
PHYSICAL REVIEW A, VOLUME 62, 033821
Two-level atom-field interaction: Exact master equations for non-Markovian dynamics,
decoherence, and relaxation

Charis Anastopoulos* and B. L. Hu†

Department of Physics, University of Maryland, College Park, Maryland 20742
~Received 1 February 1999; published 18 August 2000!

We perform a first-principles derivation of the general master equation to study the non-Markovian dynam-
ics of a two-level atom~2LA! interacting with an electromagnetic field~EMF!. We use the influence functional
method, which can incorporate the full back reaction of the field on the atom, while adopting Grassmannian
variables for the 2LA and the coherent-state representation for the EMF. We find exact master equations for the
cases of a free quantum field and a cavity field in the vacuum. In response to the search for mechanisms to
preserve maximal coherence in quantum computations in ion trap prototypes, we apply these equations to
analyze the decoherence of a 2LA in an EMF, and find that decoherence time is close to relaxation time. This
is at variance with the claims by authors who studied the same system but used a different coupling model. We
explain the source of difference and argue that, contrary to common belief, the EMF, when resonantly coupled
to an atom, does not decohere it as efficiently as a bath does on a quantum Brownian particle. The master
equations for non-Markovian dynamics derived here are expected to be useful for exploring new regimes of
2LAEMF interaction, which is becoming physically important experimentally.

PACS number~s!: 42.50.Ct, 42.50.Lc, 03.65.Bz
om

-
LS
e

en
o
ic
co
e

h
in

c-
ar
e
he

se

g
E
b

are
c-
ent,
n-
mal
-

ith
ard
or
on
the
first
re-
he

BM
ti-

uch

of

tem
t is

at
bi-

nc-
ny
ach
be
de-

or-
I. INTRODUCTION

A two-level system~2LS! interacting with a quantum field
—an electromagnetic field~EMF! in particular—has proven
to be a very useful model for a wide range of problems fr
atomic-optical@1–7# and condensed matter@8,9# processes to
quantum computation@10#. For the latter application strin
gent limits in maintaining the coherence of the the 2
~called qubits! are required. This prompted us to revisit th
theoretical structure of the 2LS model, paying special att
tion to its coherence properties. Treatment of spontane
emission and relaxation are standard textbook top
whereas decoherence and dissipation, especially in the
text of quantum computation, are the focus of more rec
investigations@11–18#.

Because of the familiarity of the model~see Sec. II A! and
its theoretical and practical values, we do not need to emp
size the general motivation, but can go right to the po
about the aim and results of this paper. The description
this system generally comprises two parts:~i! spontaneous
emission in the 2LS, and~ii ! decoherence due to the intera
tion of 2LS with the EM field, treated as a bath. The first p
allows little room for disagreement, as it can be obtain
from elementary calculations. The second part on deco
ence is more subtle.

Environment-induced decoherence@19# has been studied
extensively in recent years, and it has been primarily ba
on models of quantum Brownian motion~QBM! @20–26# for
the interaction of a simple harmonic oscillator~Brownian
particle! with a harmonic-oscillator bath~HOB! at a finite
temperature, leading to a reasonably good understandin
its characteristic features. Decoherence of a 2LS in an
field has been studied by a number of authors, nota
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@11,12,16#, and their dissipative and decoherent behavior
reported to be similar to that of a QBM in a harmoni
oscillator bath. The progression in three stages—quiesc
vacuum fluctuation-dominated, and thermal fluctuatio
dominated, separated by the cutoff frequency and the ther
de Broglie frequency~wavelength!—are indeed characteris
tic of the QBM results@21,23–25,27,28#.

Our findings, in contrast, are in stark disagreement w
those reported in the literature. We work with the stand
2LSEMF model@1# and obtain an exact master equation f
depicting non-Markovian dynamics. Solving this equati
for the reduced density matrix of the 2LS shows that
decoherence rate is close to the relaxation rate. This is in
appearance rather couterintuitive, and different from all p
vious findings. Upon careful deliberation we realize that t
‘‘intuition’’ researchers~including us at the start! have ac-
quired for dissipation and decoherence is based on the Q
model, which influenced the choice of model in the inves
gation of decoherence for a 2LS. However, we find that s
a commonly invoked intuition for QBM in a HOB fails to
apply to that of a two-level atom~2LA! interacting with an
electromagnetic field with the commonly assumed type
resonance coupling in quantum optics.

A. Decoherence in QBM

Physically, when we say that decoherence of the sys
of a Brownian oscillator proceeds in a very short time as i
brought in contact with an environment, such as a HOB
some temperture, we are usually conjuring a model with
linear @20# ~or polynomial @24#! coupling of the oscillator-
bath coordinates, and an Ohmic or sub-Ohmic spectral fu
tion @21# in the bath. Intuitively, the bath needs to have ma
degrees of freedom, preferably acting independently of e
other so that the phase information in the system will
dispersed to the largest extent amongst the many bath
grees of freedom and afford little chance of taking an in
dinately long time to be revived or reconstituted~recoher-
©2000 The American Physical Society21-1



n
en
fo
rr
th

,
so
-

tic
i-

en
n

rb

te
is

u-
si
io
us
fo
m
te
d

e

o
om
e
n

ibe
k

te
n
ld
to
u
di

f

r-

e

di

igh

ut
for
ition
to

-

the
hese
be

im
ises

is
ld

-
ence
ny
-
en

l

u-
M

di-
eld

to
ot
evel
m-
F,

ty
he

M

the
en-

ct it
ld

o the
btle
h-
a

f

a
-

CHARIS ANASTOPOULOS AND B. L. HU PHYSICAL REVIEW A62 033821
ence@29#!. The opposite picture~of very long decoherence
time! is exemplified by two coupled subsystems where
coarse graining is introduced, or for system-environm
couplings that maintain some high level of coherence, or
an environment whose degrees of freedom have long co
lation times like in a zero-temperature, supra-Ohmic ba
The case of a~spin! particle or ~plasma! wave interacting
with an averaged~collective! variable from the environment
such as the mean field, showing Landau damping in Vla
dynamics, is another example@30,31#. Just as in the spin
echo phenomena~e.g, Chap. 3@4#!, the basic physics in this
case is not dissipation in the Boltzmann sense, but statis
mixing @32#. We will see that this example is of more phys
cal relevance to our problem than the QBM.

