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We give a complete analysis of covariant measurements on two spins. We consider the cases of two parallel
and two antiparallel spins, and we consider both collective measurements on the two spins and measurements
that require only local quantum operations and classical communicdt@@C). In all cases we obtain the
optimal measurements for arbitrary fidelities. In particular, we show that if the aim is to determine as accu-
rately as possible the direction in which the spins are pointing, it is best to carry out measurements on
antiparallel spingas already shown by Gisin and Popesaecond best to carry out measurements on parallel
spins, and worst to be restricted to LOCC measurements. If the aim is to determine as accurately as possible
a direction orthogonal to that in which the spins are pointing, it is best to carry out measurements on parallel
spins, whereas measurements on antiparallel spins and LOCC measurements are both less suitable but
equivalent.

PACS numbegps): 03.65.Bz, 03.67%a

One of the central problems of quantum measurements isollective measurements if the spins are in a pure state, but
how to best estimate the state of an unknown quantum systot as well if the spins are in a mixed state.
tem. This problem has been addressed by many authors, us- A second twist on the original scenario was recently pro-
ing many different approaches; sgle?] for reviews. posed by Gisin and Popesfl0], who considered the case of

In the present paper, we take a diferent look at a particulaiwo antiparallel spins. They showed that one can better esti-
example in which the task is to determine the direction ofmate the direction of polarization of two antiparallel spins
polarization of two identical spin-1/2 particles. We supposethan that of two parallel spins. Gisin and Popescu’s result is
that the polarization direction is completely unknown, i.e., isrelated to “nonlocality without entanglement,” because if
uniformly distributed on the sphere. This problem, generalLOCC measurements are carried out on the two spins, it does
ized to the case of an arbitrary numhérof spin-1/2 par- not make any difference whether the spins are parallel or
ticles, has already been studied by several aufl#®+§]. The  antiparallel. Thus collective measurements on two antiparal-
particular case of two spins has the advantage of being sufel spins are an example of nonlocality without entangle-
ficiently simple that a complete solution can be obtainedment. Mathematically, the passage from two parallel to two
Furthermore, it allows for several twists where particular fea-antiparallel spins, that is, the flip of one of the spins, is the
tures of quantum mechanics related to entanglement reveahme operation that Peres used to distinguish whether two
themselves. states are entangled or n&.

The first twist on the original problem was suggested by The present paper aims to provide an exhaustive analysis
Peres and Woottef$], who asked whether there is a differ- of measurements on two spin-1/2 particles in the three cases
ence between collective, as compared to local, measuremerascollective measurements on parallel spins, collective mea-
on two particles. Technically, in the first case one allowssurements on antiparallel spins, and LOCC measurements.
arbitrary quantum operations on both spins, whereas in th&he spin-flip operation will play a central role in this analy-
second case one restricts oneself to local quantum operatiosss because it will allow us to treat all three cases in the same
on each particle and classical communication between thfamework. Our method allows one to find the optimal mea-
particles(LOCC). surements for arbitrary fidelities. As an illustration, we con-

Peres and Wootters gave numerical evidence that showesider two such fidelities.
that even if two particles are in the same state, collective The first fidelity isf=(1+cos#)/2, whered is the angle
measurements can be better than measurements usibgtween the direction in which the spins are polarized and
LOCC. An analytical proof was given i8] in the case of the direction in which one guesses that they are polarized. In
two identical spin-1/2 particles whose polarization directionthis case we recover the results[@{3], which indicate that
is uniformly distributed on the sphere, at least in the caséf the spins are parallel, the maximal average fidelityf is
where there are only a finite number of rounds of communi-=0.75. If the spins are antiparalle, we show that the maximal
cation between the two parties. A remarkable example waBdelity is f=0.788. This fidelity was already obtained in
exhibited in[7] that consists of a basis of separable states]10], but it was not known whether it is optimal. Finally we
i.e., states that can be prepared using LOCC, but that neveshall show that if one restricts oneself to LOCC measure-
theless cannot be distinguished unambiguously using LOCGnents, then the maximal fidelity is=0.736, which is 1.4%

