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Quantum theory of a Stern-Gerlach system in contact with a linearly dissipative environment

Subhashish Banerjee and R. Ghosh*
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India

~Received 27 March 2000; published 12 September 2000!

We present the quantum theory of a Stern-Gerlach system in contact with a linearly dissipative environment
at an arbitrary temperature. The dynamics of the reduced density matrix of the system is calculated using the
path integral technique, under a general condition when the system and its environment may not be decoupled
initially. We analyze the behavior of the density matrix in the long-time limit and compute the time scales of
decay of the elements off-diagonal in the coordinate and the momentum space, for the cases of high tempera-
ture, zero temperature, and intermediate temperature baths.

PACS number~s!: 03.65.Bz, 03.65.Db
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I. INTRODUCTION

The method of applying path integrals to the system-pl
environment, as proposed by Feynman and Vernon~FV! @1#,
has been found to be very useful in tackling the comp
problem of quantum dynamics of a dissipative physical s
tem. A few years back we investigated the problem of m
surement in a Stern-Gerlach apparatus, i.e., a spin-1

2 particle
in the presence of an inhomogeneous magnetic field, u
the environment-induced decoherence model. In this mo
we took into account the coupling of the position of t
particle to an environment of noninteracting harmonic os
lators @2–4#. The problem was treated using the FV pa
integral approach, with the Caldeira-Leggett master equa
@5# as the starting point, in the high-temperature~weak cou-
pling! limit, and under the Markov approximation that
valid for times much larger than the relaxation time of t
environment. This master equation could be solved ana
cally, and it yielded an apparent classical behavior of
system, in the sense that the reduced density matrix of
system was driven to a diagonal form over a characteri
time scale.

The Stern-Gerlach model of measurement is an inter
ing one, and it is worth looking at the problem without ma
ing the high temperature and the Markov approximations
the FV approach@1#, it is assumed that the system and
environment are decoupled at timet50 ~factorizable initial
condition!. Hakim and Ambegaokar@6# generalized this
choice, but their method is applicable only to systems
which the total Hamiltonian has a translational invariance
this paper, following Smith and Caldeira@7#, we use a gen-
eral path-integral formulation for the problem that allows f
nonfactorizable initial conditions as well. The Stern-Gerla
problem is a nontrivial one due to the additional spin deg
of freedom. Even from a technical point of view, the exa
solution of this model problem is a worthwhile exercise. W
obtain the solution for the dynamics of the reduced den
matrix of the spin system in the coordinate space as we
the conjugate momentum space for a general initial condi
and an arbitrary temperature of the bath.

*Author to whom correspondence should be addressed. Electr
address: ghosh@jnuniv.ernet.in
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The paper is organized as follows. In Sec. II, we pres
the generalized influence functional method for the Ste
Gerlach problem and evaluate the propagators from the
fluence functionals. In Sec. III, we obtain the reduced den
matrix of the system in the coordinate space and the mom
tum space for separable as well as nonseparable initial
ditions, for an arbritrary temperature. In Sec. IV, we analy
the behavior of the density matrix elements in the long-ti
limit and compute the time scales of decay of the eleme
off-diagonal in the coordinate and the momentum space,
the cases of high temperature, zero temperature, and i
mediate temperature baths. Finally in Sec. V, we summa
the results.

II. GENERALIZED PROPAGATOR AND THE INFLUENCE
FUNCTIONAL

We consider a model@2–4# for the Stern-Gerlach mea
surement of spin. The spin~system! of a particle of massm is
measured by monitoring the position/momentum~apparatus!
of the particle, and the particle is also coupled to an envir
ment of a collection of harmonic oscillators via its positio
The Hamiltonian of the entire system~considered in one
space dimension! has the following pieces:

HS1HA1HSA5lsx1
p2

2m
1exsx , ~1!

HAE1HE5x(
k

gkqk1(
k

@pk
21~mkvkqk!