B. Coherence in the 2LS

For the 2LAEMF system, one clear distinction betwe
an EM field as an environment and a system of harmo
oscillators as bath is that the field~coupled to a detector! has
an intrinsic spectral density function, not to be chosen a
trarily. For example, it has been shown@26# that a conformal
scalar field in two dimensions coupled to a monopole de
tor has an Ohmic character while in four dimensions it
supra-Ohmic. Barone and Caldeira@33# showed that the
spectral density function for EM fields with momentum co
pling to an oscillator detector is supra-Ohmic. These den
functions would show very different decoherence behav
from the high-temperature Ohmic HOB used in many disc
sions of decoherence, the latter case is what the general
lore is based on. But the most important distinction fro
QBM is that the 2LA couples with the EMF in the discre
number basis for the field, unlike the continuous amplitu
basis in the QBM. This fact~which is true in the rotating-
wave and dipole approximation! implies that the 2LS plus
the EMF system is aresonantone. Hence even though th
EM field has just as many~large number of! modes as the
HOB, only a very small fraction of them in a narrow range
the resonance frequency are efficiently coupled to the at
This is the root cause for the very different qualitative b
havior between the QBM and the 2LS as far as decohere
is concerned.

One extreme case is that of a single-mode field descr
by the Jaynes-Cummings model, where Rabi nutation ta
place and the atom field remains largely a coherent sys
~For a coherent field, the probability for the atom to be fou
in the excited state at timet regardless of the state of the fie
obeys a Poisson distribution. This distribution in the pho
number induces a spread in the Rabi frequencies, and ca
the collapse and revival of the Rabi nutation. These are
tinct features of quantum coherence@1#.! Adding all modes
to the field we see spontaneous emission and the decay o
atom. The probability of an initially excited atom~remaining
in the excited state! decays exponentially in the Wigne
Weisskopf form~characteristic of Markovian processes! with
relaxation time constantG. For purely radiative decay th
decay timeT1 of the inversion is half the decay timeT2 of
the polarization. There are no large order-of-magnitude
ferences between dissipation and decoherence time~which in
typical QBM high-temperature conditions could be as h
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as 40@19#!. In fact, it is perhaps inappropriate to talk abo
dissipation for a 2LAEMF system because the conditions
a bath to actuate such a process are lacking. The trans
from the excited to the ground state is closer in nature
relaxation~in the spin-echo sense! than dissipation. In a cav
ity where excitation of the atom from the field~absorption!
balances with emission, it is more appropriate to refer to
resonant state of the atom field as a coherent system. In t
senarios, the distinction between QBM and 2LA cannot
clearer.

C. Difference between QBM and 2LS

So what led earlier authors to make the qualitative cla
that 2LS decoheres easily? We think the confusion ar
when the picture of QBM dissipation and decoherence
grafted on the 2LAEMF system indiscriminantly. If the fie
that acts as the environment is a phonon field~from ion
vibrations, see, e.g.,@17#! and if the coupling is of the non
resonant type, then there is no disagreement. Decoher
should follow the QBM pattern as reported by ma
authors.1 Such sources~including atomic collisions in a cav
ity @7#! can be important for some setups. However, wh
one claims that the EM field can decohere a 2LS~with which
it is coupled in a resonant way, as in the standard mode!—
that is where we disagree.

Quantitatively, the model for the 2LS used by most a
thors for the discussion of decoherence inspired by QB
type of behavior has the atom in asz state ~the diagonal
Pauli matrix! coupled to the field mode operatorsb̂†,b̂. This
type of coupling term~call it sz type for convenience! com-
mutes with the Hamiltonian of the system, and admits a
agonalization in the eigenbasis of the Hamiltonian. The fi
is coupled to the atom as a whole and thus is insensitive
the two-level transition activity. In particular, it does n
probe the resonance or coherent properties of the two-l
atom, which is the most important feature, for quantum co
putation. In contrast, the standard model for 2LAEM
which we studied, has as6 coupling ~call it standard cou-
pling! to the field modes that highlights the two-level activi
of the atom and the field. This coupling considered in t
standard model is indispensible, i.e., itcannotbe removed
from the two-level atom as itdefinesit and will be present in
any realistic situation. What then is the origin of the QB
type of contribution to the 2LS ?

If one accepts an environment other than the EM field,
question comes down to the characteristics of the experim
tal apparatus. For well-prepared ion traps we would expe
to be rather unimportant. If the EM field is the only fie

1Even in such cases, one also needs to pay closer attention t
QBM behavior than what has been accorded for this model. Su
points unnoticed before include, e.g., the imposition of a hig
frequency cutoff and Ohmic spectral function that restricts to
Markovian behavior@21# can lead to a violation of the positivity o
the reduced density matrix@24#, the violation of the fluctuation-
dissipation relation@23#, and the prolongation of coherence in
low-temperature supra-Ohmic bath@24#. They deserve more atten
tion in the theoretical design of cavity qubit computers.
1-2
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TWO-LEVEL ATOM-FIELD INTERACTION: EXACT . . . PHYSICAL REVIEW A 62 033821
present, we can still ask if a QBM type of coupling term wi
the EM field would appear, and if yes, how strong would
effect be? This would be a useful way to accommodate
two different types of coupling terms.

Recall that the standard model is derived under the dip
and rotating-wave approximation. In Sec. II we will sho
that thesz type of coupling appears only in the next-ord
expansion after the dipole approximation. Since these
good approximations for a large class of atomic states w
the atom is nonrelativistic, the contribution from the QB
type of coupling used in@11,12,16# should be negligible and
its ensuing decoherent effect insignificant. In this sense
EM field does not in leading order of approximation act li
a bath in the QBM way, and coherence in a 2LAEMF syst
is quite well preserved~excepting other processes, e.
@15,14#!.

Our puzzle over the result on decoherence in the 2
reported in the literature was what prompted us to begin
study. Without letting any familiar and convenient analo
influence our judgement, and without any preconceived
tion, we choose to perform a first-principles calculation
the two-level atom electromagnetic field~2LA-EMF! system
making as few assumptions and covering as wide a rang
conditions as possible. We use the influence functio
method@20# to take into account the full back reaction of th
field on the atom, while adopting Grassmannian variables
the 2LA and the coherent-state representation for the E
We find exact master equations for the full~non-Markovian!
dynamics in the cases of a free quantum field and a ca
field at zero temperature.

In Sec. II we present the model and the formalism.
detailed derivation of our model is contained in Appendix
In Sec. III we derive the master equations. In Sec. IV
study different mode composition of the field, including th
of an atom in a cavity. We end in Sec. V with a discussion
our findings and their implications.

