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Quantum theory of a Stern-Gerlach system in contact with a linearly dissipative environment
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We present the quantum theory of a Stern-Gerlach system in contact with a linearly dissipative environment
at an arbitrary temperature. The dynamics of the reduced density matrix of the system is calculated using the
path integral technique, under a general condition when the system and its environment may not be decoupled
initially. We analyze the behavior of the density matrix in the long-time limit and compute the time scales of
decay of the elements off-diagonal in the coordinate and the momentum space, for the cases of high tempera-
ture, zero temperature, and intermediate temperature baths.

PACS numbeg(s): 03.65.Bz, 03.65.Db

I. INTRODUCTION The paper is organized as follows. In Sec. Il, we present
the generalized influence functional method for the Stern-
The method of applying path integrals to the system-plusGerlach problem and evaluate the propagators from the in-
environment, as proposed by Feynman and Ver(ff [1], fluence functionals. In Sec. Ill, we obtain the reduced density
has been found to be very useful in tackling the complexmatrix of the system in the coordinate space and the momen-
problem of quantum dynamics of a dissipative physical systum space for separable as well as nonseparable initial con-
tem. A few years back we investigated the problem of meaditions, for an arbritrary temperature. In Sec. IV, we analyze
surement in a Stern-Gerlach apparatus, i.e., a sparticle  the behavior of the density matrix elements in the long-time
in the presence of an inhomogeneous magnetic field, usingmit and compute the time scales of decay of the elements
the environment-induced decoherence model. In this modélff-diagonal in the coordinate and the momentum space, for
we took into account the coupling of the position of thethe cases of high temperature, zero temperature, and inter-
particle to an environment of noninteracting harmonic oscil-mediate temperature baths. Finally in Sec. V, we summarize
lators [2—4]. The problem was treated using the FV path-the results.
integral approach, with the Caldeira-Leggett master equation
[5] as the starting point, in the high-temperatneeak cou- || GENERALIZED PROPAGATOR AND THE INFLUENCE
pling) limit, and under the Markov approximation that is EUNCTIONAL
valid for times much larger than the relaxation time of the )
environment. This master equation could be solved analyti- We consider a mod€l2—4] for the Stern-Gerlach mea-
cally, and it yielded an apparent classical behavior of theSurement of spin. The spisystem of a particle of masmis
system, in the sense that the reduced density matrix of th@l€asured by monitoring the position/moment(apparatuls
system was driven to a diagonal form over a characteristi€f the particle, and the particle is also coupled to an environ-
time scale. ment of a collection of harmonic oscillators via its position.
The Stern-Gerlach model of measurement is an interestthe Hamiltonian of the entire systericonsidered in one
ing one, and it is worth looking at the problem without mak- SPace dimensigrhas the following pieces:
ing the high temperature and the Markov approximations. In
the FV approachl], it is assumed that the system and its
environment are decoupled at tirhe O (factorizable initial
condition. Hakim and Ambegaokaf6] generalized this
chqice, but their mt_athoq is applicable only to systems for AE L e [p§+(mkwqu)2]
which the total Hamiltonian has a translational invariance. In H*™+H =x2 gqu+2 5
this paper, following Smith and Caldeif#], we use a gen- k k M

2

HS+HA+ H5A=AUX+;—m+exox, (1)

eral path-integral formulation for the problem that allows for 2 gz
nonfactorizable initial conditions as well. The Stern-Gerlach +=> K 7 2)
problem is a nontrivial one due to the additional spin degree 2 % mwi

of freedom. Even from a technical point of view, the exact
solution of this model problem is a worthwhile exercise. Wewhere the superscrip§ A, andE stand for system, appara-
obtain the solution for the dynamics of the reduced densityus and environment, respectively. Herg, p, andx denote
matrix of the spin system in the coordinate space as well athe x components of spin, momentum and position of the
the conjugate momentum space for a general initial conditioparticle; m,, w,, px, andg, are the mass, frequency, mo-
and an arbitrary temperature of the bath. mentum and position of th&th environmental oscillator.
The first term in the right-hand sid®HS) of Eq. (1) gives
the coupling of the spin to a uniform field, the second gives
* Author to whom correspondence should be addressed. Electronttie kinetic energy of the particle, and the third gives the
address: ghosh@jnuniv.ernet.in coupling of the particle to an inhomogeneous magnetic field
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(€ being the product of the field gradient and the magnetic X (y

moment of the partice for which the direction of the force ~ J(X,y,t;x",y",00= j /J Dx(t")Dy(t")
on the particle depends on the direction of the spin. The first oy

term in the RHS of Eq(2) gives the coupling of the particle les
positionx to a set{q,} of the environmental oscillators, the xexp 2 STx(t")]
second term is the Hamiltonian of the environment, and the

last term(“counter term”) is included so that the bare po- XF(xLIylL,x",y"), €)
tential of the system does not shift due to the coup[iég

