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Semiclassical trace formulas for two identical particles
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Semiclassical periodic orbit theory is used in many branches of physics. However, most applications of the
theory have been to systems that involve only single-particle dynamics. In this paper, we develop a semiclas-
sical formalism to describe the density-of-states for two noninteracting particles. This includes accounting
properly for particle exchange symmetry. As specific examples, we study two identical particles in a disk and
in a cardioid. In each case, we demonstrate that the semiclassical formalism correctly reproduces the quantum
densities.
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[. INTRODUCTION has been studied semiclassically for diffusive systems in Ref.
[16] and for ballistic systems in Ref$17] and[18]. For
Semiclassical physics has experienced a resurgence of ireviews, see Ref19].

terest, largely due to the work of Gutzwillgt], Balian and Ultimately, one would like to study systems with an arbi-
Bloch [2], and Berry and Tabdi3]. (For recent reviews see trary number of interacting particles. In the present paper, we
Refs. [4,5].) These works showed that if we separate thebegin by exploring the structure of the trace formula for two
density-of-states into smooth and oscillatory componentsponinteracting particles including an examination of the de-
then the oscillatory part is related to the dynamics of thecomposition into bosonic and fermionic spaces. This sets the
underlying classical system via periodic orbits. This complestage for the interactiniy-body problem to be explored in a
ments the earlier work of Weyl, Wigner, Kirkwood and oth- future publication[20]. The method employed here uses the
ers who showed that the smooth component is related to th@ct that the two-particle density-of-states is the autoconvo-
geometry of the classical phase space. Actually, the tWqution of the single-particle density-of-states. Subsequently,
components are related in a subtle W&y7] since the com- e decompose the semiclassical two-particle density-of-

plete geometry imparts the full dynamics and vice versa. giates into three distinct contributions and of particular inter-

Most of the theoretical work has concentrated on the,; s the contribution that contains two-particle dynamics.

single-particlle density-of-states, however, the_re are some NO- pijjiads have served as prominent model systems in
teargle except|on$$—10]. Ir_1 Ref. 8], .the focus is on th? av- quantum chaos. They combine conceptual simpligitye

ge level density and its extension to systems of identica del of a f ticle | baswhile allowing the full
particles. Specifically, the authors consider a systenN of modet of-a free particie in a boxwhiie aflowing the 1ull
fermions in one dimension. Their Weyl formula for fermions range of class'lcal dy.namlcs, from mtegrable to chaptlc.
works well for attractive two-body interactions, but overes-Therefore' as illustrations Qf the f°fma"5m’ we co_r_15|der
timates the quantum staircase function when there are repdfii@ntum billiards that contain two particles. As specific ex-

sive two-body interactions. The author of Rgf] develops a a!’“p'eS* we study two noninteracting identical PaF“C'eS in a
generalization of the canonical periodic orbit sum for thed'sk and in a card|0|d. 'I_'he former problem is mtegrqble
special case ofl interacting spinless fermions in one dimen- while the second is chaotic so these two examples provide a

sion. It is assumed the periodic orbits are isolated and theréj-_'reCt test of the formalism in the two limiting cases of clas-

fore it is most applicable to fully chaotic systems. The authorSical motion.

also considers a system of noninteracting fermions and

writes the many-body level density as a convolution integral

involving one body level densities. Finally, we mention Ref. Il. BACKGROUND THEORY
[10], which presents an expansion of the periodic orbit sum
in terms of the particle number using ideas from R¢8&.

and[9]. o S In this section, we review the formalism for the semiclas-
Similarly, most of the applications of semiclassical theorysjcal decomposition of the single-particle density-of-states.

have_ been to systems _that involve only single-particle dyq gt {&) be the single-particle energies so that the single-
namics. Here, we mention some exceptions. The authors (Harticle density-of-states is

Ref.[11] extend the study of scaf42] to classically chaotic

few body systems of identical particles. A study of the eigen-

functions of an intera_cting 'two—particle system can be found pi(e)= 2 Se—e), (1)

in Ref.[13]. The semiclassical approach to the helium atom, [

which can be understood as two interacting electrons in the

presence of a helium nucleus, has been studied in[Ré&f.

We also mention the applications of semiclassical theory tavhere the subscript 1 indicates that it is a single-particle
mesoscopic physicfl5]. For example, orbital magnetism density. A fundamental property of the quantum density-of-

A. Single-particle semiclassical theory
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states is that it can be exactly decomposed into an averagmrticle Hamiltonians and it follows that the energies of the
smooth part and an oscillatory p&#]: composite system are just the sums of the single-particle en-
L _ ergies. The analog of E@l) is then
pi(€)=pi(€)+pi(e). 2

There are various approaches for calculating these quantities p2(E)= IEJ JE—(€+¢)]. (1)

[5]. For example, in systems with analytic potentials, the '

smooth part may be obtained from an extended ThomasaA useful relation is that the two-particle density-of-states is

Fermi calculation which is an asymptotic expansion in pow-the autoconvolution of the single-particle density-of-states:

ers of#. In billiard systems, where the particle is confined to

a spatial domain by the presence of infinitely steep potential E

walls, the smooth part may be obtained from the Weyl ex- p2(E)= Jo depi(€)pi(E—€)=pi*pi(E), 8

pansion. In two-dimensional billiards with piecewise smooth

boundaries and Dirichlet boundary conditions, the first threeas can be verified by direct substitution. In fact, this works

terms of the Weyl expansion af21] even if the particles are not identical, where the full density
is still the convolution of the two distinct single-particle den-

— aA Na L sities. This would also apply to a single particle in a sepa-
Pl(e):(ﬂ_ ﬁﬁ) 0(e)+Ko(e)+ -, 3 rable potential, which is mathematically equivalent. Rather
than encumber the notation to explicitly allow for this pos-
wherea=2m/%2, A is the area is the perimeter, and sibility, we defer this discussion to Appendix A, where some
formulas for nonidentical, noninteracting particles are pre-
1 1« 76 sented.
K=15- % dlx(l)+ EZ 7 4 We can decompose the two-particle density-of-states for a

system of two identical particles into a symmetric and an

is the average curvature integrated along the boundary witBNtisymmetric density,
corrections due to corners with anglés. The oscillating

part is obtained from semiclassical periodic orbit theory, and p2(E)=ps(E)+pa(E). 9
in particular the various trace formulas fof(e) of the form  \we shall use the terms symmetric/antisymmetric and
[5] bosonic/fermionic interchangeably. Each partial density may

L L be obtained using a projection operator onto the relevant
~ s . .

pi(e)~ —2 Ar(e)cog —Sr(e)—or=|. (5) subspaces resulting in

Th<T f 2

1 1 [(E
I' denotes topologically distinct periodic orbits aBg(€) is psia(E)=3 pZ(E)iipl(E) . (10

the classical action integral along the orbit The amplitude

Ar(€) depends on energy, the period of the correspondingVe seek semiclassical approximations to these quantum ex-
primitive orbit, the stability of the orbit, and whether it is pressions, a topic which is pursued in the following sections.
isolated or nonisolated. The index- depends on the topo-

logical properties of each orbit. For isolated orbits, it is just 1. SEMICLASSICAL CALCULATIONS

the Maslov index. For nonisolated orbits, there may be addi- FOR THE TWO-PARTICLE SYSTEM

tional phase factors in the form of odd multiples o4

which we account for, in a slight abuse of notation, by al- Decomposing the single-particle density into its smooth
lowing o to be half-integer. In the case of nonisolated or-and oscillatory components as in Eg) gives a decomposi-
bits, I’ denotes distinct families of degenerate orbits. Thelion of the two-particle density-of-states into three distinct

amplitude of an isolated orbit is given by the Gutzwiller contributions,
trace formulg[1] s - — - - -~ ~
p3(E)=p1*pa(E)+2p1* pa(E)+pr*pa(E).  (11)

