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Low-energy collective excitations in a superfluid trapped Fermi gas

M. A. Baranov and D. S. Petrov
Russian Research Center Kurchatov Institute, Kurchatov Square 1, 123182 Moscow, Russia

and FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
~Received 14 June 2000; published 19 September 2000!

We study low-energy collective excitations in a trapped superfluid Fermi gas. These excitations originate
from slow variations of the phase of the superfluid order parameter and, in this sense, are similar to the
Bogolyubov sound in a homogeneous superfluid Fermi gas. Well below the critical temperature the eigenfre-
quencies of the lowest collective excitations are of the order of the trap frequency, and these modes manifest
themselves in the density oscillations under periodic modulations of the trap frequencies. This gives a clear
signature of the presence of a superfluid phase.

PACS number~s!: 03.75.Fi, 05.30.Fk
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The search for novel quantum phenomena in trapped
tracold gases has attracted a lot of attention since the dis
ery of Bose-Einstein condensation in trapped clouds
bosonic alkali-metal atoms@1–3#. The studies of trapped
Bose-condensed gases have revealed a number of phe
ena originating from the interparticle interaction and qua
tum statistics, such as collective oscillations, Bose enha
ment of kinetic processes, etc.~see Ref.@4# for a review!.
Theoretical work on degenerate~nonsuperfluid! Fermi gases
was mostly related to the influence of the Pauli exclus
principle on their optical@5–7# and collisional properties
@8,9# and to the issue of collective oscillations@10,11#. The
recent success@12,13# in cooling the trapped fermionic
sample of40K below the temperature of quantum degenera
TF ~Fermi energy«F) is stimulating interest in identifying
and studying a superfluid phase transition in trapped Fe
gases. Possible versions of this transition originating fr
atomic Cooper pairing have been discussed in Refs.@14–17#,
and the shape of the order parameter in trapped gases
been analyzed in Refs.@18–20#. Although the transition tem-
peratureTc!«F and the pairing strongly influence only
small fraction (;Tc /«F!1) of quantum states in the vicin
ity of «F , the presence of the superfluid order parame
governs the response of the entire system to small exte
perturbations. As has been found in Ref.@19# and confirmed
by numerical calculations@21#, the superfluid pairing in a
harmonically trapped gas smears out the resonance in
density oscillations induced by periodic modulations of t
trap frequencies.~See also Refs.@22,23# for the discussion of
other possible ways of detecting the BCS pairing.!

In this paper we study low-energy collective excitations
a superfluid Fermi gas trapped in an isotropic harmonic
tential. These excitations are related to the phase fluctuat
of the order parameterD(r ) and, at intermediate tempera
turesT,Tc , are overdamped. However, well below the tra
sition temperature the damping rate is small, and one
well-defined eigenmodes. The lowest eigenfrequencies a
the order of the trap frequency, and are quite different fr
the eigenfrequencies of the gas aboveTc . The collective
excitations manifest themselves in the density oscillations
the gas under periodic modulations of the trap frequenc
The dependence of the oscillation amplitude on the mod
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tion frequency has resonances at frequencies of collec
oscillations. The observation of this resonance structu
which is different from the one in a nonsuperfluid gas, w
give a clear indication of the presence of a superfluid pha

The properties of collective modes in the superfluid ph
depend on the structure of the order parameter and, henc
the type of pairing. For a singlets-wave pairing the order
parameter is a complex function, and there are two branc
of collective excitations. One of them corresponds to
phase fluctuations of the order parameter, and the o
branch to the fluctuations of the modulus. For a trip
p-wave pairing the order parameter is a complex 333 ma-
trix, and, hence, there will be additional branches of colle
tive modes~see, e.g., Ref.@24#!. However, in both cases th
lowest branch is related to the fluctuations of the phase of
order parameter~Bogolyubov sound in the homogeneou
case!. We will study this mode for a trapped superfluid Ferm
gas, considering for simplicity the case of the ‘‘single
s-wave pairing. This implies the presence of two hyperfi
components and attractive interaction between them. P
sible experimental realizations include the gas of6Li atoms
in a magnetic trap, where the interatomic interaction is ch
acterized by a large and negative triplets-wave scattering
lengtha'21140Å @25#, and also40K @26#.

The Hamiltonian of a two-component gas of fermion
atoms~labeled asa andb) trapped in an isotropic harmoni
potential reads (\51)

H5 (
i 5a,b

E drc i
†~r !H0c i~r !