In [7], the phrase “nonlocality without entanglement” was lower than that for measurements on parallel spins. That this
coined for this property. Another result is that{8], where it  is the optimal value for LOCC measurements was already
was shown that in the limit of an infinite number of identical found by Fischer, Kienle, and Freyberdéd]. Thus even in
spin-1/2 particles, LOCC measurements perform as well athe limit of an infinite number of rounds of communication,
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collective measurements are better than LOCC measure-
ments in the case of two parallel spins.
The second fidelity i§ =1—cos’ 6. In this case it is most One finds that it takes exactly the same form for operators as

advantageous to guess a direction orthogonal to that in whicfi does for states. If the operataris expressed as
the spins are pointingd= 77/2) and most disadvantageous to

guess the direction in which the spins are pointidg=Q) or

the direction orthogonal to thatvE 7). Geometrically, this

can be rephrased as a situation in which the spins encode the

orientation of a plane, by pointing in the direction normal to{hen the operatoa 2 takes the form

the plane and the aim is to find a vector lying in the plane. In

this case, the highest fidelitf=0.8 is obtained when the ~ - o - -

spins are parallel. Both antiparallel spins and LOCC mea- a :WHX'U@'_Y"@‘T_Z zjoi®aj. (9

surements give the same optimal fidelftyz 0.733. !
We now turn to the proof of these results. Essential to our

analysis will be the spin-flip operation, which we denote

Trap 2=Tra ?p. 7)

a:W|+)—()‘(;'®|+)—/)-|®(;'+Z Zij0'i®0'j, (8)
[}

The™ 2 operation for operators allows us to put a restric-
tion on the positive operator valued measuii@®VM) act-

by . For a single spin-1/2 particle it takes the form ing on the space of two spin-1/2 particles that can be realized
| | by local quantum operations and classical communication.
p=5+ a-o—p = 5~ a-o, (1)  Indeed it was shown ifi] that such a POVM, defined by its

elementsa,; =0, 3;a,=1, must obeya, 2=0 for all i.
wherel is the identity operator ana; the Pauli spin opera- To proceed with the proof, consider a set of operatrs
y op : pin op that sum to the identity;a;=1. We are interested in the

tors. In the case of two spins, we will be interested in the, . oL - i
following three positivity conditions om :

B ""’2 . . .
\(/)v%e\r/\?rtiltzntr?eer;ct);?g ;’;’ » which flips only the second spin. If (1) 5°>0. In this case, the; constitute a POVM. The
probability of getting outcome if the state isp(m,m) is

| | | Py(i|m)="Tr p(m,m)a; .

p=gtaoc®5+p: §®‘T+i2’j vijoi®a, (2 (2) a; 2=0. In this case, the, 2 constitute a POVM.
The probability of getting outcome if the state iSp(rﬁ,
thenp 2 is given by -m) is P,(ilm)=Trp(m,—m)a 2. Using Eq.(7), we
o | havePL(i|rﬁ)=TrB(rﬁ,rﬁ)ai. B
p 2:Z+a. o® E_é' §®(}_izj vijoi®o;. (3 (3) ;=0 anda; 2=0. In this case both; anda; 2 con-

stitute a measurement that can be realized by LOCC. The
probability P(i|m) =Tr p(m,m)a; of obtaining outcomé if

The < operation is equivalent, up to a unitary operationine gpins are parallel and the measurement, iequals the
acting on particle 2 only, to the partial transpose introduced . = S s ~p -
in [9] probability P, (i|m)=Trp(m,—m)a; ¢ of obtaining out-

) i ~y i . comei if the spins are antiparallel and the measurement is
As an illustration of the “ operation, consider the state of _~,

_ _ R a; “. The equality ofPH(ilrﬁ) and P, (i|m) shows that in
two parallel spin-1/2 particles both pointing in thedirec-  his case there is no difference between making measure-
tion: ments on parallel and antiparallel spins.