The set of environmental harmonic oscillators at a temperaST | is the action of the system of interegt,is the “new

exp[— ,'l—’és[ya')]}

ture T has the spectral function influence functional,”
2 _ ’ 1’ SE By ’
k Moy
xG([x]L,lyl,R,R",Q"), 9

In the case of Ohmic dissipation,
andG is a standard path integral involving product of propa-

T w)=2mywd(Q-w), (4) gators of forced harmonic oscillators,
' (R
wherevy is the relaxation coefficienf) is a cutoff frequency, G= fR f DR(t")DQ(t")
much larger than the natural frequencies of motion of the R JQ

system of interest, an® (x) is a step function that is 1 for i
x>0 and is 0 otherwise. The reduced density operator of the X EX[{—{SE[R(I’)]-F SSE[R(t’),x(t’)]}}
system at time in the coordinate representation is written as h

i
L — {SFQ(t")]+S%7Q(t"),y(t’ } 10
p(X,y,t)Zde<xR|p(t)|yR> Xexﬁ{ FSTQUNI+S Q) y(t)} . (10

HereSH[ | is the action of the environment, agd , ] is the
=f f f J f dx'dy’dRdQ’"dR’ action of the coupling between the particle and the environ-

ment. The variables within brackets are paths connecting the

xXK(x,R,t;x",R",00K*(y,R,t;y’,Q’,0) appropriate end pointévariables without bracketsand D
o, . (variable is the properly normalized variation of those paths.
X(X'R'|p(0)]y’'Q"), ) The tilde upon the actio®® means that the counter term is

included therein.
where R, R’, and Q" are arbitrary configurations  Now, in the Stern-Gerlach system governed by the Hamil-
(N-dimensional vectojsof the environmental oscillators and tonian(1) + (2), the eigenstates af, are represented &)
K is the propagator of composite system of the particle anéind| | ) with eigenvalues=+1 and—1. The four elements
Its environment. of the propagator8) in the spin spacécorresponding to
The reduced density operator of the particle at tinde-  subscripts| 1, ||, 1|, | 1) are given as
pends on the total density operator at tite0. In the FV
approacH1], it is assumed that the system and its environ- Jos (X£, Y5, 1% ,Y1,0)
ment are decoupled at=0 (factorizable initial condition

Following Smith and Caldeir47], we consider a general [ i ,
initial condition for the problem that allows for non- - 5 Jyi DxDy ex i Six.y]=A(s=s)t
factorizable initial conditions as well:
t t
1o\ ’ ’ - r o\ r o\t ’ ’ —€ Sf dt,X(t,)_S,fdt,y(t')>]:|
po(X"y";R,Q)=pg(X".y )peg(X’,y';R",Q"), (6) ( 0 0
1
Where;‘,_s‘,(']E is the equilibrium density operator of the uni- XeXF{—gSz[X,Y] : (12)
verse, angpg(x’,y’') is chosen in such a way thapt=1.
From Eq.(5) and Eq.(6), we can write[7] where using Eq(4),

~ ~ 1 . . . . . .
p(x,y,t)=f fdX’dy’J(x,y,t;X’,y’,O)pS(X’,y’), (7) Sl[x,y]=mfotdt’(§(x2—y2)—y(xx—yy+xy—yx)),

(12
where the functiod is the “generalized propagator” for the
reduced density operator of the system, and
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0
S,[x,y]= ?L do o cotl’( szT) J dt’
t
><fodt"{x(t’)—y(t’)}cos{w(t’—t”)]
X{x(t") =y (t")}

N my Qd I t?‘( ho )
—_— w (o{0)
T Jo w’+ 42 2kgT

t
X (Xi_yi)z_(xi_yi)fodt/{x(t/)_y(tl)}

X[2w sin(wt’)—4ycogwt’)]]|, (13

for the case of nonseparable initial conditi@®), kg being

the Boltzmann constaf8]. The second term on the RHS of
Eqg. (13) vanishes for the case of separable initial condition.

