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Radiation pressure as a source of decoherence
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We consider the interaction of an harmonic oscillator with the quantum field via radiation pressure. We show
that a ‘‘Schrödinger cat’’ state decoheres in a time scale that depends on the degree of ‘‘classicality’’ of the
state components, and which may be much shorter than the relaxation time scale associated to the dynamical
Casimir effect. We also show that decoherence is a consequence of the entanglement between the quantum
states of the oscillator and field two-photon states. With the help of the fluctuation-dissipation theorem, we
derive a relation between decoherence and damping rates valid for arbitrary values of the temperature of the
field. Coherent states are selected by the interaction as pointer states.

PACS number~s!: 03.65.Bz, 42.50.Dv
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I. INTRODUCTION

Superposition states have an important role in the form
ism of quantum mechanics. However, they are in flagr
contradiction with our classical world when the compone
correspond to macroscopically distinguishable states.
reason why these states are not encountered classica
decoherence, a process by which the interaction between
degrees of freedom of the system in question with any o
degrees of freedom, either internal or external~the so-called
environment!, leads to a suppression of the coherence
tween the components of the superposition@1#. Even if this
coupling is very weak, the decoherence rate may be h
resulting in a very fast decay of these ‘‘weird’’ states and
the emergence of the classical world. Recent developm
in technology now allow one to study in real time the proce
of decoherence in the lab. For example, over the past sev
years techniques have been developed to generate m
copic superpositions of motional states of trapped ions@2#,
and of photon states in cavity quantum electrodynamics@3#.
In these cases decoherence due to the coupling with the
bient reservoirs was observed, confirming the expecta
that the decoherence rate is faster, the larger and more s
rated the state components are@4#. Recently another experi
ment has succeeded in ‘‘engineering’’ the environment in
context of trapped ions, studying scaling laws of decoh
ence theory for a variety of reservoirs in a wide range
parameters@5#.

Usually, decoherence is analyzed in the framework
heuristic models that describe phenomenological dissipa
~the reservoir is taken to be a collection of harmonic osci
tors, coupled linearly to the position operator of the syst
@6,7#!. In this paper, we consider instead anab initio model
for decoherence of a particle in a harmonic potential, sc
tering the radiation field~at temperatureT), which then plays
the role of the reservoir. Starting from first principles, w
show that the resulting radiation pressure coupling with
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field transforms an initial pure superposition state of the p
ticle into a statistical mixture.

Of special relevance is the limitT50. In this case, the
reservoir is the quantum vacuum field, which dissipates
mechanical energy of the oscillating particle~or ‘‘mirror’’ !.
This effect is associated to the emission of pairs of photo
the so-called dynamical Casimir effect. Much work has be
done on quantum radiation from moving mirrors@8#. Impor-
tant properties like the spectrum of the emitted radiation@9#,
the time evolution of the energy-momentum tensor@10#, the
total radiated intensity and the dissipative radiation press
on the particle~radiation reaction force corresponding to th
photon emission effect! @11,12# have been considered. Her
we focus our attention on the particle as the system of in
est, and show that decoherence is a consequence of th
tanglement between particle and field two-photon sta
This result has fundamental implications, for it shows th
any particle not transparent to the radiation is unavoida
under the action of decoherence through the radiation p
sure coupling with vacuum fluctuations.

The zero temperature limit was briefly discussed in o
previous letter@13#. This paper presents results for finite va
ues of temperature, as well as a detailed discussion of
case T50. The formalism relies on the one-dimension
~1D! scalar model for the field, but extensions to a 3D ele
tromagnetic field are also discussed, allowing us to add
the question of orders of magnitude. The paper is organi
as follows. In Sec. II we start from the Hamiltonian mod
for the radiation pressure coupling, and then derive a ma
equation for the particle. In Sec. III we discuss how the e
vironment selects a prefered basis in the particle’s Hilb
space, the pointer basis. In Section IV we derive a gen
relation between decoherence and damping rates at arbi
temperature by means of the fluctuation-dissipation theor
The zero- and high-temperature limits, including extensio
to the 3D electromagnetic model, are discussed in Sec
and VI. Section VII contains our conclusions. Finally, in th
appendix an alternative, simpler derivation of the decoh
ence rate is given, which is based on the entanglement
tween the particle and two-photon states.
©2000 The American Physical Society03-1
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II. MODEL

Most treatments of the dynamical Casimir effect are ba
on the assumption that the mirror follows a prescribed
jectory, thus neglecting the recoil effect. However, in th
paper we want to focus on the mirror as a dynamical qu
tum system, hence the need to tackle the full mirror-pl
field dynamics. This has already been addressed in
framework of linear-response theory in order to calculate
fluctuations of the position of a dispersive mirror driven
vacuum radiation pressure@14#, and related calculations hav
been performed in Refs.@15–17# to derive mass correction
caused by the interaction with the field.

