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Collective versus local measurements on two parallel or antiparallel spins

S. Massar
Service de Physique The´orique, Universite´ Libre de Bruxelles, Code Postal 225, Boulevard du Triomphe, B1050 Bruxelles, Belgiu

~Received 7 April 2000; published 19 September 2000!

We give a complete analysis of covariant measurements on two spins. We consider the cases of two parallel
and two antiparallel spins, and we consider both collective measurements on the two spins and measurements
that require only local quantum operations and classical communication~LOCC!. In all cases we obtain the
optimal measurements for arbitrary fidelities. In particular, we show that if the aim is to determine as accu-
rately as possible the direction in which the spins are pointing, it is best to carry out measurements on
antiparallel spins~as already shown by Gisin and Popescu!, second best to carry out measurements on parallel
spins, and worst to be restricted to LOCC measurements. If the aim is to determine as accurately as possible
a direction orthogonal to that in which the spins are pointing, it is best to carry out measurements on parallel
spins, whereas measurements on antiparallel spins and LOCC measurements are both less suitable but
equivalent.

PACS number~s!: 03.65.Bz, 03.67.2a
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One of the central problems of quantum measuremen
how to best estimate the state of an unknown quantum
tem. This problem has been addressed by many authors
ing many different approaches; see@1,2# for reviews.

In the present paper, we take a diferent look at a partic
example in which the task is to determine the direction
polarization of two identical spin-1/2 particles. We suppo
that the polarization direction is completely unknown, i.e.
uniformly distributed on the sphere. This problem, gene
ized to the case of an arbitrary numberN of spin-1/2 par-
ticles, has already been studied by several authors@2–5#. The
particular case of two spins has the advantage of being
ficiently simple that a complete solution can be obtain
Furthermore, it allows for several twists where particular fe
tures of quantum mechanics related to entanglement re
themselves.

The first twist on the original problem was suggested
Peres and Wootters@6#, who asked whether there is a diffe
ence between collective, as compared to local, measurem
on two particles. Technically, in the first case one allo
arbitrary quantum operations on both spins, whereas in
second case one restricts oneself to local quantum opera
on each particle and classical communication between
particles~LOCC!.

Peres and Wootters gave numerical evidence that sho
that even if two particles are in the same state, collec
measurements can be better than measurements
LOCC. An analytical proof was given in@3# in the case of
two identical spin-1/2 particles whose polarization directi
is uniformly distributed on the sphere, at least in the c
where there are only a finite number of rounds of commu
cation between the two parties. A remarkable example
exhibited in @7# that consists of a basis of separable sta
i.e., states that can be prepared using LOCC, but that ne
theless cannot be distinguished unambiguously using LO
In @7#, the phrase ‘‘nonlocality without entanglement’’ wa
coined for this property. Another result is that of@8#, where it
was shown that in the limit of an infinite number of identic
spin-1/2 particles, LOCC measurements perform as wel
1050-2947/2000/62~4!/040101~4!/$15.00 62 0401
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collective measurements if the spins are in a pure state,
not as well if the spins are in a mixed state.

A second twist on the original scenario was recently p
posed by Gisin and Popescu@10#, who considered the case o
two antiparallel spins. They showed that one can better e
mate the direction of polarization of two antiparallel spi
than that of two parallel spins. Gisin and Popescu’s resu
related to ‘‘nonlocality without entanglement,’’ because
LOCC measurements are carried out on the two spins, it d
not make any difference whether the spins are paralle
antiparallel. Thus collective measurements on two antipa
lel spins are an example of nonlocality without entang
ment. Mathematically, the passage from two parallel to t
antiparallel spins, that is, the flip of one of the spins, is t
same operation that Peres used to distinguish whether
states are entangled or not@9#.

The present paper aims to provide an exhaustive ana
of measurements on two spin-1/2 particles in the three ca
of collective measurements on parallel spins, collective m
surements on antiparallel spins, and LOCC measureme
The spin-flip operation will play a central role in this anal
sis because it will allow us to treat all three cases in the sa
framework. Our method allows one to find the optimal me
surements for arbitrary fidelities. As an illustration, we co
sider two such fidelities.

