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Scheme for direct measurement of the Weyl characteristic function for the motion
of a trapped ion
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We propose a scheme for the reconstruction of the motional state of an ion trapped in a one-dimensional
harmonic potential. In the scheme the ion is multichromatically excited by three lasers. Then the measurement
of the population of the lower internal state directly yields the Weyl characteristic function for the motional
state. The scheme is easily generalized to the two-dimensional case. The scheme operates in the Lamb-Dicke
limit.

PACS number~s!: 42.50.Ct, 42.50.Dv, 03.65.Bz
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In recent years there has been much interest in the re
struction of quantum states. Numerous schemes have
proposed for quantum-state measurement for both a ca
field @1# and a trapped ion@2#. Recently, experimental recon
struction of the motional quantum state of a trapped ion
been reported@3#. However, most of these schemes involve
complex data analysis.

A scheme for direct observation of the Weyl characteris
function of a cavity field was proposed by Wilkens and Me
stre@4#. In a recent paper, Kimet al. @5# have made a simila
proposal applicable to both the cavity field and ion motio
Lutterbach and Davidovich@6# have presented an alternativ
scheme for direct measurement of the Wigner function, ag
in both cavity QED and ion traps. More recently, close
following the scheme for the generation of motional Sch¨-
dinger cat states of a trapped ion@7#, Bardroff et al. @8# have
proposed a simple and fast scheme to measure the mot
state of a trapped ion. The scheme involves three la
pulses. In this paper we propose an alternative scheme
the direct measurement of the Weyl characteristic function
the motional state of a trapped ion. Our scheme consist
only one laser pulse. Furthermore, our scheme can be e
generalized to reconstruct two-mode entangled motio
states. The scheme works in the Lamb-Dicke limit.

We consider a two-level ion trapped in a one-dimensio
~1D! harmonic potential and driven by three laser bea
tuned to the carrier, first lower and upper vibrational sid
bands, respectively. In the rotating-wave approximation,
Hamiltonian for this system is given by

H5nâ†â1v0Ŝz1@lE1~ x̂,t !Ŝ11H.c.#, ~1!

where â† and â are the creation and annihilation operato
for the vibrational mode,Ŝ1,Ŝ2, andŜz are the raising, low-
ering, and inversion operators for the two-level ion,n is the
vibrational frequency, andv0 and l are the transition fre-
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quency and coupling constant characterizing the transi
for the two-level ion.E1( x̂,t) is the positive part of the
classical driving fields

E1~ x̂,t !5E0e2 i (v0t2k0x̂1f0)1E1e2 i [(v02n)t2k1x̂1f1]

1E2e2 i [(v01n)t2k2x̂1f2] , ~2!

whereEl ,f l , and kl( l 50,1,2) are the amplitudes, phase
and wave vectors of the driving fields, respectively. The p
sition operator x̂ can be expressed byx̂5A1/(2nM )(â
1â†), with M being the mass of the trapped ion.

In the resolved sideband limit the vibrational frequencyn
is much larger than other characteristic frequencies of
problem. Then the interactions of the ion with lasers can
treated using the nonlinear Jaynes-Cummings model@9,10#.
In this case the Hamiltonian for such a system, in the int
action picture, is given by

Ĥ i5e2h2/2(
j 50

` H ~ ih!2 j

~ j ! !2
V0e2 if0â† j â j

1
~ ih!2 j 11

j ! ~ j 11!!
@V1e2 if1â† j â j 111V2e2 if2â† j 11â j #J Ŝ1

1H.c., ~3!

where V l5lEl are the Rabi frequencies of the respecti
lasers and the Lamb-Dicke parameterh is defined byh
5k/A2nM assumingk0.k1.k25k.

We consider the behavior of the ion in the Lamb-Dic
regime,h!1. In this limit we can expand the Hamiltonia
Ĥ i of Eq. ~3! up to the first order inh. Furthermore, small
Lamb-Dicke parameters lead toe2h2/2.1. Then the Hamil-
tonian can be simplified to

Ĥ i5~V0e2 if01 ihV1e2 if1â1 ihV2e2 if2â†!Ŝ11H.c.
~4!
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We choose the amplitudes and phases of the lasers appr
ately so thatV15V2 , f050, and f11f25p. Then we
obtain

Ĥ i5Ô~Ŝ11Ŝ2!, ~5!

where

Ô5V01 ihV1e2 if1â2 ihV1eif1â†. ~6!

Then the time evolution operator of the system can be
pressed in the form of a 232 matrix with respect to the
atomic basis@11#,

Û~t!5S cos~Ôt! 2 i sin~Ôt!

2 i sin~Ôt! cos~Ôt!
D . ~7!

Assume that the initial density operator of the whole s
tem is

r̂~0!5ug&^gur̂m , ~8!

wherer̂m is the unknown density operator for the ion motio
and ug& is the ground electronic state. Then after an inter
tion time t the density operator for the whole system is

r̂~t!5@ ug&cos~Ôt!2 i ue&sin~Ôt!] r̂m

3@cos~Ôt!^gu1 i sin~Ôt!^eu#. ~9!

We now detect the internal state of the ion. The probabi
of measuring the ion in the ground stateug& is

Pg5
1

2
1

1

2
Tr$cos~2Ôt!r̂m%. ~10!

Substituting Eq.~6! into Eq. ~10!, we obtain

Pg~a,w!5
1

2
1

1

2
Re@eiwTr$D̂~a!r̂m%#, ~11!

whereD̂(a) is the displacement operator

D̂~a!5eaâ†2a* â. ~12!

The parametersw anda are given by

w52V0t, ~13!

a52hV1teif1. ~14!

