
5N2 and m15m2Þ0, there is a fourfold degenerate set
states: um n,m n&, u2m n,2m n&, um n,2m n&, and
u2m n,m n&. The first two states belong to the symmetr
space. From the second two states, we can construct
symmetric and one antisymmetric combination.~This is
analogous to coupling two spin 1/2 states to construc
threefold symmetricS51 state and a nondegenerate an
symmetric S50 state.! If N15N2 and m15m250, this
yields the stateu0 n,0 n&, which is singly degenerate an
belongs to the symmetric space.

The quantum density-of-states
9-6
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r2~k!5 (
N1 ,N2

d~k2kN1N2
! ~36!

and the corresponding symmetric and antisymmetric de
ties are shown in Fig. 1 as a function of the wave numbek.
Note that in this figure some of the peaks have differ
degeneracies in the symmetric and antisymmetric densi
as discussed above.

B. Semiclassical density-of-states

We first review the semiclassical decomposition of t
single-particle density-of-states. The smooth part of
density-of-states may be obtained using the general resu
two-dimensional billiards~3!. In fact, many higher-orde
terms have been calculated@7#. But, for our purposes, it suf
fices to use the first three terms as in Eq.~3! with A
5pR2, L52pR, andK51/6.

The oscillating part of the level density can be obtain
using trace formulas for systems with degenerate familie
orbits. The periodic orbit families may be uniquely label
by two integers (v,w), wherev is the number of vertices an
w is the winding number around the center. The two integ
must satisfy the relationv>2w. The length of an orbit with
vertex numberv and winding numberw is given by Lvw
52vR sin(pw/v). With this notation, the trace formula fo
the oscillating part of the density-of-states is@26#

r̃1~e!'
a3/4

2A2pe1/4 (
vw

DvwLvw
3/2

v2
cosSAaELvw23v

p

2
1

p

4 D ,

~37!

where the sum goes fromw51, . . . ,̀ and v52w, . . . ,̀
and the degeneracy factorDvw , which accounts for negative
windings, is 1 forv52w and 2 forv.2w. Comparing Eq.
~37! with the general form~5!, we identify

FIG. 1. ~Top! The quantum density-of-states for two identic
particles in the disk billiard.~Middle! Bosonic density-of-states
~Bottom! Fermionic density-of-states. In each case, the heights
dicate the degeneracy of the state.
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Avw~e!5
A2pa3/4\DvwLvw

3/2

4v2e1/4
,

svw53v2 1
2 . ~38!

Adding the smooth and oscillating terms gives the semic
sical approximation to the single-particle density-of-sta
which we denote byr1

sc(e).
To evaluate the semiclassical approximation to the tw

particle density-of-states, we must evaluate the smo
cross, and dynamical terms. The smooth term can be ta
from Eq. ~23! to be

r̄1* r̄1~E!'
a2R4

16
E2

a3/2R3

4
AE1S 3p14

48 DaR2. ~39!

The arguments of the previous section and in particular E
~25!, ~26!, and~27! lead to the cross term

r̄1* r̃1~E!'
a5/4R2E1/4

4A2p

3(
vw

ALvwDvw

v2 F cosS Fvw2
p

2 D
2Ap

2
xvwcosS Fvw2

p

4 D
1S 1

3
1

R2

2Lvw
2 D xvw

2 cosFvwG , ~40!

where Fvw5AaELvw23vp/21p/4 and xvw

5ALvw/(aE)1/4R. We have also included the first correctio
to the area termI A(E), which appears in the third term abov
@25#. The dynamical term can be obtained using Eq.~31!.
Noting thatG i in Eq. ~31! corresponds to the pair of intege
(v i ,wi), the result is

r̃1* r̃1~E!'
a5/4E1/4

4A2p
(

v1 w1, v2 w2
S )

i 51

2 DiL i
2

v i
2 D L12

23/2cosFAaEL12

23~v11v2!
p

2
1

p

4 G , ~41!

whereLi5Lv iwi
, Di5Dv iwi

, andL125AL1
21L2

2.