The first fidelity is f 5(11cosu)/2, whereu is the angle
between the direction in which the spins are polarized a
the direction in which one guesses that they are polarized
this case we recover the results of@2,3#, which indicate that
if the spins are parallel, the maximal average fidelity isf
50.75. If the spins are antiparalle, we show that the maxim
fidelity is f 50.788. This fidelity was already obtained
@10#, but it was not known whether it is optimal. Finally w
shall show that if one restricts oneself to LOCC measu
ments, then the maximal fidelity isf 50.736, which is 1.4%
lower than that for measurements on parallel spins. That
is the optimal value for LOCC measurements was alre
found by Fischer, Kienle, and Freyberger@11#. Thus even in
the limit of an infinite number of rounds of communicatio
©2000 The American Physical Society01-1
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collective measurements are better than LOCC meas
ments in the case of two parallel spins.

The second fidelity isf 512cos2 u. In this case it is most
advantageous to guess a direction orthogonal to that in w
the spins are pointing (u5p/2) and most disadvantageous
guess the direction in which the spins are pointing (u50) or
the direction orthogonal to that (u5p). Geometrically, this
can be rephrased as a situation in which the spins encod
orientation of a plane, by pointing in the direction normal
the plane and the aim is to find a vector lying in the plane
this case, the highest fidelityf 50.8 is obtained when the
spins are parallel. Both antiparallel spins and LOCC m
surements give the same optimal fidelityf 50.733.

We now turn to the proof of these results. Essential to
analysis will be the spin-flip operation, which we deno
by ˜ . For a single spin-1/2 particle it takes the form

r5
I

2
1aW •sW →r˜5

I

2
2aW •sW , ~1!

whereI is the identity operator ands i the Pauli spin opera
tors. In the case of two spins, we will be interested in
operation denoted bỹ2, which flips only the second spin. I
we write the state as

r5
I

4
1aW •sW ^

I

2
1bW •

I

2
^ sW 1(

i , j
g i j s i ^ s j , ~2!

thenr˜ 2 is given by

r˜ 25
I

4
1aW •sW ^

I

2
2bW •

I

2
^ sW 2(

i , j
g i j s i ^ s j . ~3!

The ˜ 2 operation is equivalent, up to a unitary operati
acting on particle 2 only, to the partial transpose introduc
in @9#.

As an illustration of thẽ 2 operation, consider the state o
two parallel spin-1/2 particles both pointing in themW direc-
tion:

r~mW ,mW !5u↑mW &^↑mW u ^ u↑mW &^↑mW u

5
I

4
1(

i
mi S s i ^

I

2
1

I

2
^ s i D1(

i , j
mimjs i ^ s j

~4!

and the state of two antiparallel spins

r~mW ,2mW !5u↑mW &^↑mW u ^ u↑2mW &^↑2mW u. ~5!

We have the relation

r~mW ,mW !5r~mW ,2mW !˜ 2. ~6!

We can also consider the dual of the˜ 2 operation, that is,
how it acts on operators. Suppose thatr is a state anda an
operator, thena˜ 2 is defined by the relation
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Tr ar˜ 25Tr a˜ 2r. ~7!

One finds that it takes exactly the same form for operator
it does for states. If the operatora is expressed as

a5wI1xW•sW ^ I 1yW•I ^ sW 1(
i , j

zi j s i ^ s j , ~8!

then the operatora˜ 2 takes the form

a˜ 25wI1xW•sW ^ I 2yW•I ^ sW 2(
i , j

zi j s i ^ s j . ~9!

The˜ 2 operation for operators allows us to put a restr
tion on the positive operator valued measures~POVM! act-
ing on the space of two spin-1/2 particles that can be reali
by local quantum operations and classical communicat
Indeed it was shown in@7# that such a POVM, defined by it
elementsai>0, ( iai51, must obeyai

˜ 2>0 for all i.
To proceed with the proof, consider a set of operatorsai

that sum to the identity( iai51. We are interested in the
following three positivity conditions onai :

~1! ai>0. In this case, theai constitute a POVM. The
probability of getting outcomei if the state isr(mW ,mW ) is
Pi( i umW )5Tr r(mW ,mW )ai .