Ty—(e), (6)  The first term is a smooth function of energy since the con-
V|detM—1)| volution of two smooth functions results in a smooth func-
tion. This is followed by a cross term and finally by a purely
whereT_(¢) is the period of the primitive orbity, corre- oscillating term. The cross term is also an oscillating func-
sponding tol (i.e., T is an integer repetition of) and M tion. At first, this may seem incorrect since the_convolutlon
is the stability matrix of that orbit. of a smooth function with an oscillating function usually
yields a smooth function. As we will show, the oscillatory
nature of the cross term is due to contributions from the end
points of the convolution integral. Physically, the smooth
Suppose we have a system of two identical noninteractingerm does not depend on dynamics since it corresponds to
particles. The total Hamiltonian is the sum of the single-the Weyl formula in the full two-particle space. The cross

Ar(e)=

B. Quantum two-particle density-of-states
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term depends only on single-particle dynamics because it
corresponds to the situation where one particle is stationary  y(r, 1, ,E,) =
and the other particle is evolving dynamically on a periodic

Sr,(€) F7ZSFZ(E—€))
+

Je? Je?

orbit. It is only the last term that contains two-particle dy- Fo
namics in the sense that both particles are evolving dynami- v=sig Y (I'y,T'5,Eq)]. (14)
cally on periodic orbits. Hence, we will refer to the last term

as the dynamical term. E, is determined from the stationary phase condition

We find a general expression fpi* p;(E) by substitut-
ing a generalized trace formula fer, and then evaluating

9Sr () IS (E- e))

=0T (Eo)=Tr,(E-Eo),

the resulting convolution integral using stationary phase as-\ de de £
ymptotics. Using Eq(5), the dynamical term can be written 0 (15)
as
where we have used the fact that the derivative of the action
1 £ with respect to energy is the periokt, is the energy of
;1*;1(E)% E deAr (e)Ar.(E—e) particle 1,E—E, is the energy of particle 2, anl is the
(wh)? 11T, Jo ' z total energy of the composite system. The saddle enEggy
1 - has a precise physical interpretation; E#j5) says that the
Xcos(—sr (6)—op _) energies of the two particles are partitioned so that the peri-
h 1 12 ods of both periodic orbits are the same. In other words, at

1 - E,, we have orbits that are periodic in the full two-particle
><005<—5r (E—e)—or _). (12) phase space since after the perigdoth particles return to
h2 22 their initial conditions.

The next integral has the same stationary phase condition
To evaluate this asymptotically, we should include all criticalas the first integral and is its complex conjugate. The third
points in the integration domain. Specifically, this integralintegral is
has a stationary phase point within the integration domain .
and finite valued end points. We shall show that the station- [~ !
ary phase point correspponds to the situation where both par—f,mdeArl( €)Ar,(E- e)exp( ~ LS, (&)= Sr,(E-e)]
ticles are evolving dynamically with the energy partitioned (16)
between the two particles in a prescribed way. The end point
contributions must be evaluated at energies such that one 8d has no stationary phase point since setting the first de-
the particles has all of the energy while the other has ndivative of the action to zero yields the stationary phase con-
energy. However, this contradicts our assumption that bot#lition
particles are evolving—this is the definition of the dynamical
term. Moreover, if we were to evaluate this contribution, the Try(Eo)==Tr,(E-Eo). 17)
result would be meaningless since it involves using the trach.h ; | v invol bi ith " iod
formula at zero energy where it is known to fail. So we shall e trace formula only involves orbits with positive period,
omit the contributions from the end points; this is discussed® W€ 'gnore this possibility. The last integral is the complex

: . : - “conjugate of the third and will also be ignored.
glgfre[zfg]lly in Sec. IVD and in Appendix B, as well as in Adding the contributions from the first two integrals, we

Hence, we evaluate the integral in E§2) using only the arrive at the two-particle trace formula:

stationary phase point. To leading order, we can extend the

integration limits over an infinite domain. Writing the cosine 5 *pi(E)~ 2 Ar,(Eo)Ar,(E—Eo)
functions as complex exponentials yields four integrals; the ~ P% P1 (27h)32 110, V|Y(T'1.T5,Ep)l
first is

1
) | XCOS(%[Srl(Eo)"'SFZ(E_Eo)]
| _wdeArge)Arz(E—e)exp(g[sn(ewsrz(E—e)])

T T
_(O'F1+ o'rz) E+ vy

. (18
~Ar,(Eo)Ar,(E—Eo)

Py This result possesses the intuitive properties that, other than
ar .. . . .

XA — factors arising from the stationary phase analysis, the actions

|Y(I'1,T'2,Eo)| and Maslov indices are additive and the amplitudes are mul-

i . tiplicative. We note that this saddle-point analysis fails for

Xexp(g[srl(Eo)ﬂLSrz(E—Eo)]ﬂVz), (13)  the harmonic oscillator, wher® =0. This is because the

two-particle harmonic oscillator has a higher degree of sym-

metry than we are accounting for here. This is a hongeneric

where property specific to the harmonic oscillator. We also stress
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that we have made no assumption about the stability or struc- We also mention that for billiards, it is common to ex-
ture of the orbits. They can be isolated, stable or unstable goress the density-of-states in terms of the wave nunkber
come in families. There are also problems with coexistingwheree=k?/a so thatp(k) =2kp(€)/a. This is convenient
isolated orbits and families, such as those of the equilateraincek is conjugate to the periodic orbit lengtlhs There-
triangle billiard[23,5]. fore, our numerical results will be quoted as a functiork,of
Note that the overalh dependence is not multiplicative although it should be stressed that all convolution integrals
but picks up an additional factor &2 from the stationary must be done in the energy domain. Thus, we shall write
phase integral. For isolated orbits, the ampligt/l.zjéeare in-
dependent ofi and the expressiof18) has a 1 ' prefactor SO —.,~ ~ =~
as opposed to the fd/prefactor of the single-particle trace p3(K)=(pr*p1)(K) +2(py* p1) (K) + (pr* p1) (K). 20
formula (5). The fact that théi dependence is different im-
plies that the periodic orbits of the full system come in con-
tinuous degenerate families rather than isolated trajectorie
which in turn implies that there exists a continuous symme
try in the problen{24]. This is an important point which we
will address in a companion papge0]. (It was also noted in
Ref. [17].) Nonetheless, it may be helpful to give a brie
explanation here. Imagine the full phase-space periodic orb
I' consists of particle 1 on a periodic orbi{ with energyE,
and particle 2 on a distinct periodic oriit, with energyE
—Eqy. We can defing=0 to be when particle 2 is at some 1 k
prescribed point ol’,. Keeping particle 2 fixed, we can psia(K) =3 | pa(K iﬁﬁl(ﬁ)
change the position of particle 1 @h to generate the initial
condition of a distinct but congruent periodic orbit in the full
phase space. Continuous time translation of the initial condi- A. Smooth term
tion onI'; generates a continuous family of congruent peri-
odic orbits in the full phase space. Since the time transla-
tional symmetry can be characterized by a single _ E _
independent symmetry parameter, the dependence is P1*P1(E)=J depi(€)p1(E—e), (22
O(1/\%) stronger than for a system with isolated periodic 0
orbits[24,5].