1VE drca
†~r !ca~r !cb

†~r !cb~r !. ~1!

Herec i(r ) are the field operators of thea andb components
that are assumed to have equal concentrations,H05
2¹2/2m1mV2r 2/22m, V is the trap frequency,m the
atom mass, andm the chemical potential. The second term
Eq. ~1! corresponds to attractive short-range interaction
tween thea and b atoms (s-wave scattering lengtha,0),
with the coupling constantV54pa/m. In the Hamiltonian
~1! we neglect theaa andbb interactions originating in the
©2000 The American Physical Society01-1
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case of fermions only from the scattering with orbital angu
momental>1. The presence of attractive intercompone
interaction in thes-wave scattering channel leads to a sup
fluid phase transition, and the critical temperatureTc!m
@14#. We assume thatTc is much larger thanV and, hence,
the value of the critical temperature in the trap is very clo
@18# to the critical temperatureTc

(0) of the spatially homoge-
neous gas with density equal to the maximum densityn0 of
the trapped gas@27#:

Tc
(0)50.28«F exp$21/l%,

wherel52uaupF /p!1 is a small parameter of the theor
pF5(3p2n0)1/3 is the Fermi momentum, and«F5pF

2/2m
'm is the Fermi energy.

The superfluid phase is characterized by the equilibri
order parameterD0(r )5uVu^ca(r )cb(r )& that can be con-
sidered as a real function. For a trapped gas, the spatial
of D(r ) was studied analytically in Ref.@19# and numerically
in Ref. @20#. The appearance ofD(r ) strongly influences
only the quantum states with energies in the interval of or
Tc near«F . As a result, the Thomas-Fermi density profile
the gas n(r )5n0(12(r /RTF)2)3/2 changes only slightly
(RTF5pF /mV is the Thomas-Fermi radius of the ga
cloud!. The interparticle interaction leads to corrections
this formula. However, the leading corrections originati
from the mean-field interparticle interaction@28# are propor-
tional to the small parameterl and, hence, will be neglecte
below.

For a superfluid gas, the evolution of small deviation fro
equilibrium can be studied by using the time-depend
Bogolyubov–de Gennes equations for theu,v functions:

i
]

]t S un~r ,t !

vn~r ,t ! D 5H0S un~r ,t !

2vn~r ,t ! D 2D~r ,t !S vn~r ,t !

un~r ,t ! D , ~2!

together with the self-consistency condition

D~r ,t !5uVu(
n

un~r ,t !vn* ~r ,t !tanh«n/2T. ~3!

For t→2` the time-dependent order parameterD(r ,t)
→D0(r ) and „un(r ,t),vn(r ,t)…→„un(r ),vn(r )…exp(2i«nt),
where un(r ),vn(r ) are theu,v functions of single-particle
excitations with eigenenergies«n>0 @solutions of the sta-
tionary Bogolyubov–de Gennes equations withD5D0(r )#.

Low-energy collective excitations correspond to sm
fluctuations of the phase of the order parameter. In this c
one hasD(r ,t)5D0(r )exp@2iw(r ,t)#'D0(r )@112iw(r ,t)#,
wherew(r ,t)!1 is a real function slowly varying in spac
and time. Equations~2! can be solved perturbatively, an
after substituting these solutions into Eq.~3! one gets the
following equation for the Fourier transformwv(r )
5*dtw(r ,t)exp(ivt) of the phase fluctuations:
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D0~r !wv~r !5uVu(
n,n1

H un1
~r !vn* ~r !

v2«n1
1«n1 i0

M n1n
(1) ~v!F tanh

«n1

2T

2tanh
«n

2T
G1F un1

~r !un~r !

v2«n1
2«n1 i0

M n1n
(2)* ~2v!

2
vn1

* ~r !vn* ~r !

v1«n1
1«n1 i0

M n1n
(2) ~v!G tanh

«n

2TJ , ~4!

where M n1n
(2) (v)5* rD0wv(un1

un1vn1
vn) and M n1n

(1) (v)

5* rD0wv(un1
* vn2vn1

* un)52M nn1

(1)* (2v).

The analysis of this equation at arbitrary temperature
low Tc is rather lengthy. Therefore, we discuss here only t
limiting cases: (Tc2T)/Tc!1 andT!Tc .

