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Phase-resolved time-domain nonlinear optical signals

Sarah M. Gallagher Faeder,* and David M. Jonas†

Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
~Received 28 January 2000; published 18 August 2000!

A systematic theoretical and computational investigation of the microscopic factors which determine the
phase of the signal field in time-resolved quasidegenerate three-pulse scattering experiments is presented. The
third-order phase-matched response is obtained by density-matrix perturbation theory using a Green-function
formalism for a system composed of two well-separated sets of closely spaced energy levels. Equations for
calculating the electric field of four-wave-mixing signals generated by path-length delayed pulses are given. It
is found that the phase of the signal field is determined by the excitation pulse phases, the dynamics of the
nonlinear polarization decay, the product of four transition dipole matrix elements, and by a pulse-delay-
dependent phase modulation at the frequency of the first dipole oscillation in the four-wave-mixing process.
Analytic results for a two-level Bloch model show the phase shift from rapid nonlinear polarization decay. The
product of dipole matrix elements is real and positive for three-level processes~bleached ground-state absorp-
tion and excited-state emission!, but can be real and negative for some four-level Raman processes. The
pulse-delay-dependent phase modulation treated here is closely related to the interferometric pulse-delay-
dependent amplitude modulation observed in some collinear experiments, and plays a role in producing photon
echos in inhomogeneously broadened samples. Numerical calculations of phase-resolved electric fields for
finite duration pulses using a Brownian oscillator model appropriate for condensed-phase dynamics are pre-
sented. The ability of pulse-delay-dependent phase modulation to encode the frequency of the initially excited
dipole onto the phase of the signal field can be exploited to examine energy-level connectivity, reveal corre-
lations hidden under the inhomogeneous lineshape, and probe relaxation pathways in multilevel systems.

PACS number~s!: 42.65.Dr, 42.50.Md, 78.47.1p
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I. INTRODUCTION

Since the pioneering work of Ref.@1#, photon echos and
related four-wave-mixing experiments have been used
probe molecular dynamics which are hidden by macrosco
inhomogeneous broadening@2–10#. Relative phases betwee
different contributions to the signal were experimentally s
nificant because they produced detectable modulations o
total signal energy as a function of pulse delay@6,8–17#, but
the overall phase of the signal could not be measured,
was usually ignored in discussions of fully noncollinear e
periments. In partly collinear experiments, where the sig
phase is relevant to the detected intensity@2#, the available
bandwidth allowed phase shifts and time delays to be tre
interchangeably. An experimental distinction becomes p
sible for pulses consisting of a few optical cycles@18#.

In the past few years, there has been a dramatic impro
ment in methods for characterizing femtosecond opt
pulses@19–26#, and a corresponding increase in the level
characterization of nonlinear optical signals@27–36#. A
pulse has usually been considered fully characterized w
instantaneous amplitude and frequency are both kno
@19,23,26#. This information can be obtained from
frequency-resolved optical gating@19,20,22,23,25,26#, and
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displayed in a spectrogram@31,35,37#. Recent work sug-
gested a significant role for constant terms in the pulse ph
in extreme nonlinear optics@18#. To date, no measurement o
the constant term in the phase of a pulse has been dem
strated. As a method of signal characterization, the het
dyne sensitivity and multiplex advantage of spectral interf
ometry have attracted much attention@21,24,27,29,31–34#.
Recently, it was demonstrated that spectral interferome
can independently measure both time delays and cons
spectral phase shifts between pulses@38#. It is now possible
to measure the electric field of femtosecond four-wa
mixing signals at the point they exit a sample, includi
constant phase shifts of the signal field relative to the ex
tation pulses@35#. Thus, unlike frequency-resolved optic
gating, spectral interferometry is capable ofcompletelychar-
acterizing a perturbative nonlinear optical response. The
terpretation of such experiments has necessitated a sys
atic treatment of the phase shift of nonlinear optical sign
relative to the excitation pulses presented here.

The pulse sequence for a three-pulse scattering exp
ment is shown in Fig. 1. In these experiments, all three
citation pulses are noncollinear, and a phase-matched si
is radiated into a fourth background-free direction. Most
the factors contributing to the fully noncollinear signal pha
also affect the energy of partly collinear signals. Aside fro
the effect of excitation pulse phase@35,39–43# and reso-
nance detuning@29,36,40,44#, the influence of pulse delay
@12# and a product of four transition dipole moments@45# on
the signal phase have been briefly mentioned. Two ot
phase factors were mentioned only recently. The first ste
from the form of the delayed pulses. Selecting slices from
single, continuous carrier wave@46#, generates ‘‘carrier-
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s-
©2000 The American Physical Society20-1