C. Numerics

For numerical purposes, we takea51 andR51 so the
single-particle energies are just the squares of zeros of Be
functions. Since we can only include a finite number of o
bits, the periodic orbit sums must be truncated. As a rep
sentative case, we truncate the sum in Eq.~40! at wmax
550,vmax5100 ~see Fig. 2! and use the same limits to trun
cate the quadruple sum in Eq.~41!. This is a relatively small
set of orbits, yet it does very well in reproducing the peaks
the quantum density-of-states. As an illustration, we sh

-

9-7



er
in
th

b
m

Eq
b

r, a
olv-

if
ic
eak

he

ja-
-

ex-
si-
s in
ere
this
i-

cies
osi-

-
w

ro
t

ty-
ic
r-
es
tio
th

of-

las-

JAMAL SAKHR AND NIALL D. WHELAN PHYSICAL REVIEW A 62 042109
the first few peaks of Eq.~20! in Fig. 3. We calculated the
semiclassical density-of-states on the interval 0<k<11. Af-
ter doing so, we found only two sets of two peaks that w
not resolved. These are shown in Fig. 4. Obviously, us
more orbits will produce better results, but this increases
computation time because of the quadruple sum in Eq.~41!.
~Although one can reduce the computational overhead
limiting the sum to orbits whose amplitude exceeds so
prescribed threshold@25#.!

As an additional test, we want to determine whether
~20! gives the correct degeneracies. We could do this

FIG. 2. The cross term~40! of the semiclassical density-of
states for two identical particles in the disk billiard. In this case,
truncate the sum in Eq.~40! at wmax550,vmax5100. The circles
indicate the level sequence of the one-body problem obtained f
Einstein-Brillouin-Keller ~EBK! quantization. Note the kinks tha
occur at these positions.

FIG. 3. ~Top! The first few peaks of the semiclassical densi
of-states~20!. ~Middle! Semiclassical approximation to the boson
density-of-states.~Bottom! Semiclassical approximation to the fe
mionic density-of-states. In each case, the circles and stars repr
the appropriate level sequences obtained from EBK quantiza
and quantum mechanics, respectively. Note the positions of
peaks more closely reproduce the EBK spectrum.
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integrating the area under each of the peaks. Howeve
simpler procedure is to do a Gaussian smoothing by conv
ing r2

sc(k) with an unnormalized Gaussian of variances:

r2
sc~k!* Gs~k!5E

0

`

dk8r2
sc~k8!Gs~k2k8!, ~42!

where

Gs~k!5exp~2k2/2s2! ~43!

ands is the smoothing width. The reason for this is that
the variances of the Gaussian is larger than the intrins
width of a peak in the semiclassical spectrum, then each p
acts likeDd(k2kn) with respect to the Gaussian. Thus, t
integral in Eq.~42! becomesDGs(k2kn) or D at k5kn . Of
course, this is invalid when the spacing between two ad
cent peaks is smaller than abouts. Some examples are dis
cussed in the next section.

We also studied the symmetrized densities by using
pression~21! for both the quantum and semiclassical den
ties and then convolving as above. The periodic orbit sum
the oscillating parts of the one- and two-body densities w
truncated in the standard manner as before. The result of
numerical procedure is shown in Fig. 5. Clearly, the sem
classical approximations reproduce the correct degenera
of the quantum spectrum as well as the approximate p
tions.

e

m

ent
n
e

FIG. 4. Two sets of two peaks in the semiclassical density-
states~20! that are not resolved.~Left! The middle peak is not
resolved into the two peaks atk57.4163 ~corresponding to the
quartet $u0 1,61 2&,u61 2,0 1&%) and k57.4423 ~corresponding
to the octet $u61 1,63 1&,u63 1,61 1&%). The corresponding
EBK quartet and octet energies occur atk57.3831 andk57.3932,
respectively. Note thatDkEBK50.0101 andDkQM50.026 so that
the spacing of the two unresolved levels is smaller in the semic
sical spectrum than in the quantum-mechanical spectrum.~Right!
The middle peak is not resolved into the two peaks atk59.4641
~corresponding to the quartet$u61 1,0 3&,u0 3,61 1&%) and k
59.4829~corresponding to the octet$u63 1,61 2&%). The corre-
sponding EBK quartet and octet energies occur atk59.4359 and
k59.4456, respectively. Here,DkEBK50.0097 andDkQM50.0188.
9-8
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D. Discussion

In Ref. @26#, it was noted that the trace formula replicat
the single-particle EBK spectrum obtained from torus qu
tization more precisely than it duplicates the exact sing
particle quantum spectrum. After inspection of Figs. 3 and
we notice the same effect in the two-particle spectrum. T
property of the trace formulas also accounts for the un
solved peaks in the semiclassical spectrum. When the s
ing of two levels of the EBK spectrum is very small, o
truncated trace formulas may not resolve them, regardles
the spacing of the corresponding levels in the quantum s
trum ~cf. Fig. 4!.

