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Disagreement between correlations of quantum mechanics and stochastic electrodynamics
in the damped parametric oscillator
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Intracavity and external third order correlations in the damped nondegenerate parametric oscillator are
calculated for quantum mechanics and stochastic electrodynd®iS), a semiclassical theory. The two
theories yield greatly different results, with the correlations of quantum mechanics being cubic in the system’s
nonlinear coupling constant and those of SED being linear in the same constant. In particular, differences
between the two theories are present in at least a mesoscopic regime. They also exist when realistic damping
is included. Such differences illustrate distinctions between quantum mechanics and a hidden variable theory
for continuous variables.

PACS numbgs): 03.65.Bz, 42.50.Dv, 42.65.Y]

[. INTRODUCTION the EPR paradox has been experimentally demonstrated us-
ing quadrature phase amplitudgd. Additionally, quantum

Local hidden variable theories have been extensivelyeleportation has been achieved using quadrature phase am-
compared to quantum mechanics over the last seventy or ggitudes[10], further demonstrating the utility of continuous
years[1-3]. Most comparisons between the two have inves-ariables.
tigated whether or not quantum mechanics is equivalent to a One commonly used local hidden variable theory is sto-
local hidden variable theory. Much evidence indicates that ichastic electrodynamicgl1,12. Some authors have pro-
is not. Many results in quantum mechanics have been foungdosed it as an alternative to quantum mechai¢s13. Fur-
that are incompatible with all local hidden variable theoriesthermore, a semiclassical approach equivalent {d4{ is
[2-7]. Most of these results have involved idealized un-also commonly used in parametric oscillator calculations
damped systems. However, all experimental systems eff15]. SED consists of adding Gaussian white noise to classi-
counter damping. Thus, it is interestiignd more realistic  cal electrodynamics. It is equivalent to truncating third order
to compare quantum mechanics and local hidden variablderivative terms in the quantum mechanical Moyal equation,
theories in damped systerfs|. This paper compares quan- a commonly used approximatigid6]. Such terms are often
tum mechanics and one local hidden variable thd@tp-  negligible and thus SED reproduces many results of quantum
chastic electrodynamid$SED)] in such a system. mechanic§14,15. However, it cannot violate Bell inequali-

One of the earliest works comparing local hidden variableties for quadrature phase amplitude measurements, and is
theories to quantum mechanics was Bell's theof@h It  thus distinct from quantum mechanifs]. Various authors
demonstrates that quantum mechanics is incompatible withave explicitly shown differences between SED and quan-
all local hidden variable theories at a statistical level. It doegum mechanic§17—-19. In particular, it has been shown that
so by deriving an upper bound on a function of two particlethe two theories predict different transient third order corre-
correlations for all local hidden variable theories, whichlations for the undamped nondegenerate parametric oscillator
guantum mechanics exceeds. Extensions of it have been fdrt7]. It has also been shown that they predict different mac-
mulated for large angular momentum and particle numberoscopic quadrature phase amplitude correlations in the
systemg5,6]. These extensions demonstrate nonclassical bedamped nondegenerate parametric oscillator in the steady
havior in a regime usually regarded as being purely classicabktate[19].
Greenberger, Horne, and ZeilinggeHZ) [4] have also ex- In general, differences between quantum mechanics and
tended Bell's work, differentiating quantum mechanics fromlocal hidden variable theories are reduced or eliminated by
all local hidden variable theories for single, as opposed talamping[20]. Furthermore, damping is a significant element
ensemble, measurements. The three particle GHZ theoreof many realistic systems. It is thus important to consider its
has an “all or nothing” quality and distinguishes between effects on differences between quantum mechanics and local
local hidden variable theories and quantum mechanics in hidden variable theories such as SED. However, all but a few
single experimental run, once three basic correlations are esf the comparisons between the quantum mechanics and lo-
tablished. cal hidden variable theories referenced above have involved

Comparisons between quantum mechanics and local hidindamped systems. They are thus idealized in this respect. In
den variable theories have also been made using continuogsntrast, damping is included in the calculations in this pa-
variables(which are discretized in formulating the compari- per. It is included to consider a theoretical model that is as
son), such as quadrature phase amplitup8s and there is realistic as possible and also to determine the sensitivity of
currently much interest in this area. For quadrature phasdifferences between quantum mechanics and SED to its pres-
amplitude measurements, these comparisons can have detetce.
tor efficiencies in excess of 99§8]. They also tend to relate This paper extends a previous comparison between quan-
more strongly to Einstein, Podolsky, and Rosen’s originaltum mechanics and SED in the nondegenerate parametric
EPR paradox1] than earlier discrete variable ones. Indeed,oscillator[17]. In particular, it contrasts both intracavity and
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external moments of the two theories in the same systerthe system has a coherent state in the pump mode and
with damping included. Expressions from both theories arezacuum states in the signal and idler modes.

compared for the intracavity moment A number of quasiprobability representations exist to de-
scribe quantum states, the most famous being the Glauber-
(AX(T)AXR(T)AX3(7)), Sudarshan representatif@2]. It is produced by decompos-
ing quantum density operators using a diagonal coherent
where state basis. Thus,

AXi(7)=Xi(7) = (Xi(7)), )
pZJ da?P(a,a*)|a)(al, (2.2

fori=1,2,3,X;(7) is a quadrature phase amplitude, the sub-
scripts represent different radiation modes, and a scaled .
time variable. A comparison is also made for an analogou#herep is a density operator aneél(a,a*) is the Glauber-
external moment. Both analytic iterative and numerical techSudarshan representation. The Glauber-Sudarshan represen-
niques are used to calculate moments. The results producégtion can be negative and is hence not a strict probability
by these techniques show that the intracavity and externdlensity function. A more recent representation is the
moments differ greatly between the two theories. In particu{ositiveP representatiof21], which is an actual probability
lar, the analytic method shows that the moments of quanturflensity function over an off-diagonal coherent state basis. It
mechanics are cubic in the system’s nonlinear coupling confturther differs from the Glauber-Sudarshan representation by
stant to leading order while those of SED are linear. The twdising a phase space of doubled dimension. The podive-
theories are compared over a range of nonlinear couplingariables{«;,«;"}, wherei is a positive integer, are analo-
constant, damping, and average initial pump photon numbegous to complex field amplitudes, with ande;" describing
values. The results of these comparisons show a number af particular radiation mode. Howevelrg;} and {«;'} are
qualitative trends. Most importantly, quantum mechanics anghdependent and heneg+ (a;")*, though their averages are
SED differ in the situations considered with the largest ratiog.omplex conjugates and thys;)=(a;")*. Variable aver-

of particle number and damping to nonlinear coupling, al-ages are equal to normally ordered quantum averages once
though the differences are reduced in relative size. - A N
. ; . he substitutionse;—a; and «;" —a, are made. For ex-
Stochastic techniques are used to obtain results for both

quantum mechanics and SED. The positRr&oherent state ample.,(alaD:(aJ{al)p, where(O), denotes Tr¢O), as
representatiofi21] is used to calculate quantum mechanicalusual in quantum mechanics. - _
predictions. It is particularly well suited to the calculation of ~ Stochastic equations of motion for positi#evariables
guantum dynamics in damped quantum optical systems whei@r the damped nondegenerate parametric QSCl”atOf are, In
nonclassical behavior is present. It is able to handle arbiterms of = (time scaled byl", a typical damping constant
trarily large photon numbers. It converges quickiy the ~ With units of inverse timg