ere, it is understood that each of the functions in brackets is
first evaluated in the energy domain and then converted to
the k domain through the Jacobian relation above. This will
always be the case when the argumerk,iso that we will
¢ not always write brackets around the various functions. In
ferms of the wave numbek, the decompositior(10) be-

o}

. (21

The smooth part is defined by the convolution integral

Where;l is given by the Weyl expansion. The expansion in
IV. TWO-PARTICLE QUANTUM BILLIARDS Eq. (3) is taken only to ordefi®. Hence, after expanding the
o . ] _integrand in Eq(22), it is formally meaningless to include
B|II|ards are two—dlmensmnal enclosures 'that constra'&erms that ar®(1/4) since there are corrections of the same
the motion of a free particle. Classically, a particle has elastigqer inz that have not been calculated. Ignoring these terms

collisions with the walls and depending on the geometricang performing the necessary integrations, the smooth term
properties of the domain, the dynamics are either regular o found to be

chaotic. We study billiard systems containing two noninter-
acting particles. We ignore the possibility of the particles

.~ : ; - . /
colliding since such an event would constitute an interaction. D% pi(E)~ O‘ZAZE_ a*?AL = “EZL aAK
This can be conceptualized by thinking of the particles as ~ P* P1 1672 8772 64w 27
pure point objects. (23

In a billiard system, classical orbits possess simple scaling
properties. For instance, the action of an orbBit Sy(e€)

= \2melL and the period of the orbit is B. Cross term
We next convolvq;l term by term withp;. Asymptoti-
Ti(e)= ISr(€) _ v2miy _ h‘/;L (19) cally, each convolution integral receives contributions from
r de 2e 2/e r the upper and lower end points. However, we shall only in-
clude one of these, namely, the end point for which the trace
The parameter=2m/#? already appeared in E(B); it will  formula is not evaluated at zero energy. We neglect the other

recur often. For example, the combinatiafe occurs in all  end point for reasons explained in Sec. IV D and R22].

final expressions; this is a result of the scaling propéttg  This is also discussed in Appendix B, where we evaluate the
quantity «E having the units of 1/lengt. In the theoretical various integrals for the cross term exactly using isolated
development, it will be convenient to retainand use it to  billiard orbits and show explicitly that an appropriate
keep track of relative orders in the semiclassical expansionasymptotic expansion of the exact expression leads to con-
(since it containgi). However, once we have the final ex- sistent results.

pressions, we are free to set it to unity for the purposes of After convolution, we find the area term involves the in-
numerical comparisons. tegral
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Re[ fEdeAF(E—e)exr{i\/a(E—s)Lr—iorg) ]
0

(24)

The lower end pointe=0 corresponds to the physically

meaningful situation while the upper end point is spurious in
the sense mentioned above and discussed in detail below.
Hence, to leading order, we can remove the amplitude factor
from inside the integral, Taylor expand the argument of the

PHYSICAL REVIEW /2 042109

Clearly v=—1. We then substitute these results into Eq.
(18) to obtain the two-particle trace formula for billiards

o (E) 4E3/4
* ~—
P1™P1 Va2t

Lr,Lr,

——— =P, (Eo)Ar (E—Ep)
i, (L12‘1+ L12-2)5/4 1 2

exponential, and extend the upper limit to infinity. This leads

tO

where® = aELr— op(7/2). By similar logic, the perim-
eter and curvature terms are

i 3 o)

8773/2\/%
K
| (E)~ — ; ArcogOr).

I (E)~—
(26)

Note that all amplitudes and periods in E(&5) and(26) are
evaluated at the system energy Recall ax1/4? so that

after convolution the sequence is an expansion in powers of

VA& and not in powers ot as for the original Weyl serig8).
We also note that the first correction kg may be of the
same order ak (as happens for the di$R5]) and should be
included if this is the case. We then have

p1*p1(E)=I 4(E)+1,(E)+1(E). (27)

C. Dynamical term

As an application of the two-particle trace formyles),

we now derive a general expression for the dynamical term

that is valid for any billiard problem. To this end, the first

task is to determine the saddle energy from the stationary

phase condition. Inserting E¢L9) into Eq. (15) yields

Lr Lr
1_ 2 (29)
VE;, VE-E,
which implies
B, ', E-E Lf 9
E i +Lf B LR 4LE
and
om (Lf +LE)%?
Y(T'y,I';,Eq)=— (30

4E3/2 L12~1L12~2

T T
XCO{ \/aE\/Llal—i- L12~2—(0'r1+ O'FZ)E— ik
(31)

If the single-particle periodic orbits are not isolated, then one
must make direct use of the corresponding single-particle
amplitudes in Eq(5) evaluated at the appropriate energies.
We will show an explicit example of this when we analyze
the disk billiard. Since the amplitude: typically have an
energy dependence, one cannot make any general statements
about the energy dependence of this term except that the
greater the dimensionality of the periodic orbit families, the
greater the energy prefactor. For example, for the disk, it
turns out to beE4,

If the single-particle periodic orbits are isolated, the am-
plitudes are given by Ed6), which for billiards is

L

e ,
2\e \deti,—1)|

In this case, the Gutzwiller amplitudes are evaluatedat
andE—E,, so we again make use of E(9). After some
algebra and simplification, we find

Ar(e)=

(32

a3/4

p1*p1(E)~ —(277)3/2E1/4

L, L

2 2 \—1/4
71 VZ(LF1+ er)

x>

1T\ det Ry 1)l det iy, ~1)]

T T
XCOS{ \/aE\/L%l-i- L12~2—((rr1+ UFZ)E— ni

(33

Note theE ' prefactor, which implies the amplitude, de-
cays weakly with energy. This is the same prefactor that
occurs in the single-particle trace formula of the disk. This is
not a coincidence, but arises from the fact that in both prob-
lems, the periodic orbits come in one parameter families. In
formula(33), one must be careful to distinguish betwégn

the length of a periodic orbit and, , the length of the cor-
responding primitive periodic orbit. In general-=nrL,
wherenr is the repetition index of that orbit.

042109-5



JAMAL SAKHR AND NIALL D. WHELAN PHYSICAL REVIEW A 62042109

D. Spurious end-point contributions the result of evaluating the cross term exactly for isolated

As mentioned above, when confronted with convolutionO'Pits: An asymptotic analysis of this result leads to two
terms that we can identify as coming from the two end

integrals, it is natural to analyze them asymptotically. This™', > ; .
involves identifying the critical points and doing appropriate points. One'has the form used in this paper while the other is
expansions in their neighborhoods. In our paper, these crit!€ary spurious.
cal points are either stationary phase points or end points.
The power of semiclassical methods is that each critical V. TWO-PARTICLE DISK BILLIARD
point can be given an immediate physical interpretation. For
example, the stationary phase point in the dynamical term iﬁj
found to be that energy such that the two particles have th
same period so that the motion is periodic in the full two-
particle ph_ase space. This is mtum\_/ely rgasqngble. Howeve evertheless, the spectrum has some interesting features that
the same integral also has end points with finite valued CONje discuss below
tributions. We could do an asymptotic calculation in the vi- '
cinity of these points, but we can argue immediately that the
result is spurious and not physically meaningful. A. Quantum mechanics
Recall the trace formulas are asymptotidiinwhich typi-
cally also means asymptotic in energy. At the end points, ong,
of the trace formulas is evaluated at small energy where it is
known to be invalid. Alterngtively, we can subs.titute for the [m; ny,myny)=|myny)®|myny), (34)
trace formula any expression that is asymptotically equiva-
lent to it and expect all meaningful results to be invariant to
leading order. If we do this, we will find the end point con- Where the azimuthal quantum numbems, m,=0,*1,
tribution changes while the stationary phase contribution re*2,... and the radial quantum numbersny, n;
mains invariant, to leading order. =1,2,3.... Weshall also use a more compact notation
A further argument is that the structure of the end point/N1,N2)=|m; ny,m, n,) whereN denotes a pair of integers
contribution will be incorrect. Typically, it will be a sinusoid (m,n). We can immediately write down the wave numbers
with an argument that does not depend on energy, but onl9f the two-particle system as
depends on the properties of one of the orbits. Hence, it will

In this section, we apply our results to the problem of two
entical noninteracting particles moving in a two-
fimensional disk of radiu®R. Quantum mechanically, this

roblem is a simple extension of the one-body problem.