~2! ai
˜ 2>0. In this case, theai

˜ 2 constitute a POVM.
The probability of getting outcomei if the state isr(mW ,
2mW ) is P'( i umW )5Tr r(mW ,2mW )ai

˜ 2. Using Eq. ~7!, we
haveP'( i umW )5Tr r(mW ,mW )ai .

~3! ai>0 andai
˜ 2>0. In this case bothai andai

˜ 2 con-
stitute a measurement that can be realized by LOCC.
probability Pi( i umW )5Tr r(mW ,mW )ai of obtaining outcomei if
the spins are parallel and the measurement isai equals the
probability P'( i umW )5Tr r(mW ,2mW )ai

˜ 2 of obtaining out-
come i if the spins are antiparallel and the measuremen
ai
˜ 2. The equality ofPi( i umW ) and P'( i umW ) shows that in

this case there is no difference between making meas
ments on parallel and antiparallel spins.

Thus the˜ 2 operation relates measurements on para
spins@given byPi( i umW )], measurements on antiparallel spin
@given byP'( i umW )], and measurements that can be realiz
by LOCC. The central idea is that by using the˜ 2 operation
all these quantities can be expressed in terms of the s
trace Trr(mW ,mW )ai , but with operatorsai , which obey the
different positivity conditions enumerated above.

To further explain these different positivity conditions, w
shall suppose that the aim of the measurement is to dis
guish along which direction the spins are pointing. We c
then label the POVM elementsanW by the directionnW along
which one guesses the spins are pointing. Furthermore
shall suppose that the spins are polarized in a random d
tion uniformly distributed on the sphere. We can then, wi
out loss of generality@2#, suppose that we are dealing wit
covariant measurements, that is, measurements for which
guessed directionnW spans the whole sphere and that satis
1-2
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Tr anWr~mW ,mW !5Tr aR(nW )r„R~mW !,R~mW !…, ~10!

whereR is an arbitrary rotation, i.e., an element of SO~3!.
Using the fact thatr„R(mW ),R(mW )…5R^ Rr(mW ,mW )R†

^ R†,
whereR is the corresponding element of SU~2!, we have

aR(nW )5R†
^ R†anWR^ R. ~11!

We can also without loss of generality suppose that the m
surement is symmetric with respect to interchanging the
spins. This implies that

anW5wI1xW•~sW ^ I 1I ^ sW !1(
i , j

zi j s i ^ s j , ~12!

with zi j a symmetric matrix.
The covariance condition~11! implies a considerable sim

plification on the coefficientsw,xW ,zi j in Eq. ~12!. Consider
the POVM elementazW corresponding to guessing the spi
are polarized along the1z direction. LetRf,z be a rotation
of angle f around the z axis. We have azW5Rf,z

†

^ Rf,z
† azWRf,z^ Rf,z for all f. Using Eq.~12!, this implies

that azW has the form

azW5wI1a~sz^ I 1I ^ sz!1bsz^ sz

1g~sx^ sx1sy^ sy! ~13!

wherea, b, g are three real numbers.
A final simplification results if we recall that the operato

anW must sum to the identity:

E dnW anW5E
SU(2)

dRR†
^ R†a1zWR^ R5I . ~14!

Using Eq.~13!, this implies that

azW5I 1a~sz^ I 1I ^ sz!1g~2sz^ sz2sx^ sx2sy^ sy!,

~15!

which only depends on two parametersa andg.
It is now easy to compute the restriction on the two p

rametersa andg that result from each of the three positivi
conditions enumerated above:

anW>0⇒g<1, 11a1g/2>0,

12a1g/2>0 ~16!

anW
˜ 2>0⇒g<2, 11g2a2>0, ~17!

anW and anW
˜ 2>0⇒g<1, 11g2a2>0. ~18!

These constitute convex sets. The extremal points of th
convex sets will be the optimal measurements. To und
stand which extremal point corresponds to what optim
measurement, we introduce a fidelity functionf. We now
study different fidelity functions.