sense of sampling errpwvhen systems’ dimensionless non-

linearities are relatively small, as is the case with nonlinear da; n Jooa

optical experiments. By contrast, the method used for SED oy - vt Qep astNgGasés,

calculations corresponds to commonly used approaches in

guantum optics, where the field is treated as a semiclassical dai
object surrounded byclassical vacuum fluctuations. Both i yia] +gasas +Vgasz &,
methods are used to generate analytic predictions and are 4
also numerically simulated. q
Ay n
—=- + ++ ,
Il. QUANTUM MECHANICS dr v2ez+Qay agtVgast;
. . . . 2.3
This paper considers an idealized nondegenerate paramet- dadt 23
ric oscillator, resonant at three frequenciesandw, (signal d_: =—y,a, +gajag +1 /ga§ &,

and idler frequencigandw;= w1+ w, (pump frequency It
contains a nonlinear medium that couples the modes and

converts higher energy pump photons into lower energy sig- das
nal and idler ones. The system’s interaction Hamiltonian, dr _ YsasTQaia,
including linear losses, is given by
d +
3 %3 + + o+
~ . AgA g A A A A~ el SPe) =—’)/3a3—ga/1a2.
A=inG(alala;—aja,ah)+ >, al+TTa;, (2.9 dr
=1

~t A . o Hereé,&,,&, , andé, are complex Gaussian white noises
wherea; anda; are creation and annihilation operators for ith the following correlations:

oscillator modes.lA“iT andfi are environment mode operators,
and G is a nonlinear interaction strength constant. Initially, (&i(m)&j(12)) =03 j0(T1—72),
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FIG. 1. The three basic classes of stochastic diagréanmitial
value term,(b) noise term, andc) nonlinear term, and a stochastic

diagram(d) representing a higher order term.
FIG. 2. Stochastic diagrams representing the lowest order non-

. . zero terms required to determine the intracavity moment of quan-
(& (1)) (12))= 83 j6(T1— 72), (24 tum mechanicgM(7))ou for @ ay(7), a3 (7),ax(7) and aj (7)
and (b) as(7),a; (7),(as(7)) and(az (7).

<§i+(71)§j(7'2)>:0a

’Tl T
a(lmﬂ)( T)= a(lo)( T)+ f o driexd yi(r—7)]

1=
wherei,j=1,2. In Eq.(2.3), v;=TI';/T", wherel’; is a damp-

ing conétant for mo?:iéwith ulnits Iof inverse ti;neng/FF,) X[ga; ™ (1) afV(r) +\ga (1) 1(1)]
and 7=T't. It is assumed tha®, I';, andI" are real. Initial (2.6)
conditions are a;(0)=0,a,(0)=0, and a3(0)=e€. It is

noted that Eq(2.3) is valid only when boundary terms in and first order approximations are

phase space can be neglected. These are asymptotically small

in the limit of short times or large damping ratif3]. (1) — fT':Td o] v (7 — ex;{ _ ﬂ) _
Equation (2.3 is solved using an analytic iterative o (7) =0 mexiy(m—)]Vge 2 |4,
method. This method treats damping terms exactly, and
noise and nonlinear terms iteratively. It involves, first, re- agl)(q-)zeexp(—y:,;r),
writing the equations forming Eq(2.3 as a;=— y;a; - (2.7
+fi({aj.a},7) or o =—ya +1({aj,a]},7), where aiJr(l)(T)zj ' drexd yi(r— 7)]ge*
i,j=1,2,3. Successively higher order approximations for =0
{ai(7),e; ()} are then found using increasingly better ap- -
proximations forf; andf;” . Thus, (n+1)th order terms are Xex;{ - &) & (),
given by 2
ag(l)(T)ZE*qu—ygr),
TI=T
ai(mﬂ)(T):ai(o)(THf driexd yi(m1—7)] wherei=1,2.
T1=
X fi({aj(m) ,af(m)},q-l), (2.5 lll. STOCHASTIC DIAGRAMS

The iterative method of the previous section can be used,

=7 in conjunction with stochastic diagrams, to readily produce
+(m+1) .y~ ,+(0) ' — : . . . .
@i ()=a; (1) + Jfl_o driexd yi(m1—7)] analytic approximations for the intracavity moments of quan-
tum mechanics considered in this paper. Stochastic diagrams
Xt ({af™ o ™}, 1), [24] are schematic representations of the combinatoric parts

of an iterative process. They clearly lay out all terms pro-

duced by different orders of iteration. Fundamental stochas-
Here a(?(7)=a(7=0) Xexp(~x7) and «@"(7) tic diagrams appear as one of three classes. Those associated
=a(k0)(7')*, wherek=1,2,3. For example, with initial conditions appear as straight lines, those with
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noise terms as straight lines with a cross at their end, and;(7) and«; (7), respectively. Now, consider the equations
those with nonlinear terms as straight lines containing a forkthat constitute Eq(2.3). Their forms do not change when
as shown in Figs. (8—1(c). Higher order iterative terms are they are expressed in terms ofa;(7),— a; (7),a5(7), and

represented by stochastic diagrams using combinations of th§3+(7), wherei=1,2. From this, it follows that(.4(7))
three basic classes. For example, one of the iterative terms 'L_n<_Ai(7_)> and hence a;(7))=(a; (7))=0, where again

2 .
ai?(7) is i=1,2. Thus (A A;(7)AAx(7) A As(7)) can be simplified to
(A A(DAA(7)). |
f drex yi (71— T)]gaéo)(fl)f dr, An approximate expression fdtd,(7).A,(7)AAz(7)) is
=0 72=0 now obtained using the iterative method in Sedalhd sto-
- chastic diagrams This method can be used to produce
X exd ya(7,— 1) ]Vger ex;{ — M) & (7). power series expressions ghfor the positiveP variables.
2 These expressions can then be used to generate power series

It combines all three basic classes and is represented by tlzeégzii’jj?:; ALTg (97_) ;OLS tgh<31 ri];\OerZI?;fic gf/sté?nes Iﬁg:e

stochastic diagram in Fig.(d). All iterative terms can be ower series expressions can be aporoximated by their low-
represented by stochastic diagrams. P P PP y
st order nonzero terms.

Stochastic diagrams can also be used to determine the Figures 2a) and 4b) show the stochastic diagrams re-

orders of iterative terms. In particular, they can be used tc%}uired o determine the moments of the form

determine the orders of such terms in the system’s nonline . L

coupling constang. This paper focuses on the order of terms?Al(T)AZ(T)AA?’(T»' Naively, it might be thought that the

in this constant. For quantum mechanics, initial value itera Owest order nonzero terms fros, (7),.Ax(7), andA As(7)

tive terms ar@d(g?), noise iterative term®(g¥?), and non- simply need to be mult|pI|ed' together and the average of the

linear iterative termsO(g). Hence, lines in stochastic dia- subsequent prpduct determined to calcul_att_a the lowest order

grams count as order zero, crosses as order a half, afifnZze" term (A1 (7) A2(7) AAg(7)). This is not always

vertices as order one. A term’s order is simply found by!TU€: SOMetiMesd; (7),A,(7), andAAy(7) are not neces-

considering its stochastic diagram and adding one-half to it§2"1Y Zero and ye(Ay(7) Ax(1) AAy()) is zero. For ex-

order for every cross and one for every vertex. For example?m_ple’ th_e lowest order nfnzero terms for the posikve-

the term represented in Fig(dl has one vertex and one Vvarables in{ay(7)az(n)Aas (7)) are

cross and thus i©(g®?). A notation that denotes the order in

g of a term by a superscriph] is used in this section. ey, |7
Stochastic diagrams are now used to determine the i (n)= ;

intracavity moments of quantum mechanics considered

in this paper. Consider all eight moments of the form V3T

(AA(DAAATAA()),  where  AAi(7)=Ai(7) Xexﬂ( B T) i), @3

—(Ai(7)) and A4(7) is eithera; or a'. These are equal to

the positiveP variable moments that replage anda’ by ~ wherei=1,2, and

onnexmim—f)]@

T3=T TA=T3 Y3T.
AaPl(r)= f draexi{ ya(7s~ )9 f J draexiTy(7a= 7)) ge*exp(—%)ﬁ(m
4=

