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Two-level atom-field interaction: Exact master equations for non-Markovian dynamics,
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We perform a first-principles derivation of the general master equation to study the non-Markovian dynam-
ics of a two-level aton{2LA) interacting with an electromagnetic figlEMF). We use the influence functional
method, which can incorporate the full back reaction of the field on the atom, while adopting Grassmannian
variables for the 2LA and the coherent-state representation for the EMF. We find exact master equations for the
cases of a free quantum field and a cavity field in the vacuum. In response to the search for mechanisms to
preserve maximal coherence in quantum computations in ion trap prototypes, we apply these equations to
analyze the decoherence of a 2LA in an EMF, and find that decoherence time is close to relaxation time. This
is at variance with the claims by authors who studied the same system but used a different coupling model. We
explain the source of difference and argue that, contrary to common belief, the EMF, when resonantly coupled
to an atom, does not decohere it as efficiently as a bath does on a quantum Brownian particle. The master
equations for non-Markovian dynamics derived here are expected to be useful for exploring new regimes of
2LAEMF interaction, which is becoming physically important experimentally.

PACS numbsd(s): 42.50.Ct, 42.50.Lc, 03.65.Bz

[. INTRODUCTION [11,12,18, and their dissipative and decoherent behavior are
reported to be similar to that of a QBM in a harmonic-
A two-level systen(2LS) interacting with a quantum field oscillator bath. The progression in three stages—quiescent,
—an electromagnetic fielt(EMF) in particular—has proven vacuum fluctuation-dominated, and thermal fluctuation-
to be a very useful model for a wide range of problems fromdominated, separated by the cutoff frequency and the thermal
atomic-optica[1—7] and condensed matt8,9] processes to  de Broglie frequencywavelength—are indeed characteris-
quantum computatiofil0]. For the latter application strin- tic of the QBM result{21,23-2527,28 .
gent limits in maintaining the coherence of the the 2LS Our findings, in contrast, are in stark disagreement with

(called qubits are required. This prompted us to revisit the those reported in the literature. We work with the standard

theoretical structure of the 2LS model, paying special atten-zLS_EMF model[1] and_ obtain an exact master e_quation _for
epicting non-Markovian dynamics. Solving this equation

tion to its coherence properties. Treatment of spontaneo . )

emission and relaxation are standard textbook topicsOr the reduced d_ensny matrix of the .2LS show; t.ha.t the
T . . decoherence rate is close to the relaxation rate. This is in first

whereas decoherence and dissipation, especially in the con-

text of i tali the f f ?ppearance rather couterintuitive, and different from all pre-
text ol quantum computation, are the focus of more recent;y g findings. Upon careful deliberation we realize that the
investigationd11-1§.

o “intuition” researchers(including us at the starthave ac-
Because of the familiarity of the modedee Sec. llAand g ired for dissipation and decoherence is based on the QBM

its theoretical and practical values, we do not need to emphapdel which influenced the choice of model in the investi-
size the general motivation, but can go right to the pomgation of decoherence for a 2LS. However, we find that such
about the aim and results of this paper. The description o commonly invoked intuition for QBM in a HOB fails to
this system generally comprises two par($: spontaneous  gpply to that of a two-level atorf2LA) interacting with an

allows little room for disagreement, as it can be obtained
from elementary calculations. The second part on decoher- )
ence is more subtle. A. Decoherence in QBM
Environment-induced decoherencE] has been studied Physically, when we say that decoherence of the system
extensively in recent years, and it has been primarily basedf a Brownian oscillator proceeds in a very short time as it is
on models of quantum Brownian moti¢@BM) [20—2€ for brought in contact with an environment, such as a HOB at
the interaction of a simple harmonic oscillatBrownian  some temperture, we are usually conjuring a model with bi-
particle with a harmonic-oscillator batfHOB) at a finite  linear [20] (or polynomial[24]) coupling of the oscillator-
temperature, leading to a reasonably good understanding bfath coordinates, and an Ohmic or sub-Ohmic spectral func-
its characteristic features. Decoherence of a 2LS in an EMion [21] in the bath. Intuitively, the bath needs to have many
field has been studied by a number of authors, notablygegrees of freedom, preferably acting independently of each
other so that the phase information in the system will be
dispersed to the largest extent amongst the many bath de-
*Email address: ca81@umail.umd.edu grees of freedom and afford little chance of taking an inor-
TEmail address: hub@physics.umd.edu dinately long time to be revived or reconstituté@coher-

1050-2947/2000/63)/03382113)/$15.00 62 033821-1 ©2000 The American Physical Society



CHARIS ANASTOPOULOS AND B. L. HU PHYSICAL REVIEW A62 033821

ence[29]). The opposite picturéof very long decoherence as 40[19)). In fact, it is perhaps inappropriate to talk about
time) is exemplified by two coupled subsystems where nadissipation for a 2LAEMF system because the conditions for
coarse graining is introduced, or for system-environmen@ bath to actuate such a process are lacking. The transition
couplings that maintain some high level of coherence, or fofrom the excited to the ground state is closer in nature to
an environment whose degrees of freedom have long corréelaxation(in the spin-echo senséhan dissipation. In a cav-
lation times like in a zero-temperature, supra-Ohmic bathity where excitation of the atom from the fie{dbsorption

The case of aspin particle or (plasma wave interacting balances with emission, it i; more appropriate to refer to the
with an averagedcollective variable from the environment, fésonant state c_>f t.he atom field as a coherent system. In these
such as the mean field, showing Landau damping in Viaso$€narios, the distinction between QBM and 2LA cannot be
dynamics, is another examp|80,31). Just as in the spin- clearer.

echo _phenomeqée.g, C_hap. 34]), the basic physics in this_ C. Difference between QBM and 2LS

case is not dissipation in the Boltzmann sense, but statistical

mixing [32]. We will see that this example is of more physi- S0 what led earlier authors to make the qualitative claim

cal relevance to our problem than the QBM. that 2LS decoheres easily? We think the confusion arises
_ when the picture of QBM dissipation and decoherence is
B. Coherence in the 2LS grafted on the 2LAEMF system indiscriminantly. If the field