Comparing Figs. 1 and 5, we observe generally go
agreement between the quantum and semiclassical spe
Still, there are some apparent inconsistencies, for exam
the two tall peaks in Fig. 5. These are the two sets of un
solved levels in Fig. 4, in each case, an octet and a qua
The reason for the discrepancy is the level spacings
smaller than the smoothing widths, in contradiction to the
assumption above, so that the peak height does not equa
degeneracy. In fact, the peak heights observed are ra
close to 12 since the octets and quartets are very nearly
generate on the scale ofs and act almost like a 12-fold
degenerate set. It is not perfectly 12 due to the fact that
degeneracy is not perfect. However, we also observe tha
integrated weight under the peak is consistent with a se
12 energy levels.

Other inconsistencies in Fig. 5 occur for the same reas
Of course, overall improvements can be made by includ
more orbits. However, it is a fundamental problem that
integrable system will have a large number of small sp

FIG. 5. ~Top! The smoothed semiclassical density-of-states
tained from numerical convolution of Eq.~20! with Eq. ~43!. Note
the artifacts of the single-particle EBK spectrum, which occur at
positions marked by an ‘‘X.’’~Middle! The smoothed semiclassica
bosonic density-of-states obtained from numerical convolution
Eq. ~21! ~with the 1 sign! and Eq.~43!. ~Bottom! The smoothed
semiclassical fermionic density-of-states obtained from numer
convolution of Eq.~21! ~with the2 sign! and Eq.~43!. In each case
the sequence of dots represent the corresponding EBK spec
ands50.0125.
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ings, since the spacing distribution has a Poisson chara
In fact, even a chaotic system with noninteracting partic
would have a Poisson spacing distribution. This is beca
the separate single-particle energies are constants of mo
and when we combine many independent spectra the re
ing distribution is Poisson, even if the distributions of th
separate spectra are not@27#. One might then wonder if this
is a fatal problem in higher dimensions. If one’s motivatio
is to determine gross shell structure, a point of view stres
in Ref. @5#, this is not a problem. If one’s motivation is t
reproduce the full quantum spectrum, one might still arg
that it is not really a problem. Any peak has a width asso
ated with it which is related to the number of orbits used
analyzing the trace formula. This width gives a numeric
uncertainty to the energy of a multiplet. Even if two pea
are unresolved, the amount of information is essentially
same. We know the number of states involved by integrat
under the peak. Also, we know the energy of all those sta
to the precision of the peak width, just as for resolved pea
In that sense, we know the energies of unresolved peak
the same precision as resolved peaks. Either way, the im
tant criterion is that the peak width should be smaller th
the mean spacing between states. This problem of unreso
peaks is less of a problem for chaotic systems where
would not typically expect more than two states to be
volved in an unresolved multiplet. Also, adding interactio
will tend to lift such near degeneracies and reduce this eff

In Fig. 5 we also observe artifacts of the single-partic
spectrum~some examples are marked by an ‘‘X’’! which
arise from errors in the cross term. These presumably
crease when corrections to the single-particle trace form
are incorporated into the cross term.

These numerical findings support our analytical resu
We now test those results in the rather different context o
chaotic billiard.

VI. TWO-PARTICLE CARDIOID BILLIARD

In this section, we study the problem of two identic
noninteracting particles evolving in the cardioid billiar
which is fully chaotic@28#. Since the billiard has a reflectio
symmetry, all the quantum states are either even or odd~this
symmetry should not be confused with the symmetry due
particle exchange!. In the subsequent analysis, we will e
clusively use the odd spectrum. The reason for this is
avoid the additional complication ofdiffractive orbits that
strike the vertex. Classically, these orbits are undefined
are therefore not included in the standard Gutzwiller theo
Studies of diffractive effects in trace formulas can be fou
in Refs.@29# and@30#. The latter reference explores the sp
cific application to the cardioid and shows that diffracti
orbits are important in describing the even spectrum but
largely absent from the odd spectrum.

We could proceed as before by doing an explicit sem
classical analysis of each term in the decomposition of
two-particle semiclassical density-of-states~11!. However,
we can simplify the analysis by removing single-particle d
namics from the discussion. That is, we will focus exc
sively on those quantum-mechanical and semiclassical q
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JAMAL SAKHR AND NIALL D. WHELAN PHYSICAL REVIEW A 62 042109
tities that inherently describe two-particle dynamics. Mo
specifically, we compare the Fourier transform of the d
namical term

F̃2
sc~L !5F$r̃1* r̃1~k!% ~44!

with its quantum-mechanical analog which we define to

F̃2
qm~L !5F$r2~k!2 r̄1* r̄1~k!22r̄1* r̃1~k!%. ~45!