73=0

Tg=T3 V3T . T3=T
Xf o d7sexd yo(75—73)] gf*exl{_T)fz(Ts)_<f OdeeXF{YQ,(Ts_T)]g

3=

T4=T3 V3T, T5=1T3
Xf o drsexd y1(74—73)] QE*GXIJ(—%)&*(M)J o d7sexfd yo( 75— 73)]Vg€*

5=

T4=

Y375

X6X4—T)§;(T5)>. (3.2

However, the average of their product is zero as

T4=T3

=7 (Tp=7 (13=T7 T5=T3
() i e ) =gee [ T[T [ R drdrdnidrsent vt 7]
71=0 J15=0 J73=0 J74=0 75=0

Y372

Xex;{ - %) exf yo(7o— r)]ex;{ BT

exd ys(7m3— 7)]exd yi(74— 73)]
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Xexr{ - % exfd y (75— 73)]exr{ - %)
X[(&1(m1)Ex(T2) €1 (T4) €3 (75)) = (£1(T1) Ea(T2) (&Y (74) &5 (75))] 3.3
and
(E1(T1) Ex(T2) E{ (T4) &5 (75)) = (E1(T1) Ex(T2) )€1 (74) €5 (75)). (3.9

Thus, the two noise terms cancel each other and the right hand side ¢8.Bqis zero. Taking such a consideration into
account, the moments of the form

(Ar(1) Ax(T)AA3(7))

are determined by carefully considering the lowest order nonzero terms of their constituent gositiviables and then
finding the average of these variables’ products.

Consider Fig. 2), which contains the lowest order stochastic diagramsafgt) and «;"(7), wherei=1,2. The first
diagram in it represents the initial value term®’(r) and «{°)*(7), which are zero and do not contribute to any moments.
The second represents noise terms contaiging, ,&,, or & , which are not necessarily zero and thus may contribute to
moments. Figure @) contains the lowest order stochastic diagramsdefr) and a3 (7). In it, all terms represented by
stochastic diagrams containing initial value lines are zero except faD¢a€) ones. This is so as these terms contain either
a{9(7) or ;" (7), wherei = 1,2, which are both zero. In addition, &(g°) terms represented by stochastic diagrams in Fig.
2(b) are canceled out by othed(g°®) terms. This occurs becauseA;(r) appears in the moments considered. Its two
componentsAs(7) and(.A3(7)), contain the sam®(g°®) term and hence the®(g®) terms cancel each other. It follows that
the only remaining stochastic diagram in Figb2 which represents th®(g?) term containing two noise components, denotes
the lowest order term ik A3(7) that is not necessarily zero.

The lowest order nonzero terms determined above are now used to cakomlétga,(7)Aas(7)). The lowest order
contribution toA a3(7) that is not necessarily zerd, aziones{ 7), IS

Ta=

Sasiou 1= [ drsenvstryla [ driontn(ra ra 1 Gee] - 15 eutr

73=0

Ta=

X fTS:TsdeeXF[ Yo 75— 73)]\/&6)(;{ - %) §2(T5)_< f 3 OTdT3eX[{ RN

7'57

3=

" fr4=073d7_4exp[ y1(14—73)] @ex% - %) &1(7g) f75=0T3d 75X ¥2( 75— 73)] \/&
7'5:

TA=

XeX[{ - %) §2(T5)> . (35)

When y;=7y,=v3=7v, the average of the product of form (A;(7)A,(7)AAs(7)) are zero to O(g®). Like
Aagiones(7) and the lowest order nonzero termsdn(7)  (ay(7)ay(7)Aaj (7)), they all have twoO(g®) terms that
and a,(7) is approximately equal t@a1(7)ax(7)Aas(7))  cancel each other. To explain such behavior in general, the
wheng<1 and thus following argument is given. These other six moments can
be rewritten as
e’g%exp(—3y7)

<CY1(T)C¥2(T)A0£3(T)>Z_ yz <A1(T)A2(T)A3(7)>—<A1(T)A2(T)><.A3(7')>, (37)
« exp(y7) s _exp—y7) where it is understood that the moments in whidk(7)

y Ty =) Ad(D)=ax(7), As(r) = as(7) and Ay(r)=a; (7),

(3.6) Ay(7)=ay (7),A3(7)=as (7) are excluded. AllO(g®)

terms in the six moments of the forf,(7).Ax(7)A3(7))

As daggered positive variables are complex conjugate to Under consideration contain noises in one of the three forms
undaggered ones on averagéa, (7)a, (7)Aas (7)) ) .

=(ay(7)as(7)Aas(7))*. The other six moments of the (§1(Ta)€x( 1) &1 (T0) &5 (79)),
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(&) &3 () E(T) E3—i(T)),

and (&' (7a)é3-i(mo) & (1c)€3_(74)), where i=1,2 and
time arguments are dummy variables. 8i{g®) terms in the
six moments of the fornf.A,(7).4,(7)){.A3(7)) under con-

sideration contain the same noises as their correspondiny .

(A1(7) Ay(7) A3(7)) terms. However, in these terms of the
form ( A;(7).A,(7)){(A3(7)) four noise averages from corre-
sponding terms of the formi.A,(7).Ax(7).A3(7)) are split

into the product of two averages of two noises. For example,

(@i(T)ay(7)as (7)) contains noises in the form

(£1(7a) E2(10) €1 (7c) €5 (74)) While (ay(7)ax(7))(az (7))
contains them in the form

(€2(7a) €2(70) )€1 () €3 (7q)). Using the formula

<§1(Ta)§2(Tb)§3(7'c)§4(7'd)>
:<§1(Ta)fz(Tb)><§3(7'c)§4( Td)>+<§1( Ta)fa(Tc)>

X (€ Tp) Ea( 7))+ (€1(Ta) E4(79) )(E2(Tp) €3( 7)),
(3.8

it can be shown that noise expressions in moments of th

form (A;(7).A,(7).Az(7)) under consideration factorize. In

particular, they reduce to the noise expression in the six co

responding terms of the forfid, (7). Ax(7)){A3(7)). It fol-
lows that cancellation occurs between B¢g®) terms in
corresponding moments of the forfd,(7).A,(7).As(7))
and (A;(7).A,(7)){A3(7)) under consideration as the two

PHYSICAL REVIEW &2 042108
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FIG. 3. Analytic results for(M(r)>QM (solid line and
(M(7))sep (dotted ling versus scaled time for N=1, g=1, y
=1, and co®=cosd=1.

pon expanding the right hand side of .10, the two
owest order terms ing, (Aay(7)Aay(7)Aaz(7)) and

r(_Aaf(r)Aa}(r)Aag(r», usually dominate. When they

’