2#

2mk

1
x2

2 (
k

gk
2

mkvk
2

, ~2!

where the superscriptsS, A, andE stand for system, appara
tus and environment, respectively. Heresx , p, andx denote
the x components of spin, momentum and position of t
particle; mk , vk , pk , andqk are the mass, frequency, mo
mentum and position of thekth environmental oscillator.
The first term in the right-hand side~RHS! of Eq. ~1! gives
the coupling of the spin to a uniform field, the second giv
the kinetic energy of the particle, and the third gives t
coupling of the particle to an inhomogeneous magnetic fi
ic
©2000 The American Physical Society05-1
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(e being the product of the field gradient and the magne
moment of the particle!, for which the direction of the force
on the particle depends on the direction of the spin. The
term in the RHS of Eq.~2! gives the coupling of the particle
positionx to a set$qk% of the environmental oscillators, th
second term is the Hamiltonian of the environment, and
last term~‘‘counter term’’! is included so that the bare po
tential of the system does not shift due to the coupling@6#.
The set of environmental harmonic oscillators at a tempe
ture T has the spectral function

J~v!5
p

2 (
k

gk
2

mkvk
d~v2vk!. ~3!

In the case of Ohmic dissipation,

J~v!52mgvQ~V2v!, ~4!

whereg is the relaxation coefficient,V is a cutoff frequency,
much larger than the natural frequencies of motion of
system of interest, andQ(x) is a step function that is 1 fo
x.0 and is 0 otherwise. The reduced density operator of
system at timet in the coordinate representation is written

r̃~x,y,t !5E dR^xRur~ t !uyR&

5E E E E E dx8dy8dRdQ8dR8

3K~x,R,t;x8,R8,0!K* ~y,R,t;y8,Q8,0!

3^x8R8ur~0!uy8Q8&, ~5!

where R, R8, and Q8 are arbitrary configurations
(N-dimensional vectors! of the environmental oscillators an
K is the propagator of composite system of the particle
its environment.

The reduced density operator of the particle at timet de-
pends on the total density operator at timet50. In the FV
approach@1#, it is assumed that the system and its enviro
ment are decoupled att50 ~factorizable initial condition!.
Following Smith and Caldeira@7#, we consider a genera
initial condition for the problem that allows for non
factorizable initial conditions as well:

r0~x8,y8;R8,Q8!5 r̃0
S~x8,y8!r̄eq

SE~x8,y8;R8,Q8!, ~6!

where r̄eq
SE is the equilibrium density operator of the un

verse, andr̃0
S(x8,y8) is chosen in such a way that trr051.

From Eq.~5! and Eq.~6!, we can write@7#

r̃~x,y,t !5E E dx8dy8J~x,y,t;x8,y8,0!r̃0
S~x8,y8!, ~7!

where the functionJ is the ‘‘generalized propagator’’ for the
reduced density operator of the system,
04210
c

st

e

a-

e

e

d

-

J~x,y,t;x8,y8,0!5E
x8

x E
y8

y

Dx~ t8!Dy~ t8!

3expF i

\
S̃S@x~ t8!#GexpF2

i

\
S̃S@y~ t8!#G

3F~@x#,@y#,x8,y8!, ~8!

SS@ # is the action of the system of interest,F is the ‘‘new
influence functional,’’

F5E E E dRdQ8dR8r̄eq
SE~x8,R8;y8,Q8!

3G~@x#,@y#,R,R8,Q8!, ~9!

andG is a standard path integral involving product of prop
gators of forced harmonic oscillators,

G5E
R

R8E
Q8

R
DR~ t8!DQ~ t8!

3expF i

\
$SE@R~ t8!#1SSE@R~ t8!,x~ t8!#%G

3expF2
i

\
$SE@Q~ t8!#1SSE@Q~ t8!,y~ t8!#%G . ~10!

HereSE@ # is the action of the environment, andSSE@ ,# is the
action of the coupling between the particle and the envir
ment. The variables within brackets are paths connecting
appropriate end points~variables without brackets! and D
~variable! is the properly normalized variation of those path
The tilde upon the actionSS means that the counter term
included therein.

Now, in the Stern-Gerlach system governed by the Ham
tonian~1! 1 ~2!, the eigenstates ofsx are represented asu↑&
andu↓& with eigenvaluess511 and21. The four elements
of the propagator~8! in the spin space~corresponding to
subscripts↑↑, ↓↓, ↑↓, ↓↑) are given as

Jss8~xf ,yf ,t;xi ,yi ,0!