The integral operatorF will be defined precisely below. In
the semiclassical transform~44!, we use Eq.~33! expressed
in terms of the wave number. Here,G1 andG2 are periodic
orbits in the fundamental domain~i.e., the half-cardioid! and
Lg i

are the primitive lengths of the orbitG i in the fundamen-
tal domain. Orbit properties are discussed in Refs.@31# and
@30# and some representative orbits are shown in Fig. 6.
stability matrices in the denominator are computed using
standard prescription for the stability of free flight billiard
~see, for example, Ref.@4#!.

In the quantum-mechanical analog Eq.~45!, r2(k) is the
quantum two-particle density-of-states,r2(k)5( Id(k2kI),
where the superindexI denotes the pair of integers (i , j ) and
kI5Aki

21kj
2. In Eq. ~45!, we subtract the smooth averag

part and the part that contains single-particle dynamics.
ing A53p/4, L56, andK53/16 in Eq.~23! and in Eqs.
~25!, ~26!, and ~27! yields the smooth and cross terms, r
spectively. For the cross term, one must also use the per
~19! and amplitudes~32! in Eqs. ~25! and ~26! evaluated at
the system energyE.

A. Numerics for the unsymmetrized cardioid

As before, we takea51 and use a standard sized cardio
as in Ref.@30# to obtain the single-particle spectrum. W
numerically compare the two-particle quantum mechan
with the two-particle semiclassics by making a direct co
parison of the Fourier transforms in the reciprocal space
orbit lengths,L. In this space, we expect peaks at lengths t
correspond to the Euclidean lengths of thefull periodic orbits
of the two-particle system. For instance, if a two-partic

FIG. 6. Some of the shorter periodic orbits of the cardioid in
full domain. The label of each orbit includes the number of refl
tions and also a letter index to further distinguish it. The aste
designates a self-dual orbit@30#. The two orbits *8b and *10b
reflect specularly near the cusp, contrary to appearances while
orbit 4a misses the cusp. From Ref.@30#.
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orbit G is comprised of particle 1 traveling on the singl
particle orbitG1 and particle 2 traversing a distinct single
particle orbitG2, we expect a peak atLG5ALG1

2 1LG2

2 . In the

event that both particles are on the same single-particle o
G, we expect a peak atA2LG . In this way, any peak in the
two-particle spectrum can be attributed to the dynamics o
particular periodic orbit of the full classical phase space.

We construct the two-particle spectrum by adding the
ergies of the single-particle spectrum. We include the fi
1250 single-particle energies which allows us to constr
the first 766 794 two-particle energy levels representing
two-particle energies less than 6.88563103.

For a precise numerical comparison, we define the Fou
transform

F$ f ~k!%5E
2`

`

dkw~k!eikL f ~k! ~46!

as a function of the conjugate variableL. Here,w(k) is the
three-term Blackman-Harris window function@32#

w~k!5H (
j 50

2

aj cosS 2p j
k2k0

kf2k0
D , k0,k,kf ,

0, otherwise,

~47!

with (a0 ,a1 ,a2)5(0.423 23,20.497 55,0.079 22). We
choosek0 andkf so that the window function goes smooth
to zero at the first and last eigenvalues of the two-part
spectrum. Numerical integration of Eqs.~44! and ~45! using
this definition ofF is displayed in Fig. 7. In the semiclassic
transform, a total of 100 periodic orbits~including multiple
repetitions! were used.

-
k

he

FIG. 7. The Fourier transform of the dynamical part of the tw
particle density-of-states. The solid line is the transform of
quantum-mechanical two-particle spectrum Eq.~45! and the
dashed-dotted line is the transform of the semiclassical two-par
trace formula Eq.~44!. All relevant geometrical periodic orbits with
length LG5ALG1

2 1LG2

2 ,11 have been included.~Symbols de-
scribed in the text.!
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SEMICLASSICAL TRACE FORMULAS FOR TWO . . . PHYSICAL REVIEW A62 042109
In Fig. 7, we observe good agreement between the qu
tum and semiclassical results forL,6.5 andL.10.3. In the
region 6.5,L,10.3, there are appreciable discrepancies
the following reason. Recall that the amplitude of the tw
particle trace formula~33! applies only to billiard systems
whose single-particle periodic orbits are isolated. In
single-particle cardioid problem, there exist orbits that
not well isolated in phase space, in fact, two geometric or
and a diffractive orbit are sometimes very close in ph
space, for example, the two geometric orbits 4a and * 10b
together with the similar looking diffractive orbit 4a8 ~not
shown! @30#. In this event, the stationary phase approxim
tion underlying the Gutzwiller formalism fails as does t
argument that diffractive orbits do not affect the odd sp
trum. As a result, whenever a two-particle orbit in the f
space is comprised of one or both particles on one of th
problematic single-particle orbits, the resulting two-partic