This is the first in a series of papers on the 2LA a
quantum decoherence. The subsequent papers will
2LAEMF interaction at finite temperatures, for EM fields
a coherent and squeezed state, and for multipolar mo
~where coupling other than the minimal is assumed!. We will
also tend to collective qubit systems and moving atoms
teracting with an EM field. These results will have corr
sponding applications in atom optics and quantum comp
tion problems.

II. THE INFLUENCE FUNCTIONAL

A. The model

Our model for atom-field interaction is the standard o
~see Appendix A for details! @1,2,4#.2 The total Hamiltonian
for a ~stationary! atom interacting with a quantum electro

2Our Hamiltonian is given in the so-called minimal couplin
~MC! as different from the multipolar coupling~MP! @6#, which
may be more relevant to atoms in a cavity because the exp
Coulomb interaction between the atom and its image charge is
moved.
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magnetic field~EMF! under the dipole, rotating-wave~RW!,
and two-level~2L! approximation is given by

Ĥ5\v0Ŝz1\(
k

@vkb̂k
†b̂k1~gkS1b̂k1ḡkS2b̂k

†!#,

~2.1!

where b̂k
† ,b̂k are the creation and annihilation operators

the kth normal mode with frequencyvk of the electromag-
netic field ~thus for the field vacuumb̂ku0&50,@ b̂k ,b̂k8

†
#

5dk,k8 , for all k), and v05v21 is the frequency between
the two levels. Here

Ŝz5
1

2
ŝz , Ŝ65ŝ6[

1

2
~ ŝx6 i ŝy!,

wheresx,y,z are the standard 232 Pauli matrices withsz
5diag (1,21), etc. The coupling constantgk[d21k f k(X)
where

di j k[2
iv i j

A2\vke0V
di j •êks ~2.2!

anddi j [e*f̄ ixf jd
3x is the dipole matrix element betwee

the eigenfunctionsf i of the electron-field system,êks is the
unit polarization vector (s51,2 are the two polarizations!,
and f k(x) are the spatial mode functions of the vector pote
tial of the electromagnetic field~in free space, f k(x)
5e2 ik•x, V is the volume of space!. Under the dipole ap-
proximation, f k is evaluated at the position of the atomX.
Sincedi j 5d̄j i , d̄i j k5dji k , we will choose a mode function
representation such thatgk is real.

To see how this could possibly be related to thesz type of
coupling with Hamiltonian~used by, e.g.,@12,16# for the
study of decoherence in 2LS!

Ĥ5\v0Ŝz1\(
k

@vkb̂k
†b̂k1\sz~ ḡkb̂k1gkb̂k

†!#,

~2.3!

we examine the next term after the dipole approximation
Eq. ~A15!. This has a contribution togi j k even wheni 5 j ,
which is equal to

gii k5ckk•qi ,

where

qi5(
s

E f̄ idx~p•êks!f idx3

andck is a constant given by

ck52
e

m
~2\vke0V!21/2.

This generates an additional coupling term

it
e-
1-3
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(
k

sz~g1kbk1ḡ1kbk
†!11~g2kbk1ḡ2kbk

†! ,

where

g1k5g11k2g22k , g2k5g11k1g22k .

This gives the lowest ordersz type of coupling in a
2LAEMF system. The ratio of the couplingg1k of the sz
type in Eq.~2.3! to the dipole couplinggk in Eq. ~2.1! is

ug1k /gku5Uk~q12q2!

mvkd12
U< vkuq12q2u

mvkd12
. ~2.4!

Thus thesz type of coupling generated from the 2LAEM
interaction will be significant only for very high frequencie
vk of the EM field, a point intuitively clear from the mean
ing of the dipole approximation.

B. Grassmannian variables and coherent-state integrals

Since Feynman and Vernon@20# invented the influence
functional method, this formalism has been applied to tr
the Brownian motion of a harmonic-oscillator interactin
with a harmonic oscillator bath by many autho
@21,9,22,24#. The two-level system in tunneling has been d
cussed in detail by Leggettet al. @8#, but the derivation of a
master equation by this method that can traverse the n
Markovian regimes has not yet been carried out. We s
perform such a calculation for a two-level system, with t
aid of Grassmannian variables convenient for treating fer
ons and the coherent-state representation in a path inte
form. We construct the coherent state of the combined at
field system as

u$z%,h&5u$z%&3uh&, ~2.5!

whereuz&, z a complex number, denotes the EM field coh
ent states anduh, h a Grassmannian or anticommuting num
ber, denotes the electron coherent state. The transition
plitude between the initial state~i! at t50 and the final state
~f! at t5t f is expressed formally as@34# ~here we suppres
the indexk)

^h̄ f ,z̄f ;tuh i ,zi ;0&5E DzDz̄DhDh̄e( i /\)S[z,z̄,h,h̄] ,

~2.6!

where the action is

i

\
S@z,z̄,h,h̄#5 z̄z~ t !1h̄h~ t !2E

0

t

dsF z̄ż1h̄ḣ

1
i

\
H~ h̄,h,z̄,z!G . ~2.7!

HereH is theQ symbol of the Hamiltonian@35# and there is
an implied summation over field modes:
03382
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H~ h̄,h,z̄,z!5\S (
k

vkz̄kzk2gk~ z̄kh1h̄zk!1v0h̄h D .

~2.8!

In Eq. ~2.8! we have subtracted a constant term1
2 v01 to Eq.

~2.1! so that the ground state now has zero energy. Hen
forth we set\51.

The Hamiltonian in Eq.~2.8! is not ac-number function;
it has terms that are odd. One might then question the va
ity of Eq. ~2.6! for the path integral; it clearly exists as
formal expression, but its evaluation with a saddle-po
method that is based on the Hamiltonian of Eq.~2.8! might
be problematic. We dispel this doubt for the vacuum ca
with an operator method proof of the master equation
Appendix B. It shows that at least for the vacuum case t
saddle-point evaluation yields the correct result. The gen
cases need separate considerations. For many qubits co
to the EM field vacuum, we believe that the path-integ
method yields a simpler treatment than the operator meth

The integration is over all paths satisfying

z~0!5zi , z̄~ t !5 z̄f , ~2.9!

h~0!5h i , h̄~ t !5h̄ f . ~2.10!

We assume initially that the density matrix of the total sy
tem plus the environment is factorizabler̂(0)5 r̂e(0)
^ r̂b(0). Only at that time wouldz andh be pure complex
and Grassmannian numbers, respectively. As the sys
evolves, bothh and z contain Grassmann andc-number
parts. The mixing of even and odd parts~note gk is odd!
comes about as the initially factorized atom state becom
‘‘dressed.’’