Thus the” 2 operation relates measurements on parallel
spins[given byP (i |n3)], measurements on antiparallel spins
[given by Pi(i|rﬁ)], and measurements that can be realized

by LOCC. The central idea is that by using theoperation
4) all these quantities can be expressed in terms of the same
trace Trp(rﬁ,rﬁ)ai, but with operatorss;, which obey the

and the state of two antiparallel spins different positivity conditions enumerated above.
To further explain these different positivity conditions, we

p(mm)=[Ta){Tal®Ta){Tm
| [
:Z+Zi mi((ri®§+§®oi

+2 mimjﬂ'i®0'j
)

p(m,—m) =1 1al@ 1T i1l (5)  shall suppose that the aim of the measurement is to distin-
guish along which direction the spins are pointing. We can
We have the relation then label the POVM elements; by the directionn along
.. e which one guesses the spins are pointing. Furthermore, we
p(m,m)=p(m,—m) 2. (6)  shall suppose that the spins are polarized in a random direc-

5 tion uniformly distributed on the sphere. We can then, with-
We can also consider the dual of thé operation, that is, out loss of generality2], suppose that we are dealing with
how it acts on operators. Suppose thait a state ané an  covariant measurements, that is, measurements for which the

operator, ther 2 is defined by the relation guessed direction spans the whole sphere and that satisfy
040101-2
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Tra;p(m,m)=Tr aR(ﬁ)p(R(nT])'R(n-’)])), (10)  the spins are polarizeth and the direction guessed by the

POVM elementa;. Thus in the case of outcomez, fis a

whereR is an arbitrary rotation, i.e., an element of @0  function ofm, only. It is convenient to expaniin Legendre
Using the fact thatp(R(m),R(m))=R®Rp(m,m)R'@Rf,  polynomials
whereR is the corresponding element of &), we have " am?— 1
aR(,;):RT@RTa;,R@R. (ll) f(‘l‘Z,m):nZO fnPn(mZ)=f0+f1mz+f2 22 + ...

We can also without loss of generality suppose that the mea- (19
surement is symmetric with respect to interchanging the two  To compute the average fidelity we need the probability
spins. This implies that of each outcome. Suppose that the spins point in direction
and that the measurement outcometig. This occurs with
a;=wl+x-(c®l+1®0)+ 2, z;0;®0;, (120  probability
i

. _ _ . . y3mi—1
with z; a symmetric matrix. P(+2zlm)=Trp(m,m)a;=1+am,+ > 5
The covariance conditiof11) implies a considerable sim-

- 20
plification on the coefficientsv,x,z;; in Eq. (12). Consider (20
the POVM element; corresponding to guessing the spins The average fidelity is therefore
are polarized along the-z direction. LetR, , be a rotation
. _pt +1dm, (27d R N
of fng!e ¢ around the z axis. We havea;=R,, F:J _zJ' —¢f(+z,m)P(+z|m)
®Ry R, ,®R, , for all ¢. Using Eq.(12), this implies 1 2 Jo 27
thata; has the form
a Y
a;=wl+a(o,1+1®0,)+ Bo,® 0, :f0+§f1+ 1_0f2- (21)