For the disk billiard, a general two-particle state can be
ritten as

have the same asymptotic structure as the cross term. How- > 5

; Z Z
ever, we know that the cross term completely describes all \/ Ny n N, (35
such contributions and any further contribution with the NiNp R R/

same structure must be spurious.

Similarly, when we evaluate the cross term, we have two )
end point contributions. At one of these, we are evaluatingVhereZy denotes thenth zero of themth Bessel function
the trace formula at some finite energy, which is reasonable)m(z). The set of all two-particle states is given by
This end point corresponds to orbits that are periodic in théN1,N2)}- o _
full phase space and in which one particle evolves on a The spectrum is highly degenerate. A typical state
single-particle periodic orbit with all the energy, while the |[N1,N2) is eightfold degenerate since we can reverse the
other remains fixed at some point in phase space with zerdign of eitherm; or m; or interchange the two particles and
energy. At the other end point, we are evaluating the tracéhe resultant state has the same energy. However, if either
formula at zero energy, which is problematic. This corre-Or m; is zero or ifN; =N, (m#0) then the state is fourfold
sponds to the contradictory situation in which the evolvingdegenerate. Ifn;=m,=0 andN;# N,, then the state is two-
particle has zero energy while the fixed particle has all thdold degenerate whereasnf; =m,=0 andN;=N,, then the
energy. In addition, upon inspection of this end point contri-state is nondegenerate. If the particles are in distinct states,
bution, we find a function that is not oscillatory in energy the degenerate multiplets divide evenly between the symmet-
and therefore has the same asymptotic structure as thie and antisymmetric spaces. However, if the particles are in
smooth term. However, the smooth term already completeljhe same stateN,=N,, it is somewhat less trivial. IN;
describes the average behavior of the two-particle density-of= N, andm;=m,#0, there is a fourfold degenerate set of
states and any further contributions with the same structurétates: [mnmn), |-mn—-mn), [mn-mn), and
must be spurious. | =m n,mn). The first two states belong to the symmetric

These situations are further examples of a general situspace. From the second two states, we can construct one
tion described in Ref[22] where it was shown that when symmetric and one antisymmetric combinatidiThis is
integrating over the trace formula to obtain physical quanti-analogous to coupling two spin 1/2 states to construct a
ties, one should include all critical points except ones athreefold symmetricS=1 state and a nondegenerate anti-
which the trace formula is evaluated at zero energy. Sucksymmetric S=0 state) If N;=N, and m;=m,=0, this
contributions should simply be ignored as spurious. In Refyields the statd0n,0n), which is singly degenerate and
[22], the application was to thermodynamic calculations, bufelongs to the symmetric space.
the principle is precisely the same. In Appendix B, we show The quantum density-of-states
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V2ma®h DUle?)’/Vs

Avw(€)= Qp2eli

oow=3v—73%. (39
Adding the smooth and oscillating terms gives the semiclas-
sical approximation to the single-particle density-of-states
which we denote by:(e).

To evaluate the semiclassical approximation to the two-
particle density-of-states, we must evaluate the smooth,
cross, and dynamical terms. The smooth term can be taken
from Eq. (23) to be

2R4 a3/2R3

- — o 37+4
pr*p1(B)~ —=~E~ T\/E+

48

)aRZ. (39

The arguments of the previous section and in particular Egs.

FIG. 1. (Top) The quantum density-of-states for two identical (25) (26), and(27) lead to the cross term

particles in the disk billiard(Middle) Bosonic density-of-states.

(Bottom) Fermionic density-of-states. In each case, the heights in-

dicate the degeneracy of the state.

pak)= 2 S(k—ky,n,) (36)

and the corresponding symmetric and antisymmetric densi-

ties are shown in Fig. 1 as a function of the wave nunkoer

Note that in this figure some of the peaks have different
degeneracies in the symmetric and antisymmetric densities,

as discussed above.

B. Semiclassical density-of-states

L a5/4R2E1/4
*pa(E)~ ————
pP1™P1 4\/5

VL, WD, T
x>, —= cos( D, — 5)
VW v
T T
- EXUWCO q)uw_z

oI R
3 o2

[

X2 CosP |, (40)

where ®,,=VaEL,,—3v7/2+ w4 and

Xow

We first review the semiclassical decomposition of the= w/LvW/(aE)l"‘R. We have also included the first correction
single-particle density-of-states. The smooth part of theg the area ternh ,(E), which appears in the third term above
density-of-states may be obtained using the general result f¢p5]. The dynamical term can be obtained using ERf).

two-dimensional billiards(3). In fact, many higher-order
terms have been calculatgd]. But, for our purposes, it suf-
fices to use the first three terms as in E§) with A
=7R?, L=27R, andK=1/6.

The oscillating part of the level density can be obtainedp,* p1(E)~
using trace formulas for systems with degenerate families of
orbits. The periodic orbit families may be uniquely labeled

by two integers ¢,w), wherev is the number of vertices and

w is the winding number around the center. The two integers

must satisfy the relation=2w. The length of an orbit with
vertex number and winding numbew is given byL,,,
=2vR sin(mw/v). With this notation, the trace formula for
the oscillating part of the density-of-stateq 26]

3/4 Dvwl— 32

~ a oW T T
~ cog v —-3v=-+—
PO~ S e a2 od Vet 305 4 5]
(37)
where the sum goes from=1, ... andv=2w, ... ®

and the degeneracy factdy,,,, which accounts for negative
windings, is 1 forv=2w and 2 forv>2w. Comparing Eq.
(37) with the general form(5), we identify

Noting thatl'; in Eq. (31) corresponds to the pair of integers
(vi,w;), the result is

a5/4E1/4

4@ 01W§2W2

n

DL?
U|

> ) L1_23/2cos{ VaELy,

a a
_3(U1+U2)E+—

20 (41

wherelL;= Low: Di=Dyw., andL»= \/L21+ Lzz.

