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Low-energy collective excitations in a superfluid trapped Fermi gas
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We study low-energy collective excitations in a trapped superfluid Fermi gas. These excitations originate
from slow variations of the phase of the superfluid order parameter and, in this sense, are similar to the
Bogolyubov sound in a homogeneous superfluid Fermi gas. Well below the critical temperature the eigenfre-
guencies of the lowest collective excitations are of the order of the trap frequency, and these modes manifest
themselves in the density oscillations under periodic modulations of the trap frequencies. This gives a clear
signature of the presence of a superfluid phase.

PACS numbd(s): 03.75.Fi, 05.30.Fk

The search for novel quantum phenomena in trapped ultion frequency has resonances at frequencies of collective
tracold gases has attracted a lot of attention since the discoescillations. The observation of this resonance structure,
ery of Bose-Einstein condensation in trapped clouds ofvhich is different from the one in a nonsuperfluid gas, will
bosonic alkali-metal atom$l—3]. The studies of trapped give a clear indication of the presence of a superfluid phase.
Bose-condensed gases have revealed a number of phenom-The properties of collective modes in the superfluid phase
ena originating from the interparticle interaction and quan-depend on the structure of the order parameter and, hence, on
tum statistics, such as collective oscillations, Bose enhancéhe type of pairing. For a singletwave pairing the order
ment of kinetic processes, etsee Ref[4] for a review. parameter is a complex function, and there are two branches
Theoretical work on degenerateonsuperfluigl Fermi gases of collective excitations. One of them corresponds to the
was mostly related to the influence of the Pauli exclusiorphase fluctuations of the order parameter, and the other
principle on their optical[5—7] and collisional properties branch to the fluctuations of the modulus. For a triplet
[8,9] and to the issue of collective oscillations0,11]. The  p-wave pairing the order parameter is a complex®3 ma-
recent succes$12,13 in cooling the trapped fermionic trix, and, hence, there will be additional branches of collec-
sample of*°%K below the temperature of quantum degeneracytive modes(see, e.g., Ref24]). However, in both cases the
Te (Fermi energysg) is stimulating interest in identifying lowest branch is related to the fluctuations of the phase of the
and studying a superfluid phase transition in trapped Fernrder parameteBogolyubov sound in the homogeneous
gases. Possible versions of this transition originating frontase. We will study this mode for a trapped superfluid Fermi
atomic Cooper pairing have been discussed in Réfs-17,  9as, considering for simplicity the case of the “singlet”
and the shape of the order parameter in trapped gases hawave pairing. This implies the presence of two hyperfine
been analyzed in Refg18—20. Although the transition tem- components and attractive interaction between them. Pos-
peratureT.<er and the pairing strongly influence only a sible experimental realizations include the gas’bf atoms
small fraction (~T./e<1) of quantum states in the vicin- in @ magnetic trap, where the interatomic interaction is char-
ity of &g, the presence of the superfluid order parametefcterized by a large and negative tripketvave scattering
governs the response of the entire system to small externigngtha~ —1140A [25], and also*K [26].
perturbations. As has been found in Réf9] and confirmed The Hamiltonian of a two-component gas of fermionic
by numerical calculation§21], the superfluid pairing in a atoms(labeled asy and ) trapped in an isotropic harmonic
harmonically trapped gas smears out the resonance in thotential reads#=1)
density oscillations induced by periodic modulations of the
trap frequencieqdSee also Ref§22,23 for the discussion of
other possible ways of detecting the BCS pairing.