For the 2LAEMF system, one clear distinction betweenthat acts as the environment is a phonon fitdm ion
an EM field as an environment and a system of harmoni¢/ibrations, see, e.g[17]) and if the coupling is of the non-
oscillators as bath is that the fieldoupled to a detectbhas resonant type, then there is no disagreement. Decoherence
an intrinsic spectral density function, not to be chosen arbishould follow the QBM pattern as reported by many
trarily. For example, it has been sho{@6] that a conformal guthor§ Such s_ourcesncludlng atomic collisions in a cav-
scalar field in two dimensions coupled to a monopole deteclty [7]) can be important for some setups. However, when
tor has an Ohmic character while in four dimensions it isOne claims that the EM field can decohere a 2uh which
supra-Ohmic. Barone and Caldeifa3] showed that the itis coupled in a resonant way, as in the standard meeel
spectral density function for EM fields with momentum cou- that is where we disagree.
pling to an oscillator detector is supra-Ohmic. These density Quantitatively, the model for the 2LS used by most au-
functions would show very different decoherence behaviothors for the discussion of decoherence inspired by QBM
from the high-temperature Ohmic HOB used in many discustyPe of behavior has the atom in @, state(the diagonal
sions of decoherence, the latter case is what the general follRauli matriy coupled to the field mode operatdy,b. This
lore is based on. But the most important distinction fromtype of coupling term(call it o, type for conveniengecom-
QBM is that the 2LA couples with the EMF in the discrete mutes with the Hamiltonian of the system, and admits a di-
number basis for the field, unlike the continuous amplitudeagonalization in the eigenbasis of the Hamiltonian. The field
basis in the QBM. This factwhich is true in the rotating- is coupled to the atom as a whole and thus is insensitive to
wave and dipole approximatiprimplies that the 2LS plus the two-level transition activity. In particular, it does not
the EMF system is aesonantone. Hence even though the probe the resonance or coherent properties of the two-level
EM field has just as manglarge number of modes as the atom, which is the most important feature, for quantum com-
HOB, only a very small fraction of them in a narrow range of putation. In contrast, the standard model for 2LAEMF,
the resonance frequency are efficiently coupled to the atonwhich we studied, has &.. coupling (call it standard cou-
This is the root cause for the very different qualitative be-pling) to the field modes that highlights the two-level activity
havior between the QBM and the 2LS as far as decoherenad the atom and the field. This coupling considered in the
is concerned. standard model is indispensible, i.e.,cannotbe removed

One extreme case is that of a single-mode field describeffom the two-level atom as definedt and will be present in
by the Jaynes-Cummings model, where Rabi nutation takeany realistic situation. What then is the origin of the QBM
place and the atom field remains largely a coherent systentype of contribution to the 2LS ?
(For a coherent field, the probability for the atom to be found If one accepts an environment other than the EM field, the
in the excited state at tintaregardless of the state of the field question comes down to the characteristics of the experimen-
obeys a Poisson distribution. This distribution in the photontal apparatus. For well-prepared ion traps we would expect it
number induces a spread in the Rabi frequencies, and causesbe rather unimportant. If the EM field is the only field
the collapse and revival of the Rabi nutation. These are dis-
tinct features of quantum coherenidd.) Adding all modes
to the field we see spontaneous emission and the decay of the

f':ltom. The probablllty of an initially exc_lted ato(remalrjlng QBM behavior than what has been accorded for this model. Subtle
in the excited stajedecays exponentially in the Wigner- ,inis unnoticed before include, e.g., the imposition of a high-
Welssk_opf f_orm(charactensuc of Markovlah prOCGS$@'ﬂth frequency cutoff and Ohmic spectral function that restricts to a
relaxation time constank’. For purely radiative decay the parkovian behaviof21] can lead to a violation of the positivity of
decay timeT; of the inversion is half the decay tinlg, of  the reduced density matrij24], the violation of the fluctuation-
the polarization. There are no large order-of-magnitude difdissipation relatio23], and the prolongation of coherence in a
ferences between dissipation and decoherence(thigh in - low-temperature supra-Ohmic b&t?4]. They deserve more atten-
typical QBM high-temperature conditions could be as hightion in the theoretical design of cavity qubit computers.

Even in such cases, one also needs to pay closer attention to the
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present, we can still ask if a QBM type of coupling term with magnetic field EMF) under the dipole, rotating-wau®W),
the EM field would appear, and if yes, how strong would itsand two-level(2L) approximation is given by
effect be? This would be a useful way to accommodate the

two different types of coupling terms. g & AT A im e [t
Recall that the standard model is derived under the dipole H ﬁwosﬁﬁ; LoDt (9S: bt 9S-bi) ]
and rotating-wave approximation. In Sec. Il we will show (2.1

that theo, type of coupling appears only in the next-order
expansion after the dipole approximation. Since these arWherer:,Bk are the creation and annihilation operators for
ghOOd appr_oximatiolns_ fora |ar:ge C|aS_1; of atofmic Stﬁtez Vél'f\l/lefhe kth normal mode with frequenay, of the electromag-
the atom is nonrelativistic, the contribution from the o : ° —_arh Bt
type of coupling used ifi11,12,16 should be negligible and netic field (thus for the field vacuurby|0)=0{by.by]
its ensuing decoherent effect insignificant. In this sense th
EM field does not in leading order of approximation act like
a bath in the QBM way, and coherence in a 2LAEMF system T 1 . A
is quite well preservedexcepting other processes, e.g., S,=50,, S:=0.=5(0xFioy),
[15,14). 2 2