We consider a nonrelativistic partially reflecting mirror
massM ~with position q and momentump) in a harmonic
potential of frequencyv0, and under the action of radiatio
pressure. We take a scalar field in 111 dimensions, which
mimics the electromagnetic field modes that propagate a
the direction perpendicular to the plane of the mirror. Exte
sions to the real 311 case are analyzed in Secs. V and V
We neglect third- and higher-order terms inv/c, wherev is
the mirror’s velocity~we setc51 hereafter, except when a
explicit evaluation of orders of magnitude is required!. Our
starting point is the Hamiltonian formalism developed
Refs.@16# and@17# ~although these references consider a f
mirror, the extension to the harmonic oscillator is straig
forward!. The total Hamiltonian is

H5HM1HF1H int , ~1!

where

HM5
p2

2M
1

Mv0
2

2
q2 ~2!

is the harmonic oscillator Hamiltonian for the mirror, and

HF5E dx

2
@P21~]xf!2#1Vf2~x50! ~3!

is the free Hamiltonian for the fieldf and its momentum
canonically conjugatedP5] tf. The second term on th
right-hand side of Eq.~3! is associated to the boundary co
dition of a partially reflecting mirror at rest atx50. In the
context of the plasma sheet model of Ref.@16#, it corre-
sponds to the kinetic energy of the plasma charged partic
The coupling constantV plays the role of a transparenc
frequency, since from Eq.~3! one derives the boundary con
dition

]xf~01!2]xf~02!52Vf~0!

(f is continuous atx50), which yields a frequency
dependent reflection amplitude@14,16#:

R~v!52 i
V

v1 iV
. ~4!

Finally, the interaction Hamiltonian is given by
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H int52
pP
M

1
P 2

2M
2

1

2
Vf2~x50!

p2

M2
, ~5!

where P52*dx ]xf ] tf is the field momentum operator
H int describes, to second order inv/c, the modification of the
boundary condition for the field due to the motion of th
mirror, which in its turn is affected by the field radiatio
pressure. Thus, it provides a coupling between the harm
oscillator and the field, to be treated within perturbati
theory. The small perturbation parameter isv/c, and not the
transparency frequencyV, which may be arbitrarily large
The first term in Eq.~5! is responsible for the effect of de
coherence to be discussed here. It also accounts for th
fects of emission of photons, dissipation of the mirror’s e
ergy, and part of the mass correction.

We calculate the density matrixr̃(t) of the combined
mirror-plus-field system using second-order perturbat
theory, and trace over the field operators to derive the ma
equation for the mirror’s density matrixr(t) @18#. We as-
sume that att50 the mirror and field are not correlated
r̃(0)5r(0)^ rF , whererF is the density matrix of the field
~assumed to be in some steady state; later in this section
take a thermal equilibrium state!. We find

i\ṙ~ t !5@HM ,r~ t !#2V
^f2~0!&

2M2
@p2,r~ t !# ~6!

2
i

2\M2E0

t

dt8„ †p,@pI~2t8!,r~ t !#‡s~ t8!

1@p,$pI~2t8!,r~ t !%#j~ t8!…,

where the superscriptI indicates the operators to be taken
the interaction picture. The second term on the right-ha
side of Eq.~6! is the contribution in first order of perturba
tion theory of thep2 term in the interaction Hamiltonian@see
Eq. ~5!#. It corresponds to a~cutoff dependent! mass correc-
tion given by

DM15V^f2~0!&, ~7!

as already found in Refs.@14# and@16#. The~anti-!symmetric
second-order correlation function (j) s is defined as

s~ t !5C~ t !1C~2t !, ~8!

j~ t !5C~ t !2C~2t !, ~9!

with

C~ t !5^P I~ t !P I~0!&2^P&2. ~10!

When computing the correlation functions, we take the u
perturbed field, which corresponds to the static bound
condition ~eigenfunctions ofHF).

Replacing the free evolution forpI(2t8) in Eq. ~6! yields
3-2



ng
u

ym

en
ld
i

f

each
er
sed

re

s-

a
ral

-
of
u-
ts

in-

RADIATION PRESSURE AS A SOURCE OF DECOHERENCE PHYSICAL REVIEW A62 042103
i\ṙ5FHM2
DM ~ t !

M

p2

2M
,rG2G~ t !@p,$q,r%#

2
i

\
D1~ t !†p,@p,r#‡2

i

\
D2~ t !†p,@q,r#‡ . ~11!

The total mass correction isDM5DM11DM2, where
DM2, as well as the remaining coefficients in Eq.~11!, origi-
nate from the first term on the right-hand-side of Eq.~5!,
taken in second-order perturbation theory. Their meani
are best understood when writing the Fokker-Planck eq
tion for the Wigner functionW(x,p,t):

] tW52~12DM /M !
p

M
]xW1Mv0

2x ]pW12G]x~xW!

1D1

]2

]x2
W2D2

]2

]x ]p
W. ~12!

DM2 and the damping coefficientG are calculated from the
anti-symmetric correlation function:

DM2~ t !5
i

\E0

t

dt8cos~v0t8!j~ t8!, ~13!

G~ t !5
iv0

2M\E0

t

dt8sin~v0t8!j~ t8!; ~14!

whereas the diffusion coefficients are associated to the s
metric correlation function:

D1~ t !5
1

2M2E0

t

dt8cos~v0t8!s~ t8!, ~15!

D2~ t !5
v0

2ME
0

t

dt8sin~v0t8!s~ t8!. ~16!

We assume the field to be in a thermal state~temperature
T), and take the following strategy to calculate the mom
tum correlation functions. The time derivative of the fie
momentum is minus the radiation pressure force on the m
ror @16#:

dP I

dt
52Vf~0,t !]̄xf~0,t !, ~17!

where ]̄xf(0,t)5@]xf(01)1]xf(02)#/2. Using Eq.~17!,
we calculateC(t) by integrating the correlation function o
the field calculated atx50:

C~ t !5~2V!2E
2`

t

dt1E
2`

0

dt2@^f~0,t1!]̄xf~0,t1!