(M(7))om=5[c0sO Re(ay(7)as(T)Aas(7))
—sin® IM{a1(7) ax(T)Aas(1))],

terms are identical. Consequently, all six moments under
consideration areO(g*). They are also typically much (3.1
smaller than the tw®(g®) moments{a;(n) ax(1)Aas(7))  where ©=6,+ 6,+ 65 However, when co®@=0 and
and (a; (7)a, (1)Aag (7)), asg<1l for realistic systems. |m[(a,(7)a,(r)Aas(7))]=0(*) or when si®=0 and
To be precise, as all moments are complex quantitiesRe[<a1(T)aZ(T)Aas(Tm:0(74)' Eg. (3.11) is not neces-
the  magnitudes  of (ai(7)ax(7)Aas(7)) and  sarily true. Such situations can be avoided though bec@use
(a7 (1) a3 ()Aag (7)) are much larger than the magnitudes and e are controllable parameters. They are ignored in the
of the other six moments. present consideration. When is real, theO(g®) term in
The above results are now more closely related to experia,(7) a,(7)Aas(7)) is also real and so

ments by considering quadrature phase amplitXjes().
In particular, calculations are performed to determine(the
principle experimentally observabl¢hird order quadrature
phase amplitude moment{M(7)), where (M(7))
=<AX“,1(T)AXZYHZ(T)AX&%(7-)>, according to quantum

mechanics and SED. In quantum mechanics, quadrature
phase amplitudes are expressed in terms of creation and an-

nihilation operators by the equation

o ajexp(—i6;)+alexp(i6,)

i0; 5 (3.9

Using Eq.(3.9) and operator-positivé® variable correspon-

dences(l\?l(r))QM, the value of(M(7)) for quantum me-
chanics can be expressed as

3
HlAai(r)e*”’i+Aai+(T)ei”i :

(3.10

N 1
<M(7)>QM:§<

(M(7))qm=5C0SO( () as(T)Aas(T))

€’g%cos® exp(—3y7)
472

o SR, e yT)

. (3.12

Thus, Eq.(3.12 shows thal(l\?l(r))QM is cubic ing, within
the domain considered, as shown in Fig. 3.

IV. COMPARISON OF QUANTUM MECHANICS AND
STOCHASTIC ELECTRODYNAMICS

This section compares the predictions of quantum me-
chanics and SED for the intracavity momémM (7)). SED is
a semiclassical theory which adds Gaussian white noise to
classical electrodynamics. It describes electromagnetic field
modes by complex field amplitudgs For the nondegener-
ate parametric oscillator, the set of such amplitudes
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{B1.B2,B3} evolves via the equations 0(g") —_—
I
— == 7B+ 9B} Bat Vyié1, (4.0 o)

33
= — y2B2+ 9B B+ 262, o)

Jd
Lﬁs = — y3B3—9B1B2+ \y3és,

where the same time variable as in the quantum case is used
and the¢’s are independent complex Gaussian white noises Og") 2
with the correlations

<§i(71)§}k(7'2)>:5ij5(7'1_7'2)1 (4.2
wherei,j=1,2,3. The field amplitudeg,,,, and B ini- .
tially have Gaussian fluctuations in their real and imaginary O(g)

parts of variance 1/4. The only nonzero correlations present
in these fluctuations are thus
FIG. 4. Stochastic diagrams representing the lowest order non-
(ABI(0)ABF(0))=13, (4.3 zero terms required to determine the intracavity moment of SED,

(M(7))sep, for B, wherei=1,23.
wherei=1,2,3. Initial conditions aré3;(0))=(B,(0))=0

and(3(0))=e.
The SED prediction for the intracavity momei (7)) is
(M(7))sep, Which is given by the equation

term of <I\7I(7-)>QM. Consider the moments of the form

(AB(7)ABy(7)ABs(7)), where B,(7) is either B,(7) or

Br (7). The stochastic diagrams required to determine the
(M(T)>SED:<AX1,61(T)AXZ,HZ(T)AXS(}g( 7)), (4.9 order of_ the_lowest order nonzero terms of these moom_ents are

shown in Fig. 4. Note that noise terms are n@{g"), in-

whereX; , (7)=[ B, (r)e i+ g¥(r)e'%]/2. It is calculated Stead of0(g*? as for quantum mechanics. Using the sto-

using aS|m|Iar iterative method to the one in Sec. I, excepf:hasuc d|agrams<|£1 Fig. 4 it is found that, when= 7,

that noise terms are now treated exactly instead of |terat|vely Y andg, me=

Zeroth order approximations for this iterative method are

thus <AB1<T>ABZ<T>A/3§<T)>:1127[1—exq—3m]

Ti=T

BO(7)=Bi(0)exp — ¥;7) + f - dr ~(ABY(T)ABS(T)AB(7)*.
Ti=0
4.7)

xexd yi(r— D7, (4.5
The other six moments of the form{AB;AB,AB3)
B (7)=B3(0)exp — ys7), are all O(g?). Thus, (ABi(7)ABy(7)AB5(7)) and
(ABT(T)AB5(7)ABs(7)) dominate these other six mo-

wherei=1,2. Higher order ifi+1)th order approximations | ants wherg<1 and hence

are
n=r (M(7))sgp=37C0SP(AB1(T)AB(T)ABZ (7))
A =0+ [ anexnn—n)
7=0 gcos
[1—exp(—=3y7)], (4.8
xgB3 P (7)) B (7), (4.6
S where ®=6,+6,—65. Equation (4.8) shows that
3(3m+1)(7-)=3§°)(7)_f drsexd ya(m3—7)] (M(7))sep is linear ing, as shown in Fig. 3. This is in
= contrast to the cubic behavior ()M?I(T))QM. Thus, quantum
% g(m (m) ’ mechanics and SED predict greatly different values for
9B; " (73) B3 " (73) (M(7)) wheng<1.
wherei =1,2. Consideration is now given to the effect of damping

The lowest order nonzero term gnof (M (7))sgpis now  strength on the size of the difference betwekl(7))sgpand
found using the same method as for the lowest order nonzer((M(r))QM Figure 5a) shows(M)QM and(M)gep as func-
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x10? V. NUMERICAL RESULTS

The analytic results fokM(7))sgp and (I\7I(r)>QM in
Secs. lll and IV include only lowest order nonzero terms.
This leaves the sums of all higher order terms as neglected
and these may be significant. For this reason, the validity of
the analytic approximations are checked by comparison with
highly accurate numerical simulation results.

Numerical simulation methods for stochastic differential
equations(SDE’s) are both somewhat complex and not
widely known. Thus, explanations are given for the numeri-
cal technique used to solve the SDE's in ER3) and(4.1).
Normal ordinary differential equation techniques such as the
Runge-Kutta method cannot be used to solve SDE’s as they
contain discontinuous source terms. Instead, a semi-implicit
numerical method25] is employed. Only its application to
1 j ' : : : ' j : : Eq. (2.3 is explained as its application to E@.1) is similar.