Our puzzle over the result on decoherence in the 2LS . . .
reported in the literature was what prompted us to begin thiyh?re Ty, are the standard >j22 Pauli matrices withr,
study. Without letting any familiar and convenient analogy — 3129 (1~ 1), etc. The coupling constarg=dzf«(X)
influence our judgement, and without any preconceived nowhere

tion, we choose to perform a first-principles calculation of

= Ok » for all k), and wy= w5, is the frequency between
fhe two levels. Here

the two-level atom electromagnetic figl2lLA-EMF) system A= — Twjj di e 2.2
making as few assumptions and covering as wide a range of ik VhoeV o ’

conditions as possible. We use the influence functional
method[20] to take into account the full back reaction of the
field on the atom, while adopting Grassmannian variables fo
the 2LA and the coherent-state representation for the EM

We find exact master equations for the firibn-Markovian Unit polarization vectc_)r&zl,z are ?he two polarizations
dynamics in the cases of a free quantum field and a cavitf"d7() are the spatial mode functions of the vector poten-
field at zero temperature ial of the electromagnetic fieldin free space,f(x)

In Sec. Il we present the model and the formalism. A~ € 1%, Vis the volume of spage Under the dipole ap-
detailed derivation of our model is contained in Appendix A, Proximation, fy is evaluated at the position of the ato
In Sec. Il we derive the master equations. In Sec. IV weSinced;;=d;;, d;;x=d;ix, we will choose a mode function
study different mode composition of the field, including thatrepresentation such thgy is real.
of an atom in a cavity. We end in Sec. V with a discussion of  To see how this could possibly be related to theype of
our findings and their implications. coupling with Hamiltonian(used by, e.g.[12,16 for the

This is the first in a series of papers on the 2LA andstudy of decoherence in 20.S
guantum decoherence. The subsequent papers will treat
2LAEMF interaction at finite temperatures, for EM fields in N 2 ~ g —r ~ 4
a coherent and squeezed state, and for multipolar models H—thSerh; [okbibict 7 o2(gbitgibi) ],

(where coupling other than the minimal is assum&de will (2.3
also tend to collective qubit systems and moving atoms in-

teracting with an EM field. These results will have corre-we examine the next term after the dipole approximation in
sponding applications in atom optics and quantum computaEq. (A15). This has a contribution tg;;, even wheni =j,
tion problems. which is equal to

andd;; Eefax¢jd3x is the dipole matrix element between
he eigenfunctiong); of the electron-field systenﬁya is the

II. THE INFLUENCE FUNCTIONAL giik=ckk-q;,

A. The model where

Our model for atom-field interazction is the standard one
(see Appendix A for detai)ld1,2,4].“ The total Hamiltonian _ f b 5x(D- e dx3
for a (stationary atom interacting with a quantum electro- a Elr: $i0X(p- &) &

andc, is a constant given by

20Our Hamiltonian is given in the so-called minimal coupling
(MC) as different from the multipolar couplingvP) [6], which C=— E(ZﬁwKEOV)_”Z.
may be more relevant to atoms in a cavity because the explicit m
Coulomb interaction between the atom and its image charge is re-
moved. This generates an additional coupling term
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; o I1bi+ gubl) + 1(gabi+ gabl) | H(7,7.2,2)=# EK oKz~ Izt mzi) + wo;ﬂ) .

(2.9

where
In Eq. (2.8) we have subtracted a constant tefm,1 to Eq.

(2.1) so that the ground state now has zero energy. Hence-
forth we seth=1.

The Hamiltonian in Eq(2.8) is not ac-number function;
it has terms that are odd. One might then question the valid-
ity of Eq. (2.6) for the path integral; it clearly exists as a
formal expression, but its evaluation with a saddle-point
(ql_qZ)‘ ol g1 9] method that i§ based on the I_—Iamiltonian of E18) might

< . (2.4 be problematic. We dispel this doubt for the vacuum case

Mawdy, | Mayd;, with an operator method proof of the master equation in

) Appendix B. It shows that at least for the vacuum case that
Thus theo, type of coupling generated from the 2LAEMF saddle-point evaluation yields the correct result. The general
interaction will be significant only for very high frequencies cases need separate considerations. For many qubits coupled
wy of the EM field, a point intuitively clear from the mean- to the EM field vacuum, we believe that the path-integral
ing of the dipole approximation. method yields a simpler treatment than the operator method.
The integration is over all paths satisfying

O1k=91k — 922+ 92k=911k T ook -

This gives the lowest orderr, type of coupling in a
2LAEMF system. The ratio of the coupling,, of the o,
type in Eq.(2.3) to the dipole couplingy, in Eq. (2.1 is

k
|91k /9K =

B. Grassmannian variables and coherent-state integrals

Since Feynman and Verndr20] invented the influence 0=z, 2=z, (2.9

functional method, this formalism has been applied to treat — —
the Brownian motion of a harmonic-oscillator interacting 7(0)=7i, 7(t)=7:. (2.10
\[Agtlr,]g,zaz,2Tfrmhgr;\|/(\:/o-|2?/g|”2;c;er: ?r:rlun?élinrgigé bzg;hgirss_We assume initially.that the dgnsity me-ltrix 91‘ the Eotal sys-
cussed in detail by Leggett al. [8], but the derivation of a €M plus the environment is factorizable(0)=pc(0)
master equation by this method that can traverse the nor® p,(0). Only at that time wouldz and » be pure complex
Markovian regimes has not yet been carried out. We shakind Grassmannian numbers, respectively. As the system
perform such a calculation for a two-level system, with theevolves, bothz and z contain Grassmann andnumber
aid of Grassmannian variables convenient for treating fermiparts. The mixing of even and odd pafisote g, is odd
ons and the coherent-state representation in a path integredmes about as the initially factorized atom state becomes
form. We construct the coherent state of the combined atont‘dressed.”
field system as In the open system philosophy, as we are interested in the
averaged effect of the field on the atom, the atom is consid-
{z} my=[{z}) x| ), (2.5 ered the “system” while the field is the “environment.” The

i path integral is performed over the variabiesvhile »,  are
where|z), za complex number, denotes the EM field coher-yaateq as external sources. When only one field mode is
ent states anfly, » a Grassmannian or antlcommutmg nuM- considered, we have
ber, denotes the electron coherent state. The transition am-
plitude between the initial stat¢) att=0 and the final state _ S . _
(f) att=t; is expressed formally g84] (here we suppress  (Z:tlz; ;0>n,;=f DZDZ@XP[ zz(t) — deS[ZZJFinZ
the indexk)