In this paper we study low-energy collective excitations in
a superfluid Fermi gas trapped in an isotropic harmonic po-
tential. These excitations are related to the phase fluctuations
of the order parametek(r) and, at intermediate tempera-
turesT<T,, are overdamped. However, well below the tran-Here;(r) are the field operators of theand 8 components
sition temperature the damping rate is small, and one hahat are assumed to have equal concentratidig=
well-defined eigenmodes. The lowest eigenfrequencies are of VZ12m+mQ?r?/2—u, Q is the trap frequencym the
the order of the trap frequency, and are quite different fromatom mass, angt the chemical potential. The second term in
the eigenfrequencies of the gas abdlvg The collective EQg. (1) corresponds to attractive short-range interaction be-
excitations manifest themselves in the density oscillations ofween thea and 8 atoms §-wave scattering length<0),
the gas under periodic modulations of the trap frequenciesvith the coupling constan?=4ma/m. In the Hamiltonian
The dependence of the oscillation amplitude on the modulafl) we neglect thexa and 88 interactions originating in the

H= 2 | druf(DHoi(r)

+VJ dr gl (DD LT Pa(r). &)
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case of fermions only from the scattering with orbital angular u, (Nv*(r) e,

momental=1. The presence of attractive intercomponent A (r)e,(r)=|V|>, |1—_|\/|(Vl)v(w) tanh=——

interaction in thes-wave scattering channel leads to a super- oy @€y, te, FI0 2T

fluid phase transition, and the critical temperatdre<u

[14]. We assume thal,, is much larger tha) and, hence, T Uy, (Nu,(1) M@ (— o)

the value of the critical temperature in the trap is very close 2T |w—eg, —g,+i0 71"

[18] to the critical temperatur@éo) of the spatially homoge- ’

neous gas with density equal to the maximum densityf vy, (N3(r) @ (o) hi] “

the trapped gak27]: - g\ (0)|tan (4
pped gaR27] wte, te,+i0 " 2T

0)— —
Te =028 e~ 1AL where MZ)(w) = Aog,(Uy, U, v,,0,) and M (o)

= Aopu (U v, — vk u) = —ME* (- w).

here\=2|a|pg/m<1 is a small parameter of the theory o L Lt -
w N ; ) ' The analysis of this equation at arbitrary temperature be-
pF:_(37T No) IS the Fermi momentum, and:=pg/2m |0 T_ s rather lengthy. Therefore, we discuss here only two

~ w is the Fermi energy. _ _limiting cases: To—T)/T,<1 andT<T,.

The superfluid phase is characterized by the equilibrium gqf (T.—T)/T.<1 the order parameter is smalky(r)
order parametefo(r)=|V|(#,(r)#(r)) that can be con-  <T_. As a result, one can substitute foy, v,,, ands, their
sidered as a real function. For a trapped gas, the spatial forgy i es in the normal phase,=¢,, v,=0 for £&,=¢,>0,
of A(r) was studied analytically in Reff19] and numerically gy =0 » = &* for £,=—¢,<0, whereg, and ¢, are
in Ref. [20]. The appearance ok (r) strongly influences he gigenfunctions and eigenvalues of the Hamiltortign
only the quantum states with energies in the interval of orde|’_|0¢ =¢,6,. Then, Eq(4) can be rewritten in the form
T. nearsg. As a result, the Thomas-Fermi density profile of voerry '

the gasn(r)=ny(1—(r/Rrr)?)%? changes only slightly

(Rie=pe/mQ is the Thomas-Fermi radius of the gas V| tanh¢, /2T +tanhg, /2T
cloud). The interparticle interaction leads to corrections in Ao(Neu(r)——-

. . . . . . 2 V11V2 gV +§V
this formula. However, the leading corrections originating ! 2
from the mean-field interparticle interactip28] are propor- .
tional to the small parameter and, hence, will be neglected X ¢Vl(f)¢>pz(f)fr,Ao%fﬁyl%z
below.

For a superfluid gas, the evolution of small deviation from V| - w(tanh§V1/2T+tanh§V2/2T)
equilibrium can be studied by using the time-dependent = :
Bogolyubov—de Gennes equations for the functions: 2 i (§V1+§”2)(w+§”1+§”2+'0)

X b, (1), (1) fr,Aom:lqs:Z, ®)

_a(uy(r,t)>_ ( u,(r,t) ) (vv(r,t)>
"3t v, (r,) =Ho —v,(r,1) —ary u,(r,t))’ @

where the left-hand side coincides with thé&ime-

) . N independentGinzburg-Landau equatiofsee Ref[18]) for

together with the self-consistency condition Age. The presence of the small frequeneyin the right-
hand side of Eq(5) allows us to writefr/Aogow¢’V‘l¢’;2 as