C. Numerics

For numerical purposes, we take=1 andR=1 so the
single-particle energies are just the squares of zeros of Bessel
functions. Since we can only include a finite number of or-
bits, the periodic orbit sums must be truncated. As a repre-
sentative case, we truncate the sum in E£D) at Wy
=500 max=100 (see Fig. 2 and use the same limits to trun-
cate the quadruple sum in E@1). This is a relatively small
set of orbits, yet it does very well in reproducing the peaks of
the quantum density-of-states. As an illustration, we show
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800F . 800}
10F
800+ . 600}
< 0 o 400f o 400]
el S o S o
* a (=X
s 200f : 200}
-10f
0 0
o] o) o O o) (o) [o] O @ [e]e]
200 s+ Pax %4 1 200 © & Pas % &
-20, " 6 8 10 71 7.3 75 7.7 9.3 9.4 95 9.6
W k k
FIG. 2. The cross ternf40) of the semiclassical density-of- FIG. 4. Two sets of two peaks in the semiclassical density-of-

states for two identical particles in the disk billiard. In this case, weStates(20) that are not resolvedLeft) The middle peak is not
truncate the sum in Eq40) at Wym=50pm.=100. The circles resolved into the two peaks &=7.4163 (corresponding to _the
indicate the level sequence of the one-body problem obtained froffiuartet{|0 1,=12),[=12,0 1)}) and k=7.4423 (corresponding

Einstein-Brillouin-Keller (EBK) quantization. Note the kinks that 0 the octet{|=11,£31)[+31,=11)}). The corresponding
occur at these positions. EBK quartet and octet energies occuikat 7.3831 andk=7.3932,

respectively. Note thaf\kggy=0.0101 andAkqgy=0.026 so that
the first few peaks of Eq20) in Fig. 3. We calculated the the spacing of the two unresolved levels is smaller in the semiclas-
semiclassical density-of-states on the intervall3<11. Af-  sical spectrum than in the quantum-mechanical spectt&ight)
ter doing so, we found only two sets of two peaks that werelhe middle peak is not resolved into the two peakkat9.4641
not resolved. These are shown in Fig. 4. Obviously, usingcorresponding to the quartff=11,03,[03,=11)}) and k
more orbits will produce better results, but this increases thgzp%:;iz(?éfzpuoz;?;?%;z tg‘;ecicﬁt;—; ;elsvioic?k};;zgs‘;ogsé
computation time because of the quadruple sum in(E&g). ) :
(Alth%ugh one can reduce the cgmputart)ional ove(rﬁgad b§5:9'4456' respectively. Heré\keg=0.0097 andikqy=0.0188.

limiting the sum to orbits whose amplitude exceeds some . h q h of th ks. H
prescribed thresholf25].) integrating the area under each of the peaks. However, a

As an additional test, we want to determine whether Eq__S|mpler procedure is to do a Gaussian smoothing by convolv-

(20) gives the correct degeneracies. We could do this by"9 p3(k) with an unnormalized Gaussian of varianee

600" p§°(k)*Ga(k):J' dk’'p3k")G(k—k"), (42
. 400 0
9o 200
e Aﬁ‘\, where
—200F__ °# Ox
600} ' ' G, (k) =exp —k?/20?) (43)
. 400f
& 200 and o is the smoothing width. The reason for this is that if
= A ﬂ the varianceo of the Gaussian is larger than the intrinsic
ool > O width of a peak in the semiclassical spectrum, then each peak
600} acts likeD 6(k—k,) with respect to the Gaussian. Thus, the
__ 400} integral in Eq.(42) becomeD G, (k—k,) or D atk=k, . Of
f’m 200 course, this is invalid when the spacing between two adja-
= ﬂ cent peaks is smaller than abatit Some examples are dis-
_o00l . h . cussed in the next section.
3 4 5 We also studied the symmetrized densities by using ex-

k pression(21) for both the quantum and semiclassical densi-

FIG. 3. (Top) The first few peaks of the semiclassical density- {i€S and then convolving as above. The periodic orbit sums in
of-states(20). (Middle) Semiclassical approximation to the bosonic the oscillating parts of the one- and two-body densities were
density-of-states(Bottorm) Semiclassical approximation to the fer- truncated in the standard manner as before. The result of this
mionic density-of-states. In each case, the circles and stars represéidmerical procedure is shown in Fig. 5. Clearly, the semi-
the appropriate level sequences obtained from EBK quantizatioglassical approximations reproduce the correct degeneracies
and quantum mechanics, respectively. Note the positions of thef the quantum spectrum as well as the approximate posi-
peaks more closely reproduce the EBK spectrum. tions.
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ings, since the spacing distribution has a Poisson character.
In fact, even a chaotic system with noninteracting particles
would have a Poisson spacing distribution. This is because
the separate single-particle energies are constants of motion
and when we combine many independent spectra the result-
ing distribution is Poisson, even if the distributions of the
separate spectra are @]. One might then wonder if this

is a fatal problem in higher dimensions. If one’s motivation
is to determine gross shell structure, a point of view stressed
in Ref. [5], this is not a problem. If one’s motivation is to
reproduce the full quantum spectrum, one might still argue
that it is not really a problem. Any peak has a width associ-
ated with it which is related to the number of orbits used in
analyzing the trace formula. This width gives a numerical
s . 10 uncertainty to the energy of a multiplet. Even if two peaks

k are unresolved, the amount of information is essentially the
same. We know the number of states involved by integrating
‘under the peak. Also, we know the energy of all those states
to the precision of the peak width, just as for resolved peaks.

positions marked by an “X.”(Middle) The smoothed semiclassical elEetZztr:een?géiginkggv:etshoﬁvzgergflfsOgﬁﬂgfs\/fljéve?h%eiﬁ(sotﬁ
bosonic density-of-states obtained from numerical convolution oft me prec P ) Y P
Eq. (21) (with the + sign) and Eq.(43). (Bottom) The smoothed tant criterion is that the peak width s_hould be smaller than
semiclassical fermionic density-of-states obtained from numerica‘he mean spacing between states. Th|§ problem of unresolved
convolution of Eq(21) (with the — sign) and Eq.(43). In each case P€aks is less of a problem for chaotic systems where we

the sequence of dots represent the corresponding EBK spectrutould not typically expect more than two states to be in-
ando=0.0125. volved in an unresolved multiplet. Also, adding interactions

will tend to lift such near degeneracies and reduce this effect.
D. Discussion In Fig. 5 we also observe artifacts of the single-particle
spectrum(some examples are marked by an “XWwhich

In Ref. [26], it was noted that the trace formula replicates yrjse from errors in the cross term. These presumably de-
the single-particle EBK spectrum obtained from torus quant ease when corrections to the single-particle trace formula

tization more precisely than it duplicates the exact single ¢ incorporated into the cross term.

particle quantum spectrum. After inspection of Figs. 3and 5, these numerical findings support our analytical results.

we notice the same effect in the two-particle spectrum. Thigye noy test those results in the rather different context of a
property of the trace formulas also accounts for the unregpaotic billiard.

solved peaks in the semiclassical spectrum. When the spac-
ing of two levels of the EBK spectrum is very small, our
truncated trace formulas may not resolve them, regardless of
the spacing of the corresponding levels in the quantum spec- In this section, we study the problem of two identical
trum (cf. Fig. 4. noninteracting particles evolving in the cardioid billiard,
Comparing Figs. 1 and 5, we observe generally goodvhich is fully chaotic[28]. Since the billiard has a reflection
agreement between the quantum and semiclassical spectggmmetry, all the quantum states are either even or(tids!
Still, there are some apparent inconsistencies, for examplgymmetry should not be confused with the symmetry due to
the two tall peaks in Fig. 5. These are the two sets of unreparticle exchange In the subsequent analysis, we will ex-
solved levels in Fig. 4, in each case, an octet and a quartetlusively use the odd spectrum. The reason for this is to
The reason for the discrepancy is the level spacings arevoid the additional complication diffractive orbits that
smaller than the smoothing wid#, in contradiction to the strike the vertex. Classically, these orbits are undefined and
assumption above, so that the peak height does not equal thee therefore not included in the standard Gutzwiller theory.
degeneracy. In fact, the peak heights observed are rath@tudies of diffractive effects in trace formulas can be found
close to 12 since the octets and quartets are very nearly d@y Refs.[29] and[30]. The latter reference explores the spe-
generate on the scale of and act almost like a 12-fold cific application to the cardioid and shows that diffractive
degenerate set. It is not perfectly 12 due to the fact that therbits are important in describing the even spectrum but are
degeneracy is not perfect. However, we also observe that tHargely absent from the odd spectrum.
integrated weight under the peak is consistent with a set of We could proceed as before by doing an explicit semi-
12 energy levels. classical analysis of each term in the decomposition of the
Other inconsistencies in Fig. 5 occur for the same reasonwo-particle semiclassical density-of-statékl). However,
Of course, overall improvements can be made by includingve can simplify the analysis by removing single-particle dy-
more orbits. However, it is a fundamental problem that amamics from the discussion. That is, we will focus exclu-
integrable system will have a large number of small spacsively on those quantum-mechanical and semiclassical quan-