_ —9(zn+ nz S 2.1
<Zf,?f;t|ni,zi;0>=fDzD7DnD?e<”ﬁ>S[m I ARG )]] 210

(2.6)  with summation over paths satisfying the boundary condition
(29) for z. We use the saddle-point method. Minimizing the

where the action is action yields the following equations:
i . _ (S z+iwz=—igy, 2.1
gs[z,z,n,n]=22(t)+nﬂ(t)—fodS[ZZJf n vz e =12
: Z-iwz=igy, (2.13
1 —
+3H(n.7.22)|. 27 With solutions
HereH is theQ symbol of the Hamiltoniaf35] and there is z(s)=ze 1*S—ig fsds’e*iw\s—s’h«](s’) (2.14
an implied summation over field modes: ' 0 ’
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- t _ L
z(s)=zfe"“’(t‘5)+igJ ds'ei@ls=s'lp(s"). (2.15
S

Using these for the transition amplitud@&11) with the mini-
mum value for the action, we obtain

[t .
szOdse"“’(“S)n(s)

G 2:0)=exp iz i

S F—
+J dse '“Sy(s)z
0

_n2 ‘ s I a—io|s—s'| ’
g JodsJOdse n(s)n(s’)t .
(2.16

PHYSICAL REVIEW A 62 033821

The influence functional for all modegs=1II,F, is finally
given by

— . t S
f[n,ﬂ,n'.n’]=exq' fodsfods'(M(S—S’)

X[ 7' () + n(s)]m(s) + u*(s—s')

X' (s)[7(8)+7'(9)]) (2.23
in terms of the kernel
w(s)=2 gie™ . (2.24

A prefactor in the coherent-state path integral is equal to one.

Now the influence functional due to this single mode reads

dzdz dz';dz dzdz

a aw w

Hnmn'n'l= f
Xe %77 *;fzf<?f itz ;0>7,,;<?i|P0|Zi,>
(2.17)

where the completeness relation fannormalizedl coherent
states has been used:

dzdz
fTe |z)(z|=1.

x(;i’ ;0[z¢51) 5,

(2.18
Writing with an obvious identification
(z¢:tz; 10) 5= exp(Azz +iz;B+iyz,+D), (2.19

we can use the identity

f dl':ﬁ o 72Tz 7l _ gt (2.20
to obtain
Fnnn,n']=ef B (©®D) (2.21)

for an initial vacuum stat@o=|0)(0|. Substituting, we get

the contribution to the influence functional from one mode

_ _ t S
fk[n,n,n',n']=exp< gﬁfodsjo

xds'[7'(s)p(s')e” )
+ 7' (8) p(s)e )

—n(s)n(s)e” )

_;I(S’) ﬂ(S)eiwk(s_S,)]] .

(2.22

Ill. THE MASTER EQUATION
A. The reduced density-matrix propagator

Having computed the influence functional we have an ex-
pression for the reduced density-matrix propagator

I(nenf st m{ 7i;0)
-| D;Dnoﬁnfexp[;nawm
t . . _ _
—fods[mfr n'n'+iongn—iwn n'(s)]
t S _ _
+deSLdS’(M(s—S’)[n’(sH 7(s)]n(s")

+u*(s—8’)?(8’)[n(8)+n’(s)])] (3.1

where the summation over all paths obey the boundary con-
ditions (2.10 and

70)=n, 7 (O)=n}. 3.2

We can compute the path integral with saddle-point evalua-
tion and get

priont [ dsus-sms)-0, @3
?z’—iw;’+f:dS’u*(s—S’)?(S’FO, (3.9
o'+ [ s uts-s (s

- [Laswrs=stms 4 ()
=0, (3.5
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—iont Sds’ *(s—s')n'(s) I=| U7 i d(uu)—,
ntenT | ES R 7 =\ umemitun et — g mi |- (3.11
t . .
_ N S POV The next step is to remove from the above equation the de-
Jsds p(s=sln'(s)+n(s")] pendence on the initial values. This is done with the use of
the following identities:
=0. (3.6
18 — d.
It will turn out that only the solution of the first two of these =g = mI==—. (3.12
equations will contribute to the path integral. We will there- o7 U 37
G L Note that we are suppressifiigr ease of notationsymbols
— —— denoting left or right Grassmann differentiation. In all our
n(s)=nu(s), u'(s)=n;u(s), 3.7) expressions we implicitly assume that differentiation with
_ _ respect toy is always right and with respect tpalways left.
whereu,u are the solutions to Eq$3.3) and(3.4) under the For the density matrix at time
condition
— e )= dre 17idy dn’
u(0)=u(t)=1. (3.9 pi( 75, 75) f dndne dani d7;
Now Eq. (3.3 is a linear integrodifferential equation of first X e~ W I(nenf it m] 7i50)po(mi 7)),
order and as such can be solved with the use of the Laplace (3.13
transform and the convolution theorem. It is easy to show '
that we obtain the evolution equation
1 1 fetie dze&s 9  u—8p Udp (didt)(uu) &%
U(S):Eil - — = - —, Epz—n—_"r‘:&—ﬂ‘f‘ — —. (31@

3.9
39 This is one of our main results: the master equation for the

two-level atom interacting with an environment of an elec-
gomagnetic field at its vacuum state. The effect of the field is
contained within the function, which can be determined by
the solution of Eq(3.3) or equivalently by the computation
of the contour integral3.9). In Sec. IV we are going to find
explicit expressions fou for particular choices of the field
configuration.