5E
xi

xf E
yi

yf
DxDy expF i

\ H S1@x,y#2l~s2s8!t

2eS sE
0

t

dt8x~ t8!2s8E
0

t

dt8y~ t8! D J G
3expF2

1

\
S2@x,y#G , ~11!

where using Eq.~4!,

S1@x,y#5mE
0

t

dt8S 1

2
~ ẋ22 ẏ2!2g ~xẋ2yẏ1xẏ2yẋ! D ,

~12!

and
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S2@x,y#5
mg

p E
0

V

dv v cothS \v

2kBTD E
0

t

dt8

3E
0

t

dt9$x~ t8!2y~ t8!%cos@v~ t82t9!#

3$x~ t9!2y~ t9!%

1
mg

p E
0

V

dv
v

v214g2
cothS \v

2kBTD
3F ~xi2yi !

22~xi2yi !E
0

t

dt8$x~ t8!2y~ t8!%

3@2v sin~vt8!24g cos~vt8!#G , ~13!

for the case of nonseparable initial condition~6!, kB being
the Boltzmann constant@8#. The second term on the RHS o
Eq. ~13! vanishes for the case of separable initial conditio

With a change of coordinatesq5(x1y)/2 andj5x2y,
from Eq. ~11!, we get the componentsJ↑↑ , J↓↓ (Jd , i.e.,
diagonal in spin space! andJ↑↓ , J↓↑ (Jod , i.e., off-diagonal
in spin space! as
04210
.

Jd~q,j,t;q8,j8,0!5I 0~ t !E
q8

q E
j8

j

Dq~ t8!Dj~ t8!

3expF i

\ H S17eE
0

t

dt8j~ t8!J G
3expF2

1

\
S2G , ~14!

Jod~q,j,t;q8,j8,0!5I 0~ t !E
q8

q E
j8

j

Dq~ t8!Dj~ t8!

3expF i

\ H S172lt72eE
0

t

dt8q~ t8!J G
3expF2

1

\
S2G , ~15!

where the upper~lower! signs correspond toJ↑↑ (J↓↓) in Jd
andJ↑↓ (J↓↑) in Jod ,

I 0~ t !5
mgegt

2p\ sinh~gt !
, ~16!

S15E
0

t

dt8m„j̇~ t8!q̇~ t8!22gq̇~ t8!j~ t8!…, ~17!

and
e

S25
mg

p E
0

V

dv v cothS \v

2kBTD E
0

t

dt8E
0

t

dt9j~ t8!j~ t9!cos@v~ t82t9!#

1
mg

p E
0

V

dv
v

v214g2
cothS \v

2kBTD Fj822j8E
0

t

dt8j~ t8!$2v sin~vt8!24g cos~vt8!%G , ~18!

for the case of nonseparable initial condition~6!. The second term on the RHS of Eq.~18! vanishes for the case of th
separable initial condition.

We now solve forJd andJod in the standard way and obtain for the case nonseparable initial conditions

Jd~q,j,t;q8,j8,0!5I 0~ t !expF i

\
$L2~ t !qj1L1~ t !q8j82M ~ t !qj82N~ t !q8j7eX~ t !j7eZ~ t !j8%G

3expF2
1

\
$A~ t !j21B~ t !jj81C~ t !j82%G ~19!

and

Jod~q,j,t;q8,j8,0!5I 0~ t !expF i

\ H L2~ t !qj1L1~ t !q8j82M ~ t !qj82N~ t !q8j72lt6
e

g
~q2q8!72qetJ G

3expF2
1

\ H A~ t !j21B~ t !jj81C~ t !j826
2e

mg
D~ t !j6

2e

mg
E~ t !j81

e2

pmgE0

V

dv v cothS \v

2kBTD
3E

0

t

dt8E
0

t

dt9t8t9 cos$v~ t82t9!%6
e

mg
Y~ t !j8J G , ~20!
5-3
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where

L6~ t !5mg$coth~gt !61%, ~21!

X~ t !5
e2gt

sinh~gt !E0

t

dt8sinh~gt8!egt8, ~22!

Z~ t !5
1

sinh~gt !E0

t

dt8sinh$g~ t2t8!%egt8, ~23!

M ~ t !5
mgegt

sinh~gt !
, ~24!

N~ t !5
mge2gt

sinh~gt !
, ~25!

andA(t), B(t), C(t), D(t), E(t), andY(t) are of the form

f ~ t !5
mg

p E
0

V

dv v cothS \v

2kBTD f v~ t !, ~26!

with

Av~ t !5
e22gt

sinh2~gt !
E

0

t

dt8E
0

t

dt9 sinh~gt8!

3cos$v~ t82t9!%sinh~gt9!eg(t81t9), ~27!