(a) ¥ Each of the equations in ER.3) can be rewritten as

(M) dour (M) Vg

IX;
a_XTZAi(X)*E. Bij () ¢j(7), (5.1
J

wherex; is eithera; or «;" , fori=1,2,3,x is a vector whose
components aréa; ,a;"}, A is the function ofx formed by

s ] the damping and nonlinear terms in the evolution equation
for x;, andb; is a matrix whose elements are coefficients of
the noise termg¢{;} where(; is eitherg; or §j+ ,for j=1,2.

af 1 The semi-implicit method used determiné®, an approxi-
mation tox at the midpoint of the interval(,,7,. ). This

ar il approximation is found using iteration such that fit@ or-

der approximation to a component ¥, x("[P! is given

by the equation

(ME) Do { MO Do

. A X(WIP = x(MW 1 2 A 7 (x(MIP—1])
(b) v

FIG. 5. Results fo(K1(y))ou (dotted lines and (M(7))seo +2 B (xXVPTIAW, (7)) [, (5.2
(solid lineg as a function of the damping constapfor g=0.1N !
=1, cosH=cos®=0, and(a) =1, (b) r=0.1. wherex(" is the value ofx; at time 7,, A7=7,_1— 7,

. . (=7 e idpoi i

tions of y for g=0.17=1, ande=1. It indicates that the AWi(7n)=¢"(m)A T, andr, is the mldpqlnt Ofnth? |nt-erval
difference between them is somewhat sensitive,tdecreas-  (7n—1,7,). The zeroth order approximation " is given
ing exponentially with increasing and quickly approaching by the equation™!®!=x(" . The approximation tax™ cal-
zero. However, for the shorter time=0.1, Fig. 8b) shows  culated is then used to generata(" , an approximation to

that this difference is not as sensitive to damping. It onlythe change ix; over the interval ¢, 7). This is done by
decreases approximately linearly with increasing solving the equation

SED and the positivé® representation treat fluctuations
very differently, as is evident by comparing noise terms in
Eqgs(2.3) and(4.1). This difference in treatment underlies the
differences between the two theories’ results. First, noise
terms in the positive? representation are nonlinear and areRepeated use of Ed5.3) determinesxi(”) for successively
scaled by eithen/ga; or \gas, while those in SED are |ater and later times and thus solves E§.1). Two of the
linear and are scaled byy,. Secondly, noise terms possess most important parameters used in the numerical simulations
different correlations in the two cases. Thirdly, in quantumare the step size and the number of stochastic paths that are
mechanics no energy fluctuations occur in the vacuum stateyveraged over. The former is always 0.0025 and the latter is
while in SED{;} fluctuates, as does the total energy. As-O(10°) for most simulations. However, large sampling er-
suming quantum mechanics is true, in SED fluctuations irrors necessitated averaging ow@(10’) paths forg=0.1
the vacuum lead to an overestimate(d (7)) for small g. SED simulations.

AX(W= A (xXM)A 7, + ; Bij (xX™)AW;(7,). (5.3
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] FIG. 7. Numerical and analytic results f(!(m7|(7)>QM and
a : ; ; (M(7))sep for N=10,y=1, and co®=cosd=1. Analytic results
for (M(7))sep are indicated by solid lines faii) g=1 and(iii) g
of - _ =0.1. Numerical results fofM(7))sgp are indicated by dots with
T ) associated error bars f@r) g=1 and(iii) g=0.1. Analytic results
1r e . for (I\?I(r))QM are indicated by dotted lines fdwv) g=1 and(iv)
= g=0.1. Numerical results fo¢|\7|(r))QM are indicated by dots with
ar iy 1 associated error bars fov) g=1 and(iv) g=0.1.

M
(M) g
.

\ those of SED being positive. This trend holds only for short
, times (r<<0.07) in Figs. 8a) and 8b) (N=100). For longer
. times, SED and quantum mechanics predict the same sign.
X This trait is consistent with the fact that FiggaBand 8b)

s show results for the largest number of photons in the pump
| mode. SED and quantum mechanics are at their most classi-
= cal level for this case and thus might be expected to differ the
. . . ‘ ‘ least. For constan Figs. 6—8 also show that apis de-

o0 ° PR e 0% o *#  creased the results of quantum mechanics and SED become
() more similar. This occurs because lowgralues are asso-
ciated with larger damping to nonlinear coupling ratios and
therefore move SED and quantum mechanics closer to the
classical domain.

FIG. 6. Numerical and analytic results fdM(r))QM and
(M(7))sep for N=1,y=1, and co®=cos®=1. (a) Analytic re-
sults for(M(7))sep for g=0.1 (solid line) andg=1 (dotted ling,
and numerical results fqiM (7)) sep represented by dots with asso-
ciated error bars fofi) g=1 and(ii) g=0.1.(b) Analytic results for VI. EXTERNAL MOMENTS
(I\?I(r))QM for g=0.1 (solid line) andg=1 (dotted ling, and nu-
merical results for(M(r)}QM represented by dots with associated
error bars for(i) g=1 and(ii) g=0.1.

Thus far, only intracavity fields have been considered.
However, it is the external fields that leak out of a cavity that
are observed. In realistic systems, intracavity photons are

Results from the numerical and analytic simulations oftransmittedhthrOL;]gh impearfect m(ijrrorr? into the exterln?I IznVi-
M and (M1 over a range ofj andN values, "onment where they are detected. Thus, an external field ana-
{ h(T»SE-D (M(7))qu O\ ge of log of (M(7)),(ME)(zg,7()), wherers and r; are initial and
whereN is the average initial number of pump photo¢ (. : / i
=|€?|), are shown in Figs. 6-8. In all cas#s=6,= 6 final measurement times, is calculated according to quantum
—0 and relative numerical errors are small. 4k 0 T ans. Mechanics and SED to consider what is actually observed in

lytic results are in agreement with their numerical counter-Ne 1aboratory. . .

parts. Howeverg=1 analytic results foN=1 andN=10 AThe first step in calculating the external moment
are not. This disagreement is explained by noting that théM®(7))qu for quantum mechanics is to define the external
analytic results are only necessarily valid whes1. quadrature phase amplitudes constituting it. This is done
In Figs. 6 and 7 =1 andN=10) the results of SED and phase amplitudes are commonly measured using it. A sche-
quantum mechanics are so distinct that they have differerfatic diagram for balanced homodyne detection is shown in

signs, with those of quantum mechanics being negative anflig. 9. An external signal field fluxd®;oyr, where i
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FIG. 9. Schematic diagram for balanced homodyne detection.
Photodetectors are labeled By,; andD _;, fori=1,2,3, BSis a

° — = beam splitterE is a local oscillator phase variablg; is a local
- el oscillator amplitude, and; is an external signal field operator.