ty(ox@oxtoy@ay) 13 Thus only the first three coefficients enter into the average

fidelity. (In the case of covariant measurementd\oparallel
spins, only theN+ 1 first coefficients of the expansion bf
will enter into the average fidelity.
Using Egs.(16)—(18) and (21), it is straightforward to
R find the optimal measurement for an arbitrary fidelity func-
f dnar;:J’ dRR'®R'a,;ReR=I. (14)  tion in the case of parallel spins, antiparallel spins, and
su) LOCC measurements. As a first illustration, let us consider
the example studied if2] and[3] in which the fidelity has
the formf(n|m)=|(1:|15)|?=(1+cosé)/2. Thus in this ex-
a=l+a(o®+1®0,)+y20,80,~0@0x—0y®0y), amplefy=1/2, f,=1/2, f,=0, and thereford-=1/2+ /6.
(15) In this case, the largest fidelity is obtained by taking for
the largest possible value. In the case of two parallel spins,
which only depends on two parametersand y. the largest possible value efis ama,=3/2 corresponding to
It is now easy to compute the restriction on the two pa-f =3/4=0.75, a result already obtained|[@] and[3]. In the
rametersa andy that result from each of the three positivity case of two antiparallel sping.=1+3 corresponding to
conditions enumerated above: F,=1/2+1/(2y3)=0.788, a result has already been ob-
tained in[10]. In the case of measurements carried out using
only LOCC, amas=+v2 corresponding toF occ=1/2
1—a+y/2=0 (16) + 1/(3\/5):0.736. Thus f_or this fidelity collective measure-
ments on antiparallel spins are better than collective mea-
surements on parallel spins, which are themselves better than
LOCC measurements on paraller antiparallel spins.
~ ) Note that if the spins are parallel or antiparallel, optimal
a; and a5 “=0=y<1, 1l+y—a"=0. (18) measurements that use a one-dimensional anilaich
could be the singlet statéhave been exhibited if3] and
0]. In the case of LOCC measurements, it is easy to check
fhat a simple optimal strategy consists in Alice making a von

wherea, B, y are three real numbers.
A final simplification results if we recall that the operators
a; must sum to the identity:

Using EQ.(13), this implies that

a,=0=vy=<1, 1l+a+y/2=0,
a; =0=y<2, 1+y—a’=0, (17

These constitute convex sets. The extremal points of the
convex sets will be the optimal measurements. To unde

stand which extremal point corresponds to what optimalN t of spin al dirediamd
measurement, we introduce a fidelity functibnWe now eumann measurement ot spin along some direcian

study different fidelity functions. Bob making a von Neumann measurement of spin along an

The covariance of the measurement set up impliesftisat Orthogonal directiorb (a-b=0). Denote bya=*a and 8
a function only of the angle between the direction in which= *b the results of the two measurements. Then the guessed
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direction is the bisectrixe+ 3 of the two results. Thus in all €quivalent. Thus for some fidelities, measurements on paral-
cases the optimal measurements can be implemented usit®j Spins are better; for other fidelities, measurements on an-
rather simple strategies that necessitate low dimensional atiparallel spins are better, and in all cases LOCC measure-
cillas. This should be compared with the covariant measurements are the worst.
ments that, although useful for the theoretical analysis, re- In conclusion, the present article gives explicitly the op-
quire infinite dimensional ancillas. timal measurements and optimal fidelities for all possible
As a second illustration, consider the case where the fifidelity functions in the cases of parallel spins, antiparallel
delity is f=sir? #=1—co< 6. In this casef,=2/3, f;=0,  spins, and LOCC measurements. This provides an interesting
f,=—2/3, henceF =2/3— /15, and the best measurement target for experiments, since it provides a criterion for put-

is that which has the smallest value ¢f In the case of ting “nonlocality without entanglement” into evidence.

collective measurements on parallel spins, the smallest value ) o )
is ymin=—2, which yields a fidelityF=4/5=0.8. For col- I would like to thank N. Gisin, N. Linden, and S. Popescu

lective measurements on antiparallel spins or LOCC megfor stimulating and helpful discussions, and Dietmar Fisher
surements the minimum value 4g,;,,= — 1, which yields an for pointing out his recent work to me. | am a research as-
optimal fidelity F, | occ=11/15=0.733. In this case, mea- sociate of the Belgian National Fund for Scientific Research.
surements on two parallel spins are better than measuremerftgnding by the European Union project EQU(Bontract

on antiparallel spins or LOCC measurements that are botho. IST-1999-11068is gratefully acknowledged
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