With a change of coordinateg=(x+Yy)/2 andé=x—y,
from Eq. (11), we get the componentd;, J;| (Jq, i.e.,

diagonal in spin spage@andJ; , J;; (Joq, i.€., off-diagonal

in spin spackgas

PHYSICAL REVIEW /A2 042105
qa (¢
Jd(q.g,t;qﬁf’,o)=|o(t)f J,DQ(t’)Df(t’)
xex;{ [Sl+€f dt’ &(t’ )H
1
X exp{ - gsz}, (14)
q (¢
Joa(@.6:60' € 0160 [ [ *DactDew)
q'Jé
xex;{;i—{8112)\t12ef0tdt’q(t’)H
1
xex;{—%sz ,

where the uppeflower) signs correspond td;; (J,|) in Jg
andJ;| (J;;) in Jog,

(15

mye

lo(t)= 27h sinh(yt)’

(16)

t 3 ) .
sl=fodt'm(at')q(t')—27q<t'>f(t'>), 7

and

r( ﬁ ! " n n
J dw o cot ZkBT)fdt Jdt E(t)E(t")cod w(t' —t")]

my (@ w

N q how '
m Jo Cuwz-l-4}/2 cot 2kgT ¢

§’ftdt’§(t’){2w sin(wt’)—4ycog wt’)}|, (19
0

for the case of nonseparable initial conditi®). The second term on the RHS of E@.8) vanishes for the case of the

separable initial condition.

We now solve fordy andJ,q in the standard way and obtain for the case nonseparable initial conditions

Jd(q,ff,t:qﬁf’.o):|o(t)exr{ {L_()gé+L.(D)a"¢" —M(1)ag" —N()q' &+ eX(t) €+ eZ(1) f}}

XGX%—%{A(I)fer B(t)¢¢'+C(1)¢'%} (19

and

Jod(9.€,1:9", ¢ 0)—|o(t)eXF{ [L (D9é+L(Ha"E" —M(1)gé"—N(t)g’ §+27\t+—(q q )+20|€t]

X 1 A()E2+B "+C ’2+26D +2EE !
exg— 7 ()& +B(t)é€ (Hé Ty (t)f—m—y (¢

e (o hw
+
poryel dw w cot SkaT

t t €
Xfodt fodt t't” codw(t’ —t )}im—yY(t)g H (20)
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where

C,(t)= dt’f dt” sinf y(t—t")]

s e

L. (t)=my{coth yt)+1}, (21) x cow(t’ —t")}sinh y(t—t")}ert" +t)

4y
: [
(w?+4v?)sinh(yt)Jo

X(t dt’sinh(yt")e’, 22 )
(t)= smr( t)f hyt’) (22 X sinh y(t—t')}cog wt”)e”*
2w t
W
1 . (w?+4y?)sinh(yt) Jo
_ 7 Y 'yt'
2(t sinﬁ?t)fodt sinty(t=thie™, (239 sinhl ()} ot 6%+
sin —t’)}si e +——:,
y @ w’+ 472
(29)
M= 7 (24)
~sinh(yt)” N
Dw(t)zmﬁ)dt fodt sinh(yt")cod w(t
mye " —t")ite’ (30
N(t)= W, (25
1 t t
Ew(t): mj dt,f dt” Sinh[y(t—t’)}
andA(t), B(t), C(t), D(t), E(t), andY(t) are of the form Yo Jo
xcofw(t'—t")}t"e"’, (31
fn=""["4 tr< ho ) fo ), (20 1
=— w wCO . t .
T Jo 2kgT Y, (t)=— f dt’'t'[2w sin(wt’)—4ycogwt’)].
w —i—4y2 0
(32)
with I .
For the case of separable initial conditiodgandJ,q are the
same as above but witf(t) = 0, and with only the first term
present in the expressions fBr,(t) andC(t).
—29t
AuD)= Sink?( Yt)f dt’f dt” sinh(yt") Il. REDUCED DENSITY MATRIX
. 'y We obtain the reduced density operator of the spin system
X codw(t’ —t")}sinn(yt")e? (2 ~ .
o ysinh(t") @0 pd(d.€.t) as given by Eq(7):
o0 2" e [ar s paaen= | [ dadeayacnae 0pa.e 0.
w)=——— sin
sinf?(yt)Jo 7 (33
X coJw(t' —t")}sink y(t—t”)}ev(t’ﬂ”) where the initial density matrix corresponding to a Gaussian

wave packet of widthr and mean momentum is taken as

-
4726 fdt sin(yt’)cog wt’)e”’
(w?+49?)sinh(yt) Jo s 1 (ip—gf) 424 g2
’1 ,10 = - .
e jtdt' inh(yt')sin(wt”)e?"’ P (27702)1/26)(% f 80 1
- n |
(024 4y2)sintyt) Joo oY sinfwt’)er, (34)

