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Polarizabilities of heliumlike ions in the 1s2p 1P and 1s2p 3P states
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The static dipole, quadrupole, and octupole polarizabilities of heliumlike ions are calculated for the 1s2p 1P
and 1s2p 3P states withZ up to 10, using variational wave functions in Hylleraas coordinates. A general sum
rule for the 2l-pole oscillator strengths is derived.

PACS number~s!: 32.10.Dk, 31.15.Pf
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Recently we have evaluated polarizabilities of helium a
heliumlike ions in the ground state 1s2 1S @1,2# and the meta-
stable 1s2s 1S and 1s2s 3S states@3,4#. All these calcula-
tions were done using variational wave functions in Hylle
aas coordinates. In this Brief Report, we extend our work
heliumlike ions in the 1s2p 1P and 1s2p 3P states. To our
knowledge, there has been no precise work reported in
literature.

The static 2l-pole polarizability for an atom is defined i
terms of a sum over all intermediate states, including
continuum~in atomic units throughout!:

a l5 (
nÞ0

f n0
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~En2E0!2
, ~1!

with f n0
( l ) being the 2l-pole oscillator strength
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where the sumi runs over all the electrons in the atom,C0 is
the state of interest with the associated energy eigenvaluE0
and the magnetic quantum numberM0, andCn is one of the
intermediate states with the associated energy eigenvaluEn
and the magnetic quantum numberMn . In practice, instead
of f n0

( l ) , an averaged oscillator strengthf̄ n0
( l ) , which is inde-

pendent of the magnetic quantum numbersm, M0, andMn ,
is used. Thef̄ n0

( l ) is obtained by averaging over the initia
state orientation degeneracy and summing over the final-s
degeneracy. It is convenient to introduce reduced matrix
ements through the Wigner-Eckart theorem@5#
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i
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5~21!L82M8S L8 l L
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With the aid of a sum rule for the 3j symbols, we have
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whereL0 is the total angular momentum for the initial sta
~the state of interest!. The allowed possible symmetries o
intermediate states can be obtained by the selection rule
the 3j symbol and parity. Thus, if the symmetry of the initi
state isP, then the allowed symmetries areS1P1D, P
1D1F, andD1F1G for the dipole, quadrupole, and oc
tupole polarizabilities, respectively. In the case of dipole p
larizability, the intermediateP symmetry can be represente
by the configurations (npn8p)1Pe and (npn8p)3Pe for the
singlet and triplet states, respectively, where the low
member in (npn8p)3Pe is (2p2p)3Pe. For the quadrupole
polarizability, the intermediateD symmetry can be repre
sented by the configurations (npn8d)1Do and (npn8d)3Do

respectively. Finally, for the octupole polarizability, the r
quired configurations are (npn8 f )1(ndn8d) to form 1Fe

and (npn8 f )1(ndn8d) to form 3Fe, where the lowest mem
ber in (ndn8d)3Fe is (3d3d)3Fe. The rest of the intermedi-
ate symmetries can be implemented by including singly
cited configurations explicitly. All the other doubly excite
configurations are included implicitly through Hylleraas c
ordinates. It should be pointed out that one of the interme
ate states ofP symmetry, which overlaps with the initia
state, should be excluded in the summation overn in Eq. ~1!.

For a two-electron atomic system, the basis set is c
structed using Hylleraas coordinates

$x i jk5r 1
i r 2

j r 12
k e2ar 12br 2Y l 1l 2

LM ~r1 ,r2!%, ~5!

where Y l 1l 2
LM (r1 ,r2) is the vector-coupled product of soli

spherical harmonics for the two electrons forming an eig
state of total angular momentumL defined by

Y l 1l 2
LM ~r1 ,r2!5 (

m1m2

^ l 1l 2m1m2uLM &Yl 1m1
~r1!Yl 2m2

~r2!,

~6!
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TABLE I. Convergence of the contributions toa1 for helium in the 21P state from theS, P, and D
symmetries, with respect to the sizes of basis setsNP , NS , NPP , andND , whereNP is for 2 1P, andNS ,
NPP , andND are for the three intermediate symmetries. Units are a.u.