3f~0,t2!]̄xf~0,t2!&

2^f~0,t1!]̄xf~0,t1!&^f~0,t2!]̄xf~0,t2!&# ~18!
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The equal-time second-order correlation function in Eq.~18!
corresponds to the force on the static~single! mirror. It van-
ishes since the vacuum radiation pressures exerted on
side of the mirror are in perfect equilibrium. On the oth
hand, the fourth-order correlation function may be expres
as a sum of second-order correlation functions~with the
fields taken at different times!, which are calculated with the
help of the normal mode expansion for the field. They a
directly connected to the average number of photonsnv

51/@exp(\v/T)21# in the mode of frequencyv at tempera-
ture T ~we take the Boltzmann constantkB51). It is useful
to write the result in the Fourier domain, the Fourier tran
form of the antisymmetric correlation functionj(t) being
defined as

j@v#5E dt exp~ ivt !j~ t !. ~19!

Equations~9! and ~18! yield

j@v#5j0@v#1jT@v#, ~20!

where

j0@v#5~2/p!\2Vz~v/V! ~21!

with

z~u!5 ln~11u2!/~2u!1~arctanu!/u221/u ~22!

represents the correlation function atT50 ~vacuum fluctua-
tions!, whereas

jT@v#5
2\2V2

pv2 E
0

`

dv8
v8

v821V2
@G~v,v8!2G~2v,v8!#

~23!

with

G~v,v8!5uv82vu~nuv82vu2e~v82v!nv8! ~24!

represents the thermal fluctuations (e is the sign function!.
Symmetric and antisymmetric correlation functions for

system in thermal equilibrium are related in a very gene
way @25,26#:

s@v#5
j@v#

tanhS \v

2T D . ~25!

According to Eqs.~14! and ~15!, this result provides a gen
eral relation between diffusion and damping, in the spirit
the fluctuation-dissipation theorem. This relation is partic
larly simple for the asymptotic values of the coefficien
G(t) and D1(t) at t→`. Since the integrands in Eqs.~14!
and ~15! are even functions of time, we may extend the
tegration range to2`, yielding

G5
v0

4M\
j@v0# ~26!
3-3
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and

D15
1

4M2
s@v0#. ~27!

Thus, the asymptotic values ofG and D1 are directly con-
nected to the fluctuations at the mechanical frequencyv0,
allowing us to derive, from Eq.~25!, a simple and genera
relation between these two coefficients. On the other ha
no such simple connection exists for the remaining tim
dependent coefficients,DM2 andD2, whose asymptotic val-
ues result from the joint contribution of the whole spectru
of fluctuations@13#.

Combining Eqs.~25!–~27!, we find

D15
\

Mv0

G

tanh~\v0/2T!
, ~28!

a clear manifestation of the fluctuation-dissipation theore
According to Eq.~28!, the temperature dependence of t
diffusion coefficient is determined, apart from theT depen-
dence of the damping coefficientG ~to be discussed later!, by
the relative importance of the thermal fluctuations~and their
corresponding energyT) with respect to quantum fluctua
tions ~and their corresponding zero-point energy\v0/2). In
the high-temperature limit,T@\v0/2, Eq. ~28! yields D1

52TG/(Mv0
2). In the theory of Brownian motion,G is a T

independent phenomenological constant, and hence the
fusion coefficient is a linear function of temperature in th
limit. Here, however,G has an explicit temperature depe
dence, to be analyzed in Sec. V.

From Eq.~28!, we shall derive a relation between dec
herence and damping time scales, valid for any tempera
T. Before considering a specific superposition state, h
ever, we discuss, in the next section, the degree of sensit
of different states in the Hilbert space to the action of de
herence. We also analyze in more detail the precise mea
of t→` ~in the particular case ofT50), in order to know
how fast the coefficients approach their asymptotic valu
From Eqs.~14! and~15! alone it may be shown, in a gener
way, that asufficientcondition ist@1/v0, but in some cases
the convergence may be much faster.

III. POINTER STATES

Different criteria have been introduced in the literature
order to find out the states in the Hilbert space that are m
robust under the interaction with the environment and
have more classically@19–21#. Here we shall follow the one
introduced by Zurek, the so-called ‘‘predictability sieve
The idea is to take every possible state of the Hilbert spa
calculate its entropy, and order the states in a tower acc
ing to increasing entropy. The most classical states are th
that lie at the bottom of that tower, and correspond to
most predictable ones. For these ‘‘pointer’’ states, inform
tion loss due to the interaction with the environment is mi
mal. This philosophy is put in quantitative terms by minimi
ing the linear entropy of the system,
04210
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s@r#[12tr r2, ~29!

which is zero for a pure state and greater than zero fo
statistical mixture. In general this is a difficult problem b
cause complicated entanglement between system and
ronment develops on account of their mutual interaction.
far, results have been successfully derived assuming tha
initial state of the system is pure. Here we follow the sa
approach, and calculate the rate of entropy increase sta
from the master equation~11!. We assume that the state
nearly pure at timet to find

ṡ~ t !52G~ t !@s~ t !21#1
4D1~ t !

\2
Dp21

2D2~ t !

\2
sq,p ,

~30!

where Dp2[^p2&2^p&2 is the momentum dispersion an
sq,p[^$q,p%&22^p&^q&. Here ^ . . . &5tr( . . . r), and all
operators are evaluated at the same timet. The first term
in Eq. ~30! leads to a decrease of entropys(t)51
2exp@2*0

t G(t8)dt8#, hence damping tries to localize the sta
competing against diffusion. This decrease is independen
the initial state of the system, and therefore is irrelevant
determining the pointer states.