(28 From Eq.(33), we obtain
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Bal(@,ED) =] t\/ mh* - M (_ 5)2
pa(.&D=1o(1 hCy(t)+202L2 (1) & A[HC4(1)+20%L% (1)] M

A(t)  20°N2(t) [40°N(H)L ()—AB(1D)]?|
+ —_
fi #? ARP[ACL (1) +20%L2(1)]

xexpg —

X exp ,';[ L_(aé-

[402N<t>L+<t>—hB<t>]M<t>( B E)
2[HCy(t)+202L2 (1)] RNVIEY ¢

o 2| M®ZO) ( ) p) . - 21
p_ 2[ACy () +202L5 (1] TN A[HC,(1) +202L2 (1)]

&, (39

Z(H[40?N(t)L (1) —AB(1)]
2[AC,(1)+20°L%(1)]

i
X exp I{{X(t)‘f‘

whereC,(t)=C(t)+#/8a2. Io(t) given in Eq.(16) satisfies ~ _ - (Pad
the normalization condition of the reduced density operator Pd(P,p,t)If f dqdépg(q,&,t)e'Patro
(35).

The diagonal elements of the density matrix in coordinate T iPE —p2
;sigzcégre found by putting=x and&=0 in the above equa- =\ a(t) +c(t) ex M (1) ex 2a(OM(1)
_. 2 e’(t)P?
B ) h? “OR v T PN afam + (0]
pd(x701t)_|0(t) ﬁC t +2 2|_2 t :
i) +20°L5 (1) y e(t)[b<t>+d(t)+g<t>+ip]P}
exg —
—m2() d 2[a() + ()]
X i
A[HC(1)+20%L%(1)] y 1
exg ———————
x[ I (t - em)]z 17 4 +co]
X— ———— = - . —
M(t) “2myl" 2y 2y [ LLp_ e( Z(t)L(t))H
36 AM(D) 4 M (1) '
We now calculate the difference in the widths of the wave (38)
packets for the different initial conditions as
where
2%
200N 2 _ _
O'S(t) O'Ns(t)— Mz(t)[CS(t) CNS(t)] (37) A(t) 20’2N2(t) [40‘2N(t)L+(t)—fLB(t)]2
A= T T ahhc 0 + 2022 (0]
g
Here subscripS stands for separable initial conditions and ' "
NS stands for nonseparable initial conditions. We find that in
the case of high temperature, the difference in the widths (39)
goes as—kgT/4my? in the long-time limit whereas in the
case of zero temperature this goes @&f2my){In[(Q? ) )
+472)4y?]+In(2)}. It is because of this time indepen- b(t)=1|—6 X(1) & Z(H[4o"NOL . (1) ~ABY)]
dence(in the case of high temperaturer logarithmic(slow) f 2[ﬁCl(t)+202Li(t)] ’
time dependencén the case of zero temperatlrnat the
wave packets show similar behavior in the long-time limit (40)
for separable as well as non- separable initial conditions for
all temperatures.
We next consider the density matrix in the momentum 02t
space,u andv being conjugate tox andy. With P=u—v (t)= # (41)
andp=(u+v)/2, 2h2a(t)M(t)
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M(t)

O 12022 (0]

o)=L _(t)~[40*N(t)L () —AB(t)]a (1),

t
d(t)= %G(t)
a(t)
&) = oM (D)
il (t)—
g(t)= mp-

The diagonal elements of the density matrix in momentum
space are obtained by puttifg=0 andp=u in the equation

for pa(P,p,t):

(42

(43

(44)

(49)

(46)

PHYSICAL REVIEW &2 042105

pd(o u t) a(t)+C(t) [{ 4[a(t)+C(t)]

L.(Op _e Z(t)L_(t)
X u+ hM(t) +% X(t)+—M(t) }) ]
B T -1 efzyta
“Vaw+ct) “Haat) +c] %
2
Zﬁ (1 e zyt)] : (47)