FIG. 8. Same as Fig. 7 except that the cross term in Eq.~45! is
computed using single-particle quantum mechanics.~Symbols de-
scribed in the text.!

FIG. 9. The Fourier transform of the cross term for the cardi
billiard calculated using quantum mechanics~solid! and periodic
orbit theory~dashed dotted!.
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amplitude is inaccurate.~There is recent work on uniform
approximations to account for such effects@33#, unfortu-
nately it seems not to apply to the cardioid, which has
additional curious feature that the boundary curvature is
finite at the vertex.!

We now consider some specific examples. The first t
discrepancies occur atL'6.6 ~o! and L'7 ~* !. In this re-
gion, the single-particle trace formula is erroneous@30# and
these errors propagate through to the cross term and ine
bly to the quantum-mechanical transform. We have a
computed the cross term using quantum mechanics, i.e.
ing r̃15r12 r̄1 in Eq. ~45! and confirmed that these discre
ancies do not arise~cf. Figs. 8 and 9!. Thus, these discrep
ancies are due to errors in the semiclassical approximatio
the cross term.

For the rest of the discussion,L refers to a particular
periodic orbit family in the full phase space with each tw
particle orbit in this family comprised of the single-partic
orbitsG1 andG2 andLL are the lengths of the orbits in eac
family. Next, consider the peak structure atL'7.5 ~1!.
There are two families of orbits,L1 andL2 that are respon-
sible for these peaks. The underlying structures of these
bits are shown in Table I. Bearing in mind the two singl
particle orbits G2 are not well isolated~cf. Fig. 6!, the
Gutzwiller amplitude of eachG2 is incorrect. Consequently
the two-particle Gutzwiller amplitude will also be incorrec
as Fig. 7 demonstrates. Let us look at the next peak struc
Clearly, the quantum peak heights are underestimatedL
'8.1 (X). We account for this by recognizing the two
particle orbit structure involves the single-particle orb
1
2 (* 8b) that is an orbit which passes close to the vert
More specifically, the orbit familyL53 is composed of
single-particle orbitsG15 1

2 (* 4b) andG25 1
2 (* 8b) and the

lengths of these two-particle orbits areLL58.109. As a final
illustration, we consider the region 9.6,L,10.3. In this
neighborhood, the semiclassics are particularly bad. This
be accounted for by inspection of Table II.

TABLE I. A few of the periodic orbits that conspire to giv
trouble aroundL57.6.

L G1 G2 LL

1 1
2 (* 2a) 4a 7.562

2 1
2 (* 2a) 1

2 (* 10b) 7.565

TABLE II. A few of the periodic orbits which conspire to give
trouble aroundL510.

L G1 G2 LL

4 3a 4a 9.684
5 3a 1

2 (* 10b) 9.687
6 4a 1

2 (* 8b) 9.740
7 1

2 (* 8b) 1
2 (* 10b) 9.742

8 4a 4a 10.044
9 4a 1

2 (* 10b) 10.046
10 1

2 (* 10b) 1
2 (* 10b) 10.048
9-11
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As Table II and Fig. 6 show, there are many instan
where both of the single-particle orbits constituting the f
orbit are poorly isolated. In view of this, both single-partic
Gutzwiller amplitudes are incorrect making the product ev
worse. This accounts for the gross inconsistencies in
region of the reciprocal space. The other discrepancies
be accounted for in a similar manner.

B. Symmetry decomposition

In this section, we explore the symmetry decomposit
of the two-particle problem. We start by defining the smoo
and oscillating symmetry reduced densities from Eq.~21!

r̄S/A~k!5
1

2 F ~ r̄1* r̄1!~k!6
1

A2
r̄1S k

A2
D G ~48!

and

r̃S/A
dyn~k!5

1

2 F ~ r̃1* r̃1!~k!6
1

A2
r̃1S k

A2
D G . ~49!