at
th

y-

ip
th
o
h
ay
a

as
th
on
on
co
e

-
ld
n
io

lin

th
th
rm
re

in

de-

-
n
nts

all

ter-
yed
ion
n
ex-

ity-
for

th
m
nd

nd
he
el
ve-
nd
lec-
nc-

cal-
our-
n
be-
ns
om
he
ach
nic
ited

om
n

ase
the
ng
ear
ri-
qua-
nal
nal
hes
hat
tter

by
ne

ng

t
ls

of

c

a

SARAH M. GALLAGHER FAEDER AND DAVID M. JONAS PHYSICAL REVIEW A62 033820
wave-delayed’’ pulses of the formE(t)5e(t2td)cos(v0t),
wheree(t) is the pulse envelope,td is the delay, andv0 is
the continuous carrier wave frequency. The pulses gener
by lengthening one arm of an interferometer are of
‘‘envelope-delayed’’ form, E(t)5e(t2td)cos@v0(t2td)#,
which differs from the carrier wave form by a dela
dependent temporal phase shift2v0td . We have briefly in-
dicated how envelope-delayed pulses can encode the d
oscillation frequency between the first two pulses onto
signal phase@38#, and the treatment is extended to temp
rally overlapping pulses here. A second new phase s
arises from radiation by a nonlinear polarization that dec
within a few optical cycles. Related distortions of the sign
spectrum were discussed in two recent treatments
frequency-resolved optical gating@25,26#. In the time do-
main, polarization radiation can produce constant ph
shifts, frequency chirps, and temporal modulations of
signal field which are not present in the source polarizati

Envelope pulse delays have been used to treat sec
order nonlinear processes. In Weiner’s discussion of non
linear second-order autocorrelation as a technique for m
suring pulse duration@47#, Eq. ~4! predicts a pulse-delay
dependent phase modulation of the second-harmonic fie
the fundamental frequency. This same phase modulatio
also implicitly present in the frequency-domain express
@Eq. ~1!# used by Lepetit, Cheriaux, and Joffre@30# to simu-
late their absolute value map of the two-dimensional non
ear response of a potassium di-hydrogen phosphate~KDP!
crystal, but the phase modulation explicitly appeared at
difference frequency because of the way they defined
delay and time origin. A one-dimensional Fourier transfo
sum-frequency experiment based on somewhat diffe
principles was recently reported@48#.

Equations for calculating the nonlinear polarization
noncollinear ~third-order! four-wave-mixing experiments

FIG. 1. Illustration of time variables for three pulse-scatteri
sequenceb, a, andc. The timesta , tb , andtc label experimentally
controlled arrival times of the pulse centers at the sample.t is the
running time after the arrival of the last pulse~c! at tc50. For a
three-pulse echo, the arrival timesta and tb are both negative, bu
pulsesa andb can arrive in either order. The standard three-pu
scattering delay variablest[tb2ta , andT5tc2max(ta ,tb) are also
shown. At a given timet, the polarization depends on the values
the excitation fields at all times in the past. Positive timesta , tb ,
and tc label the interval betweent and the perturbation theoreti
interactions with pulsesa, b, andc, respectively. The positive time
intervals between perturbation theoretic interactions are alw
numbered consecutively ast1 , t2 , andt3 .
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have usually used carrier wave delays@3,41# or an equivalent
rotating frame description@49#. For four-wave-mixing sig-
nals generated by two noncollinear pulses, carrier wave
lays are adequate to calculate time-integrated signals@41#,
the temporal envelope of the signal intensity@50,51#, the
signal spectrogram@37#, and the instantaneous time
frequency profile@28,34#, even if delays are generated by a
interferometer. Systematically undersampled experime
with phase-locked collinear pulses@32,42,43# can be exactly
calculated with carrier wave delays by incorporating a sm
phase-shift-dependent delaytd5f/vL @38#. Recent experi-
ments in which two collinear pulses are delayed by an in
ferometer in subwavelength steps require envelope dela
pulses to calculate the interferometric amplitude modulat
of the signal @52,53#, as do noncollinear experiments i
which constant phase shifts of the signal relative to the
citation pulses are measured@35,36#.

We use a response function formalism based on dens
matrix perturbation theory to obtain general expressions
the third-order nonlinear polarization~within the rotating-
wave approximation! for pulses delayed by an optical pa
difference. The electric field of the signal is calculated fro
the nonlinear polarization using the infinite plane wave a
slowly evolving wave approximation@49,54#. On a femto-
second time scale, molecular electronic relaxation a
dephasing are limited by nuclear motion, in accord with t
Franck-Condon principle. The Brownian oscillator mod
@41# has been widely used to model femtosecond four-wa
mixing experiments, because it allows the nuclei to respo
to a change in molecular electronic state and change the e
tronic frequency as they move. In this paper, response fu
tions based on a Brownian oscillator model are used to
culate the phase-resolved electric fields of femtosecond f
wave-mixing signals. In its simplest form, the Brownia
oscillator model treats a quantum-mechanical transition
tween two electronic states with classical nuclear motio
modeled by damped harmonic oscillators subject to rand
fluctuating forces. The frequency of each oscillator is t
same on both the ground and excited electronic states. E
nuclear motion in the system is described by one harmo
frequency, a relative displacement of the ground and exc
state potential minima, and a coupling to the bath~i.e., a
frictional damping proportional to the mode velocity!. The
fluctuation-dissipation theorem then dictates the rand
force required to maintain vibrational thermal equilibrium o
each electronic state.