0.005 - - ~ B

- both detectors associated with external field modes denoted

25001 - | by i. In realistic experiments detection occurs over a finite
H - period of time and thus
0.015 = 1 =7 dr
S (E)
=X (7) (6.2
- J’TZ Ts r I'ei(
002
i corresponds to what is observed. Only ﬁeo case is con-
(b)°'°25 0 o001 00z 003 004 005 006 007 008 009 04 sidered. Thus, an external moment analog of the intracavity
T

moment(M (7))o can be defined as

FIG. 8. Numerical and analytic results fgqM(7))om and

(M(7))sepfor N=100,y=1, and co®=1=cos®=1. (a) Numeri- <|\7| (E)( Te:TE) )M

cal results fok M (7))sgp represented by dots with associated error

bars for(i) g=0.1 and(ii) g=1, and analytic results fqM (7))sep 3

for g=0.1 (dotted ling andg=1 (solid line). (b) Numerical results = F73H1

for <I\7I (7))om represented by dots with associated error barsijor '

g=0.1 and(ii) g=1, and analytic results fofM(7))qw for g=1 S S ()

(dotted line andg=0.1 (solid line). =r—3 f 1—11 AXi% () ).
i= i

T1=7g J Tp=1g JT3=7¢4

TiT‘dTiAki‘El(ri)>

_ 0
Ti=Tg

=1,2,3, and a local oscillator field fluk&; are incident on a (6.3
50-50 beam splitter BS. An external local oscillator phase

variable is represented @ The two field fluxes combine To caIcuIate(M(E’(rs,rf))QM, the relation between the
and are detected by two photodiodBs; andD—;. The ,hqwn external output fields that define it and known int-
detected photocurrents are then converted to amplified elegz ity fields needs to be ascertained. Gardiner and Collett

trical currents whose difference is found. An Sxternal[%] have formulated an input-output theory that relates the
quadrature phase amplitude for quantum mechaNfe} IS two via the equation

defined as this difference, yielding, whé&n is real,

. - . - D, =\2Ta(7)+ & (1), 6.4

eARE[D; our(r)e i+ D1 (1)e %] rout() =237+ B () 64

2 ' 2 . . i . o

(6.1) where®; v (7) is the input field flux associated with intrac-
avity modei. All input fields are assumed to be in vacuum

wheree is the magnitude of the charge of an electrAnis an  states. This allows the use of BE§.3) from [26], which can

amplification factor, andy; is a detector efficiency factor for be expressed as, in this paper’s notation,

X5 (r)=
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(@ our(TD P our(m2) - - Bl oyr(mn)
X (i’i out(Thi1): - 'Ci’i out(Tm))
=(20)™XT[al (r)af () - -af (75)]

(6.9

XT[ai(he1)- - -ai(Th)]),

whereT and T are time antiordering and time ordering op-

erators, respectively. Using E¢6.1), the integrand of Eq.
(6.3 can be expressed in terms®f o7 and(I)iTOUT. It can
then be expressed in terms of particulatr;) anda/(r;)

averages using E@6.5). In turn, these averages are equiva-
positivd2 averages of the form

lent to the eight

(AAL (1) AA(72) A As(73)), where A, is eithera; or a; .

As was determined in Sec. lll, two of these averages,
(Aay(T)Aay(1)Aas(T3)) and

(Mg (t)Aaj (12)Aas (73)),

are of lower order irg than the others and hence dominate
wheng<1. Thus, the external field moment of quantum me-

chanics (M®)(7g,71))ow can be expressed, whefj=0,
wherei=1,2,3, as

\/E(eAnE)3F_3/2

(ME) (75, 70)) ou= 2
T1=7¢ [(Tp=T¢ (T3=T;
X d7rd7pd7g
T1=Ts T2=Ts 3= Ts

X(Aay(71)Aay(Tp)Aas(7s))
+(Aaj (t1)Aay (1)Aaj (73)),
(6.6)

Here n=7; and E=E;, wherei=1,2,3. To simplify the

PHYSICAL REVIEW A 62042108

eANE (B out(T)e i+ Bloyr(n)e)
2 1

Xi(%)i( T)=
(6.8

where B; out(7) is the output field flux associated with the
intracavity field denoted by In analogy with Eq(6.4), it is
assumed that the SED input-output relation is

Biout(7)= 2T Bi(7)+ Bi n(7), (6.9

whereg; |y (7) is the input field flux for the intracavity mode

i. When all input fields are in vacuum states, as is the case,
Bin(7) is a Gaussian white noise with a self-correlation
characterized by

. ) S(ri—1)
<Bi|N(Ti)Bi|N(Ti)>:T- (6.10
A calculation analogous to the quantum mechanical one ear-
lier in this section can be performed using E¢8.8) and
(6.9 to obtain an expression fqiM®(7())gep in terms of
particular intracavity averages. When lowest order nonzero
approximations to these averages are considered, the follow-

ing result is obtained whe#i, fori=1,2,3, andg, r(<1:
2
<M<E>(rf>>SEDzl—€gr?(eAnE>3r—3’2. (6.1

Upon comparing Eq6.11) to the result of quantum mechan-
ics in Eq.(6.7), it is seen that the leading order termgrin

Eq. (6.7 is O(g®) while in Eq.(6.11) it is O(g). Hence, as
was the case for the intracavity moment, quantum mechanics
and SED predict significantly different results for the observ-
able external field momerM ® (7).

VII. SIGNAL TO NOISE RATIO

In actual experiments, only finite samples of results are
obtained, as opposed to infinite ones. Hence, in practice the
population means considered thus far are estimated from
sample means. These sample means fluctuate from sample to
sample and thus have signal to noise ratios, which are now
determined for small timesr(<1). This paper focuses on

algebra only ther,=0 case is investigated, so that only the differences between quantum mechanics and SED. Thus, a

moment (M® (7)) ou[ =(M®(0,7())ou] is considered.
External fields are considered only for small times<1),
and so, to a given order ig,(M® (7)) ow’s lowest nonzero

order term inr; dominates. HencéM ®( 7))oy can be ap-
proximated by its lowest nonzero order term in bgtland
T . ThUS,

- V2
(MO () qu=— 75 9°*(eAnE)’T~**77. (6.7)
The SED external momertM ®)(7))sep is now calcu-

lated. It is given by the same expressiorKEtb(Tf»QM, the
right hand side of Eq(6.3) (when 7,=0), except that the

guadrature phase amplitude operaiét%)_(r) is replaced by

its SED c-number analog. This external SEBnumber
guadrature phase amplitude is defined, wkeris real, as

calculation is performed of the signal to noise ratio of the
difference between the two theories’ external sample mo-
ments. First, the noise of the external sample moment in
gquantum mechanics is determined. It is then assumed that the
noise of the external sample moment of SED is the same.
Noise results are combined with the external moment results
of Sec. VI to produces(7¢), the signal to noise ratio of the
difference between the two theories’ external sample mo-
ments. This quantity( ;) is given by

UME (1)) seo—(ME (7)) oul)
V(M (7)) se0)+ S2(ME () dgu)
) VR= 1M E (7)) e (ME (7))

V20 (M (7))

wheren is the number of observations in the sample consid-
ered,(m®(7;))sep and (ME (7)) ou are sample averages

S(7¢)=

, (7.1
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of (M®E(7)) according to SED and quantum mechanics, SE) A ASKE) I\ — /T ASKE)N—y A(E)
res<pecti\5elf)2,> ands?(A) %Ienotes the sa?nple variance Af <Axi( )(T')Axi( )(Ti )>_<[AX(+i)(T') AX(_i)(T')]

The only significant unknown quantity on the right hand side X[A5<(+Ei)(7'i')— A)‘(@(,{ﬂ)_
of Eq. (7.1) is o(M®)(7)), which is now determined. Ex- 7.6
pressingo(M(®) explicitly yields '
Upon expansion, the right hand side of E@.6) contains
a(MB(7))= \/('\7'(E)(Tf)2>QM—<'\7|(E)(Tf)><2yv|- 72 two types of terms, those of the fortX(5)(7,)), whereC is

I
either + or —, and those of the forngX{&)(r)XE) (7)),
The moment{M(®(r())oy was determined in Sec. VI and WhereD is either+ or —. Terms of the form X&) (r,)) are
50 (M®(7()2)oy is now calculated. In the calculation that given by the equation
follows only the9;=0, wherei=1,2,3, andg, 74<<1 case is +oo
considered. <5<(cEi)(Ta)>:j
The momen{M ®)(7)?)qy can be expressed in terms of o
external quadrature phase operators as

ds;
T GE(s)Pra=s0), (7.7
whereG(Cli)(sl) is a first order Glauber correlation function
S (E)( 2 andJ°(7,—s,) is an electrical current pulse produced by a
(M= (70)%) qum single photodetection event. Following previous wzq],