L]
T

k) + G_(K)

p
(=] S
L

B

-

LA

N
s

FIG. 5. (Top) The smoothed semiclassical density-of-states ob
tained from numerical convolution of E¢0) with Eq. (43). Note
the artifacts of the single-particle EBK spectrum, which occur at th

VI. TWO-PARTICLE CARDIOID BILLIARD
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FIG. 6. Some of the shorter periodic orbits of the cardioid in the
full domain. The label of each orbit includes the number of reflec-
tions and also a letter index to further distinguish it. The asterisk
designates a self-dual ordi80]. The two orbits *& and *1 1 2
reflect specularly near the cusp, contrary to appearances while the
orbit 4a misses the cusp. From Ré¢80].

FIG. 7. The Fourier transform of the dynamical part of the two-

-, . . . . particle density-of-states. The solid line is the transform of the
tities that inherently describe two-particle dynamics. Morequantum-mechanical two-particle spectrum E@5) and the

Speqlflcally, we compare the Fourier transform of the dy'dashed-dotted line is the transform of the semiclassical two-particle
namical term trace formula Eq(44). All relevant geometrical periodic orbits with

'|ESC(|_)=}'{~ -~ (k)} (44 length LF:‘/LF21+ Lr22<11 have been includedSymbols de-
2 P1*P1 scribed in the tex}.

with its quantum-mechanical analog which we define to be , i ) , )
orbit I' is comprised of particle 1 traveling on the single-

oMo ) — T T T particle orbitI'; and particle 2 traversing a distinct single-
FIL)=Hpa(l) = prxpa(k) = 2p1xpa(k}. - (49 particle orbitl",, we expect a peak at-= LF1~|— er. In the
The integral operatof will be defined precisely below. In event that both particles are on the same single-particle orbit
the semiclassical transford4), we use Eq(33) expressed I, we expect a peak af2Lr. In this way, any peak in the
in terms of the wave number. HerE; andI', are periodic  two-particle spectrum can be attributed to the dynamics of a
orbits in the fundamental domaine., the half-cardioidand  particular periodic orbit of the full classical phase space.
L, are the primitive lengths of the orldit, in the fundamen- We construct the two-particle spectrum by adding the en-

tal domain. Orbit properties are discussed in RE{Q_] and ergies of the single-particle spectrum. We include the first

[30] and some representative orbits are shown in Fig. 6. Thé250 single-particle energies which allows us to construct

stability matrices in the denominator are computed using théhe first 766 794 two-particle energy levels representing all

standard prescription for the stability of free flight billiards two-particle energies less than 6.83680°.

(see, for example, Ref4]). For a precise numerical comparison, we define the Fourier
In the quantum-mechanical analog E45), p,(k) is the  transform

guantum two-particle density-of-statgs,(k)==,8(k—k,), .

where the superindeixdenotes the pair of integers, |) and f‘{f(k)}:f dkw(k) e’k (k) (46)

k= \/kzi +kj2. In Eqg. (45), we subtract the smooth average -

part and the part that contains single-particle dynamics. Us-

ing A=3m/4, £L=6, andK=3/16 in Eq.(23) and in Egs. as a function of the conjugate varialdle Here,w(k) is the

(25), (26), and (27) yields the smooth and cross terms, re-three-term Blackman-Harris window functi¢@2]

spectively. For the cross term, one must also use the periods

(19) and amplitude$32) in Eqgs.(25) and (26) evaluated at 2 Kk
the system energg. > a co{ 2] 0 ) Ko<k<kg,
w(k)=4 =0 ki —ko (47)
A. Numerics for the unsymmetrized cardioid 0, otherwise,

As before, we takee=1 and use a standard sized cardioid
as in Ref.[30] to obtain the single-particle spectrum. We with  (ag,a;,a,)=(0.42323;-0.49755,0.07922). We
numerically compare the two-particle quantum mechanicsehoosek, andk; so that the window function goes smoothly
with the two-particle semiclassics by making a direct com-to zero at the first and last eigenvalues of the two-particle
parison of the Fourier transforms in the reciprocal space o$pectrum. Numerical integration of Edqg4) and(45) using
orbit lengthsL. In this space, we expect peaks at lengths thathis definition of F is displayed in Fig. 7. In the semiclassical
correspond to the Euclidean lengths of fakk periodic orbits  transform, a total of 100 periodic orbitgncluding multiple
of the two-particle system. For instance, if a two-particlerepetitiong were used.
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TABLE I. A few of the periodic orbits that conspire to give

8ol _ trouble around.=7.6.

' A r; r, Ly
60} 1 3(*2a) 4a 7.562
_ 2 3(*2a) 3(*10b) 7.565
=)
L a0l

amplitude is inaccuratgThere is recent work on uniform
approximations to account for such effe¢®&3], unfortu-
nately it seems not to apply to the cardioid, which has the
additional curious feature that the boundary curvature is in-
finite at the vertex.

We now consider some specific examples. The first two
discrepancies occur &t~6.6 (0) andL~7 (*). In this re-
gion, the single-particle trace formula is errone$88] and
these errors propagate through to the cross term and inevita-
bly to the quantum-mechanical transform. We have also
computed the cross term using quantum mechanics, i.e., us-

ing lepl—;l in Eq. (45) and confirmed that these discrep-

) ancies do not arisécf. Figs. 8 and 8 Thus, these discrep-
In Fig. 7, we observe good agreement between the qUalncies are due to errors in the semiclassical approximation of
tum and semiclassical results o< 6.5 andL>10.3. In the PP

. . . . the cross term.
region 6.5<L<10.3, there are appreciable discrepancies for For the rest of the discussion, refers to a particular

the _foIIowing reason. Recall that the ampIinde of the tWo'periodic orbit family in the full phase space with each two-
particle trace formula33) applies only to billiard systems eparticle orbit in this family comprised of the single-particle

Hnose S parle perrl oits e SOMEC, " s, anal andL are e lenihs o e s neach
g'e-p P ' amily. Next, consider the peak structure lat=7.5 (+).

not well isolated in phase space, in fact, two geometric orbit " .
and a diffractive orbit are sometimes very close in phas;'—here are two families of orbits, andA. that are respon-

) : * Sible for these peaks. The underlying structures of these or-
space, for .example., the two geom_etrlc (_)rblt's @‘Ud 100 bits are shown in Table I. Bearing in mind the two single-
together with the similar looking diffractive orbita4 (not

shown [30]. In this event, the stationary phase approxima—girtt;\:ll/?”eorrg'tnf’ l;ifugéeofnggcgelIislsiggfrg((;f' CFOI?{se@’ugrﬁ
tion underlying the Gutzwiller formalism fails as does the P 2 ' q Y

argument that diffractive orbits do not affect the odd SpeC_the two-particle Gutzwiller amplitude will also be incorrect,

trum. As a result, whenever a two-particle orbit in the full aTe[;'ﬁ" 7tg2ngsnttrjrtr?&;_aeli l;]seiloﬁtks a;::euﬂzztg;?rﬁasttéﬂcge'

space is comprised of one or both particles on one of thesg8 1 3&) W?e accounF'Z for thig by recoanizing the two-

problematic single-particle orbits, the resulting two-particle L . y 09 9! .
particle orbit structure involves the single-particle orbit

£(*8b) that is an orbit which passes close to the vertex.
More specifically, the orbit familyA=3 is composed of
single-particle orbitd";=1(*4b) andI',=3(*8b) and the
lengths of these two-particle orbits drg =8.109. As a final

30| i illustration, we consider the region 98 <10.3. In this
neighborhood, the semiclassics are particularly bad. This can
be accounted for by inspection of Table II.