This has the classical Ornstein-Uhlenbeck form with the
spin- dependent drift caused by the field. This momentum
distribution is centered around e/2# vy for the up and down
spins in the limit oft—c. Thus it is seen that the measure-
ment of the particle momentum can determine the spin.
Now we obtain the spin-off-diagonal elements of the den-

sity matrix in the coordinate spaggq(q,£,t) as

;Od(Q!gvt): f J' dq,dgl\]od(q,g,t;q,,gl,O);g(q’,g’,o),
(48)

with the same initial density matripg(q’,£’,0) as before.
Thus, for nonseparable initial conditions,

- — \/ wh? "( ho ) ’ v "
Pod(d,&,1) =1o(t) hC(0+ 2022 (1) ex Wﬁmyf do o cot kT Jdt fdttt codw(t'—t")}

X exg

_Mz(t) (
|4[AC (1) +207L3 ()]

2
_MHJ

[40°L . (t)N(t)—7#B(t)]

o]

i
g['—(t)%—

X exp

2[HCq(t) +20°L2 (1)]

2r 40°m r
e 2E(1)+Y(1)— TL+('[)

X exp

2

] [ .
T el 2E(1) + Y(1)—

Am?y[RCy(t) +202L2 (1)]

A(t)  202N2(t)
f * #2

_[402L+(t)N(t)—ﬁB(t)]2 5
AR [AC(t)+20%L2 (1)]

wole- ]

om
z L40h4¥LAUMU—ﬁ&UE

ol 2AMy[AC, (1) + 202L2 (1)]
y +ieM(t) ( P )(ZE DY 402mL (t)) F{IZED(t)g} p[:zm}
ex — - —L ex ex
p_zmy[hcl(t)+2az|_2+(t)] RRVIEY ( fi fimy fi
*ieq —202%€? F4o%€ F2ieqt
X ex 7y ex H2my? ex 72y N(t)&|ex 7 . (49
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For the case of separable initial conditioﬁ:@,,(q,g,t) and ture, we recover the previous resuls-4]. For atomic scale

~ - - ticles of massn~10 2% g, and withy~10?s™ !, tem-
Pod(Q,&,t) are the same as above, but wiffit) =0 and with par N e LA !
the appropriate expressions B(t) andC(t) as stated after PEratureT~300 K, ande~1 eV/cm, this timets is about

1079 s.
Eq. (32.
a.(32 (2) Next, the spatial nonlocality of the spin-diagonal com-

IV. OFE-DIAGONAL ELEMENTS OF THE DENSITY pgnents is examined, i.e., the I-ong-t|r'r~1.e behavior of the spin-
MATRIX AND THE TIME SCALES OF DECAY diagonal elements of the density matpx(q,¢,t) [Eq. (35)]

in the coordinate space. We find that the term of interest is
The steady-statélongtime limit) density matrix is ex- exp[—At)/2]€% which goes as eXp-D&/4yh?] in the
pected to bdat least almogtdiagonal in the basis in which long-time limit. The off-diagonal elements @iy (q,&,t) in

the system Hamiltonian is diagona], independe_nt of V?’hidboordinate space rapidly decay over a time-scale of
system variable couples to the environment variables in the

system-plus-environment interaction and the initial state of 5
the system. This basis is called the “preferred basis,” and ¢ _4h
the time scale over which this near diagonalization takes r_Dgz’
place is the decoherence tirh@]. With the above point in
view, we examine the longtime behavior of the density ma+though the density matrix in the coordinate space does not
trix elements off-diagonal in the coordinate space and theventually become diagonal, the extent of nonlocality being
momentum space, for the cases(ofhigh temperature(ii)  {he thermal de Broglie wavelengty=h/27mksT of the
zero temperature, ani) intermediate temperature baths. particle.
_ . (3) Next, we analyze the longstime behavior of the spin-
A. High-temperature limit diagonal elements of the density matpix(P,p,t) [Eq. (38)]
(1) First we study the longtime behavior of the spin-off- in the momentum space. The terms of interest are

diagonal elements of the density matrix in the coordinate

(52

spacepoq(q,£,t) [Eq. (49)] in the limit kg T>7%y. Note that —p? e?(t)P?
the terms to be examined in the long-time limit are the fol- ex 2a(OM(1) ex Aa(t)+c(h)]
lowing:
—fi?P?a(t)
=ex . (53
2h2a(t)M(t)a(t) + 63(t)