Let us return for the moment to E(B.14 and write this
in an operator language. It is easy to verify that

whereu(z) is the Laplace transform of the kerr{@.24) and
cis a real constant larger than the real part of the poles of th
integrand. It turns out that this functiom(s) contains all
necessary information for the computation of the density ma
trix propagator. Substituting our expressidi3s8) and (3.9)

in EQ. (3.1), we can obtain the following expression for the
propagator:

I(memi it ml m;0)=exp(ns mu(t) + 7 piu(t)

— = —dp Sp &p

[1-u(®u(t) ] 7). (3.10 7 5;—S+S_p, 5y 7=pS,S_, Py S.pS_,
Since we are using coherent-state path integrals, we have (3.19
departed in our evaluation from the standard saddle-poinﬁ we write
approximation used on configuration space path integrals. In
these cases, the standard procedure is to distinguish the u(t)
imaginary part of the kernel as corresponding to dissipation ——=T(t)+iQ(1), (3.1
and consider only its contribution when performing the u(t)
saddle-point evaluation. The resulting equations are then t
classical dissipative equations of motion. But in the case o
the coherent-state path integral, there is no correspondence

e master equation reads

between extrema of the action and actual classical paths. ﬁp=—i[H(t),p]+F(t){S+Sf p}—2I(1)S_pS, ,
Hence there is no sense in splitting the kerpehto real and (3.17
imaginary parts, and the saddle-point evaluation should be

carried out for the whole of the exponential. where

B. Master equation for a field in a vacuum state HO=Q(VS,S-. (3.18

It is a standard procedure now to find the master equatioifhe first term corresponds to the unitary Hamiltonian evolu-
[21,24). We compute the time derivative of the propagator: tion, only now the effect of the environment has induced a
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ond term is time-dependent dissipation, and the third corre- m(z)=-g ik (4.2)

time-dependent shift in the value of the frequency, the sec- - foc o iks g°
e S "=
sponds to noise. 0

The integrand has two poles at the solutions of the equation
C. Spontaneous emission

2 2_
To show how the standard results are regained, and to Zti(otk)z—0k+g"=0 4.3
understand the meaning of the new function in the master
equation, let us consider the physical process of spontaneo&/€n by

emission. Start with a generic initial density matrix
g y ) a)+ki[(a)—k)2+gz]l/2

1-x y z=-I 2 =—iw;p. (49
p= ( . ) . (3.19
y X
Hence
Its corresponding) symbol is
k_(l)l s k—w2 s
_ _ _ u(s)= e 'w1S— e w28, (4.5
p(n,m)=X+y*n+yn+(1l-x)nn. (3.20 @2m 1 @21

If we evolve it with the density-matrix propagat8.10 we  1hiS result is in agreement with standard ofiep

obtain for the state at time
B. Infinite number of modes

pe(7,7)=1—uu(1—x)+(uy* 7)+(uny)+Uu(1-x)) n7 Now we consider the case of the vacuum electromagnetic
(32)  field in free space, i.e., not constrained by a cavity. The
) kernel will then readusing Eq.(2.29)]
corresponding to
uu(1-x) uy M(S)ZZ?\ZJ ok leikS:A—szkdkeikEiV(S)
_ _ . (3.22 (2m)3 w2Jo ds 7
uy* 1—uu(1—x) (4.6)

Pt=

Considering the case=y=0 we get for the probability of Where
spontaneous emission

—i)\z - k —iks
P(1-08)=1—uu. (323 9= | “ake e @

Also, we should remark that the rate of decoherence in th@ote the factor of 2 in Eqi4.6) coming from the two-photon

energy eigenstates is governed by the absolute value of thglarizations and that in view of E¢2.3) we have written
function u (the off-diagonal terms But on the other hand g, =)\ w, 2.

itself determines the rate of energy flow from the atom to the  sjnce the integrai4.7) is not convergent, we will intro-

environment. Hence for our particular choice of initial stateqyce an exponential cutoff in the higher frequency modes.
(vacuum we find that decoherence and relaxation time arerhe presence of the cutoff is of physical significance since
essentially identical. We shall use this equation to study degye do not expect high electromagnetic modes to couple with
Hence the kerneb will read
IV. FIELD MODES AND ANALYTIC  u(t)

2 o 2
Our master equatiof8.17) depends solely on the function v(s)= if dke iks—ke—__ 1, . (4.9
u(t), which in its turn is determined by the kerne(s). In m?Jo m? STle
this section we will try to give some analytic expressions for
this function in various different cases. The Laplace transform of is then
. 2 o —sz 2
A. A single mode T(2)= )‘—2 ds— = )\—Ze’iszi(—iez) 4.9
To connect with known resultgl], let us start with the m=Jo  STI€ ™
case where the field contains only a single mode with fre- ] o ' .
quencyw,=k. Thenu(s) will read where Ei denotes the exponential integral function analyti-
_ cally continued to the complex domain. At the limit-0
w(s)=g%e ks (4.1) this is essentially
and Ei(—iez)=y+In(—iez)+0(e), (4.10
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wherey is the Euler-Macheronni constant and the logarithm A2

is taking values in the primary branch. Thugz) reads 0=0—-— (0~ 01), (4.16
[ »(0) is herev(s=0) obtained by the integration by parts of ™
the Laplace transforin

we can find the pole at

- - iNoN
,u(z)=—v(0)+2v(z)=—z—§ze Ei(—iez). . N\ 0, 25 ,
(41]) Z——lliw_ 772 ln(z)_w_l>‘|_ p= +O()\ ).
Note that the cutoft significantly effectsu(z) only at large (4.17

values ofz, which essentially correspond to the very short
time limit, i.e., the time where the two-level atom starts Note that the real part of the pole comes from the pres-
“getting acquainted” with the photon reservoir. At larger ence of a minus sign in a logarithm of some real valued
times t>¢) we do not expect the cutoff to contribute sig- object. Hence in the case where the atom’s frequency is out-
nificantly in the evolution. This is a rather typical behavior in side the strip of interacting modes there will be no dissipa-
quantum Brownian motion models, provided that the ultra-tion. This feature separates us from the QBM case, charac-
violet cutoff of the environment is much larger than the natu-terizing the atom-field system as primarily a resonant one.
ral frequencies of the system.