20F

FIG. 8. Same as Fig. 7 except that the cross term in(&g).is
computed using single-particle quantum mechani8ymbols de-
scribed in the tex}.

40 T T T T T T T T T

20t TABLE II. A few of the periodic orbits which conspire to give

trouble around.=10.

1
i
A r, r, La
10p
4 3a 4a 9.684
5 3a 3(*10b) 9.687
. N , 6 4a (*8h) 9.740
1 2 3 4 5 9 10 7 1(*8b) 2(*10b) 9.742
8 da da 10.044
FIG. 9. The Fourier transform of the cross term for the cardioid 9 4a %(* 10b) 10.046

billiard calculated using quantum mechanie®lid) and periodic 10 3(*10b) 3(*100) 10.048
orbit theory(dashed dotted
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As Table Il and Fig. 6 show, there are many instances  1sf ' ' ' ' '
where both of the single-particle orbits constituting the full
orbit are poorly isolated. In view of this, both single-particle — 1o}
Gutzwiller amplitudes are incorrect making the product even<;,
worse. This accounts for the gross inconsistencies in this= |
region of the reciprocal space. The other discrepancies cal
be accounted for in a similar manner. I\

s '

B. Symmetry decomposition 0

In this section, we explore the symmetry decompositionu"?
of the two-particle problem. We start by defining the smooth= 5[
and oscillating symmetry reduced densities from &1)

. N\
— 1] — — 1/ k 1 2
pyalk)= > (Pl*Pl)(k)i—Zpl( E) (48)
FIG. 10. The Fourier transform of the quantum and semiclassi-
and cal symmetrized densities of states; the top is bosonic and the bot-
tom is fermionic. In both cases the solid line is the transform of the
guantum density-of-states and the dashed-dotted line is the trans-
~dyn _1 ~ ~ N 1.k form of its semiclassical approximation. Peaks with symbols are
pS/A(k)_E (pl*pl)(k)—ﬁpl E : (49 described in the text.

While the second term in E¢49) is a single-particle density, using the same constraint on the energies as above. Of
in a future papef20] we will demonstrate that this term course, the sum of these symmetrized densities is the total
arises from the physical situation in which two particles aredensity-of-states.

traversing the same periodic orbit, with the same energy and Before presenting our numerical results, we describe what
are exactly half a period out of phase. It describes the effeave expect. First, all the peaks of the unsymmetrized two-
of particle exchange on the spectrum and for this reasoparticle density should be present. In addition, for each
affects the symmetric and antisymmetric spaces differentlgingle-particle periodic orbil', there should also be peaks at
and is based on the theory of RE84]. Therefore, this sec- lengthsL /2 arising from the oscillating part of the single-
ond term also belongs to the two-particle dynamical term angbarticle density-of-states. The results are shown in Fig. 10.
we identify Eq.(49) as being a purely dynamical term. We For the two-particle density term of E¢50), we used the
want to compare it with the corresponding term in the sym-same 100 two-particle orbits of Sec. VI A while in the single
metrized quantum density-of-states. Hence, in analogy witkiensity term we used all single-particle orbits with length

the previous subsection, we compare L<11. As well, we included the single-particle orbit
2(*10n) (not shown in Fig. & which has a lengthL
FYN(L)=FpDn(k)} (500 =10.477. Figure 10 displays the peak structure in the recip-
rocal space up th.=6.75.
and We notice that most of the amplitude divides evenly be-

tween the symmetric and the antisymmetric densities. None-
theless, there are exceptions such as the peak=&.6 (0).
Here, both terms of Eq49) contribute and the difference in
the sign of the second term accounts for the uneven ampli-
tude division between the two symmetrized densities. Semi-
classically, we account for this peak structure by noting that
two different physical situations are responsible for produc-
C. Numerics for the symmetrized cardioid ing it. First, there is the situation in which both particles are

. _l * . . . .
In this section, we numerically compare the symmetrized®” the orbitl'=3(*2a) with no restrictions on the time
quantum mechanics with the corresponding semiclassiczﬂhase difference between the two particles. This contribution

quantities. In particular, we compute the transforms E5@. comes from the two-particle density term resulting in a peak

and (51) [35]. The symmetrized quantum densities are at a lengthy2L-=3.673 and produces identical structures in
both densities. The second situation occurs when both par-

ticles are on the orbif' = (* 2a) exactly half a period out of
Ps(k)zgz_ o(k— \/ki2+kj2)+2i S(k—+2k;), phase. This contribution comes from the single density term
: (52) atL/\2=3.673 and is explained more fully in R4R0].
Since the second contribution comes with a different sign in
pa(k)= E S(k— W) the two symmetries, the amplitudes are different for the sym-
i>j ! metric and antisymmetric spaces. In this particular case, it is

FIAL)=Fpga(k) — pga(k)—p1*p1(K)},  (51)

where pga(k) is the quantum bosoniS) or fermionic (A)
density-of-states.
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stronger in the symmetric density and weaker in the antisymand therefore need not be explained away.
metric density, although the opposite may be true in other It may be argued that interacting many-body systems are
cases. too complex to be accessible to the semiclassical method.
In closing, we remark that the overall agreement betweeitdowever, given the intractability of the many-body problem,
the quantum and semiclassical calculations is good. Ththere may be questions which semiclassical theory can an-
poorly reproduced peak just aboke=5 (+) comes from the swer. In particular, we have in mind the applications of semi-
single density term. This is just the poorly reproduced peaklassical theory to mesoscopic physi&]. Here, our seem-
of the single-particle density &t~7 shifted down by a fac- ingly academic study of billiard systems finds physical
tor of /2. applications in the context of nanostructures. For example,
the disk billiard can serve as a realistic lowest-order approxi-
mation to the mean field of the electrons in a circular quan-
VIl. CONCLUSION tum dot[36]. In fact, many phenomena in ballistic mesos-

In this paper, we have presented a semiclassical formafOPIC Systems can, at least qualitatively, be described by
ism for the two-particle density of states. After deriving a USing quantum billiards with independent particles as physi-
trace formula that explicitly involves two-particle dynamics, €&l models.
we investigated its structure and noted intuitive properties
such as the additivity of the actions and topological phase ACKNOWLEDGMENTS
factors. As well, we briefly explained the structure of the full
two-particle orbits, which come in degenerate families. . . )

Then, we considered two-particle billiards, obtaining ap_port. We thank Rajat Bha_durl, Matthias Brack, and Randy
proximate formulas for all terms in the semiclassical density-Dumont for useful discussions.