NP NS NPP ND a1(1S) a1„(pp8)1P… a1(1D)

440 300 372 425 –241.620 033 89 0.080 111 65 181.511 395 9
572 372 444 565 –241.620 032 17 0.080 111 74 181.511 402 1
728 454 525 733 –241.620 031 49 0.080 111 79 181.511 404 8
910 546 615 931 –241.620 031 40 0.080 111 81 181.511 405 3
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and r 125ur12r2u is the distance between electron 1 and
The wave functions are expanded from doubled basis s
The explicit form for the wave function is

C~r1 ,r2!5(
i jk

@ai jk
(1) x i jk~a1 ,b1!1ai jk

(2) x i jk~a2 ,b2!#

6 exchange, ~7!

andi 1 j 1k<V. A complete optimization is then performe
with respect to the two sets of nonlinear parametersa1 , b1,
anda2 , b2 by first calculating the derivatives analytically i

]E

]g
52K CUHU]C

]g L 22EK CU]C

]g L , ~8!

where g represents any nonlinear parameter,E is the trial
energy,H is the Hamiltonian, and̂CuC&51 is assumed,
and then locating the zeros of the derivatives by Newto
method. For intermediate states of given symmetry, we d
onalize the Hamiltonian directly in a basis set where
nonlinear parameters are optimized such that the energ
03450
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genvalue closest to the energy of initial stateE0 is mini-
mized. The basic integrals that appear in our variational c
culations are of the form

I ~a,b,c;a,b!5E dr1dr2Y l
18 l

28
L8M8~r1 ,r2!*

3Y l 1l 2
LM ~r1 ,r2!r 1

ar 2
br 12

c e2ar 12br 2. ~9!

The complete evaluation of these integrals can be found
Ref. @6#.

Table I contains a typical convergence pattern for
contributions to the dipole polarizability of helium in th
2 1P state from the three intermediate1S, (npn8p)1P, and
1D symmetries, as the sizes of basis sets increase prog
sively. Table II lists the values of the polarizabilitiesa1 , a2,
and a3 of heliumlike ions in the 1s2p 1P and 1s2p 3P
states, with the nuclear chargeZ up to 10. It is interesting to
see that all the dipole polarizabilitiesa1 for heliumlike ions
are negative except for the 1s2p 3P helium which is posi-
tive. This is because the only negative contribution toa1 is
TABLE II. Values of the static polarizabilitiesa1 , a2, anda3 of heliumlike ions in the 21P and 23P
states. Numbers in parentheses represent the estimated error in the last digit of the listed values.Z is the
nuclear charge. Units are a.u.

Z a1 a2 a3

2 singlet –60.028 514 0~2! 5 482.670 95~5! 473 456.35~2!

2 triplet 46.707 748 2~3! 3 622.790 34~2! 272 212.58~2!

3 singlet –19.280 648 5~2! 87.541 556 0~5! 1 900.986 5~5!

3 triplet –5.790 965 718~2! 59.809 929~2! 1 145.598 2~2!

4 singlet –6.659 933 85~5! 7.649 312 9~2! 73.651 79~1!

4 triplet –2.899 849 915~2! 5.575 919 8~4! 48.421 32~2!

5 singlet –2.980 463 65~3! 1.350 815 55~3! 7.293 930~2!

5 triplet –1.492 679 740~2! 1.035 957 35~4! 5.131 571~1!

6 singlet –1.572 734 264~2! 0.351 583 018~2! 1.211 781~2!

6 triplet –0.852 184 682 7~2! 0.280 084 726~2! 0.896 794 0~2!

7 singlet –0.926 678 093 0~4! 0.117 039 515~4! 0.279 525 5~2!

7 triplet –0.528 700 907 61~5! 0.095 979 305~4! 0.214 985 0~3!

8 singlet –0.590 519 083 2~4! 0.046 184 420~4! 0.080 894 5~2!

8 triplet –0.349 511 782 2~2! 0.038 740 979 0~1! 0.064 113 6~2!

9 singlet –0.398 916 829 1~5! 0.020 642 083 7~3! 0.027 641 09~1!

9 triplet –0.242 709 047 25~3! 0.017 631 555 0~3! 0.022 439 38~2!