We assume that the typical decoherence time scal
much larger than the period of free oscillation 2p/v0, so that
we may integrate Eq.~30! to find the entropy at an interme
diate timet5n 2p/v0. We taken@1, allowing us to re-
place the time dependent coefficients by their const
asymptotic values, but assume thatt is much shorter than the
decoherence time scale, in order to be consistent with
small-entropy approximation underlying Eq.~30!. Moreover,
in this weak-coupling limit, we may take the free evolutio
~corresponding to the harmonic oscillator HamiltonianHM)
for the mirror’s operators in Eq.~30!. The correlation func-
tion sq,p oscillates around zero, and then does not contrib
to s(t), whereas the free evolution ofDp2(t) mixes up po-
sition and momentum fluctuations, yielding

s~t!52t
D1

\2 @~Dp!0
21~Mv0!2~Dq!0

22M\v0#, ~31!

where (Dp)0
2 and (Dq)0

2 represent the dispersions for th
initial state. From Eq.~31!, we find that the minimum en-
tropy given the constraintDqDp>\/2 is for Dq 2

5\/(2Mv0), Dp 25M\v0/2. Hence, as in the Caldeira
Leggett model, and for any temperature of the field,
pointer basis consists of coherent states@20#. In this weak-
coupling approximation, the minimum value corresponds
s(t)50, hence the increase of entropy of a coherent stat
a higher-order effect.

The crucial approximation in the derivation of Eq.~31!
from Eq. ~30! is the replacement of the time dependent c
efficients by their finite, constant asymptotic values. It
instructive to analyze in more detail the behavior of the c
efficients and its connection with entropy production. As
example, we takeT50, and consider first the perfectly re
flecting limit, which corresponds tov0!V, for in this case
the relevant field modes have frequencies much smaller
3-4
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RADIATION PRESSURE AS A SOURCE OF DECOHERENCE PHYSICAL REVIEW A62 042103
the mirror’s transparency frequency. In Fig. 1 we plot t
diffusion and damping coefficients as functions ofv0t for
v0 /V51024 and T50. The damping coefficientG ap-
proaches its asymptotic value very fast, fort;1/V, whereas
D1(t) develops an initial jolt for times of the order ofV21

and then decreases to the asymptotic value (D1)perf
5\2v0 /(12pM2) for t;1/v0. When we integrate Eq.~30!
over many periods of oscillation, the contribution to the e
tropy of the initial jolt is negligible, allowing us to replac
D1 by its asymptotic value.

In Ref. @27#, it was shown that no net entropy is produc
for the Caldeira–Leggett model with an adiabatic enviro
ment, since all the time-dependent coefficients are oscilla
functions around a zero mean. At first sight, the same wo
happen in our model whenv0@V, for in this case the domi-
nant field frequencies are slow with respect to the mirro
translational time scale. However, as discussed in Sec. V
spectral densityj0(v) decays too slowly forv@V, and as a
consequence field frequencies of the order ofv0 provide a
significant contribution even in this limit. Thus, one cann
ascribe a frequency cut off to the environment such that
typical frequency of the systemv0 is much greater than th
maximum frequency of the environment. Therefore,
vacuum field does not behave adiabatically in the sens
Ref. @27#. In our case instead, the diffusion coefficients o
cillate around a nonzero value, leading to a net entropy
crease. In Fig. 2, we plot the diffusion and damping coe
cients as functions ofv0t for v0 /V5104 and T50. They
oscillate around their asymptotic values with~angular! fre-
quencyv0 and with an amplitude of oscillation that deca
in a time t;1/V@1/v0. The oscillatory terms do not con
tribute to the entropy increase when we average over m

FIG. 1. Diffusion and damping coefficients for zero temperat
as functions of time in the perfectly reflecting limit,v0 /V51024

!1. Here D15\2v0 /12pM2 and G5\v0
2/12pM are the

asymptotic limits ofD1(t) andG(t). The insets show the behavio
of these two time-dependent coefficients for short times.
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oscillations. Hence Eq.~31! also holds in this case, althoug
the rate of entropy increase is much smaller than in the p
fectly reflecting limit.

IV. DECOHERENCE VERSUS DAMPING

In this section, we derive a general relation betwe
damping and decoherence time scales, starting from
fluctuation-dissipation result given by Eq.~28!. As an ex-
treme case of decoherent dynamics, we consider a supe
sition of two coherent states, since they correspond to
pointer states, according to the results of Sec. III. Spec
cally, we take att50 the even superposition stateuc&e

5(ua&1u2a&)/A2, with a5 iP0 /A2M\v0, so that the co-
herent states are initially along the momentum axis in ph
space, and6P0 are the average values of momentum of t
components att50. We also assume thatuau@1, hence the
average energy of the state components is much larger
the zero-point energy. The corresponding Wigner function

W5Wm1
1

p\
expF2

q2

2~Dq0!2
2

p2

2~Dp0!2GcosS 2P0q

\ D ,

~32!

whereDq05A\/(2Mv0) and Dp05\/(2Dq0) are the po-
sition and momentum uncertainties of the ground state.Wm
corresponds to the statistical mixture

rm5~ ua&^au1u2a&^2au!/2. ~33!