To evaluate the integral we first have to find the poles of

. - - ) C. Atom in a cavity
the denominator. We can do that in a perturbation expansion.

First, let us absorb the divergen(0) factor in a frequency L€t us now consider the case of the atom lying within a
renormalization cavity consisting of two parallel plates at distarice The
field satisfies Dirichlet boundary conditions on the surface of
5 A2 the plates, hence the modes in the normal direction to the
w=w— o (4.12  plates are multiples ofr/L. The kernel then reads

* kdk

—i[K2+ (nm/L) Y2(s—i€)
0 [k2+ (nm/L)?]*2

. o \?
so that we need find the zeros of the functioriwz  p(s)=-— >,
—(N?7?)e “’Ei(—iez). Looking for a solution in the vi- 27l “g

cinity of z=—iw, we find 1

-3 Jm dke k(=i
2= —iw—n(—iw), 2L 5 Jinan|
(4.13

1~ Zz)l L~ )\ZZ)JFO \4 0T 1 1 S g-ilnmiLis—ia

i|w = n(e’ew) - (N*)=—1 . ~oaL etis 4 e (4.18
We have a pole with a negative real part and we can verify il
numerically (also physically, as expectedhat there is no 1 1 1+e '7HGT19 4.19
pole with a greater real part. This means that when evaluat-  27L e+is {_g-i7/L(s-ie)" '

ing the inverse Laplace transform we can ignore the contri-
bution of the branch cut at=0 (being on the right of the

pole) and hence after some time, where all possible othe
poles with absolutely larger values of their real parts will

Hence we can compute its Laplace transf¢G6]

have stopped contributing, the solution will be - —iN2 f=dse 521+ e imlL(s—ie)
(z2)= f - . -
u(s)=e 10s7Ts, (4.14 g 2mk Jo s—ie 1—eimLlTd
—i2 i
This implies a Markovian time evolution and the identifica- _~Ix J( ez '_77) 4.20
tion of decoherence with relaxation time with ! 27L "2Lz)"
=(m/\°w). This is a general feature of the presence of a
continuum of modes as can be seen from the case of an atofghere J(x,a) is defined by
transparent to all modes but the ones in a strip, [say, w,],
containing the resonance frequency. edye Y
It is easy to verify that in this case we have again J(X,a):f y coth(ay) (4.22)
X

2)=—i—(wy— —In —. . . . . L
#(2) 772(("2 1) 72 \wi—iz 4.19 and appears in Eq4.20 through analytical continuation in
the complex plane. This integral can actually be computed at

Hence defining again the limit of vanishingx (e—0)—see Refd37], Eq. 3.427.4
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FIG. 1. Real part of a polénegative dissipation constah) as
a function ofw/(m/L).

- _—i)\z+ ZI - IZIF(LZ

u(z)= 2, ?z n(ie”ez) L n —
Lz [Lz +LZ+1I L0
Gn E G §n2|772 (6)

(4.22

Note thatu(z) is a sum of the term of case 2{>=) and a
finite one (no dependence omr). The logarithm of thel’
function gives a countable number of branch cutszat

=—i(n/wL), wheren is the positive integer, the resonance

PHYSICAL REVIEW A 62 033821
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FIG. 2. Frequency shifAQ) as a function ofw/(w/L).

changes. This effect of the frequency shift for an atom within
the cavity is well known, as well as its relation to the Casimir

effect[38].

V. DISCUSSION

Let us now integrate what we have found and look at the
overall picture. The physics of a 2LAEMF system at zero
temperature is characterized by a number of time constants:
(i) the inverse natural frequen(zygl, (i) the inverse cou-
pling constang, *= \w/\, (iii) the relaxation time constant
I'"1, and(iv) The cavity sizel (divided byc).

First consider a zero-temperature field in free space, thus

modes of the cavity. Again the important pole has a negativégnoring factors(iv). Start with only one mode in the field in
real part. We can again compute the pole perturbatively. Ifesonance with the atom, then the system undergoes Rabi

lies at
~ N\ - 2 ~
z=—i w+—2w|n(e’/ew)——|nr(—Lw/7T)
- L
Lw - Lo 1 Lw
——In(—Lwlw)————In( ——) (4.23
T T 2 772

Clearly the logarithm of thd" functions is the term out of
which the real part of the pole appears. Since the real part

the pole is negative the branch cut is excluded from the in-

tegration contour and hence

istFs_ (4_24>

u(s)=e"

nutation with frequencyfl~g+n+1, wheren is the photon
number in the field. The collapse tim@assuming a large

mean photon numbeﬁ) is g~ !, and the revival time is

wa/ﬁlg [1]. Atom excitation becomes significant in a time
much greater thamugl but shorter tharg™!. (This is the
condition for a first-order perturbation theory to give reason-
able results. For a large number of modes, spontaneous
emission occurs at the relaxation time scdle'=mx/g
> w, *, which we found to be the same as the decoherence
time — the time for the off-diagonal elements of the reduced
ensity matrix to decagSec. V). When the mean number of
photons in the field is largen&> 1), they become comparable
to the collapse time. This is a measure of the coherence in
the atom-field system, and is controlled mainly by their cou-
pling and the photon number in the field. We see that with
the resonance condition, the nature of decoherence in 2LS is

Herel gives a dissipation constant. In Fig. 1 we give a plotyery different from the QBM situation, where phase infor-

of the real part of the pole<I") as a function of the fre-

mation in the Brownian particle is efficiently dispersed in the

quencyw. Note that it has sharp maxima on the resonancenany modes in the bath coupled almost equally to the sys-

points, implying persistence of coherence.
Already from the approximationi4.23) we observe that

tem. As we remarked in the Introduction, the identification of
the phase information and energy flow from the 2LS to its

the difference in the renormalized frequency from the cas@nvironment is similar to the spin-echo phenomérendau
L—o (Aw) is finite. Unfortunately, perturbation expansion «gamping”) which is based on statistical mixing rather than

is not reliable wherw is close to the resonance frequenciesdissipation. The mathematical distinction lies between con-
(this corresponds to negative integers arguments inlthe sidering the system coupled to the discrete number lasis
function where it divergesand for this regime we have not mode) and the continuous amplitude bagi@BM) of the
been able to get any analytic results. In Fig. 2 we have plotenvironment. The latter case essentially produces noise that
ted the dependence &fw=Q[L]—Q[«] as the frequency drives the system in a way insensitive to its own intrinsic
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dynamics. While in the former case, the coupling respectgonvention here is closer fd] than that used in the text,
the internal dynamical structure of the 2LS and allows it towhich is closer td5]. The conversion is explained in foot-
keep its coherence. note 2.