The covariance of the measurement set up implies thaf is
a function only of the angle between the direction in whi
04010
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the spins are polarizedmW and the direction guessed by th
POVM elementanW . Thus in the case of outcome1z, f is a
function ofmz only. It is convenient to expandf in Legendre
polynomials

f ~1z,mW !5 (
n50

`

f nPn~mz!5 f 01 f 1mz1 f 2

3mz
221

2
1•••.

~19!

To compute the average fidelity we need the probabi
of each outcome. Suppose that the spins point in directiomW
and that the measurement outcome is1z. This occurs with
probability

P~1zumW !5Tr r~mW ,mW !azW511amz1
g

2

3mz
221

2
.

~20!

The average fidelity is therefore

F5E
21

11dmz

2 E
0

2pdf

2p
f ~1z,mW !P~1zumW !

5 f 01
a

3
f 11

g

10
f 2 . ~21!

Thus only the first three coefficients enter into the avera
fidelity. ~In the case of covariant measurements onN parallel
spins, only theN11 first coefficients of the expansion off
will enter into the average fidelity.!

Using Eqs.~16!–~18! and ~21!, it is straightforward to
find the optimal measurement for an arbitrary fidelity fun
tion in the case of parallel spins, antiparallel spins, a
LOCC measurements. As a first illustration, let us consi
the example studied in@2# and @3# in which the fidelity has
the form f (nW umW )5u^↑mW u↑nW&u25(11cosu)/2. Thus in this ex-
ample f 051/2, f 151/2, f 250, and thereforeF51/21a/6.
In this case, the largest fidelity is obtained by taking fora
the largest possible value. In the case of two parallel sp
the largest possible value ofa is amax53/2 corresponding to
F i53/450.75, a result already obtained in@2# and@3#. In the
case of two antiparallel spinsamax5A3 corresponding to
F'51/211/(2A3).0.788, a result has already been o
tained in@10#. In the case of measurements carried out us
only LOCC, amax5A2 corresponding to FLOCC51/2
11/(3A2).0.736. Thus for this fidelity collective measure
ments on antiparallel spins are better than collective m
surements on parallel spins, which are themselves better
LOCC measurements on parallel~or antiparallel! spins.

Note that if the spins are parallel or antiparallel, optim
measurements that use a one-dimensional ancilla~which
could be the singlet state! have been exhibited in@3# and
@10#. In the case of LOCC measurements, it is easy to ch
that a simple optimal strategy consists in Alice making a v
Neumann measurement of spin along some directionaW and
Bob making a von Neumann measurement of spin along
orthogonal directionbW (aW •bW 50). Denote byaW 56aW andbW

56bW the results of the two measurements. Then the gues
1-3
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direction is the bisectrixaW 1bW of the two results. Thus in al
cases the optimal measurements can be implemented u
rather simple strategies that necessitate low dimensiona
cillas. This should be compared with the covariant measu
ments that, although useful for the theoretical analysis,
quire infinite dimensional ancillas.

As a second illustration, consider the case where the
delity is f 5sin2 u512cos2 u. In this case,f 052/3, f 150,
f 2522/3, henceF52/32g/15, and the best measureme
is that which has the smallest value ofg. In the case of
collective measurements on parallel spins, the smallest v
is gmin522, which yields a fidelityF i54/550.8. For col-
lective measurements on antiparallel spins or LOCC m
surements the minimum value isgmin521, which yields an
optimal fidelity F',LOCC511/15.0.733. In this case, mea
surements on two parallel spins are better than measurem
on antiparallel spins or LOCC measurements that are b
ry

m
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equivalent. Thus for some fidelities, measurements on pa
lel spins are better; for other fidelities, measurements on
tiparallel spins are better, and in all cases LOCC meas
ments are the worst.

In conclusion, the present article gives explicitly the o
timal measurements and optimal fidelities for all possi
fidelity functions in the cases of parallel spins, antipara
spins, and LOCC measurements. This provides an interes
target for experiments, since it provides a criterion for p
ting ‘‘nonlocality without entanglement’’ into evidence.
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