Bv~ t !5
2e2gt

sinh2~gt !
E

0

t

dt8E
0

t

dt9 sinh~gt8!

3cos$v~ t82t9!%sinh$g~ t2t9!%eg(t81t9)

1
4ge2gt

~v214g2!sinh~gt !
E

0

t

dt8sinh~gt8!cos~vt8!egt8

2
2ve2gt

~v214g2!sinh~gt !
E

0

t

dt8sinh~gt8!sin~vt8!egt8,

~28!
04210
Cv~ t !5
1

sinh2~gt !
E

0

t

dt8E
0

t

dt9 sinh@g~ t2t8!#

3cos$v~ t82t9!%sinh$g~ t2t9!%eg(t81t9)

1
4g

~v214g2!sinh~gt !
E

0

t

dt8

3sinh$g~ t2t8!%cos~vt8!egt8

2
2v

~v214g2!sinh~gt !
E

0

t

dt8

3sinh$g~ t2t8!%sin~vt8!egt81
1

v214g2
,

~29!

Dv~ t !5
e2gt

sinh~gt !E0

t

dt8E
0

t

dt9 sinh~gt8!cos$v~ t8

2t9!%t9egt8 ~30!

Ev~ t !5
1

sinh~gt !E0

t

dt8E
0

t

dt9 sinh$g~ t2t8!%

3cos$v~ t82t9!%t9egt8, ~31!

Yv~ t !5
1

v214g2E0

t

dt8t8@2v sin~vt8!24g cos~vt8!#.

~32!

For the case of separable initial conditions,Jd andJod are the
same as above but withY(t)5 0, and with only the first term
present in the expressions forBv(t) andCv(t).

III. REDUCED DENSITY MATRIX

We obtain the reduced density operator of the spin sys
r̃d(q,j,t) as given by Eq.~7!:

r̃d~q,j,t !5E E dq8dj8Jd~q,j,t;q8,j8,0!r̃0
S~q8,j8,0!,

~33!

where the initial density matrix corresponding to a Gauss
wave packet of widths and mean momentump̄ is taken as

r̃0
S~q8,j8,0!5

1

~2ps2!1/2
expF S i p̄j8

\
D 2S q821j82

8s2 D G .

~34!

From Eq.~33!, we obtain
5-4
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r̃d~q,j,t !5I 0~ t !A p\2

\C1~ t !12s2L1
2 ~ t !

expF 2M2~ t !

4@\C1~ t !12s2L1
2 ~ t !#

S q2
p̄

M ~ t !
D 2G

3expF2H A~ t !

\
1

2s2N2~ t !

\2
2

@4s2N~ t !L1~ t !2\B~ t !#2

4\2@\C1~ t !12s2L1
2 ~ t !#

J j2G
3expF i

\ H L2~ t !qj2
@4s2N~ t !L1~ t !2\B~ t !#M ~ t !

2@\C1~ t !12s2L1
2 ~ t !#

S q2
p̄

M ~ t !
D jJ G

3expF7H eM ~ t !Z~ t !

2@\C1~ t !12s2L1
2 ~ t !#

S q2
p̄

N~ t !
D J GexpF 2e2Z2~ t !

4@\C1~ t !12s2L1
2 ~ t !#

G
3expF7

i e

\ H X~ t !1
Z~ t !@4s2N~ t !L1~ t !2\B~ t !#

2@\C1~ t !12s2L1
2 ~ t !#

J jG , ~35!
to

at
-

ve

d
t i
th

-

i
fo

m

whereC1(t)5C(t)1\/8s2. I 0(t) given in Eq.~16! satisfies
the normalization condition of the reduced density opera
~35!.

The diagonal elements of the density matrix in coordin
space are found by puttingq5x andj50 in the above equa
tion ~35!:

r̃d~x,0,t !5I 0~ t !A p\2

\C1~ t !12s2L1
2 ~ t !

3expF 2M2~ t !

4@\C1~ t !12s2L1
2 ~ t !#

3H x2
p̄

M ~ t !
6

e

2mg S t2
1

2g
1

e22gt

2g D J 2G .

~36!

We now calculate the difference in the widths of the wa
packets for the different initial conditions as

sS
2~ t !2sNS

2 ~ t !5
2\

M2~ t !
@CS~ t !2CNS~ t !#. ~37!