In the open system philosophy, as we are interested in
averaged effect of the field on the atom, the atom is con
ered the ‘‘system’’ while the field is the ‘‘environment.’’ The
path integral is performed over the variablesz, while h,h̄ are
treated as external sources. When only one field mod
considered, we have

^z̄f ;tuzi ;0&h,h̄5E DzDz̄expH z̄z~ t !2E
0

t

ds@ z̄ż1 iv z̄z

2g~ z̄h1h̄z!~s!#J ~2.11!

with summation over paths satisfying the boundary condit
~29! for z. We use the saddle-point method. Minimizing th
action yields the following equations:

ż1 ivz52 igh, ~2.12!

zG2 iv z̄5 igh̄, ~2.13!

with solutions

z~s!5zie
2 ivs2 igE

0

s

ds8e2 ivus2s8uh~s8!, ~2.14!
1-4
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z̄~s!5 z̄fe
2 iv(t2s)1 igE

s

t

ds8e2 ivus2s8uh̄~s8!. ~2.15!

Using these for the transition amplitude~2.11! with the mini-
mum value for the action, we obtain

^z̄f ;tuzi ;0&h,h̄5expH z̄fzie
2 ivt2 igF z̄fE

0

t

dse2 iv(t2s)h~s!

1E
0

s

dse2 ivsh̄~s!zi G
2g2E

0

t

dsE
0

s

ds8e2 ivus2s8uh̄~s!h~s8!J .

~2.16!

A prefactor in the coherent-state path integral is equal to o
Now the influence functional due to this single mode rea

F@h,h̄;h8h̄8#5E dz̄idzi

p

dz8̄ idzi8

p

dz̄fdzf

p

3e2 z̄i zi2 z̄i8zi82 z̄f zf^z̄f ;tuzi ;0&h,h̄^z̄i ur0uzi8&

3^z̄i8 ;0uzf ;t&h,h̄ , ~2.17!

where the completeness relation for~unnormalized! coherent
states has been used:

E dz̄idzi

p
e2 z̄zuz&^z̄u51. ~2.18!

Writing with an obvious identification

^z̄f ;tuzi ;0&h,h̄5exp~Az̄fzi1 i z̄ fb1 i ḡzi1D !, ~2.19!

we can use the identity

E dz̄idzi

p
e2 z̄z1 f̄ z1 z̄f5ef̄ f ~2.20!

to obtain

F@h̄,h,h̄8,h8#5eb̄8b2(D1D8) ~2.21!

for an initial vacuum stater̂05u0&^0u. Substituting, we get
the contribution to the influence functional from one mod

Fk@h̄,h,h̄8,h8#5expH gk
2E

0

t

dsE
0

s

3ds8@h̄8~s!h~s8!e2 ivk(s2s8)

1h̄8~s8!h~s!eivk(s2s8)

2h̄~s!h~s8!e2 ivk(s2s8)

2h̄8~s8!h~s!eivk(s2s8)#J .

~2.22!
03382
e.

The influence functional for all modesF5)kFk is finally
given by

F@h̄,h,h̄8,h8#5expH E
0

t

dsE
0

s

ds8„m~s2s8!

3@h̄8~s!1h̄~s!#h~s8!1m* ~s2s8!

3h̄8~s8!@h~s!1h8~s!#…J ~2.23!

in terms of the kernel

m~s!5(
k

gk
2e2 ivks. ~2.24!

III. THE MASTER EQUATION

A. The reduced density-matrix propagator

Having computed the influence functional we have an
pression for the reduced density-matrix propagator

J~ h̄ fh f8 ;tuh̄ i8h i ;0!

5E Dh̄DhDh 8̄Dh8expH h̄h~ t !1h̄8h8~ t !

2E
0

t

ds@h̄ḣ1h̄8ḣ81 ivh̄h2 ivh̄8h8~s!#

1E
0

t

dsE
0

s

ds8„m~s2s8!@h̄8~s!1h̄~s!#h~s8!

1m* ~s2s8!h̄8~s8!@h~s!1h8~s!#…J ~3.1!

where the summation over all paths obey the boundary c
ditions ~2.10! and

h̄8~0!5h̄ i8 , h8~ t !5h f8 . ~3.2!

We can compute the path integral with saddle-point eval
tion and get

ḣ1 ivh1E
0

s

ds8m~s2s8!h~s8!50, ~3.3!

hG 82 ivh̄81E
0

s

ds8m* ~s2s8!h̄8~s8!50, ~3.4!

ḣ81 ivh81E
0

s

ds8m~s2s8!h~s8!

2E
s

t

ds8m* ~s2s8!@h~s8!1h8~s8!#

50, ~3.5!
1-5
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hG 2 ivh̄1E
0

s

ds8m* ~s2s8!h̄8~s8!

2E
s

t

ds8m~s2s8!@h̄8~s8!1h̄~s8!#

50. ~3.6!

It will turn out that only the solution of the first two of thes
equations will contribute to the path integral. We will ther
fore write

h~s!5h iu~s!, h̄8~s!5h̄ f8ū~s!, ~3.7!

whereu,ū are the solutions to Eqs.~3.3! and~3.4! under the
condition

u~0!5ū~ t !51. ~3.8!

Now Eq. ~3.3! is a linear integrodifferential equation of firs
order and as such can be solved with the use of the Lap
transform and the convolution theorem. It is easy to sh
that

u~s!5L 21S 1

z1 iv1m̃~z!
D 5

1

2p i Ec2 i`

c1 i` dzezs

z1 iv1m̃~z!
,

~3.9!

wherem̃(z) is the Laplace transform of the kernel~2.24! and
c is a real constant larger than the real part of the poles of
integrand. It turns out that this functionu(s) contains all
necessary information for the computation of the density m
trix propagator. Substituting our expressions~3.8! and ~3.9!
in Eq. ~3.1!, we can obtain the following expression for th
propagator:

J~ h̄ fh f8 ;tuh̄ i8h i ;0!5exp„h̄ fh iu~ t !1h̄ i8h f8ū~ t !

2@12ū~ t !u~ t !#h̄ i8h i…. ~3.10!

Since we are using coherent-state path integrals, we h
departed in our evaluation from the standard saddle-p
approximation used on configuration space path integrals
these cases, the standard procedure is to distinguish
imaginary part of the kernel as corresponding to dissipa
and consider only its contribution when performing t
saddle-point evaluation. The resulting equations are then
classical dissipative equations of motion. But in the case
the coherent-state path integral, there is no correspond
between extrema of the action and actual classical pa
Hence there is no sense in splitting the kernelh into real and
imaginary parts, and the saddle-point evaluation should
carried out for the whole of the exponential.