In phase space,Wm has two Gaussian peaks along the m
mentum axis at6P0 . rm is a classical state in the sense th
Wm , being positive defined, may be interpreted as a pr
ability distribution in phase space. On the other hand,

e
FIG. 2. Diffusion and damping coefficients for zero tempe

ture T50 as a function of time in the high-transmission lim
v0 /V5104@1. Here D15\2V2 ln(v0 /V)/2pM2v0 and G
5\V2 ln(v0 /V)/2pM are the asymptotic limits ofD1(t) andG(t).
3-5
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PAULO A. MAIA NETO AND DIEGO A. R. DALVIT PHYSICAL REVIEW A 62 042103
nonclassical nature of the superposition state is featured
the remaining term in Eq.~32!, representing the coheren
interference between the two state components, and w
oscillates into negative values along the position axis.

Diffusion along position, associated to the coefficientD1,
averages out the oscillations of the interference term at a
1/td , to be calculated from the Fokker-Planck equation~12!
@22#. According to Eq.~32!, the oscillations are faster th
higher the value ofP0, so thattd is a decreasing function o
uau. As in Sec. III, we assume that decoherence is very sl
1/td!v0, so that several free oscillations take place bef
coherence is lost. In this limit, the particle has enough ti
to probe the harmonic potential before diffusion takes pla
and as a consequence decoherence is governed by
asymptotic value ofD1, which is directly connected to th
field flucutuations at the frequency of oscillationv0, accord-
ing to Eq. ~27!. This condition holds for most experiment
where mesoscopic superpositions are employed so as to
der decoherence slow enough to be measured@3,5#. More-
over, it always applies in the case of vacuum radiation pr
sure (T50), as shown in Sec. V. Diffusion is maximum
when the state components are along the momentum
from Eq. ~32!, we find ]q

2W'2(2P0 /\)2W; and vanishes
when the two wave packets reach the turning points in
harmonic potential. The average over many oscillation yie

1

td
52

1

2
D1 S ]q

2W

W D
max

5
2P0

2D1

\2
, ~34!

that combined with the fluctuation-dissipation theorem, E
~28!, yields the following result for the decoherence timetd :

td5
1

4uau2
tanhS \v0

2T D 1

G
. ~35!

A T50 ~or more generally, forT!\v0), Eq. ~35! yields
td51/(4uau2G). This result may be written in terms of th
distanceDP52P0 between the two components in pha
space att50, or in terms of the distanceDQ5DP/(Mv0)
at t5p/2v0:

td54S Dp0

DP D 2 1

G
54S Dq0

DQ D 2 1

G
. ~36!

The interpretation of Eq.~36! is clear: decoherence is fast
the more separated the state components in phase spac
Here the zero-point fluctuations define the reference of
tance in phase space. At high temperatures, on the o
hand, this reference is provided by the thermal de Brog
wavelengthlT5\/A2MT. In fact, Eq. ~35! yields, for T
@\v0,

td5
\v0

2T

1

4uau2
1

G
52S lT

DQD 2 1

G
. ~37!

Equation~37! also shows that the ratio between decohere
and damping rates is larger at high temperatures by the fa
2T/(\v0).
04210
by

ch

te

,
e
e
e,
the

en-

s-

is:

e
s

.

are.
s-
er
e

e
tor

When written in terms of distances in phase space,
results above are also valid for more general superposi
states, like (u0&1ua&)/A2. Moreover, their range of validity
is not limited to the radiation pressure coupling conside
here. In fact, Eqs.~36! and~37! are in perfect agreement wit
the results obtained in the framework of the Caldeira-Leg
phenomenological model for quantum dissipation@6#. This is
hardly surprising, since they rely on general properties of
correlation functions associated to the fluctuation-dissipa
theorem. Equation~35!, which interpolates the low- and
high-temperature limits, is also discussed in Ref.@6#, in the
context of a two-level system. The temperature depende
for the ratio between decoherence and damping times h
simple interpretation: atT.0, the time scale for the relax
ation of the populations is shorter than 1/G exactly by the
factor tanh(\v0/2T), on account of the contribution of ab
sorption and stimulated emission. Here this factor origina
from the general relation between symmetric and antisy
metric correlation functions, Eq.~25!, which is at the heart of
the fluctuation-dissipation theorem.

The peculiarities of the radiation pressure model cons
ered here are contained in the damping rateG. Rather than a
phenomenological input parameter, it is computed from fi
principles, first forT50 in Sec. V, and then forT@\v0 in
Sec. VI.

V. VACUUM FIELD

At T50, the spectral density is given by Eqs.~21! and
~22!. This result is more easily obtained from the followin
argument~a similar method, applied for the force correlatio
function, may be found in Refs.@23# and @24#!. SinceP is
quadratic in the field operators, the correlation functionC(t)
may be calculated from the two-photon matrix elements
the momentum operator as follows:

C~ t !5
1

2E0

`

dv1E
0

`

dv2^0uP~ t !uv1 ,v2&^v1 ,v2uPu0&.

~38!

We have

^0uP~ t !uv1 ,v2&5exp@2 i ~v11v2!t#^0uP~0!uv1 ,v2&

since only the annihilation operators contribute, and hen

C@v#5pE
0

`

dv1E
0

`

dv2u^0uP~0!uv1 ,v2&u2

3d~v2v12v2!. ~39!

Thus, atT50 the fluctuations at the~positive! frequencyv,
originate from two-photon statesuv1 ,v2& such that v1
1v25v. In the dynamical Casimir effect, the oscillation
the mechanical frequencyv0 gives rise to the emission o
pairs of photons of frequenciesv1 and v2, such thatv0
5v11v2. On the other hand, according to Eq.~26!, G origi-
nates from the fluctuations at frequencyv0, and hence
3-6
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G5
p

4

v0

M\E0

`

dv1E
0

`

dv2u^v1 ,v2uPu0&u2d~v02v12v2!,

~40!

rendering explicit the connection between damping and
photon emission effect. In the Appendix, we present an
ternative derivation of Eq.~40!, starting from the two-photon
emission probabilities and making use of energy conse
tion.