Here subscriptS stands for separable initial conditions an
NSstands for nonseparable initial conditions. We find tha
the case of high temperature, the difference in the wid
goes as2kBT/4mg2 in the long-time limit whereas in the
case of zero temperature this goes as (\/2mpg)$ ln@(V2

14g2)/4g2#1 ln(2gt)%. It is because of this time indepen
dence~in the case of high temperature! or logarithmic~slow!
time dependence~in the case of zero temperature! that the
wave packets show similar behavior in the long-time lim
for separable as well as non- separable initial conditions
all temperatures.

We next consider the density matrix in the momentu
space,u and v being conjugate tox and y. With P5u2v
andp5(u1v)/2,
04210
r

e

n
s

t
r

r̃d~P,p,t !5E E dqdjr̃d~q,j,t !ei (Pq1pj)

5A p

a~ t !1c~ t !
expF iPp̄

M ~ t !
GexpF 2P2

2a~ t !M ~ t !G
3expF7 i e

Z~ t !

M ~ t !
PGexpF e2~ t !P2

4@a~ t !1c~ t !#G
3expF2

e~ t !@b~ t !1d~ t !1g~ t !1 ip#P

2@a~ t !1c~ t !# G
3expF2

1

4@a~ t !1c~ t !#

3H p1
L2~ t !p̄

\M ~ t !
7

e

\ S X~ t !1
Z~ t !L2~ t !

M ~ t ! D J 2G ,

~38!

where

a~ t !5
A~ t !

\
1

2s2N2~ t !

\2
2

@4s2N~ t !L1~ t !2\B~ t !#2

4\2@\C1~ t !12s2L1
2 ~ t !#

,

~39!

b~ t !57
i e

\ H X~ t !1
Z~ t !@4s2N~ t !L1~ t !2\B~ t !#

2@\C1~ t !12s2L1
2 ~ t !#

J ,

~40!

c~ t !5
u2~ t !

2\2a~ t !M ~ t !
, ~41!
5-5
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a~ t !5
M ~ t !

2@\C1~ t !12s2L1
2 ~ t !#

, ~42!

u~ t !5L2~ t !2@4s2N~ t !L1~ t !2\B~ t !#a~ t !, ~43!

d~ t !57
i e

\

Z~ t !

M ~ t !
u~ t !, ~44!

e~ t !5
u~ t !

\a~ t !M ~ t !
, ~45!

g~ t !5
iL 2~ t !

\M ~ t !
p̄. ~46!

The diagonal elements of the density matrix in moment
space are obtained by puttingP50 andp5u in the equation
for r̃d(P,p,t):
04210
r̃d~0,u,t !5A p

a~ t !1c~ t !
expH 21

4@a~ t !1c~ t !#

3S u1
L2~ t ! p̄

\M ~ t !
7

e

\ FX~ t !1
Z~ t !L2~ t !

M ~ t ! G D 2J
5A p

a~ t !1c~ t !
expF 21

4@a~ t !1c~ t !#
H u1

e22gt p̄

\

7
e

2\g
~12e22gt!J 2G . ~47!

This has the classical Ornstein-Uhlenbeck form with t
spin- dependent drift caused by the field. This moment
distribution is centered around7e/2\g for the up and down
spins in the limit oft→`. Thus it is seen that the measur
ment of the particle momentum can determine the spin.

Now we obtain the spin-off-diagonal elements of the de
sity matrix in the coordinate spacer̃od(q,j,t) as

r̃od~q,j,t !5E E dq8dj8Jod~q,j,t;q8,j8,0!r̃0
S~q8,j8,0!,

~48!

with the same initial density matrixr̃0
S(q8,j8,0) as before.

Thus, for nonseparable initial conditions,
r̃od~q,j,t !5I 0~ t !A p\2

\C1~ t !12s2L1
2 ~ t !

expF 2e2

p\mg E
0

V

dv v cothS \v

2kBTD E
0

t

dt8E
0

t

dt9t8t9 cos$v~ t82t9!%G
3expF 2M2~ t !

4@\C1~ t !12s2L1
2 ~ t !#

S q2
p̄

M ~ t !
D 2GexpF2H A~ t !

\
1

2s2N2~ t !