B. Master equation for a field in a vacuum state

It is a standard procedure now to find the master equa
@21,24#. We compute the time derivative of the propagato
03382
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J̇5S u̇h̄ fh i1uG h̄ i8h f1
d~ ūu!

dt
h̄ i8h i D J. ~3.11!

The next step is to remove from the above equation the
pendence on the initial values. This is done with the use
the following identities:

h iJ5
1

u

dJ

dh̄ f

, h̄ i8J5
1

ū

dJ

dh f8
. ~3.12!

Note that we are suppressing~for ease of notation! symbols
denoting left or right Grassmann differentiation. In all o
expressions we implicitly assume that differentiation w
respect toh is always right and with respect toh̄ always left.

For the density matrix at timet,

r t~ h̄ f ,h f8!5E dh̄ idh ie
2h̄ ih idh̄ i8dh i8

3e2h̄ i8h i8J~ h̄ fh f8 ;tuh̄ i8h i ;0!r0~ h̄ i ,h i8!,

~3.13!

we obtain the evolution equation

]

]t
r5

u̇

u
h̄

dr

dh̄
1

uG

ū

dr

dh
h1

~d/dt!~ ūu!

ūu

d2r

dhdh̄
. ~3.14!

This is one of our main results: the master equation for
two-level atom interacting with an environment of an ele
tromagnetic field at its vacuum state. The effect of the field
contained within the functionu, which can be determined b
the solution of Eq.~3.3! or equivalently by the computation
of the contour integral~3.9!. In Sec. IV we are going to find
explicit expressions foru for particular choices of the field
configuration.

Let us return for the moment to Eq.~3.14! and write this
in an operator language. It is easy to verify that

h̄
dr

dh̄
5S1S2r,

dr

dh
h5r S1S2 ,

d2r

dhdh̄
5S1rS2 ,

~3.15!

If we write

u̇~ t !

u~ t !
5G~ t !1 iV~ t !, ~3.16!

the master equation reads

]

]t
r52 i @H~ t ! ,r#1G~ t !$S1S2 ,r%22G~ t !S2rS1 ,

~3.17!

where

H~ t !5V~ t !S1S2 . ~3.18!

The first term corresponds to the unitary Hamiltonian evo
tion, only now the effect of the environment has induced
1-6
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time-dependent shift in the value of the frequency, the s
ond term is time-dependent dissipation, and the third co
sponds to noise.

C. Spontaneous emission

To show how the standard results are regained, an
understand the meaning of the new function in the ma
equation, let us consider the physical process of spontan
emission. Start with a generic initial density matrix

r5S 12x y

y* xD . ~3.19!

Its correspondingQ symbol is

r~h̄,h!5x1y* h1yh̄1~12x!h̄h. ~3.20!

If we evolve it with the density-matrix propagator~3.10! we
obtain for the state at timet

r t~ h̄,h!512ūu~12x!1~ ūy* h!1~uh̄y!1„ūu~12x!…h̄h
~3.21!

corresponding to

r t5S ūu~12x! uy

ūy* 12ūu~12x!
D . ~3.22!

Considering the casex5y50 we get for the probability of
spontaneous emission

P~1→0,t !512ūu. ~3.23!

Also, we should remark that the rate of decoherence in
energy eigenstates is governed by the absolute value o
function u ~the off-diagonal terms!. But on the other handu
itself determines the rate of energy flow from the atom to
environment. Hence for our particular choice of initial sta
~vacuum! we find that decoherence and relaxation time
essentially identical. We shall use this equation to study
coherence in an ion trap in a later paper.

IV. FIELD MODES AND ANALYTIC u„t…

Our master equation~3.17! depends solely on the functio
u(t), which in its turn is determined by the kernelm(s). In
this section we will try to give some analytic expressions
this function in various different cases.

A. A single mode

To connect with known results@1#, let us start with the
case where the field contains only a single mode with
quencyvk5k. Thenm(s) will read

m~s!5g2e2 iks ~4.1!

and
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m̃~z!52gE
0

`

e2sze2 iks5
g2

z1 ik
. ~4.2!

The integrand has two poles at the solutions of the equa

z21 i ~v1k!z2vk1g250 ~4.3!

given by

z52 i
v1k6@~v2k!21g2#1/2

2
52 iv1,2. ~4.4!

Hence

u~s!5
k2v1

v22v1
e2 iv1s2

k2v2

v22v1
e2 iv2s. ~4.5!

This result is in agreement with standard ones@1#.

B. Infinite number of modes

Now we consider the case of the vacuum electromagn
field in free space, i.e., not constrained by a cavity. T
kernel will then read@using Eq.~2.24!#

m~s!52l2E d3k

~2p!3
k21e2 iks5

l2

p2E0

`

kdke2 iks5
d

ds
n~s!,

~4.6!

where

n~s!5
il2

p2 E0

`

dke2 iks. ~4.7!

Note the factor of 2 in Eq.~4.6! coming from the two-photon
polarizations and that in view of Eq.~2.3! we have written
gk5lvk

21/2.
Since the integral~4.7! is not convergent, we will intro-

duce an exponential cutoff in the higher frequency mod
The presence of the cutoff is of physical significance sin
we do not expect high electromagnetic modes to couple w
our two-level atom.

Hence the kerneln will read

n~s!5
il2

p2 E0

`

dke2 iks2ke5
l2

p2

1

s2 i e
. ~4.8!

The Laplace transform ofn is then

ñ~z!5
l2

p2E0

`

ds
e2sz

s2 i e
52

l2

p2
e2 i ezEi~2 i ez! ~4.9!

where Ei denotes the exponential integral function anal
cally continued to the complex domain. At the limite→0
this is essentially

Ei~2 i ez!5g1 ln~2 i ez!1O~e!, ~4.10!
1-7
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whereg is the Euler-Macheronni constant and the logarith
is taking values in the primary branch. Thusm̃(z) reads
@n(0) is heren(s50) obtained by the integration by parts
the Laplace transform#

m̃~z!52n~0!1zñ~z!52
il2

p2e
2

l2

p2
ze2 i ezEi~2 i ez!.

~4.11!

Note that the cutoffe significantly effectsm(z) only at large
values ofz, which essentially correspond to the very sh
time limit, i.e., the time where the two-level atom sta
‘‘getting acquainted’’ with the photon reservoir. At large
times (t@e) we do not expect the cutoff to contribute si
nificantly in the evolution. This is a rather typical behavior
quantum Brownian motion models, provided that the ult
violet cutoff of the environment is much larger than the na
ral frequencies of the system.