Equation~39! also shows thatC@v# vanishes for negative
frequencies, and as a consequence,s@v#5e(v)j@v# in
agreement with Eq.~25!. Finally, the result of Eq.~21! fol-
lows from Eq.~39! by using again Eq.~17! @16#. In Fig. 3,
we plot z(v/V) as a function of its argument. According t
Eq. ~21!, the transparency frequencyV defines a scale fo
the behavior of the spectrum of fluctuations in vacuum. F
v!V, the spectrum is linear:z(v/V)'v/(6V), and goes
to zero slowly, as ln(v/V)/(v/V), for v@V, due to the high-
frequency transparency of the mirror.

The damping coefficient at zero temperature is obtai
from Eqs.~21! and ~26!, or alternatively from Eq.~40!:

G5
\Vv0

2pM
zS v0

V D . ~41!

In the perfectly reflecting limit,v0!V, Eq. ~41! yields

G5
\v0

12pM
v0 . ~42!

Thus, the damping induced by the Casimir effect is a sm
perturbation of the free harmonic oscillations. The ratio b
tween the zero-point energy and the rest energy appearin
Eq. ~42! is also of the order of the recoil velocity of th
mirror divided by c, which is, as explained in Sec. II, th
small parameter of the perturbation approach leading to
master equation~11!. For larger values ofv0 /V, the damp-
ing as given by Eq.~41! is still smaller, since vacuum fre
quencies of the order ofv0 are not well reflected by the
mirror in this case.

FIG. 3. Spectral density for zero temperature.
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Equation~42! is directly connected to the well-known for
mula for the dissipative Casimir force on a single perfe
moving mirror @11#, F5\x-/(6p), for the equation of mo-
tion then reads@28#

x952v0
2x1

\x-
6pM

, ~43!

whose solution when\v0 /M!1 is

x5x0e2 iv0t expS 2
\v0

2

12pM
t D .

The decoherence time scale atT50 in the perfectly re-
flecting limit is derived from Eqs.~36! and ~42!:

td5
3

v2

2p

v0
, ~44!

wherev5P0 /M is the initial velocity of the wavepackets
Being of the order of (v/c)2, the decoherence rate is ver
small at T50 ~or, at any rate, in the nonrelativistic limi
considered here!. Sincev0td@1, decoherence is the cumu
lative effect of several free oscillations in the harmonic we
which justifies the approach employed in the derivation
Eq. ~34! and the use of the asymptotic value forD1(t).

In order to further understand how the dynamical Casim
effect engenders decoherence, we present, in the Appen
an alternative approach, where we follow the evolution
the complete oscillator-plus-field quantum state. It sho
that the superposition state decoheres because the two w
packet components oscillating out-of-phase yield amplitu
for emission of photon pairs with opposite signs. As a co
sequence, an entangled mirror-plus-field state is develo
given by

uC&Dt5B~Dt !uc&e^ u0&

1 1
2 E

0

`

dv1E
0

`

dv2 b~v1 ,v2 ;Dt !uc&o^ uv1 ,v2&,

~45!

whereuc&o5(ua&2u2a&)/A2 is the odd superposition state
b(v1 ,v2 ;Dt) is the amplitude for emission of a photon pa
with frequenciesv1 andv2 during Dt ~the explicit expres-
sions are given in the Appendix!, andB is the amplitude for
persistence in the vacuum state:

uB~Dt !u2512 1
2 E

0

`

dv1E
0

`

dv2ub~v1 ,v2 ,Dt !u2. ~46!

The density operators of the odd and even superposi
states differ by the sign of the interference term,r int5r
2rm @rm is defined in Eq.~33!#. Accordingly, when com-
puting the reduced density matrix of the mirror,r(Dt)
5trfield(uC&Dt^Cu), the contribution of the two-photon state
in Eq. ~45! reduces the coherence of the state. With the h
of Eq. ~46!, we find
3-7
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Dr int[r int~Dt !2r int~0!

52 1
2 E

0

`

dv1E
0

`

dv2 ub~v1 ,v2 ;Dt !u2r int~0!.

~47!

The two-photon probabilities are proportional toDt and con-
nected to the damping rateG as discussed in the Appendix
Hence Eq.~47! yields

dr int

dt
'

Dr int

Dt
52

r int

td
, ~48!

with td given by Eq.~36!.
In this derivation, the expression for the emission amp

tudesper seare not of any relevance—only its connectio
with the damping rateG is important. This connection is
based on the principle of energy conservation: the energ
the oscillator is damped at the rate at which energy is ra
ated. Since this argument also holds for the real 311 elec-
tromagnetic field, we may extend our results by replacing
3D result for G into Eq. ~36!. The dissipative dynamica
Casimir force on an oscillating~frequencyv0) perfectly re-
flecting sphere was obtained in Ref.@23#. Usually, the sphere
is very small when compared with the wavelength of t
relevant vacuum fluctuations, which are of the order
2p/v0. Whenv0R!1, the force on the sphere of radiusR is
given by

F5
2\R6

648p
x(9), ~49!

wherex(9) is the ninth time derivative of the position of th
sphere. Following again the method of Eq.~43!, we calculate
the damping rateG from the equation of motion. We find

G5
1

1296p

\v0
8R6

M
~50!

showing that the coupling with the vacuum field is reduc
as compared with the 1D case, by the~very small! factor
(v0R)6. This reduction factor accounts for the inefficie
coupling of the small particle, which scatters field modes
very long wavelengths. Using Eq.~36!, we find that the de-
coherence time increases by the same factor:

td5
324

v2

1

~v0R!6

2p

v0
, ~51!

hence decoherence through radiation pressure is a tiny e
at T50. At finite temperatures, however, the effect may
significant, as discussed in the next section.