\2
2

@4s2L1~ t !N~ t !2\B~ t !#2

4\2@\C1~ t !12s2L1
2 ~ t !#

J j2G
3expF i

\ H L2~ t !qj2
@4s2L1~ t !N~ t !2\B~ t !#

2@\C1~ t !12s2L1
2 ~ t !#

M ~ t !S q2
p̄

M ~ t !
D jJ G

3expF e2H 2E~ t !1Y~ t !2
4s2m

\
L1~ t !J 2

4m2g2@\C1~ t !12s2L1
2 ~ t !#

G
3expF 7eH 2E~ t !1Y~ t !2

4s2m

\
L1~ t !J @4s2L1~ t !N~ t !2\B~ t !#j

2\mg@\C1~ t !12s2L1
2 ~ t !#

G
3expF 6 i eM ~ t !

2mg@\C1~ t !12s2L1
2 ~ t !#

S q2
p̄

M ~ t !
D S 2E~ t !1Y~ t !2

4s2m

\
L1~ t ! D GexpF72eD~ t !j

\mg GexpF72ilt

\ G
3expF6 i eq

\g GexpF22s2e2

\2mg2 GexpF74s2e

\2g
N~ t !jGexpF72i eqt

\ G . ~49!
5-6
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For the case of separable initial conditions,r̃d(q,j,t) and
r̃od(q,j,t) are the same as above, but withY(t)50 and with
the appropriate expressions forB(t) andC(t) as stated after
Eq. ~32!.

IV. OFF-DIAGONAL ELEMENTS OF THE DENSITY
MATRIX AND THE TIME SCALES OF DECAY

The steady-state~longtime limit! density matrix is ex-
pected to be~at least almost! diagonal in the basis in which
the system Hamiltonian is diagonal, independent of wh
system variable couples to the environment variables in
system-plus-environment interaction and the initial state
the system. This basis is called the ‘‘preferred basis,’’ a
the time scale over which this near diagonalization ta
place is the decoherence time@9#. With the above point in
view, we examine the longtime behavior of the density m
trix elements off-diagonal in the coordinate space and
momentum space, for the cases of~i! high temperature,~ii !
zero temperature, and~iii ! intermediate temperature baths.

A. High-temperature limit

~1! First we study the longtime behavior of the spin-o
diagonal elements of the density matrix in the coordin
space,r̃od(q,j,t) @Eq. ~49!# in the limit kBT@\g. Note that
the terms to be examined in the long-time limit are the f
lowing:

expF 2e2

p\mgE0

V

dv v cothS \v

2kBTD
3E

0

t

dt8E
0

t

dt9t8t9 cos$v~ t82t9!%G ,
and

expF e2F2E~ t !1Y~ t !2S 4s2m

\ DL1~ t !G2

4m2g2@\C1~ t !12s2L1
2 ~ t !#

G .

The above two terms in the long-time limit together go a

expF2e2kBT

6\2mg
t3G5expF 2e2D

12\2m2g2
t3G , ~50!

and this drives the entirer̃od(q,j,t) to zero. HereD
52mgkBT is the usual diffusion coefficient. The time scal
over which this happens is

ts5S 12\2m2g2

e2D
D 1/3

. ~51!

The above result is true for separable as well as for nons
rable initial conditions. Thus, in the limit of high temper
04210
h
e
f
d
s

-
e

e

-

a-

ture, we recover the previous results@2–4#. For atomic scale
particles of massm'10224 g, and withg'1012 s21, tem-
peratureT'300 K, ande'1 eV/cm, this timets is about
1029 s.

~2! Next, the spatial nonlocality of the spin-diagonal com
ponents is examined, i.e., the long-time behavior of the sp
diagonal elements of the density matrixr̃d(q,j,t) @Eq. ~35!#
in the coordinate space. We find that the term of interes
exp$@2A(t)/\#j2% which goes as exp@2Dj2/4g\2# in the
long-time limit. The off-diagonal elements ofr̃d(q,j,t) in
coordinate space rapidly decay over a time-scale of

t r5
4\2

Dj2
, ~52!

though the density matrix in the coordinate space does
eventually become diagonal, the extent of nonlocality be
the thermal de Broglie wavelengthld5h/A2pmkBT of the
particle.

~3! Next, we analyze the longstime behavior of the sp
diagonal elements of the density matrixr̃d(P,p,t) @Eq. ~38!#
in the momentum space. The terms of interest are

expF 2P2

2a~ t !M ~ t !GexpF e2~ t !P2

4@a~ t !1c~ t !#G
5expF 2\2P2a~ t !