To evaluate the integral we first have to find the poles
the denominator. We can do that in a perturbation expans
First, let us absorb the divergentn(0) factor in a frequency
renormalization

ṽ5v2
l2

p2e
, ~4.12!

so that we need find the zeros of the functionz1 ivz
2(l2/p2)e2 i ezEi(2 i ez). Looking for a solution in the vi-
cinity of z52 i ṽ, we find

z52 i ṽ2m̃~2 i ṽ !,
~4.13!

2 i F ṽ2
l2ṽ

p2
ln~egeṽ!G2

l2ṽ

p
1O~l4!ª2 iV2G.

We have a pole with a negative real part and we can ve
numerically ~also physically, as expected! that there is no
pole with a greater real part. This means that when eval
ing the inverse Laplace transform we can ignore the con
bution of the branch cut atz50 ~being on the right of the
pole! and hence after some time, where all possible ot
poles with absolutely larger values of their real parts w
have stopped contributing, the solution will be

u~s!5e2 iVs2Gs. ~4.14!

This implies a Markovian time evolution and the identific
tion of decoherence with relaxation time withG21

5(p/l2v). This is a general feature of the presence o
continuum of modes as can be seen from the case of an
transparent to all modes but the ones in a strip, say,@v1 ,v2#,
containing the resonance frequency.

It is easy to verify that in this case we have again

m̃~z!52 i
l2

p2
~v22v1!1

l2

p2
lnS v22 iz

v12 izD . ~4.15!

Hence defining again
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ṽ5v2
l2

p2
~v22v1!, ~4.16!

we can find the pole at

z52 i F ṽ2
l2v

p2
lnS v22ṽ

ṽ2v21
D G2

l2ṽ

p
1O~l4!.

~4.17!

Note that the real part of the pole comes from the pr
ence of a minus sign in a logarithm of some real valu
object. Hence in the case where the atom’s frequency is
side the strip of interacting modes there will be no dissip
tion. This feature separates us from the QBM case, cha
terizing the atom-field system as primarily a resonant on

C. Atom in a cavity

Let us now consider the case of the atom lying within
cavity consisting of two parallel plates at distanceL. The
field satisfies Dirichlet boundary conditions on the surface
the plates, hence the modes in the normal direction to
plates are multiples ofp/L. The kernel then reads

m~s!5
l2

2pL (
n
E

0

` kdk

@k21~np/L !2#1/2
e2 i [k21(np/L)2] 1/2(s2 i e)

5
1

2pL (
n
E

unp/Lu

`

dke2 ik(s2 i e)

5
1

2pL

1

e1 is (
n

e2 i unp/Lu(s2 i e) ~4.18!

5
1

2pL

1

e1 is

11e2 ip/L(s2 i e)

12e2 ip/L(s2 i e)
. ~4.19!

Hence we can compute its Laplace transform@36#

m̃~z!5
2 il2

2pL E
0

`dse2sz

s2 i e

11e2 ip/L(s2 i e)

12e2 ip/L(s2 i e)

5
2 il2

2pL
JS 2 i ez,

ip

2LzD , ~4.20!

whereJ(x,a) is defined by

J~x,a!5E
x

`dye2y

y
coth~ay! ~4.21!

and appears in Eq.~4.20! through analytical continuation in
the complex plane. This integral can actually be compute
the limit of vanishingx (e→0)—see Refs.@37#, Eq. 3.427.4
1-8
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m̃~z!5
2 il2

p2e
1

l2

p2
z ln~ iegez!2

il2

pL F ln GS Lz

ip D
2

Lz

ip
lnS Lz

ip D1
Lz

ip
1

1

2
ln

Lz

2ip2G1O~e!.

~4.22!

Note thatm̃(z) is a sum of the term of case 2 (L→`) and a
finite one ~no dependence one). The logarithm of theG
function gives a countable number of branch cuts az
52 i (n/pL), wheren is the positive integer, the resonan
modes of the cavity. Again the important pole has a nega
real part. We can again compute the pole perturbatively
lies at

z52 i F ṽ1
l2

p2
ṽ ln~egeṽ!2

l2

pL
ln G~2Lṽ/p!

2
Lṽ

p
ln~2Lṽ/p!2

Lṽ

p
2

1

2
lnS 2

Lṽ

2p2D G . ~4.23!

Clearly the logarithm of theG functions is the term out o
which the real part of the pole appears. Since the real pa
the pole is negative the branch cut is excluded from the
tegration contour and hence

u~s!5e2 iVs2Gs. ~4.24!

HereG gives a dissipation constant. In Fig. 1 we give a p
of the real part of the pole (2G) as a function of the fre-
quencyv. Note that it has sharp maxima on the resona
points, implying persistence of coherence.

Already from the approximation~4.23! we observe that
the difference in the renormalized frequency from the c
L→` (Dv) is finite. Unfortunately, perturbation expansio
is not reliable whenṽ is close to the resonance frequenc
~this corresponds to negative integers arguments in thG
function where it diverges! and for this regime we have no
been able to get any analytic results. In Fig. 2 we have p
ted the dependence ofDv5V@L#2V@`# as the frequency

FIG. 1. Real part of a pole~negative dissipation constantG) as
a function ofv/(p/L).
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changes. This effect of the frequency shift for an atom with
the cavity is well known, as well as its relation to the Casim
effect @38#.

V. DISCUSSION

Let us now integrate what we have found and look at
overall picture. The physics of a 2LAEMF system at ze
temperature is characterized by a number of time consta
~i! the inverse natural frequencyv0

21, ~ii ! the inverse cou-
pling constantgk

215Avk/l, ~iii ! the relaxation time constan
G21, and~iv! The cavity sizeL ~divided byc).

First consider a zero-temperature field in free space, t
ignoring factors~iv!. Start with only one mode in the field in
resonance with the atom, then the system undergoes
nutation with frequencyV'gAn11, wheren is the photon
number in the field. The collapse time~assuming a large
mean photon numbern̄) is g21, and the revival time is

2pAn̄/g @1#. Atom excitation becomes significant in a tim
much greater thanv0

21 but shorter thang21. ~This is the
condition for a first-order perturbation theory to give reaso
able results.! For a large number of modes, spontaneo
emission occurs at the relaxation time scaleG215p/g
@v0

21, which we found to be the same as the decohere
time – the time for the off-diagonal elements of the reduc
density matrix to decay~Sec. IV!. When the mean number o
photons in the field is large (n̄@1), they become comparabl
to the collapse time. This is a measure of the coherenc
the atom-field system, and is controlled mainly by their co
pling and the photon number in the field. We see that w
the resonance condition, the nature of decoherence in 2L
very different from the QBM situation, where phase info
mation in the Brownian particle is efficiently dispersed in t
many modes in the bath coupled almost equally to the s
tem. As we remarked in the Introduction, the identification
the phase information and energy flow from the 2LS to
environment is similar to the spin-echo phenomena~Landau
‘‘damping’’ ! which is based on statistical mixing rather tha
dissipation. The mathematical distinction lies between c
sidering the system coupled to the discrete number basis~our
model! and the continuous amplitude basis~QBM! of the
environment. The latter case essentially produces noise
drives the system in a way insensitive to its own intrins

FIG. 2. Frequency shiftDV as a function ofv/(p/L).
1-9
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dynamics. While in the former case, the coupling respe
the internal dynamical structure of the 2LS and allows it
keep its coherence.