VI. HIGH-TEMPERATURE LIMIT

In this section, we compute the damping and decohere
rates whenT@\v0. In this limit, vacuum fluctuations are
negligible when compared with thermal fluctuations, and
dominant contribution in Eq.~20! comes fromjT, which is
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given by Eq.~23!. When the temperature is also higher th
the cutoff energy\V, all relevant frequencies in Eq.~23!,
which are smaller or of the order ofV, are much smaller
than T/\. Then, we may take the approximationnv8
'T/(\v8), yielding

jT@v0#52
\VT

v0
. ~52!

Replacing Eq.~52! into Eq. ~26! yields

G5
VT

2M
, ~53!

in agreement with the result for the viscous radiation pr
sure force obtained in Ref.@26#: F52VTq̇(t).

From a practical point-of-view, the opposite limit,\v0
!T!\V is more interesting for particles that scatter visib
light (V;1016 Hz). In this case, the corresponding refle
tivity amplitudeR(v) is approximately constant for the fiel
modes whose frequencies are smaller or of the order ofT/\.
As a consequence, we may neglect the Lorentzian fallof
Eq. ~23!. Moreover, we replace the thermal photon numb
nv82v0

in Eq. ~24! by

nv82v0
'@exp~\v8/T!~12\v0 /T!21#21. ~54!

Neglecting second- and higher-order terms in\v0 /T, we
find

G~v0 ,v8!5
v8e\v8/T

~e\v8/T21!2

\v0

T
. ~55!

From Eqs.~23! and ~55! we find

jT@v0#5
4p

3

T2

v0
, ~56!

and then

G5
p

3

T2

M\
, ~57!

which is also in agreement with Ref.@26#. It corresponds to
the high-temperature, perfectly reflecting limit. HereT plays
the role of frequency cutoff instead ofV, so that the result-
ing damping rate is independent of the latter.

The dissipative force in the high-temperature limit may
interpreted as the effect of Doppler shift of the reflected th
mal photons@26#. For a photon of frequencyv, the fre-
quency shift isDv562vq̇, the plus and minus signs apply
ing for counter and co-propagating cases. Hence the mo
gives rise to an unbalance between the radiation pres
exerted on each side of the mirror, corresponding to a m
mentum transferDP52DE q̇, whereDE is the reflected en-
ergy during a time intervalDt. In terms of the density of
modesg(v), we have
3-8
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DE5E
0

`

dvuR~v!u2g~v!nv\v, ~58!

where uR(v)u2 represents the mirror reflectivity@the reflec-
tion amplitudeR is given by Eq.~4!#. FromDE, the friction
force is obtained through

F522
DE

Dt
q̇. ~59!

In the 1D case, the density of modes is frequency in
pendent:g(v)dv5(L/p)dv, whereL5Dt is the length of
the quantization box. When replaced into Eq.~58!, this result
leads, with the help of Eq.~59!, to expressions for the forc
in agreement with our results forG, except for a factor of 2
when\v0!T!\V @29#. In the 3D case, on the other han
we have

g~v!dv5
V

p2
v2 dv, ~60!

whereV5ADt is the quantization volume,A being the sur-
face of the mirror~in this case, for simplicity, we assume
flat rather than spherical mirror!. In the limit \v0!T!\V,
Eqs.~58! and ~60! yield

DE

Dt
5

\A

p2E
0

`

dv
v3

exp~\v/T!21
5

p2

15

AT4

\3 . ~61!

As expected, the reflected power features theT4 dependence
of the Stefan-Boltzmann law, since it is proportional to t
total blackbody radiation energy in this limit. The frictio
force is found by replacing Eq.~61! into Eq. ~59!. The re-
sulting damping coefficient is given by

G5
p2

15

A

\3

T4

M
. ~62!

Since we have neglected diffraction at the borders of
mirror, this result only applies when the mirror is muc
larger than the thermal photon wavelengthl th52p\/T.

The decoherence time is then found by replacing Eq.~62!
into Eq. ~37!, which connects damping and decoherence
the high-temperature limit~we reintroduce the speed of ligh
c in order to allow an evaluation of the orders of magnitud!:

td5
15

32p7

l th
5

cADQ2
. ~63!

As a numerical example, we takeT550 K, which gives
l th52.931024 m, andA51 mm2. In this case, diffraction
is negligible, and Eq. ~63! yields td@s#51.0310224/
(DQ2@m2#), showing that decoherence is very fast ev
when the distance between the wave packets is, for insta
in the nanometer range—in this case the decoherence tim
of the order of a microsecond. Sincetd scales as 1/T5, it is
still shorter, by a factor'83103, at room temperature
Note, however, that Eq.~63! only applies whenv0td@1, the
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basic assumption that allowed us to relate decoherence
damping time scales with the help of the fluctuatio
dissipation theorem@30#.