3 2 square electrical current pulses of the form
—([r=2] |" "drax®(r,
=1 =0 i ! (TI)

T=T r_ To=T r_ T3=T

_r-6 1=t (=g (7277 [(rh=rp (73T
— ,7 — ,7 —

71=0 7,=0 =0 7,=0 73=0

JO b Aer/Td, b$a$b+7'd 78
@=D=1y acb andasb+r,, O

are considered in the limit of;— 0, which is taken at some
appropriate later stage of the calculation. The Glauber corre-

X J’Tf_rfdrldridq-zdréd@drg lation functionG{/)(s;) can be expressed as a power series
R in g ands; and thus a&;_oCmnd™s; . Due to the form of
3 J%(7,—s;), whenr,<1, as is being assumed, only photode-
X<|H1 AS(i(E)(Ti)A)A(i(E)(Ti,)>: (7.3)  tection events at small times; contribute to(X5)(7,)).

This fact, coupled with the knowledge that only the<1
SE) B [ . case is considered, means that threm=0 term in the
whgre _X‘ (7i)=Xig=o(7i). The integrand of Eq(7.3), power series forG&)(s;) dominates whenl®(7,—s,) is
which is denoted by, can be expressed as nonzero. Hence, upon calculating this dominant term by ex-
3 pressingd; and® in terms of intracavity field operators, in
K=H <A5(i(E)(Ti)A5(i(E)(Ti,)>+f(7'i ), (7.4 the limit of large local oscillator amplitude,
i=1

(g )~ IS 2
where f(7;,7) is a function that includes terms resulting Geil(s)= 2 & (7.9
from coupling between modes. These coupling terms vanish

wheng=0 and thus are at lea€(g). It follows thatK can  where7; is a detector efficiency factor for the photodetec-

be reexpressed as tor D¢;. It follows that
3 2
~ ~ A~ ﬂcE Ae
K=I1 (AXP(r)aAX () +0(@). (79 (X (ra))=—5— (7.10
=

The momen{AX® () AXE)(7/)) is now calculated us-  Terms of the form X&) ()X (+/)) in Eq. (7.6) can be
ing a normally ordered approach that has been previouslgxpressed as
employed to solve similar probleni27,28. This method
expresseg AX{E () AXE(#)) in terms of normally or- <>”((CEi)(Ti)§(I(DEi)(Tir)>:5CDf+wﬁG(cli)(sl)J(o)(Ti_31)
dered photocurrent averages and then determines these aver- - I
ages. It first define¥(®)(7,), wherer, is any r variable, as e e dsd
Ehe differencg between the amplifieglectrical currents XJ(O)(Ti’_Sl)+J f *19%
X(fi)(ra) and X(_Ei)(ra) produced by thephotacurrents de- —e e T2
tected at the detectofd ,; andD _; in Fig. 9 in Sec. VI.
Using this definition [X®(7,)=XE(r)—-X® (7)1,
(AXBE(r)AXE)(7/)) can be expressed as xJIO(7{ —s,), (7.11

X Ggﬁi(sl 732)3(0)(77 —S)
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TABLE |. Table of realistic values for the parametets;;, volumeV, pump, signal, and idler wave-
lengthshk3,\,, and\ 4, nonlinear coupling consta®, damping constarit, and nonlinear coupling constant
to damping ratiag for the nonlinear crystals AgGagand KTP.

Crystal dess (PMV™Y) V (m®)  Ag=N2=\/2 (um) G (sY) T (s} g(=GIT)
AgGaSe 33 (atA=2.1um)[30] 1.0x10°° 1.4 1.3x10° 1.5x10° 8.3x10 2
KTP 7.2(atA=2.3 um) [30] 1.6x10°° 1.6 1.8<10" 1.5x10° 1.2x10 3

where G@’Di(sl,sz) is a second order Glauber correlation Hence, the signal to noise ratio of the difference between the
function anddc p is 1 whenC andD are the same and zero external sample moments of quantum mechanics and SED is
otherwise. In the limit ofry—0,

\/mn3/297_f5/2
+ o0 de_ 1 S(Tf):—16 . (71&
f ?G(Ci)(sl)J(o)( T _51)3(0)(Ti' —$)
B (eAE)Z"?Ci5( m— Ti')r VIIl. REALISTIC SYSTEMS

5 (7.12

Realistic parameter values are now considered to deter-
mine if the theoretical difference between SED and quantum
to leading nonzero order ig, 7;, and 7 . It is of equal order mechanics could be observed experimentally. In particular,
in g and lower order inr; and 7 than the second term in Eqg. the signal to noise ratio of the difference between the sample
(7.12) and hence is much larger than this second term whemoments of quantum mechanics and SEDjs calculated
it is nonzero as the;,r/ <1 case is being considered. Thus using realistic parameter values for nondegenerate paramet-

ric oscillators containing the commonly used crystals silver
Sco(AeE)?neid(r— )T gallium selenide (AgGaSg and potassium titanyl phosphate
2 : (KTP). The nonlinear interaction strengt for parametric
(7.13  down-conversion is given bj29]

From Egs(7.10 and(7.13 it can be seen that the single G=d [2hwwo04 | 8.1
integral terms i X&) () XE (7)) and(XE(7)XE (7)) oot eV L’ D

are of the same order pand lower order inr; and 7/ than
any other terms contributing tdX®(7)X(®(+/)) and
hence dominate. It follows that

<5(E2I5i)(7i)5((D|Ei)(Ti/)>z

whereV is the cavity volume| the crystal length, ant the
cavity length. Cavity and crystal length values of 10 cm are
chosen. The cavity volum¥ is given by the formulav
=70%L, whereQ is the spot size. This volume is mini-
mized in order to maximiz& and thus the external differ-
where 7,= 7¢;=7p; and E=E,, wherei=1,2,3. As the ©€NCc€ between_ guantum mechanics and SED. It is assumed
right hand side of Eq. (7.14 is that the dampln_g constant used to scale tilneequals t_he
O(go),Hﬁzl(Af(i(E)(Ti)Af(i(E)(Ti'» is also0(g®) and hence unscaled éjamplng constant_ for Taclh mdolijgl“:rl:i)f. Th|sI
from Eq. (7.5) common damping co_nstaﬁt is calculated from the formula
I'=TXc/2L, wherec is the speed of light andl is a mirror
3 transmission coefficient. A value of T=0.01 is used. Using
Kz[(AeE)2r]3H nio(r—1). (7.15  the above information, Table | shows realistic parameter val-
=1 ues fordegss, V, G, pump, signal, and idler wavelengths, and
the resultingg and I' values. Results fokM ),y and
(MBE)gepare obtaigged lljlging Eq&.7) and(Gggl) for when
N(E)( - \2\ T —6 2. 113 n=1,7=0.1, E=10" s 74, A=1/e, ande=10". These are
(MB(r)%) =T "L(eAB 7] displayed in Table II, which shows that the external results