For an interaction timet, the parameterw is controllable by
the Rabi frequencyV0. The modulus ofa is controlled by
V1, and the phase byf1. We can rewrite Eq.~11! as

Pg~a,w!5
1

2
1

1

2
Re@eiwx~a!#, ~15!

with x(a) being the Weyl characteristic function

x~a!5Tr$r̂mD̂~a!%. ~16!
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From Eq.~15! we obtain

x~a!52Pg~a,0!212 i F2PgS a,
p

2 D21G . ~17!

Thus a measurement ofPg(a,w) for two phasesw50,p/2
directly yields the Weyl characteristic function of the initi
motional state at the pointa.

In order to detect the electronic state, we employ an e
tronic V scheme@12,13#, where the upper levelsue& and ur &
couple to the common ground levelug&. ue&→ug& is a weak
electronic transition, whileur &→ug& is a strong one. After
the interaction of the ion with the above mentioned thr
lasers, a laser on resonant with the transitionur &→ug& is
used to detect the fluorescence. The presence of fluoresc
is correlated with the ion being in the electronic stateug&,
while the absence of fluorescence is correlated with the
in the stateue&.

We note that the method can be generalized to the t
dimensional~2D! case. Raymeret al. @14# have proposed a
scheme for the reconstruction of a two-mode running field
using balanced homodyne detection. In a more recent pa
Kim et al. @15# have suggested a scheme to reconstruc
two-mode entangled cavity-field state via the interaction o
V-type three-level atom with the field displaced by reson
classical sources. In a very recent paper, Solanoet al. @16#
have proposed a scheme for the measurement of the Wi
function of two trapped ions with center of mass and relat
motion modes along their alignment direction. We show h
how we can directly measure the two-mode Weyl charac
istic function for the 2D motion of a trapped ion.

We consider a two-level ion confined in a 2D trap wi
vibrational frequenciesnx andny along theX andY axis. We
drive the ion with three laser beams of frequenciesv0 , v0
2nx , andv01nx propagating along theX axis, and two of
frequenciesv02ny and v01ny propagating along theY
axis. In the resolved sideband and Lamb-Dicke regime,
Hamiltonian, in the interaction picture, is

Ĥ i5~V0e2 if01 ihxV1e2 if1â1 ihxV2e2 if2â†

1 ihyV3e2 if3b̂1 ihyV4e2 if4b̂1!Ŝ11H.c., ~18!

whereâ andb̂ are the annihilation operators for the motion
modes in theX andY axes,hx andhy are the corresponding
Lamb-Dicke parameters, andV j and f j ( j 50,1,2,3,4) are
the Rabi frequencies and phases of the respective lasers
choose the amplitudes and phases of the lasers appropri
so that V15V2 , V35V4, and f050, f11f25p, f3
1f45p. We obtain

Ĥ i5~V01 ihxV1e2 if1â2 ihxV1eif1â†1 ihyV3e2 if3b̂

2 ihyV3eif3b̂1!~Ŝ11Ŝ2!. ~19!

Assume the initial density operator of the whole system
ug&^gur̂m , wherer̂m is the unknown density operator for th
2D motion. Following the previous calculations, we obta
1-2
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the probability of finding the ion in the ground electron
stateug& after an interaction timet,

Pg~a,b,w!5
1

2
1

1

2
Re@eiwTr$D̂a~a!D̂b~b!r̂m%#, ~20!

whereD̂a(a) andD̂b(b) are the displacement operators f
modesa andb. The parametersw are given by Eq.~13!, and
a andb are given by

a52hxV1teif1, ~21!

b52hyV3teif3. ~22!

We can rewrite Eq.~20! as

Pg~a,w!5
1

2
1

1

2
Re@eiwx~a,b!#, ~23!

with x(a,b) being the two-mode Weyl characteristic fun
tion of the initial motional state

x~a,b!5Tr$r̂mD̂a~a!D̂b~b!%. ~24!

From Eq.~23! we obtain

x~a,b!52Pg~a,b,0!212 i F2PgS a,b,
p

2 D21G .
~25!

Therefore, a measurement ofPg(a,b,w) for two phasesw
50,p/2 directly yields the two-mode Weyl characterist
function of the initial motional state at the point (a,b).

Finally, we make a comparison of the present sche
with previous ones. Like previous schemes@5,6,8#, the
present one also works in the Lamb-Dicke limit. Howev
,

er

.

er
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the present scheme is not a mere extension of previous
and has some advantages. The scheme of Ref.@6# uses dis-
persive coupling to achieve a rotation, with the coupli
strength between the internal and external degrees of f
dom proportional to the square of the Lamb-Dicke parame
h. In the present scheme the coupling strength is prop
tional to h and thus the time needed to complete the pro
dure is greatly decreased, which is of experimental imp
tance in view of decoherence. According to the scheme
Ref. @5#, the Weyl characteristic function is approximate
obtained under the condition that the ion motion is first d
placed by a large amount. In this case the probability of
ion in one certain internal state after a Jaynes-Cummi
evolution oscillates very fast and thus even small fluctuati
in the durations and intensities of the laser fields may ca
fatal errors. This drawback is avoided in the present sche
In the scheme of Ref.@8#, when displacement Raman beam
are applied, only the part of the motional state that is cor
lated with one electronic state is shifted. In order to meas
x(a) at the pointa, we should apply the Raman beams for
time t5uau/(hV). In the present scheme two parts of th
motional state correlated with the corresponding electro
states undergo displacements with same amplitudes but
posite phases. In this case we need an interaction timt
5uau/(2hV) for obtainingx(a) at the pointa. Therefore,
for the same parametersh and V the time needed to com
plete the procedure is only about half of that required by
scheme of Ref.@8#. Another advantage of the present sche
is that it can be easily generalized to reconstruct an entan
state of the 2D motion.

This work was supported by the National Natural Scien
Foundation of China under Grant No. 19734060.
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