While the second term in Eq.~49! is a single-particle density
in a future paper@20# we will demonstrate that this term
arises from the physical situation in which two particles a
traversing the same periodic orbit, with the same energy
are exactly half a period out of phase. It describes the ef
of particle exchange on the spectrum and for this rea
affects the symmetric and antisymmetric spaces differe
and is based on the theory of Ref.@34#. Therefore, this sec
ond term also belongs to the two-particle dynamical term
we identify Eq.~49! as being a purely dynamical term. W
want to compare it with the corresponding term in the sy
metrized quantum density-of-states. Hence, in analogy w
the previous subsection, we compare

F̃S/A
dyn~L !5F$r̃S/A

dyn~k!% ~50!

and

F̃S/A
qm ~L !5F$rS/A~k!2 r̄S/A~k!2 r̄1* r̃1~k!%, ~51!

whererS/A(k) is the quantum bosonic~S! or fermionic ~A!
density-of-states.

C. Numerics for the symmetrized cardioid

In this section, we numerically compare the symmetriz
quantum mechanics with the corresponding semiclass
quantities. In particular, we compute the transforms Eqs.~50!
and ~51! @35#. The symmetrized quantum densities are

rS~k!5(
i , j

d~k2Aki
21kj

2!1(
i

d~k2A2ki !,

~52!

rA~k!5(
i . j

d~k2Aki
21kj

2!
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using the same constraint on the energies as above
course, the sum of these symmetrized densities is the
density-of-states.

Before presenting our numerical results, we describe w
we expect. First, all the peaks of the unsymmetrized tw
particle density should be present. In addition, for ea
single-particle periodic orbitG, there should also be peaks
lengthsLG /A2 arising from the oscillating part of the single
particle density-of-states. The results are shown in Fig.
For the two-particle density term of Eq.~50!, we used the
same 100 two-particle orbits of Sec. VI A while in the sing
density term we used all single-particle orbits with leng
L,11. As well, we included the single-particle orb
1
2 (* 10h) ~not shown in Fig. 6! which has a lengthL
510.477. Figure 10 displays the peak structure in the re
rocal space up toL56.75.

We notice that most of the amplitude divides evenly b
tween the symmetric and the antisymmetric densities. No
theless, there are exceptions such as the peak atL'3.6 ~o!.
Here, both terms of Eq.~49! contribute and the difference in
the sign of the second term accounts for the uneven am
tude division between the two symmetrized densities. Se
classically, we account for this peak structure by noting t
two different physical situations are responsible for prod
ing it. First, there is the situation in which both particles a
on the orbit G5 1

2 (* 2a) with no restrictions on the time
phase difference between the two particles. This contribu
comes from the two-particle density term resulting in a pe
at a lengthA2LG53.673 and produces identical structures
both densities. The second situation occurs when both
ticles are on the orbitG5(* 2a) exactly half a period out of
phase. This contribution comes from the single density te
at LG /A253.673 and is explained more fully in Ref.@20#.
Since the second contribution comes with a different sign
the two symmetries, the amplitudes are different for the sy
metric and antisymmetric spaces. In this particular case,

FIG. 10. The Fourier transform of the quantum and semicla
cal symmetrized densities of states; the top is bosonic and the
tom is fermionic. In both cases the solid line is the transform of
quantum density-of-states and the dashed-dotted line is the tr
form of its semiclassical approximation. Peaks with symbols
described in the text.
9-12
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stronger in the symmetric density and weaker in the antis
metric density, although the opposite may be true in ot
cases.

In closing, we remark that the overall agreement betw
the quantum and semiclassical calculations is good.
poorly reproduced peak just aboveL55 ~1! comes from the
single density term. This is just the poorly reproduced pe
of the single-particle density atL'7 shifted down by a fac-
tor of A2.

VII. CONCLUSION

In this paper, we have presented a semiclassical form
ism for the two-particle density of states. After deriving
trace formula that explicitly involves two-particle dynamic
we investigated its structure and noted intuitive proper
such as the additivity of the actions and topological ph
factors. As well, we briefly explained the structure of the f
two-particle orbits, which come in degenerate familie
Then, we considered two-particle billiards, obtaining a
proximate formulas for all terms in the semiclassical dens
of-states, including a detailed discussion of spurious
point contributions.