(XO()XO(r)y=(AeB?y;8(r,— )T, (7.14

Substituting this approximation fdf into Eq. (7.3) yields

8 rr=r o= of quantum mechanics and SED differ greatly. Due to local
Xi]:[1 f:o L' drdr 8(7i— 1) oscillator amplification, they are also macroscopically dis-
(eAE)2777- 3 TABLE II. Table of the external moments of quantum mechan-
- (Tf) , (7.16 ics and SED for AgGaSeand KTP.
. Crystal V1 (E) M®
where y=7;, for i=1,2,3. Thus rysta (ME(71))om (M (ri))se0
AgGaSe —2.9x10° 1.3x10°
. (eAE)?pr | ¥2 _
U(M(E)(Tf))z(T”f _ (71p  KTP 8.8x 10P 1.8x10°
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x 10 . . must be obtained to produce a signal to noise ratio of 1, the
smallest signal to noise ratio required to observe the signal
clearly. In particular, sample sizes of X80 (KTP) and
3.7x 10" (AgGaSe) need to be obtained to generate a sig-
nal to noise ratio of 1. An individual observation takes a time
of the ordert=7;/T'=6.7x10"° s and so, assuming mini-
mal time delay between measurements, X118 observa-
tions would take about 33 hs and X I0' observations
about 41 min. It is conceivable that measurements could be
taken over both times. Furthermore, as the signal to noise
ratio scales as @/ higherg materials would enable the dif-
ference to be observed even more readily.

02f . IX. DISCUSSION

o . . . . . ‘ . A A It has been shown that there exists a significant, poten-

o2 e e e e ¥ tially experimentally observable, difference between quan-

tum mechanics and SED. Due to local oscillator amplifica-

FIG. 10. Plot of signal to noise ratio of the difference betweention, this difference can involve macroscopica”y distinct
the sample moments of quantum mechanics and SEDersus  external fields for the two theories. Thus, it can be consid-
sample sizen for AgGaSe for g=5.8x 107°,7=0.1, 7=1,and  gred macroscopic if it is legitimate to include the local oscil-
r=75<10s". lators as part of the system and not as external measuring

apparatuses. The difference is also potentially experimentally
tinct with respect to photon number, even though the initialphservable, as a realistic system and state are considered and
number of intracavity photons is small on average. Anotheit js present at realistic parameter values. The system is prac-
appealing feature of the difference between the two theoriegcal as parametric oscillators and balanced homodyne detec-
is that detector efficiencies approach one as photodiodes &gn are widely used, and damping is included. The state is
opposed to photomultipliers are used for detection. Thus, neealistic as the initial intracavity coherent state can be ap-
fair sampling assumptions need to be made. proximated well by a laser. It follows that the difference can

The question remains of whether or not the populatiorhe seen as providing the basis for experimentally achiev-
difference between SED and quantum mechanics could bghle macroscopitest of quantum mechanics against one lo-
reliably observed in a finite sample of results. To answeS it, cal hidden variable theoBED). Such a test is significant as
is now considered. Figures 10 and 11 show grapiS\w#r- || experimental tests of quantum mechanics against local
sus sample size for AgGaSg and KTIOPQ (KTP) for the  hidden variable theories to date have been microscopic. It is
same parameter values as used in the last paragraph. Thegge that many macroscopic tests have been proposed, but
show reasonablBvalues and indicate that large sample sizesmost of them consider highly idealized states or systems that

are not currently able to be experimentally implemented. In

25X . . . . . . . particular, many of them do not consider damping, even

though it is known to rapidly destroy the correlations of
guantum mechanics present in Salinger cat[31] and
other entangled states. The calculations in this paper do in-
clude damping and show that the difference between SED
and quantum mechanics is not overly sensitive to it. Most
importantly, it remains for realistic damping values. The test
proposed in this paper can be seen as being in the novel and
largely unexplored domain of macroscopic experimental
tests of quantum mechanics.

Even if the local oscillators are not included as part of the
system investigated, the external difference between quan-
tum mechanics and SED is still at least mesoscopic as aver-
age initial pump photon numbers up to®1fre considered.
From this perspective, the difference is still distinct from
. . . . . ‘ . . . many earlier microscopic ones known to exist between quan-
° 1 2 3 4 5 6 7 8 0 10 tum mechanics and all local hidden variable theories. It is
" x10 also, perhaps, more surprising than some of them as it occurs

FIG. 11. Plot of signal to noise ratio of the difference betweenin @ larger particle number system.

8(n)

[

the sample moments of quantum mechanics and SEDersus Two noteworthy features of the external difference be-
sample sizen for KTP for g=1.0x10"%,7~=0.1, =1, andT"  tween quantum mechanics and SED are that it involves con-
=7.5x10° s 1. tinuous variables and high efficiency detection. That it in-
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volves continuous variables is significant because mostonlinearities could be achieved by using Josephson-
previous differences between quantum mechanics and locaerametric amplifier§34], which can have even larger non-
hidden variable theories have involved discrete ones. Fufinearities than organic nonlinear crystals. Another possibil-
thermore, it is, perhaps, more surprising that a differencéty, in the area of atom optics, is to utilize Bose-Einstein
between quantum mechanics and a local hidden variableondensate nonlinear effects, in which atom-molecule cou-
theory can be found for continuous variables as continuouBling is induced through photon associa{@5).

variables are more closely related to classical ofvesich To conclude, this paper compared particular moments of

are all continuousthan discrete ones. Low detector effi- quantum mechanics to those of SED for the nondegenerate

ciency forms the basis of a significant loophole in most test§)arametric oscillator. Both internal and external moments

between quantum mechanics and SED to ag. The use were considered and an analytic iterative technique showed

of photodiodes for detection in the scheme discussed meaﬁlgem both to be cubic in the fsystem’s.nonlinear coupling
that such a loophole is avoided. constant for quantum mechanics and linear for SED. Nu-

The calculations in Sec. VIII show that it is difficult to Merical simulations were performed to check the approxi-

observe the external difference between quantum mechanifaate intracavity analytic result _and were ir.] agreement with
them when the system’s nonlinear coupling constant was

and SED. This is mainly a result of small experimental non- I .
linearities. They cause few signal and idler photons to bénuch less than 1. Realistic parameter value§ were considered
created and thus the experimental signal is weak relative tgnd It Was shown that the external sample difference between
its noise. For small enough measurement samples, SED r -E_D _and quantum mec_hanlcs_ had a small signal to noise
sults cannot be clearly distinguished from those of quantunf@ti© in typical parametric oscillators. The presence of in-
mechanics. This fact is consistent with the knowledge thafense !ocal oscnlat.ors means that the.results (?OUId be seen as
SED reproduces many features of quantum mechanics. Hovp_rowdlng the ba§|s for a macroscopic experimental test of
ever, it is a distinct theory and does differ from quantumduantum mechanics against SED.
mechanics in particular cases, as this paper has shown.
The external difference between quantum mechanics and
SED would be easier to observe if larger nonlinear coupling D.T.P. would like to thank Professor Gerard Milburn, Dr.
constants were used. These could be achieved by using droward Wiseman, Dr. Karen Kheruntsyan, Professor Brian
ganic nonlinear crystals such ad-(4-nitrophenyl)-  Orr, Michael Gagen, and Cynthia Freeman for their assis-
L-prolinol [33]. However, phase matching would be difficult tance with the paper. He would also like to thank The Uni-
with such crystals. In addition, they are typically only trans-versity of Queensland for its financial support. W.J.M. ac-
parent within a small frequency range. Alternatively, higherknowledges support from the Australian Research Council.
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