Ao(f)ﬁDw(f)5VlV2- Then the sum over=v,=v, can be re-

placed by the integral ovef, where the main contribution
comes from smalE (from the states near the Fermi energy
Accordingly, Eq.(5) transforms to

A(r,t)=|V|X u,(r,t)v*(r,t)tanhe /2T. 3

For t— —o the time-dependent order paramet&(r,t)
—Ao(r) and (u,(r,t),v,(r,1)—(u,(r),v,(r))exp(-is.f),
whereu,(r),v,(r) are theu,v functions of single-particle 13 Q_Z
excitations with eigenenergies,=0 [solutions of the sta- 673 T¢
tionary Bogolyubov—de Gennes equations witk Ay(r)].

Low-energy collective excitations correspond to small 5 )
fluctuations of the phase of the order parameter. In this case +2(1-R)VRINAVRe(R) | =iwe(R),  (6)
one hasA(r,t)=Aq(r)exd2ie(r,t)]=Aq(r)[1+2i¢(r,t)],
where ¢o(r,t)<<1 is a real function slowly varying in space
and time. Equation$2) can be solved perturbatively, and where R=r/R;g and {(z) is the Riemann zeta function.
after substituting these solutions into E®) one gets the Equation(6) shows that al ~ T the eigenfrequencies are
following equation for the Fourier transformp,,(r) purely imaginary. This means that collective modes rapidly
= [dte(r,t)exp(wt) of the phase fluctuations: decay into pairs of single-particle excitations.
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For T<T,, one can neglect the contribution of the ther- where the first term results from the filled Fermi sphere, and
mal component in Eq4) and put tanke,/2T~1. Taking into  the equilibrium density profile isng(r)=(p2/37?)[1
account various relations betweap andv,,, which follow  —(r/Rg)?]%2 In Eq. (9) we omit the effects of the mean-
from the time-independent Bogolyubov—de Gennes equadfield interaction and superfluid pairing because they are pro-
tions and from unitarity of the Bogolyubov transformation, portional to small parametebs and (T./eg)?, respectively.

Eq. (4) can be reduced to the form For the quantityU”(no) in Eq. (8) one now hasU”(n)
=(372) 7?AN(r) "1, with N(r)=(mpg/7?)V1—(r/Rg)?
02 1 232y 5 being the density of states on the local Fermi surface. Then
_?ﬁVR[(l_R )T Vrel= 0. () the standard commutation relatidgdn(r,),¢(r,)]=i48(r,
—r5,) leads to

In Eqg. (7) we only keep leading terms in the gradient and delat=i[Hy,e]=U"(ng)dn,
frequency expansions. This equation gives real frequencies

of collective modes, which are of the order of the trap fre- a(én)lat=i[Hy,on]=—V(nyVe).
quency (). Being excited afT<T., the collective modes

result in oscillations of the (superfluid current | This immediately gives Eq.7) for the phasep and
=(i/m)=,(v3Vv,—v,Vol)=(n/m)Ve and density n

=23 |v,|?=ngy+ &n, which are related to each other by the @ 0?2 o 3 on
continuity equation dén/dt+divj=0 following directly E‘SWF ?VR (1-R%™ Vg J1I-R? =0 (10
from Egs.(2) and (3). As a result, the entire gas sample
oscillates: for the density fluctuations.
L L Equation(7) [or (10)], together with the condition that
(0= an(r.0=| 1+ S| r Tvr], (o 0 is e at anyR provides us with the energy spec