2\2a~ t !M ~ t !a~ t !1u2~ t !
G . ~53!

It can be shown that in the limit of high temperature and
long times, u2(t)→0 for all initial conditions. Thus the
above term of interest becomes exp@2P2/2a(t)M (t)#, which
goes as exp@2(Dt/4m2g223kBT/4mg2)P2# for separable
initial conditions, and exp@2(Dt/4m2g22kBT/4mg2)P2# for
nonseparable initial conditions. Both tend
exp@2Dt/4m2g2P2# in the long-time limit.

Thus we see that for both separable as well as for n
separable initial conditions, the off-diagonal elements of
density matrix in momentum space, i.e.,r̃d(P,p,t), PÞ0,
goes to zero over a time scale of

tm5
4m2g2

DP2
, ~54!

whereP is the extent of momentum space off-diagonali
and the spin-diagonal components become diagonal w
time in the momentum space.

B. Zero temperature limit

~1! We study the behavior of the density matrix of
diagonal in spin space. We find that the term dominating
temporal behavior ofr̃od(q,j,t) @Eq. ~49!# for separable as
well as for nonseparable initial conditions is
5-7
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expF2H e2

\mgE0

V

dv v cothS \v

2kBTD E
0

t

dt8E
0

t

dt9t8t9 cos$v~ t82t9!%J G ,
-
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which goes as exp@(2e2t2/p\mg)ln(Vt)# in the long-time
limit. Thus even atT50, r̃od(q,j,t) goes to zero. This hap
pens over a time scale of

ts05S p\mg

e2 D 1/2

, ~55!

which is about 1027 s for the parameters chosen above.
~2! Next we analyze the behavior of the elemen

r̃d(q,j,t) @Eq. ~35!#, off-diagonal in the coordinate spac
We find that exp$@2A(t)/\#j2% in the long-time limit goes as
exp$2(mg/2p\)ln@(V214g2)/4g2#j2%. Thus the off-
diagonal elements ofr̃d(q,j,t) decay over a time scale of

t r05
2p\

mg2 lnS V214g2

4g2 D j2

, ~56!

even though the density matrix does not become diagon
~3! We now analyze the behavior of the elemen

r̃d(P,p,t) @Eq. ~38!#, off-diagonal in momentum space. W
find that the term of interest exp@2P2/2a(t)M (t)# goes as
exp@22s2P2# in the long-time limit for separable as well a
nonseparable initial conditions. Thus atT50, the momen-
tum off-diagonal elements decay over a time scale of

tm05
1

2gs2P2
, ~57!

but do not go to zero.

C. Intermediate temperatures

This regime is quantified by the fact it is valid for all finit
temperatures for timest.\/kBT. In this regime in the limit
of long time, we get the high-temperature results as
dominant terms for all the cases treated above.
s
ly

04210
.

e

V. SUMMARY

We have solved the dynamics of the Stern-Gerlach spi
contact with a linearly dissipative environment at an ar
trary temperature. We find that even at zero temperature,
elements of the density maxtrix off-diagonal in the sp
spacer̃od(q,j,t) go to zero in the long-time limit, although
at a rate slower than that in the high-temperature case. H
ever, the spin-diagonal componentsr̃d(q,j,t), which are off-
diagonal in coordinate space, andr̃d(P,p,t) off-diagonal in
momentum space, do not go to zero in the long-time limit
a zero-temperature bath.

We also find that for any finite temperature for tim
greater than the ‘‘crossover time’’\/kBT @6#, the elements of
r̃od(q,j,t) and the off-diagonal elements ofr̃d(P,p,t) go to
zero in the long-time limit whereas the off-diagonal eleme
of r̃d(q,j,t) in the coordinate space do not vanish in t
long-time limit, with the dominant terms being similar to th
ones in the high-temperature limit. This implies that a me
surement of momentum yields the spin for any finite te
perature for times much greater than\/kBT.

We recover all the previous results in the hig
temperature limit. Thus except for the extreme quantum c
of zero temperature, the system shows the expected clas
diffusive behavior over long times.

These ideas can possibly be tested in a sp
recombination interference experiment, in which a fi
Stern-Gerlach apparatus~SGA! splits the spin-half beam an
a second SGA recombines these split beams in a reve
magnetic field. The decoherence of the positional wave fu
tion of the spins can be studied as a pressure of gas in
SGA.
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