Following these general considerations, we studied
identical noninteracting particles in a disk and in a cardio
In each case, we find that the formalism correctly reprodu
the full and symmetrized densities-of-states. The semicla
cal symmetry decomposition involved formal substitution
the semiclassical quantities into the quantum-mechanica
pressions for the symmetrized densities. In future work@20#,
we will show how these formal expressions emerge dire
from the classical structures. In the integrable problem,
found that our formalism replicates the two-body EBK spe
trum more precisely than the quantum spectrum, sugges
a deep connection between periodic orbit theory and E
quantization for integrable systems. In the chaotic cardi
billiard, we note that the single-particle orbits that pass cl
to the vertex lead to inconsistencies in the Fourier transfo
of the semiclassical density-of-states. Clearly, our formal
fails here because the Gutzwiller theory itself fails for the
‘‘semidiffractive’’ orbits. For all other orbits, the two
particle trace formula works very well.

The techniques employed here involve the classical ph
space of each particle. In a future paper@20#, we derive the
same results by working in the full two-particle phase spa
This approach has the advantage of being more general
what we have presented here. Nonetheless, it is concept
useful to see how the same structure emerges from these
distinct points of view. We would also like to incorpora
interactions between the particles. Such a project would
doubtedly require working in the full phase space since i
no longer true that the full density-of-states is the convo
tion of the single-particle level densities. This provides
additional motivation for working out the noninteractin
problem in the full phase space as a first step towards
more ambitious goal. This full phase space analysis also g
eralizes more readily to more particles. Finally, it has
conceptual advantage that the spurious end-point contr
tions discussed in Sec. IV D and Appendix B do not ar
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and therefore need not be explained away.
It may be argued that interacting many-body systems

too complex to be accessible to the semiclassical meth
However, given the intractability of the many-body proble
there may be questions which semiclassical theory can
swer. In particular, we have in mind the applications of sem
classical theory to mesoscopic physics@19#. Here, our seem-
ingly academic study of billiard systems finds physic
applications in the context of nanostructures. For exam
the disk billiard can serve as a realistic lowest-order appro
mation to the mean field of the electrons in a circular qu
tum dot @36#. In fact, many phenomena in ballistic meso
copic systems can, at least qualitatively, be described
using quantum billiards with independent particles as phy
cal models.

ACKNOWLEDGMENTS

The authors are grateful to the NSERC for financial su
port. We thank Rajat Bhaduri, Matthias Brack, and Ran
Dumont for useful discussions.

APPENDIX A: NONIDENTICAL PARTICLES

As we have mentioned, most of the discussion still app
if the two particles are not identical. The main differenc
are that one no longer considers the symmetrized density
states since the symmetry of particle exchange no lon
exists and secondly there are two distinct cross terms so
Eq. ~11! is replaced by

r2~E!5r̄1a* r̄1b~E!1r̄1a* r̃1b~E!1r̃1a* r̄1b~E!1 r̃1a* r̃1b~E!,

~A1!

where the indicesa andb refer to the two distinct particles
while the indices 1 and 2 still refer to one- or two-partic
densities-of-states.

Suppose, for example, that we have two nonidentical p
ticles in a billiard. We introduce two parameters,aa
52ma /\2 and ab52mb /\2. The smooth term~23! is re-
placed by

r̄1a* r̄1b~E!'
aaabA 2

16p2 E2~Aaa1Aab!
Aaaab

16p2
ALAE

1
AaaAabL 2

64p
1

~aa1ab!AK
4p

. ~A2!

The cross terms each separately have the same structu
the cross term for identical particles. Obviously, they are
longer equal to each other, but functionally little h
changed. It is just a matter of inserting the relevant inform
tion from the different smooth and oscillating densities-o
states of the two particles. Following the same logic as
fore, we find

I A~E!'
aaA
4p2 (

Gb

AGb

TGb
cosS FGb

2
p

2 D , ~A3!
9-13
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I L~E!'2
AaaL

8p3/2A\
(
Gb

AGb

ATGb

cosS FGb
2

p

4 D ,

I K~E!'
K

p\ (
Gb

AGbcos~FGb
!,

whereFGb
5AabELGb

2sGb
p/2. For r̄1b* r̃1a(E), we just in-

terchangea andb.
The formula for r̃1a* r̃1b(E) still has the same basi

structure, but should obviously use distinct periodic orb
for particlesa and b. In particular, Eqs.~12! and ~18! still
apply, but with two important differences. First, the doub
sums over periodic orbits are now labeled by the disti
periodic orbits of the two particles. Second, the energy p
tition will change due to differing masses. The criterion
stationary phase will still specify that the two particles ha
the same period, but relations such as Eqs.~28! and ~29! do
not apply since they assume equal masses. The genera
tions are rather straightforward to determine. For exam
the saddle energies~29! are replaced by

E0

E
5

maLGa

2

maLGa

2 1mbLGb

2
,

E2E0

E
5

mbLGb

2

maLGa

2 1mbLGb

2
,

~A4!

while the general dynamical expression for billiards~31! is
replaced by

r̃1a* r̃1b~E!'
~2E!3/4Aaaab\

~2p!3/2

3 (
Ga ,Gb

LGa
LGb

~maLGa

2 1mbLGb

2 !5/4
AGa

3~E0!AGb
~E2E0!