VII. CONCLUSIONS

As in the Caldeira-Legget model@20#, coherent states ar
the most robust when the radiation pressure coupling w
the quantum field is considered. This is amazingly in li
with their well-known status of ‘‘quasiclassical’’ states, i.e
the closest possible representation of a classical oscillatio
a harmonic potential well. Superpositions of coherent sta
decay into a mixture at a rate proportional to the damp
rate and to the squared distance in phase space. The
between decoherence and damping rates is a simple hy
bolic increasing function of temperature, which interpola
the zero and high-temperature limits. It originates from t
general relation between symmetric and antisymmetric c
relation functions, associated to the fluctuation-dissipat
theorem. Thus, the particular nature of the model for
coupling with the reservoir seems to be immaterial, as fa
the connection between damping and decoherence is
cerned. Note, however, that the validity of this result is lim
ited by the assumption that decoherence is slow compare
the free oscillations.

We have shown that the radiation pressure exerted
thermal photons is a very efficient source of decoheren
although the corresponding energy damping effect, ass
ated to the Doppler frequency shift of the reflected photo
is usually negligible. AtT50, the energy damping is asso
ciated to the emission of photon pairs~dynamical Casimir
effect!. The dominant contribution comes from vacuum flu
tuations corresponding to wavelengths of the order
2pc/v0, which is usually much greater than the size of t
oscillator. As a consequence, the radiation pressure coup
is inefficient, and both damping and decoherence rates
come very small. It is however remarkable, from a theore
cal point of view, that the mere inclusion of an unavoidab
intrinsically quantum effect, is sufficient~in principle! to en-
gender decoherence, and by that means restoring, althou
a very long-time scale, the classical world.
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APPENDIX: ENTANGLEMENT
WITH TWO-PHOTON STATES

In this Appendix, we present an alternative, simpler de
vation of the decoherence time scale atT50, which shows
more clearly how the dynamical Casimir effect modifies t
quantum phase of a superposition state and engenders d
herence. Instead of tracing over the field, we follow its ev
lution during many periods of free oscillation. We first tak
at t50, the mirror-plus-field stateua& ^ u0& (u0& represents
3-9
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the vacuum field state!, whereua& is a coherent state of larg
amplitude:uau@1. We takea5 i q̇(0)AM /2\v0, so thatua&
is a ‘‘semiclassical’’ state associated to a minimum unc
tainty wave packet whose initial velocity isq̇(0). We have
shown in Sec. IV that the action of the vacuum radiati
pressure on the motion of the mirror is a very small pert
bation ~weak-coupling limit!. Thus the time evolution may
be computed from a simple semiclassical model, in wh
the field evolution is obtained assuming the classicalpre-
scribedmotion

q̇~ t !5q̇~0!cos~v0t !, ~A1!

whereq(t) is the position of the mirror at timet. The dy-
namical Casimir effect is described by the interaction Ham
tonian@see Ref.@16#, and compare with the first term in Eq
~5!#

H int52q̇~ t !P. ~A2!

The amplitudeb(Dt) for the creation of photon pairs corre
sponding to frequenciesv1 andv2 at timeDt is given by

b~v1 ,v2 ;Dt !5
i

\
^v1 ,v2uPu0&E

0

Dt

dt8ei (v11v2)t8q̇~ t8!.

~A3!

According to Eq.~A3!, the amplitude depends on thesignof
q̇, which is very important to the discussion of decoheren

Replacing Eq.~A1! into ~A3!, we find for the two-photon
probabilities

ub~v1 ,v2 ;Dt !u2'
1

\2
u^0uPuv1 ,v2&u2q̇~0!2

3
sin2@~v11v22v0!Dt/2#

~v11v22v0!2
. ~A4!

For v0Dt@1, the right-hand side of Eq.~A4! is sharply
peaked aroundv11v25v0. Thus, for large times energy i
well defined, in agreement with the time-energy uncertai
relation. In this limit, Eq.~A4! yields

ub~v1 ,v2 ;Dt !u2'
p

2\2
u^0uPuv1 ,v2&u2q̇~0!2Dt

3d~v11v22v0!. ~A5!
d,

et

e,
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Since the source of the radiated energy is the motion of m
ror, one may expect that the two-photon probabilities
related to the amplitude decay rateG. The radiated energy
during Dt is

DE5 1
2 E

0

`

dv1E
0

`

dv2ub~v1 ,v2 ;Dt !u2\~v11v2!,

~A6!

which according to Eq.~A5! is proportional to the time in-
terval Dt. The energy of the mirror decays asdEM /dt5

22GEM , whereEM5Mq̇(0)2/2. Hence, from energy con
servation we have

G5
1

Mq̇~0!2

DE

Dt
,

leading, with the help of Eqs.~A5! and ~A6!, to the repre-
sentation given by Eq.~40!.

To analyze the effect of decoherence, we take the field
be initially in the ‘‘even’’ superposition stateuc&e5(ua&
1u2a&)/A2, so that the mirror-plus-field state att50 is

uC&05uc&e^ u0&.

By linearity, its time evolution is obtained from the two
photon amplitudes given by Eq.~A3!:

uC&Dt5~ ua& ^ uf1&Dt1u2a& ^ uf2&Dt)/A2, ~A7!

where

uf6&Dt5B~Dt !u0&

6 1
2 E

0

`

dv1E
0

`

dv2 b~v1 ,v2 ;Dt !uv1 ,v2&.

~A8!

The already noted sensitivity of the two-photon amplitud
to the phase of the motion of the mirror, which is explic
through the ‘‘minus’’ sign foruf2& in Eq. ~A8!, generates
entanglement between mirror and field. This is discusse
Sec. V, whose starting point is Eq.~45!, which is derived by
replacing Eq.~A8! into Eq. ~A7!.
.
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