To see how the distribution of modes in a field chang
the picture, the cavity-field calculation in Sec. IV is usef
As shown in Fig. 1, the relaxation constant develops pe
and minima. The resonance effect is enhanced by a ca
size commensurate with the natural frequency of the 2
and dissipation weakens. Narrow-band resonance fluo
cence as well as inhibition of spontaneous decay by frequ
measurements – the quantum Zeno effect – are interes
phenomena for which our equations can provide finer deta

Non-Markovian processes involve memory effects~non-
local in time!. For the QBM problem, except for the case
a high-temperature Ohmic bath that gives Markovian dyna
ics, other types of spectral density~supra-Ohmic! or low
temperatures, the dynamics of the system is non-Markov
@24#. When the reaction time of the bath is comparable to
faster than the natural time scale of the system (v0), one also
expects to see non-Markovian behavior. In contrast, the 2
is quite different: At zero temperature there is only one ti
scale,G215l22v21@v21, that determines both decohe
ence and relaxation. There is no memory effect and he
the process is Markovian. We expect that in finite tempe
tures the dynamics of the 2LA will be non-Markovian@39#.
This is because there are more ways for the atom and
field to get entangled, and the memory effects of their int
action would presumably persist. In conclusion, we find t
the 2LS interacting with an EM field is far more cohere
than what is commonly believed, the misconception pr
ably arising from the mistaken identification of this syste
with the Brownian model of an oscillator interacting with
harmonic-oscillator bath.
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APPENDIX A: ATOM-FIELD INTERACTION:
TWO-LEVEL SYSTEM

In this Appendix we give a rather detailed derivation
the Hamiltonian for a nonrelativistic atom interacting with
second-quantized electromagnetic field under the dip
rotating-wave, and two-level approximations. This is to
cilitate the comparison of our model~2.1! with s6 coupling
with that used by others@Eq. ~2.3!# with sz coupling. ~See
the Introduction.! To also make this useful for later papers
this series, we have included atomic motion. Note that
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convention here is closer to@1# than that used in the text
which is closer to@5#. The conversion is explained in foot
note 2.

The dynamics of a moving atom~massM, momentumP)
whose electrons~chargee, massm) interact with an electro-
magnetic field~vector potentialA, Coulomb potentialV) is
described by the~classical! Hamiltonian

H5
P2

2M
1

1

2m
~p2eA!21eV~x!1Hb , ~A1!

whereHb is the Hamiltonian for the electromagnetic fiel
Expanding this equation, one can write

H5Ha1He1Hb1Hc , ~A2!

where

Ha5
P2

2M
~A3!

describes nonrelativistic atom motion,

He5
p2

2m
1eV~x! ~A4!

decribes the dynamics of the~one! electron, while

Hc152
e

m
A•p ~A5!

and

Hc25
e2

2m
A2 ~A6!

describe the coupling between the electron and the field.
second term makes no contribution to one-photon proce
and will be ignored. We will refer toH05He1Hb as the
unperturbed Hamiltonian, andHI5Hc1 as the interaction
Hamiltonian.

In a second-quantized form, the Hamiltonian for the
diation field is given by

Ĥb5(
k

\vkb̂k
†b̂k , ~A7!

whereb̂k
† , b̂k are the creation and annihilation operators

thekth normal mode of a free massless vector field. Thus
the field vacuumbku0&50, b̂ku0&50, @ b̂k ,b̂k8

†
#5dk,k8 , for

all k. We can perform a harmonic decomposition of the ve
tor potential of the electromagnetic field

A~x,t !5(
k

S \

2vke0
D 1/2

@bksuks~x!eivkt1bks
† ūks~x!e2 ivkt#

~A8!

where, assuming the field is contained in a box of sizeL, the
spatial mode functionsuks are given by
1-10
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uks~x!5L23/2êks f k~x!. ~A9!

Here êks is the unit polarization vector ands51,2 are the
two ~transverse! polarizations. In free space,f k(x)5e2 ik•x.

We assume that electron motion is much faster than
motion of the atom, thus it sees a stationary central Coulo
potential around the center of mass of the atom. Denoting
~time-independent, nonrelativistic! electronic wave-function
eigenstate belonging to the eigenvalueEi by f i , i.e., Hef i
5Eif i , we can write the Hamiltonian for the electron in th
second-quantized form as

Ĥe5(
i

Ei âi
†âi , ~A10!

where i labels the bound states of the eletron~we assume
vanishing probability for the atom to ionize! and âi

† and âi

are the creation and annihilation operators. As fermions t
obey the anticommutation relationsâi

†â j1â j âi
†5d i j .

To perform perturbation theory, the electronic wave fun
tion of the interacting system is expanded in terms of
eigenfunctionsf i of the unperturbed Hamiltonian, with bas
formed by the direct product of the electron and the fi
states. Thus the electron field operatorĉ(x) can be expanded
as

ĉ~x!5(
i

âif i~x!. ~A11!

With this, the interaction Hamiltonians is given by

ĤI52
e

mE ĉ†~x!~p•A!ĉ~x!d3x ~A12!

or in terms ofâi ,b̂k operators

ĤI5\(
i , j ,k

âi
†â j~gi j kb̂k1ḡi j kb̂k

†! ~A13!

where

gi j k52
e

m

1

A2\vke0
E f̄ i~x!uks~x!•pf j~x!d3x.

~A14!