3cosFAaaLGa

2 1abLGb

2 AE

2~sGa
1sGb

!
p

2
2

p

4 G . ~A5!

In the special case of identical particles, it is simple to che
that this expression reduces to Eq.~31!. For lack of an im-
mediate physical context, we do not explore this case
further.

Another situation is a single particle in a separable pot
tial. For example, in two dimensions, one could ha
V(x,y)5Va(x)1Vb(y) in which case, the dynamics in thex
direction are completely uncoupled from the dynamics in
y direction so that the system is formally the same as if th
were distinct particles executing thex andy motions.
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APPENDIX B: SPURIOUS END-POINT CONTRIBUTIONS
FOR ISOLATED BILLIARD ORBITS

Here we evaluate the cross term integrals exactly for i
lated periodic orbits. This allows us to do an asympto
expansion to explicitly demonstrate that the additional e
point contributions not included are spurious. We mu
evaluate the integral

r̄1* r̃1~E!5E
0

E

der̄1~e!r̃1~E2e!, ~B1!

wherer̄1(e) is given by the Weyl expansion~3! and r̃1(e)
for a billiard with isolated orbits is given by

r̃1~e!'
Aa

2pAe
(
G

Lg

Audet~M̃G2I !u
cosSAaeLG2sG

p

2
D .

~B2!

This gives

r̄1* r̃1~E!'(
G

Lg

Audet~M̃G2I !u
S a3/2

A
8p2 I 1

2a
L

16p2 I 21a1/2
K

2p
I 3D , ~B3!

where

I 15E
0

E

de
1

AE2e
cosSAa~E2e!LG2sG

p

2 D ,

I 25E
0

E

de
1

Ae

1

AE2e
cosSAa~E2e!LG2sG

p

2 D ,

I 35
1

AE
cosSAaELG2sG

p

2 D . ~B4!

If we evaluate the first two integrals exactly, we get

I 15
2

AaLG

FcosS FG1fG2
p

2
D 2cosS fG2

p

2
D G ~B5!

and

I 25p cosfGJ0~FG!2p sinfGH0~FG!

'A 2p

AaELG

cosS FG1fG2
p

4 D2
2

AaELG

cos~fG!1•••,

~B6!

where FG5AaELG , fG52sGp/2, J0 is a zero-order
9-14
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Bessel function, andH0 is a zero-order Struve function. I
the second line of Eq.~B6!, we have used the asymptot
expansions of these two functions.

In both I 1 and I 2, we note that asymptotically there a
terms with two distinct structures. The first are terms that
sinusoidal inAE and correspond exactly to what was used
the cross term for the cardioid@i.e., Eqs. ~25! and ~26!#.
There are also terms which are nonsinusoidal inE. In I 1, this
comes directly from the upper end point of the integral wh
st

A

-

ry
tt

ys

lo

04210
e

in I 2 it comes from the expansion of the Struve function.
each term, the nonsinusoidal terms arise from the end p
arounde5E which, as we argued in Sec. IV D, correspon
to an unphysical situation. Therefore, keeping only the
ymptotically appropriate term~i.e., the oscillatory one!
yields the correct behavior for the cross term.

A similar analysis would yield similar results for the sp
rious end-point contributions in the cross term of the d
billiard and the dynamical term of either billiard.
A

.

ree-
o-
till
zi-
n-
ular
er,

epa-
ing

ett.

le

pa-
s
ec-
ow
@1# M. C. Gutzwiller, J. Math. Phys.8, 1979 ~1967!; 10, 1004
~1969!; 11, 1791 ~1970!; 12, 343 ~1971!; Chaos in Classical
and Quantum Mechanics~Springer-Verlag, New York, 1990!.

@2# R. Balian and C. Bloch, Ann. Phys.~N.Y.! 60, 401~1970!; 63,
592 ~1971!; 69, 76 ~1972!; 85, 514 ~1974!.

@3# M. V. Berry and M. Tabor, Proc. R. Soc. London, Ser. A349,
101 ~1976!; J. Phys. A10, 371 ~1977!.
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