—€e? (o hw
ex ahmy ) do o cot 2kBT)
. . It can be shown that in the limit of high temperature and for
Xf dt’f dt"t't” cogw(t’ —t")}], long times, ez(t)—>0 for all initial c:20nditions. Thus_the
0 0 above term of interest becomes gxP“/2«(t)M(t)], which
goes as efp-(Dt/4m?y?—3kgT/4my?)P?] for separable
and initial conditions, and exp-(Dt/4m?y?—kgT/4my?)P?] for
nonseparable initial conditions. Both tend to
40°m exf —Dt/4m?y?P?] in the long-time limit.
2E()+Y(1)— A L.(t) Thus we see that for both separable as well as for non-
ex a2 iC1(1) + 202L2 (1) . separable initial conditions, the off-diagonal elements of the
YIAC oL (0] density matrix in momentum space, i.p4(P,p,t), P#0,

The above two terms in the long-time limit together go as 90€s to zero over a time scale of

2 2
—ekgT — €D
ex;{ 5 t3 =ex;{ﬁt3

12h°my

6h%my
and this drives the entirgo4(q,&t) to zero. HereD  whereP is the extent of momentum space off-diagonality,
=2mykgT is the usual diffusion coefficient. The time scalesand the spin-diagonal components become diagonal with

2
62

_ 4m? yz
, (50 th= F ) (54)

over which this happens is time in the momentum space.
121.2mPy2 13 B. Zero temperature limit
3:( 2D (5D (1) We study the behavior of the density matrix off-

diagonal in spin space. We find that the term dominating the

The above result is true for separable as well as for nonsepgemporal behavior 0p4(q,¢,t) [Eq. (49)] for separable as
rable initial conditions. Thus, in the limit of high tempera- well as for nonseparable initial conditions is

042105-7
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e ro ho t t
exr{—[ﬁmyfo dow wcotr‘(m> Jodt fodt t't” codw(t’ —t )}]

which goes as eXp— €t mamy)in(Qt)] in the long-time V. SUMMARY
limit. Thus even all =0, po4(q,£,t) goes to zero. This hap-  \ye have solved the dynamics of the Stern-Gerlach spin in
pens over a time scale of contact with a linearly dissipative environment at an arbi-
1/2 trary temperature. We find that even at zero temperature, the
0_(”hm7 (55  elements of the density maxtrix off-diagonal in the spin
S 1 ~
€’ spacep,q(q,&,t) go to zero in the long-time limit, although

at a rate slower than that in the high-temperature case. How-
ever, the spin-diagonal componeptgq, £,t), which are off-

diagonal in coordinate space, apg(P,p,t) off-diagonal in
momentum space, do not go to zero in the long-time limit for

which is about 107 s for the parameters chosen above.
(2) Next we analyze the behavior of the elements

pa(a,&1) [Eq. (35)], off-diagonal in the coordinate space.
We find that exff —A(t)/41&%} in the long-time limit goes as a zero-temperature bath.

_ 2 2142 :
exp—(my/ 2mh)IN[(Q°+47)/47*1¢7). Thus —the  off We also find that for any finite temperature for time
diagonal elements qiq(q,¢,t) decay over a time scale of  greater than the “crossover time/kgT [6], the elements of

ok Pod(a,£,1) and the off-diagonal elements pfi(P,p,t) go to
t o= 5 = (56) zero in the long-time limit whereas the off-diagonal elements
my? In Q°+4y7 L, of pq(q,&,t) in the coordinate space do not vanish in the
472 long-time limit, with the dominant terms being similar to the

ones in the high-temperature limit. This implies that a mea-
even though the density matrix does not become diagonal.surement of momentum yields the spin for any finite tem-
(3) We now analyze the behavior of the elementsperature for times much greater tharkgT.
}Sd(P,p,t) [Eq. (39)], off-diagonal in momentum space. We  We recover all the previous results in the high-
find that the term of interest ekpP%2a(t)M(t)] goes as temperature limit. Thus except for the extreme quantum case
exf —20°P?] in the long-time limit for separable as well as Of zero temperature, the system shows the expected classical
nonseparable initial conditions. Thus &0, the momen-  diffusive behavior over long times.

tum off-diagonal elements decay over a time scale of These ideas can possibly be tested in a spin-
recombination interference experiment, in which a first
1 Stern-Gerlach apparatdSGA) splits the spin-half beam and
tmo (57) a second SGA recombines these split beams in a reversed

2y02P?’ o i
magnetic field. The decoherence of the positional wave func-

but do not go to zero. tion of the spins can be studied as a pressure of gas in the

SGA.
C. Intermediate temperatures
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