To see how the distribution of modes in a field changes The dynamics of a moving atofmassM, momentumP)
the picture, the cavity-field calculation in Sec. IV is useful. whose electrongchargee, massm) interact with an electro-
As shown in Fig. 1, the relaxation constant develops peakmagnetic field(vector potentialA, Coulomb potentiaV) is
and minima. The resonance effect is enhanced by a cavitglescribed by théclassical Hamiltonian
size commensurate with the natural frequency of the 2LA 5
and dissipation weakens. Narrow-band resonance fluores- P 1
cence as well as inhibition of spontaneous decay by frequent H= oM ﬁ(p—eA)% eV(x)+Hy, (A1)
measurements — the quantum Zeno effect — are interesting
phenomena for which our equations can provide finer detailsvhere H,, is the Hamiltonian for the electromagnetic field.

Non-Markovian processes involve memory effegisn-  Expanding this equation, one can write
local in time. For the QBM problem, except for the case of
a high-temperature Ohmic bath that gives Markovian dynam- H=Ha+He+Hp+H, (A2)
ics, other types of spectral densitgupra-Ohmit or low
temperatures, the dynamics of the system is non-MarkoviaWhere
[24]. When the reaction time of the bath is comparable to or

2
faster than the natural time scale of the systerg)( one also Ha=P— (A3)
expects to see non-Markovian behavior. In contrast, the 2LA 2M
is quite different: At zero temperature there is only one time . L )
scaleT~1=\"2w !>0"! that determines both decoher- describes nonrelativistic atom motion,
ence and relaxation. There is no memory effect and hence 2
the process is Markovian. We expect that in finite tempera- Hezp—+eV(x) (A4)
tures the dynamics of the 2LA will be non-MarkovigB9]. 2m

This is because there are more ways for the atom and thg , _ .

field to get entangled, and the memory effects of their interd€cribes the dynamics of thene electron, while

action would presumably persist. In conclusion, we find that e

the 2LS interacting with an EM field is far more coherent He=— —A-p (A5)
than what is commonly believed, the misconception prob- m

ably arising from the mistaken identification of this system

with the Brownian model of an oscillator interacting with a and
harmonic-oscillator bath. e?
Hep =5 A? (A6)
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whereb, , b, are the creation and annihilation operators for

thekth normal mode of a free massless vector field. Thus for

the field vacuumb,|0)=0, b,|0)=0, [by,b] 1= &, for

all k. We can perform a harmonic decomposition of the vec-
In this Appendix we give a rather detailed derivation of tor potential of the electromagnetic field

the Hamiltonian for a nonrelativistic atom interacting with a o

second-quantized electromagnetic field under the dipole o — e

rotating-wave, and two-level approximations. This is to fa-A(X’t):; (2wk60) [BicsUio(X)€ ktJFbefuk”(x)e ]

cilitate the comparison of our mod&.1) with o coupling (A8)

with that used by otherfEq. (2.3)] with o, coupling. (See

the Introduction. To also make this useful for later papers in where, assuming the field is contained in a box of sizthe

this series, we have included atomic motion. Note that thespatial mode functions,, are given by

APPENDIX A: ATOM-FIELD INTERACTION:
TWO-LEVEL SYSTEM
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Upy(X) = L_3/2ékgfk(x)- (A9) The dipole approximation amounts to kgeping just the Ie_ad-
ing term. Doing so, we can take the field mode function

.~ ) o fr(x) out of the integration above and evaluate it at the
Here g, is the unit polarization vector anad=1,2 are the  ziomic position. To evaluate

two (transversgpolarizations. In free spacé,(x)=e ',

We assume that electron motion is much faster than the e — 3
motion of the atom, thus it sees a stationary central Coulomb Ej Pipe;d°X,
potential around the center of mass of the atom. Denoting the
(time-independent, nonrelativistielectronic wave-function \we make use of
eigenstate belonging to the eigenvakigby ¢;, i.e., Hqo;

=E,;¢;, we can write the Hamiltonian for the electron in the d§(i E)i 1 . .
second-quantized form as qGme E[Xi Hel, (Al6)
N ~ga yielding,
He=2> Ea'a, (A10)
I
€ - .
EJ Pipg;d*x=iwj;pd;, (A17)

wherei labels the bound states of the eletrame assume

vanishing probability for the atom to ioniranda’ anda;
are the creation and annihilation operators. As fermions the
obey the anticommutation relatioaga; +a;a; = 3;; .