For (Tc2T)/Tc!1 the order parameter is small:D0(r )
!Tc . As a result, one can substitute forun , vn , and«n their
values in the normal phase:un5fn , vn50 for jn5«n.0,
andun50, vn5fn* for jn52«n,0, wherefn and jn are
the eigenfunctions and eigenvalues of the HamiltonianH0 :
H0fn5jnfn . Then, Eq.~4! can be rewritten in the form

D0~r !wv~r !2
uVu
2 (

n1 ,n2

tanhjn1
/2T1tanhjn2

/2T

jn1
1jn2

3fn1
~r !fn2

~r !E
r8

D0wvfn1
* fn2

*

5
uVu
2 (

n1 ,n2

2v~ tanhjn1
/2T1tanhjn2

/2T!

~jn1
1jn2

!~v1jn1
1jn2

1 i0!

3fn1
~r !fn2

~r !E
r8

D0wvfn1
* fn2

* , ~5!

where the left-hand side coincides with the~time-
independent! Ginzburg-Landau equation~see Ref.@18#! for
D0w. The presence of the small frequencyv in the right-
hand side of Eq.~5! allows us to write* r8D0wvfn1

* fn2
* as

D0(r )wv(r )dn1n2
. Then the sum overn5n15n2 can be re-

placed by the integral overj, where the main contribution
comes from smallj ~from the states near the Fermi energy!.
Accordingly, Eq.~5! transforms to

2
7z~3!

6p3

V2

Tc
S 1

A12R2
¹R@~12R2!3/2¹Rw~R!#

12~12R2!¹R ln D0¹Rw~R!D 5 ivw~R!, ~6!

where R5r /RTF and z(z) is the Riemann zeta function
Equation~6! shows that atT'Tc the eigenfrequenciesv are
purely imaginary. This means that collective modes rapi
decay into pairs of single-particle excitations.
1-2
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For T!Tc , one can neglect the contribution of the the
mal component in Eq.~4! and put tanh«n/2T'1. Taking into
account various relations betweenun andvn , which follow
from the time-independent Bogolyubov–de Gennes eq
tions and from unitarity of the Bogolyubov transformatio
Eq. ~4! can be reduced to the form

2
V2

3

1

A12R2
¹R@~12R2!3/2¹Rw#5v2w. ~7!

In Eq. ~7! we only keep leading terms in the gradient a
frequency expansions. This equation gives real frequen
of collective modes, which are of the order of the trap f
quency V. Being excited atT!Tc , the collective modes
result in oscillations of the ~superfluid! current j
5( i /m)(n(vn* ¹vn2vn¹vn* )5(n/m)¹w and density n
52(nuvnu25n01dn, which are related to each other by th
continuity equation ]dn/]t1div j50 following directly
from Eqs. ~2! and ~3!. As a result, the entire gas samp
oscillates:

n~r ,t !5n0~r !1dn~r ,t !'F11
1

m
¹2f Gn0S r1

1

m
¹ f D ,

where f (r ,t)5* tw(r ,t8)dt8.
The damping of the collective modes is not present in

~7!. This damping is mostly provided by inelastic scatteri
of low-energy in-gap single-particle excitations~see Ref.
@19#! from a given collective mode or by the decay of t
collective mode into two in-gap single-particle excitatio
@29#. In these processes the energy of the collective mod
transfered to the normal component in the outer part of
gas sample. As the wave function of in-gap single-parti
excitations decays exponentially in the central part of
sample@19#, where the order parameter is essentially no
zero, the coupling between the fluctuations of the order
rameter and the in-gap excitations is exponentially we
@;exp(2Tc /V)#. Therefore, one expects a very small dam
ing rate.

Equation~7! can also be obtained in the hydrodynam
approach for a superfluid Fermi gas. If the superfluid vel
ity vs5m21¹w and the deviationdn of the particle density
from its equilibrium valuen0(r ) are small, the correspondin
Hamiltonian has the form

Hh5E dr H 1

2
mnvs

21U~n!J
'E dr H 1

2m
n0~¹w!21

1

2
U9~n0!dn21U~n0!J , ~8!

whereU(n) is the density-dependent part of the energy. T
equilibrium densityn0 is defined by the conditionU8(n0)
50. In the Thomas-Fermi approximation we have

U~n!5
3

10
~3p2!2/3

n5/3

m
1S mV2r 2

2
2m Dn, ~9!
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where the first term results from the filled Fermi sphere, a
the equilibrium density profile isn0(r )5(pF