1. Dipole approximation

Now consider conditions when the spatial variation of t
vector potentialA of the electromagnetic field is small com
pared to the electronic wave functionc; one can expand
f k(x) in uks(x) around the position of the atomx5X1dx:

eik•x5eik•XF11k•dx2
1

2
~k•dx!21•••G . ~A15!
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The dipole approximation amounts to keeping just the le
ing term. Doing so, we can take the field mode functi
f k(x) out of the integration above and evaluate it at t
atomic position. To evaluate

e

mE f̄ ipf jd
3x,

we make use of

dx̂i

dt
5

p̂i

m
5

1

i\
@ x̂i ,Ĥe#, ~A16!

yielding,

e

mE f̄ ipf jd
3x5 iv i j pdi j , ~A17!

where \v i j 5Ei2Ej , and di j [e*f̄ ixf jd
3x is the dipole

matrix elementdi j 5d̄j i . Define

di j k[2
iv i j

A2\vke0V
di j •êks . ~A18!

Note thatd̄i j k5dji k . With this under the dipole approxima
tion,

gi j k5di j k f k~X!. ~A19!

2. Rotating-wave approximation

In the interaction picture, recalling that the time evolutio
of the ladder operators are given by

âi
†~ t !5âi

†eiv i t, â j~ t !5â je
2 iv j t, b̂k~ t !5b̂ke

2 ivkt,
~A20!

the interaction HamiltonianHI in the interaction picture be
comes

H̃I5\(
i , j ,k

gi j kâi
†â j b̂ke

i (v i j 2vk)1\(
i j k

ḡi j kâi
†â j b̂k

†ei (v i j 1vk),

~A21!

wherev i j [v i2v j . We see there are two types of oscill
tory terms present:e2 i (v i j 6vk). Processes most effective i
the absorption or emission of a photon by the atom co
spond to those with near resonance frequencyv i j 'vk . As-
sumingv i j .0 (Ei.Ej ), the first type withe2 i (v i j 1vk) has a
rapidly oscillating phase and its contribution is small co
pared with the second type withe2 i (v i j 2vk), whose station-
ary phase at near resonance gives a large contribution. P
cally, the first type corresponds to either the excitation of
atomalong withthe emission of a photon or the relaxation
the atomalong withthe absorption of a photon, which is les
probable than the second type corresponding to the ex
tion of an atom upon the absorption of a photon or the
laxation of an atom with the emission of a photon. We sh
therefore ignore the first type of terms, which amounts
1-11
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working under the rotating-wave approximation~RWA!.
This is the second major approximation in this stand
model.

3. Two-level atom

Let us now consider the idealized case when the atom
only two electronic states,u1&,u2& corresponding toi
52,1, with energies equal toE656 1

2 \v0. ~The two states
can interchangeably be labeled asu1&,u0&, or ue&,ug& or
u↑&,u↓&.) Thusv i j 5215v0. Thus

Ĥa5
\v0

2
~a2

†a22a1
†a1![

\v0

2
sz[\v0Sz , ~A22!

where we have introduced a Pauli matrix (232) representa-
tion sz5diag(1,21) For the interaction Hamiltonian above
under the RWA, in thei 52,j 51 contribution to the summa
tion, the first line containingei (v02vk) is kept, while the sec-
ond line is dropped. The reverse is true for thei 51,j 52
term. The interaction Hamiltonian~in the interaction picture!
now becomes

H̃I5\(
k

@g21kâ2
†â1b̂ke

2 i (vk2v21)t

1ḡ12kâ1
†â2b̂k

†e2 i (vk1v12)t#. ~A23!

Introducing the Pauli matrix representation for the fermi
operatorsa2

†a1→s1[S1 and a1
†a2→s2[S2 , and defin-

ing gk[d21k5d̄12k @recallgi j k[di jk f k(X)] we can write the
interaction Hamiltonian~in the Heisenberg picture! in a
simple form:

ĤI5\(
k

gk@S1bk f k~X!1S2bk
† f̄ k~X!#. ~A24!

Therefore the total Hamiltonian for our model of a movin
atom interacting with a quantum electromagnetic field un
the dipole, rotating-wave, and two-level approximation
given by

Ĥ5
P̂2

2M
1\v0Ŝz1\(

k
@vkb̂k

†b̂k1gk~ f k~X!S1bk

1 f̄ k~X!S2bk
†!#. ~A25!

APPENDIX B: AN OPERATOR PROOF OF THE MASTER
EQUATION

We use the resolvent decomposition of the propagato

e2 iHt5E dEe2 iEt

E2H
. ~B1!

Then by writing H5H01HI we can expand the resolven
and get
03382
d

as

r

~E2H !215~E2H0!21~12~E2H0!21HI !
21

5~E2H0!21S 11~E2H0!21HI1
1

2
~E

2H0!21HI~E2H0!21HI1 . . . D . ~B2!

When we act, the expanded resolvent in any vectoru0,i &
5u0& ^ u i &, (u i & denotes an eigenstate of the Hamiltonian
the two-level system! we see that only expanded terms th
contain alternating sequences ofs1 and s2 survive. This
makes the summation much easier. It is also easier if we n
that

~E2H0!21(
k

gkbk~E2H0!21gk8(
k8

bk8
† u0&

5~E2v0!21(
k

gk
2

E2vk
u0&ª~E2v0!21F~E!.

~B3!

Hence we can compute the matrix elements by resumm
the expansion

^z,0u~E2H !21u0,0&5E21, ~B4!

^z,1u~E2H !21u0,0&50, ~B5!

^z,1u~E2H !21u0,1&5„E2v02F~E!…21, ~B6!

^z,0u~E2H !21u0,0&5
E2v0

E2v02F~E! (
k

gk

~E2v!2
z̄k .

~B7!

The reduced density-matrix propagator in the energy b
of the two-level atom and for the vacuum initial state is

J~ i , j ;tum,n;0!5E dEdE8e2 i (E2E8)t

3E DzDz̄e2(
k

z̄kzk@^z,i u~E2H !21u0,m&

3^0,nu~E2H !21uz, j &#. ~B8!

We can then verify that the only nonzero elementsmn
→ i j are the following and their conjugates

J~0,0;tu0,0;0!→E21E821, ~B9!

J~0,1;tu0,1;0!→E21
„E82v02F~E8!…21, ~B10!

J~0,0;tu0,0;0!→ E2v0

E2v02F~E!

E82v0

E82v2F~E8!

3(
k

gk
2

~E2vk!~E82vk!
, ~B11!
1-12
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J~11;tu1,1;0!→„E2v02F~E!…21
„E2v02F~E8!…21.

~B12!

Then it is easy to check that this reproduces the propaga
as given by Eq.~3.21! that was obtained through the influ
ence functional method. Indeed
-

s

,

m

c

A

4

.
-

03382
on

u~ t !5E dEe2 iEt

E2v02F~E!
~B13!

is exactly the same as the one defined by Eq.~3.9!.
ys.

ett.
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