To perform perturbation theory, the electronic wave func- o
tion of the interacting system is expanded in terms of the dij=— —”dij'ék(r- (A18)
eigenfunctionsp; of the unperturbed Hamiltonian, with basis V2hwi €V
formed by the direct product of the electron and the field

states. Thus the electron field operafgx) can be expanded !;Iote thatdj=dji . With this under the dipole approxima-
as ion,

where fiw;;=E;—E;, and dj=e[ ¢;x¢;d* is the dipole
%watrix elementd;; =d;; . Define

Gijk=dijf(X). (A19)
P =2 adi(x). (AL1)
: 2. Rotating-wave approximation

In the interaction picture, recalling that the time evolution

With this, the interaction Hamiltonians is given b ;
9 y of the ladder operators are given by

=== | 30 (p- A ) al(n=ale'“t, aj(t)=ae ', by(t)=be ',
Ay mfw(x)(p A) (x) A (A12) i(H=2, (0=

the interaction Hamiltoniaiid, in the interaction picture be-

or in terms ofa; ,b, operators comes

H|=ﬁ”2k a/a;(gijkbi+ 9ijkby) (A13) ﬁ|=ﬁ_2k gijkéi‘téjﬁkei(‘”ii“”k)+ﬁzk gijka)a;ble! @it e,
BE L], 1)

(A21)

where .
where vj;=w;— ;. We see there are two types of oscilla-

. L tory terms presente”'(“ii*“d, Processes most effective in
= - b, 3 the absorption or emission of a photon by the atom corre-
Jiik m \/ZﬁwkeOJ’ $i(X) Ui (X)- Py O 7. spond to those with near resonance frequengy- wy . As-
(A14)  sumingw;;>0 (E;>E;), the first type withe~'(“ii *“¥) has a
rapidly oscillating phase and its contribution is small com-
pared with the second type witn '(“ii ~“¥) whose station-
ary phase at near resonance gives a large contribution. Physi-
Now consider conditions when the spatial variation of thecally, the first type corresponds to either the excitation of the
vector potentialA of the electromagnetic field is small com- atomalong withthe emission of a photon or the relaxation of
pared to the electronic wave function, one can expand the atomalong withthe absorption of a photon, which is less

1. Dipole approximation

fi(X) in ug,(x) around the position of the ator= X+ ox: probable than the second type corresponding to the excita-
1 tion of an atom upon the absorption of a photon or the re-

ik-x_ aik-X Syl SA2a laxation of an atom with the emission of a photon. We shall

€ € Lk-ox 2(k )"+ - (A19 therefore ignore the first type of terms, which amounts to
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working under the rotating-wave approximatigRWA).

PHYSICAL REVIEW A62 033821

(E—H) *=(E—Ho) "(1—(E—Hg) *H)*

This is the second major approximation in this standard

model.

3. Two-level atom

Let us now consider the idealized case when the atom has

only two electronic states|+),|—) corresponding toi
=2,1, with energies equal 1. = + 5 Zw,. (The two states
can interchangeably be labeled Hs),|0), or |e),|g) or
[1).]1).) Thuswjj—»=wo. Thus

~ h(y)o

T fo _f@o
a= 5 (B8~ a18)= ——0,=hweS,, (A22)
where we have introduced a Pauli matrix{2) representa-
tion o,=diag(1,—1) For the interaction Hamiltonian above,
under the RWA, in thé=2,j =1 contribution to the summa-
tion, the first line containing'(“o~“x is kept, while the sec-
ond line is dropped. The reverse is true for ihel,j=2
term. The interaction Hamiltoniafin the interaction picture
now becomes

H = ﬁ; [92u@a; D e @k w2t

+grg@la hfe i@kt 012t (A23)

Introducing the Pauli matrix representation for the fermion

operatorsaja;— o, =S, andala,—o_=S_, and defin-

ing gx=dpy=dyx [recallgj;=djj fr(X)] we can write the
interaction Hamiltonian(in the Heisenberg pictuyein a
simple form:

=520 g S:bif (X)+S b (X)) (A24)

Therefore the total Hamiltonian for our model of a moving
atom interacting with a quantum electromagnetic field undery(j j:t|m,n;0)=
the dipole, rotating-wave, and two-level approximation is

given by
52

P . e
—+ﬁwosz+h§ [wkbiby+ gu(Fr(X)S, by

1= oM

+F(X)S_bD)]. (A25)

APPENDIX B: AN OPERATOR PROOF OF THE MASTER
EQUATION

We use the resolvent decomposition of the propagator

e—th:J

Then by writingH=Hy+H, we can expand the resolvent
and get

dEe*iEt
E—H

(B1)

1
=(E—Hp ! 1+(E—Ho)’1H,+§(E

—Ho) H(E-Hy) H,+...|]. (B2

When we act, the expanded resolvent in any ve¢txi
=|0)®|i), (|i) denotes an eigenstate of the Hamiltonian of
the two-level systemwe see that only expanded terms that
contain alternating sequences @f and o_ survive. This
makes the summation much easier. It is also easier if we note
that

(E_Ho)_12k 9oy (E—Ho) "'gi >, b/,|0)
k!

G 0):=(E—wo) *F(E)
E—a)k - 0 '

=(E- wo)ﬂ}k:
(B3)

Hence we can compute the matrix elements by resumming
the expansion

(zO(E-H)"Y0,0=E1, (B4)
(z,1/(E-H)~*0,0=0, (B5)
(z1(E-H)"Y0,)=(E-wo—F(E))™*, (B
. -1 _ ) Ok —
(z,0/(E—=H)" 0,0 E—wr—F(E) 4 (E—w)zzk'
(B7)

The reduced density-matrix propagator in the energy basis
of the two-level atom and for the vacuum initial state is

dEdEle*i(E*E')t

><J’ DzD?e*Ek 23 (z,i|(E—H)~t{o,m)
X(ON|(E=H) " z,j)]. (B8)

We can then verify that the only nonzero elememts
—1j are the following and their conjugates

J(0,01/0,0;00—~EE' 1, (B9)
J(0,1t]0,1,0 ~E"Y(E'— wo—F(E"))"%, (B10)
3(0,0:£|0,0:0) E~ o E'~ v
B E-wo—F(E) E'—w—F(E')
2
x> 9k (B11)

K (E-0)(E'— o)
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J(11;t1,1;0 = (E— wy— F(E)) YE—wo—F(E")) ™. dEe 'Et
(B12) U(t)—f E—wo—F(E) (B13)
Then it is easy to check that this reproduces the propagation
as given by Eq(3.2]) that was obtained through the influ- ]
ence functional method. Indeed is exactly the same as the one defined by Bcp).
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