3/3p2)@1
2(r /RTF)2#3/2. In Eq. ~9! we omit the effects of the mean
field interaction and superfluid pairing because they are p
portional to small parametersl and (Tc /«F)2, respectively.
For the quantityU9(n0) in Eq. ~8! one now hasU9(n0)
5(3p2)22/3N(r )21, with N(r )5(mpF /p2)A12(r /RTF)2

being the density of states on the local Fermi surface. T
the standard commutation relation@dn(r1),w(r2)#5 id(r1
2r2) leads to

]w/]t5 i @Hh ,w#5U9~n0!dn,

]~dn!/]t5 i @Hh ,dn#52¹~n0¹w!.

This immediately gives Eq.~7! for the phasew and

]2

]t2
dn1

V2

3
¹RF ~12R2!3/2¹R

dn

A12R2G50 ~10!

for the density fluctuations.
Equation~7! @or ~10!#, together with the condition thatw

~or dn) is finite at anyR, provides us with the energy spec
trum of collective modes:

~vnl /V!25 l 1 4
3 n~n1 l 12!, n50,1,2, . . . ~11!

and the corresponding eigenfunctions

wnl~R!}Rl
2F 1~2n,n1 l 12; 3

2 1 l ;R2!Ylm~u,f!, ~12!

where 2F1 is the hypergeometric function,l is the angular
momentum of the collective mode, andn is an integer (n
50,1,2, . . . for nonzerol, and n51,2, . . . for l 50). The
eigenfunctions ~12! are orthogonal with the weigh
1/A12R2.

The spectrum~11! coincides with that of a trapped norma
Fermi gas in the hydrodynamic regime@10#. However, for
realistic parameters, the trapped gas just aboveTc is likely to
be in the collisionless regime. The corresponding criter
assumes that the oscillation period in the trap, 2p/V, is
much smaller than the characteristic collisional frequency
the degenerate Fermi gas. This frequency is given byt21

;na2vF(Tc /«F)2;l2Tc
2/«F , wherena2vF is the classical

collisional frequency and the factor (Tc /«F)2 results from
the Pauli blocking. As a result, the collisionless criteri
readsVt;l22(V/Tc)exp(1/l)@1.

We now compare the eigenfrequencies of the collisionl
normal gas just aboveTc with the eigenfrequencies of th
superfluid gas atT!Tc . Of particular interest are the lowes
eigenmodes, as they can be excited by modulating the
frequencies@a small external perturbationVextexp(2ivt) re-
sults in an extra term2 ivVextexp(2ivt) in the right-hand
side of Eq.~7!#. For the superfluid phase, as follows from E
~11!, the lowest eigenfrequencyv10 for the monopole breath
ing mode (l 50,n51) is equal to 2V ~this result can be
obtained on the basis of the sum rules@30#!, and one has the
anticipated resultv015V for the dipole mode (l 51,n50).
These eigenfrequencies coincide with those calculated
1-3
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the collisionless normal Fermi gas in Ref.@11#. On the other
hand, for the lowest quadrupole mode Eq.~11! gives v02

5A2V, whereas in the collisionless regime~at T.Tc) this
mode has frequency 2V @11#. Experimentally, the quadru
pole mode can be excited by a small out-of-phase mod
tion of the trap frequency in, for example, thex andy direc-
tions: Vext(r ,t)5(mV2/2)(x22y2)z cos(vt) with z!1. The
response of the gas sample will be characterized by the p
ence of resonances in the amplitude of the density osc
tions. ForT.Tc the resonance will be at frequency 2V, and
for T!Tc at frequencyA2V.

In conclusion, we have found the low-energy collecti
modes of the superfluid trapped Fermi gas. These mode
related to the fluctuations of the phase of the superfluid o
parameter, and, hence, describe the motion of the super
an

ys

n,

v.

s

.S

et,
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component. Just below the critical temperature of the sup
fluid phase transition the eigenenergies of the collect
modes are purely imaginary, and these modes describe a
fusive relaxation of superfluid fluctuations. For temperatu
well belowTc , the eigenenergies are of the order of the tr
frequency, and the damping is small. Therefore, these mo
can manifest themselves as eigenmodes of the density o
lations. The oscillations can be observed experimentally
serve as an indication of the superfluid phase transition.
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