of-states, including a detailed discussion of spurious end
point contributions. APPENDIX A: NONIDENTICAL PARTICLES

. Fqllowmg 'these general .cons!derat!ons, we stud|ed_ WO As we have mentioned, most of the discussion still applies
identical noninteracting particles in a disk and in a card|0|d.hc the two particles are not identical. The main differences

In each case, we find that the formalism correctly reproduceg, o ot gne no longer considers the symmetrized density-of-
the full and symmetrized densities-of-states. The Sem'CIaSS’s'tates since the symmetry of particle exchange no longer

cal symmetry _decompo_s!tioq involved formal substituti_on Ofexists and secondly there are two distinct cross terms so that
the semiclassical quantities into the quantum-mechanical e>f;q (11) is replaced by

pressions for the symmetrized densities. In future WarK,

we will show how these formal expressions emerge directl — = — o~ ~ = ~ o~

from the classical structures. In tk?e integrable pr?)blem, wﬁoZ(E):pla*plb(E)“Lpla*Plb(E)+P1a*P1b(E)+ P1a* P1p(E),
found that our formalism replicates the two-body EBK spec- (A1)
trum more precisely than the quantum spectrum, suggesting

a deep connection between periodic orbit theory and EBKvhere the indices andb refer to the two distinct particles,
quantization for integrable systems. In the chaotic cardioigvhile the indices 1 and 2 still refer to one- or two-particle
billiard, we note that the single-particle orbits that pass closélensities-of-states.

to the vertex lead to inconsistencies in the Fourier transform Suppose, for example, that we have two nonidentical par-
of the semiclassical density-of-states. Clearly, our formalisniicles in a billiard. We introduce two parameters,
fails here because the Gutzwiller theory itself fails for these=2M,/#? and ap=2m, /%2, The smooth term(23) is re-
“semidiffractive” orbits. For all other orbits, the two- placed by

particle trace formula works very well.

The authors are grateful to the NSERC for financial sup-

The techniques employed here involve the classical phase — — a apA? Vagay
space of each particle. In a future pap2@], we derive the p1a* P1n(E)~ WE_(‘/‘“—&J’ Va) 1672 ALVE
same results by working in the full two-particle phase space.
This approach has the advantage of being more general than \/a—a\/a—bgz (ag+ ap) AK
what we have presented here. Nonetheless, it is conceptually Ry P yp= : (A2)

useful to see how the same structure emerges from these two

distinct points of view. We would also like to incorporate g ¢ros terms each separately have the same structure as

interactions between th_e pgrticles. such a project WOUld. Uthe cross term for identical particles. Obviously, they are no
doubtedly require working in the full phase space since it 'ﬁonger equal to each other, but functionally litle has

no longer true that the full density-of-states is the convolu- . nqaq |t is just a matter of inserting the relevant informa-

tion of the single-particle level densities. This provides an,, tom the different smooth and oscillating densities-of-

additiona! motivation for working out _the noninteracting states of the two particles. Following the same logic as be-
problem in the full phase space as a first step towards th?ore we find

more ambitious goal. This full phase space analysis also gen-
eralizes more readily to more particles. Finally, it has the A A
conceptual advantage that the spurious end-point contribu- | (E)~ %a > _Fbcog( O — Z)’ (A3)
tions discussed in Sec. IV D and Appendix B do not arise 472 Ty Tro b2
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FOR ISOLATED BILLIARD ORBITS

- APPENDIX B: SPURIOUS END-POINT CONTRIBUTIONS
a

Here we evaluate the cross term integrals exactly for iso-

lated periodic orbits. This allows us to do an asymptotic

K expansion to explicitly demonstrate that the additional end-

'K(E)%%; Arpcos Pr, ), point contributions not included are spurious. We must
b evaluate the integral

where®r, =/apELp, — o, /2. For pjyp1a(E), we just in-
terchangea andb.

The formula forp,.* p1p(E) still has the same basic
structure, but should obviously use distinct periodic OfbitSwherezl(e) is given by the Weyl expansiof8) and p;(e)

o E .
pl*pl(E)=f0 depi(€)p1(E—e), (B1)

for particlesa andb. In particular, Eqs(12) and (18) still  for a billiard with isolated orbits is given by

apply, but with two important differences. First, the double

sums over periodic orbits are now labeled by the distinct \/; L -
periodic orbits of the two particles. Second, the energy par- Di(€)~ E Y cos( \/;LF_O-F _) _
tition will change due to differing masses. The criterion of 277\/; T ‘/|de(l\~/l —1)| 2
stationary phase will still specify that the two particles have r (B2)

the same period, but relations such as Eg8) and(29) do
not apply since they assume equal masses. The generalizggig gives
tions are rather straightforward to determine. For example,

the saddle energid®9) are replaced by L A
prrp(E)=> —— | o¥2——
p1* pa( “ — @ gn2 t
v Mr—I
Eo ma|_12_‘a E— Eo mbL%b |de( r )|
E - ' = ' L K
E ml?+ml?’ B mif4ml} —a——s a1, (B3)
(A4) 167 2
while the general dynamical expression for billiai@9) is where
replaced by
E 1 T
|1= dE\/_CO{ \/C((E_E)LF_O'FE),
- (2E)¥*anarnhh 0 VE-e
pra* prp(E)~——————
(2m) E 1 1 T
|2: dE_ CO{\CE(E_E)LF_O'F—),
Lr,Lr, o e JE—e¢ 2
2 2 5T,
Fa Iy (maLFa+mbLFb)
| ! s(\/ EL i (B4)
- =-—CO0 —or—=|.
X (Eo)Ar, (E—Eo) 3 JE a=br—oIry
xcos{ N aaLF2a+ aerzb\/E If we evaluate the first two integrals exactly, we get
- + == A5 I,= cog &+ ¢r— —|—co - = B5
(or,tor) 53 (A5) 1 L rtér > ér > (B5)
In the special case of identical particles, it is simple to checkand
that this expression reduces to E§1). For lack of an im-
mediate physical context, we do not explore this case any,= 7 cos¢rJo(Pr)— 7 sindrHy(Pr)
further.
Another situation is a single particle in a separable poten- 2 T 2
tial. For example, in two dimensions, one could have ~ JaEL co§ Pr+ pr— )T TR cog o)+ - -,
V(X,y) = Va(X) + Vp(y) in which case, the dynamics in thxe r r
direction are completely uncoupled from the dynamics in the (B6)
y direction so that the system is formally the same as if there
were distinct particles executing tlxeandy motions. where &=\ aELy, ¢r=—or7/2, Jy IS a zero-order
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Bessel function, andH, is a zero-order Struve function. In in I, it comes from the expansion of the Struve function. In
the second line of Eq(B6), we have used the asymptotic each term, the nonsinusoidal terms arise from the end point
expansions of these two functions. arounde=E which, as we argued in Sec. IV D, corresponds
In both I, andl,, we note that asymptotically there are to an unphysical situation. Therefore, keeping only the as-
terms with two distinct structures. The first are terms that arg/mptotically appropriate term(i.e., the oscillatory one
sinusoidal inyE and correspond exactly to what was used inyields the correct behavior for the cross term.
the cross term for the cardioifd.e., Egs.(25) and (26)]. A similar analysis would yield similar results for the spu-
There are also terms which are nonsinusoiddt.iin |, this  rious end-point contributions in the cross term of the disk
comes directly from the upper end point of the integral whilebilliard and the dynamical term of either billiard.
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