10 singlet –0.281 907 798 0~2! 0.010 147 003 8~4! 0.010 722 68~2!

10 triplet –0.175 247 853 120~1! 0.008 796 158 8~4! 0.008 876 95~2!
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TABLE III. Oscillator strength sum rules for the heliumlike ion B31 (Z55) in the initial state of 21P.

SS
(1) –0.0565606 SP

(2) 0.6645502 SD
(3) 5.501445

SD
(1) 1.8080750 SF

(2) 3.3415984 SG
(3) 15.210450

3SS
(1)1

6
5 SD

(1) 2.0000082 2SP
(2)1

9
7 SF

(2) 5.6254412 9
5 SD

(3)1
4
3 SG

(3) 30.183201
M20(0) 2.0439853 M42(0) 2.751726
M22(0) 0.7688053 M40(0) 6.916432

2M20(0)12M22(0) 5.6255812 24
7 M42(0)13M40(0) 30.183785
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from the 2s-2p transition, which is coincidentally cancele
by a large contribution from the 3d-2p transition, that is,

f̄ 2s2p
(1)

~E2s2E2p!2
52101.552, ~10!

f̄ 3d2p
(1)

~E3d2E2p!2
5101.525. ~11!

The 2l-pole polarizabilities follow the large-Z scaling a l
;1/(Z2al)

2l 12, wherea1 is 23, anda2 anda3 are 1.
It is interesting to check the completeness of our dip

oscillator-strength spectra using the Thomas-Reiche-K
~TRK! sum rule for the oscillator strengths@7#:

(
n

f n0
(1)~0,M0 ,Mn!5Ne, ~12!

wheref n0
(1) is defined by Eq.~2! andNe is the totalnumber of

electrons, which is two in this work. In terms of the average
oscillator strengthf̄ n0

( l ) defined by Eq.~4!, which is indepen-
dent of magnetic quantum numbers, the TRK sum rule foP
states reads, after lettingM050 in Eq. ~12!,

3SS
(1)1

6

5
SD

(1)5Ne, ~13!

where

SL
( l )5(

n
f̄ n0

( l )~L !, ~14!

andL indicates the intermediate symmetry.
For the quadrupole and octupole oscillator strengths,

corresponding expressions can be derived from the follow
general sum rule:

(
n

~En2Ek!uFnku25
1

2
^ku†F,@H,F#‡uk&, ~15!

whereF(r ,p) is an arbitrary Hermitian operator. Denoting

Mmn~M0!5K C0U(
i 51

Ne

r i
mPn~cosu i !UC0L , ~16!

wherePn(cosui) is the Legendre polynomial, we have forP
states
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2SP
(2)1

9

7
SF

(2)52M20~0!12M22~0! ~17!

for the quadrupole and

9

5
SD

(3)1
4

3
SG

(3)5
24

7
M42~0!13M40~0! ~18!

for the octupole oscillator strengths. A lengthy but straig
forward calculation yields the following general expressio

2(
n

~En2E0!ZK CnU(
i 51

Ne

r i
l Pl~cosu i !UC0L Z2

5 l 2K C0U(
i 51

Ne

r i
2l 22csc2u i@Pl

2~cosu i !1Pl 21
2 ~cosu i !

22 cosu i Pl~cosu i !Pl 21~cosu i !#UC0L . ~19!

Table III presents a detailed list of quantities appearing in
above sum rules. We can see that these sum rules are
satisfied. The residual discrepancies are due to the fact
the results in Table III for the oscillator strengths were o
tained using small basis sets~around 400 terms!. However,
the sum in the calculation of polarizability in Eq.~1! should
be much more rapidly converged thanSL

( l ) . The sum rules
involving doubly excited intermediate states can also be
tained by settingM0561 in Eq.~19!. Thus, forP states, we
have

9

10
SD

(1)1
3

2
SP

(1)5Ne, ~20!

6

7
SF

(2)1
3

2
SD

(2)1
1

2
SP

(2)52M20~1!12M22~1!, ~21!

3

5
SD

(3)1
3

2
SF

(3)1
5

6
SG

(3)5
24

7
M42~1!13M40~1!. ~22!

These sum rules were also checked numerically to be he
a similar degree of accuracy.
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