Wheref(l’,t)=ftgo(r,t')dt’ (wn|/Q)2=|+%n(n+|+2), n:0,1,2 (11)
The damping of the collective modes is not present in Eq
(7). This damping is mostly provided by inelastic scattering
of low-energy in-gap single-particle excitatiorisee Ref.
[19]) from a given collective mode or by the decay of the

collective mode into two in-gap single-particle excitations . . L

[29]. In these processes the energy of the collective mode ivsn\qgizi ;ti ::’nlso;ht?]eh)(/:%?l;gce’[i(\)/r:er:lyc d;un;:;gg, I;nmiﬁtsngru?r
transfered to the normal component in the outer part of the:0 1.2 for nonzerol. andn—1 ’2 or :0)9 The
gas sample. As the wave function of in-gap single—particle(_:‘i én’fuﬁ(.:t.ions (12) are’ ortho or’lall. .v.vith the .wei ht
excitations decays exponentially in the central part of the g—z 9 9
sample[19], where the order parameter is essentially non-ll 1-R"
zero, the coupling between the fluctuations of the order pa-
rameter and the in-gap excitations is exponentially weak
[~exp(=T./Q)]. Therefore, one expects a very small damp-
ing rate.

Equation(7) can also be obtained in the hydrodynamic
approach for a superfluid Fermi gas. If the superfluid veloc X i L
ity ve=m~ !V and the deviatiorsn of the particle density the dzegeneratezFerngas. This frequJenc_:y " g'Ve”’W
from its equilibrium valuen,(r) are small, the corresponding ~ N& Vr(Tc/er)*~A"Tcler, wherena’ve 'S the classical
Hamiltonian has the form collisional frequency and the factof {/eg)“ results from

the Pauli blocking. As a result, the collisionless criterion
1 readsQ 7~\"2(Q/T)exp(1A)>1.
Hy= f dr{imnvng U(n)] We now compare the eigenfrequencies of the collisionless

normal gas just abové&. with the eigenfrequencies of the

and the corresponding eigenfunctions

en(R)xR 5F 1(—=nn+1+2:3+ 1R Y |n(6,4), (12

The spectrunill) coincides with that of a trapped normal
ermi gas in the hydrodynamic regini#0]. However, for
realistic parameters, the trapped gas just aliqvis likely to
be in the collisionless regime. The corresponding criterion
assumes that the oscillation period in the traps/Q, is
‘much smaller than the characteristic collisional frequency in

1 1 superfluid gas at <T.. Of particular interest are the lowest
~j dr[ﬁno(qu)er EU”(n0)5n2+U(n0)], (8)  eigenmodes, as they can be excited by modulating the trap
frequenciega small external perturbatiov,,;exp(—iwt) re-

. . sults in an extra term-iwVq,exp(—iwt) in the right-hand
whereU(n) is the density-dependent part of the energy. Theside of Eq.(7)]. For the superfluid phase, as follows from Eq.
equilibrium densityn, is defined by the conditio'(no)  (11), the lowest eigenfrequenay,, for the monopole breath-
=0. In the Thomas-Fermi approximation we have ing mode (=0,n=1) is equal to 2 (this result can be

obtained on the basis of the sum ru]&§]), and one has the
) anticipated resultwy;= ) for the dipole model(=1,n=0).
These eigenfrequencies coincide with those calculated for
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the collisionless normal Fermi gas in Rgf1]. On the other component. Just below the critical temperature of the super-
hand, for the lowest quadrupole mode Efl) gives wg,  fluid phase transition the eigenenergies of the collective
=./2Q), whereas in the collisionless regintet T>T,) this modes are purely imaginary, and these modes describe a dif-
mode has frequency(2 [11]. Experimentally, the quadru- fusive relaxation of superfluid fluctuations. For temperatures
pole mode can be excited by a small out-of-phase modulawell below T, the eigenenergies are of the order of the trap
tion of the trap frequency in, for example, tkendy direc-  frequency, and the damping is small. Therefore, these modes
tions: Vey(r ,t) = (mQ?/2) (x*~y?) { cost) with {<1. The  can manifest themselves as eigenmodes of the density oscil-
response of the gas sample will be characterized by the preggtions. The oscillations can be observed experimentally and
ence of resonances in the amplitude of the density oscillagerve as an indication of the superfluid phase transition.
tions. ForT>T, the resonance will be at frequency22and ) . ) )
for T<T, at frequencyy20. We acknowledge fruitful discussions with A. J. Leggett,
In conclusion, we have found the low-energy collectiveG- V. Shlyapnikov, and L. Vichi. This work was supported
modes of the superfluid trapped Fermi gas. These modes aky the Stichting voor Fundamenteel Onderzoek der Materie
related to the fluctuations of the phase of the superfluid ordefFOM), by INTAS (Grant No. 97.097R and by the Russian
parameter, and, hence, describe the motion of the superflufdoundation for Basic Studig&rant No. 00-02-16060

[1] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, Phys. Rev. Lett76, 10 (1996.

and E.A. Cornell, Scienc269, 198(1995. [15] M.A. Baranov, Yu. Kagan, and M.Yu. Kagan, Pis'ma Zh.
[2] C.C. Bradley, C.A. Sackett, J.J. Tolett, and R.G. Hulet, Phys.  Eksp. Teor. Fiz64, 273(1996 [JETP Lett.64, 301(1996)].
Rev. Lett.75, 1687(1995. [16] M. Houbiers, R. Ferwerda, H.T.C. Stoof, W.I. McAlexander,
[3] K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, C.A. Sackett, and R.G. Hulet, Phys. Rev.58, 4864(1997).
D.S. Durfee, D.M. Kurn, and W. Ketterle, Phys. Rev. L@g, ~ [17] L. You and M. Marinescu, Phys. Rev. 80, 2324(1999.
3969 (1995. [18] M.A. Baranov and D.S. Petrov, Phys. Rev58 R801(1998.
[4] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Rev. [19] M-A. Baranov, Pisma Zh. Eksp. Teor. Fiz0, 392 (1999
Mod. Phys.71, 463 (1999. [JETP Lett.70, 396 (1999]; e-print cond-mat/9801142.

[20] G.M. Bruun, Y. Castin, R. Dum, and K. Burnett, Eur. Phys. J.
D 7, 433(1999.

[21] G.M. Bruun and C.W. Clark, e-print cond-mat/9906392.

[22] F. Weig and W. Zwerger, Europhys. Le#t9, 282 (2000.

[23] F. Zambelli and S. Stringari, e-print cond-mat/0004325.

[5] Th. Busch, J.R. Anglin, J.I. Cirac, and P. Zoller, Europhys.
Lett. 44, 1 (1998.

[6] B. DeMarco and D.S. Jin, Phys. Rev.58, R4267(1998.

[7] J. Ruostekoski and J. Javanainen, Phys. Rev. Bgit4741

(1999. ) [24] D. Vollhardt and P. Wiile, The Superfluid Phases of Helium 3
[8] G. Ferraril, Phys. Rev. 59, R4125(1999. (Taylor&Francis, London, 1990
(9] B. DeMarco, J.L. Bohn, J.P. Burke, Jr., M. Holland, and D.S.125) g R.I. Abraham, W.I. McAlexander, J.M. Gerton, R.G. Hulet,
Jin, Phys. Rev. Leti82, 4208(1999. R. Ctté, and A. Dalgarno, Phys. Rev. B5, R3299(1997.
[10] G. Ferrari, G.M. Bruun, and C.W. Clark, Phys. Rev. L&8, [26] J.L. Bohn, e-print cond-mat/9911132.
5415(1999. [27] L.P. Gorkov and T.K. Melik-Barkhudarov, Zh.Kgp. Teor.
[11] L. Vichi and S. Stringari, Phys. Rev. 80, 4734(1999. Fiz. 40, 1452(1961) [Sov. Phys. JETR3, 1018(1961)].
[12] B. deMarco and D.S. Jin, Scien285, 1703(1999. [28] G.M. Bruun and K. Burnett, Phys. Rev. 38, 2427(1998.
[13] M.J. Holland, B. DeMarco, and D.S. Jin, Phys. Rev.6A [29] P.O. Fedichev, G.V. Shlyapnikov, and J.T.M. Walraven, Phys.
053610(2000. Rev. Lett.80, 2269(1998, and references therein.

[14] H.T.C. Stoof, M. Houbiers, C.A. Sackett, and R.G. Hulet, [30] A.J. Leggett(private communication

041601-4