The numerical results show how the amplitude and ph
of the signal field are affected by pulse delay, illustrate
effects of finite pulse duration and temporally overlappi
pulses, and connect signal phase modulation in noncollin
experiments to amplitude modulation in collinear expe
ments. When broadband excitation pulses are used, the e
tions given here show that phase modulation of the sig
field with pulse delay can be used to correlate initial and fi
dipole oscillation frequencies. Such a correlation establis
that the two transitions occur in the same molecule, or t
the initial excitation has been transferred to the final emi
by some relaxation pathway. As recently demonstrated
Hybl et al. @36#, correlations under the inhomogeneous li
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shape can be revealed by successive Fourier transform
of four-wave-mixing signal fields with respect to time an
pulse delay if the real and imaginary parts of the tw
dimensional~2D! spectrum are separated. The treatment
phase-resolved four-wave-mixing fields given here est
lishes a theoretical foundation for these experiments.
calculation of two-dimensional spectra which separate
sorptive and dispersive terms in the nonlinear susceptib
into real and imaginary parts of the 2D spectra presents
cial problems discussed in a separate paper@55#.

II. THEORY

Third-order nonlinear optical signals result from radiati
by an electric polarization that is proportional to the th
power of the excitation field. This third-order polarization
formally induced by three perturbation theoretic interactio
with optical electric fields. If the total polarization can b
expanded in a Volterra functional power series@56#, the
third-order polarization can be written as a triple convoluti
of the third-order nonlinear response function with three
citation fields@41#. The time-domain electric fieldE(t) is a
real-valued function which can be written as

E~ t !5e~ t !cos@f~ t !# ~1!

wheree(t) is the pulse envelope, andf(t) is the temporal
phase. In practice, the envelope is defined bye(t)
[u(1/p)*0

`*2`
` E(t8)exp(ivt8)dt8 exp(2ivt)dvu, and the

temporal phase as the negative argument of the complex
pression in the absolute value. The time-delayed field p
duced by an interferometer path-length difference is given
substituting (t2td) in place of t everywhere on the right
hand side in Eq.~1!. A phase shift is defined as the additio
of f0 sgn(v) to the spectral phase, and is equivalent~within
the rotating-wave approximation! @38# to subtraction off0
from f(t). For a causal third-order nonlinear response i
homogeneous and isotropic medium, the nonlinear polar
tion in four-wave mixing is given by@57#

P~3!~ t !5E
0

`E
0

`E
0

`

x~3!~ta ,tb ,tc!Ea~ t2ta!Eb~ t2tb!

3Ec~ t2tc!dtadtbdtc . ~2!

At each point in the sample, Eq.~2! relates the nonlinea
polarizationP(3) at timet to the values of three applied field
at all times in the past. The three field-matter interactions
t2ta , t2tb , and t2tc can occur in any order. The com
plete third-order response functionx (3)(ta ,tb ,tc) is equal
to the polarization created by threed-function excitation
pulses at the timesta , tb , andtc before the present~t!.

x (3)(ta ,tb ,tc) can be calculated by third-order perturb
tion theory. Density-matrix perturbation theory is convenie
because each term in the perturbation series has a de
wave vector, so that only terms which contribute to a m
roscopically near-phase-matched polarization for the
tected signal direction need be retained@41,49#. The result-
ing phase-matched responseS(3)(ks ,ta ,tb ,tc) is the
directional Fourier component ofP(3)(r ,t) with wave vector
ks , created byd-function pulses with wave vectorska hitting
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r50 at times ta before the present (a5a,b,c).
S(3)(ks ,ta ,tb ,tc), is real and depends on both the detec
signal wave vectorks and the phase-matching geometry. T
permutation symmetry of some tensor components ofx (3) is
lowered inS(3) ~e.g.,xxxxx

(3) is symmetric with respect to al
permutations ofta , while fully noncollinearSxxxx

(3) has only
the intrinsic permutation symmetry in which timesta and
wave vectorska are both interchanged!. For resonant absorp
tion, the rotating-wave approximation is surprisingly acc
rate for smooth pulse envelopes as short as a single op
cycle @58#. For fully resonant four-wave-mixing signals, on
can use the rotating-wave approximation to break the r
amplitude modulated fields and phase-matched respo
function into complex, phase-modulated parts, and re
only those terms in Eq.~2! for which all of the phase modu
lations approximately cancel. These complex fields a
phase-matched response functions will be denotedÊ and
Ŝ(3).

The model considered here consists of two well-separa
sets of closely spaced energy levels approximating the s
levels of two electronic states. The lower levels are deno
g or g8 and the upper levels are denotede or e8. The wave
vectors of the three pulses are all different unless stated
erwise. For a two electronic state system, each surviv
term in the perturbation series for emission in directionkc
1kb2ka is represented by one of the eight double-sid
Feynman diagramsD1–D8 shown in Fig. 2~or by a conju-
gate diagram terminating in the matrix elementrge instead of

FIG. 2. The eight double-sided Feynman diagrams which s
vive the rotating-wave approximation for four-wave mixing signa
with phase-matching direction2ka1kb1kc in a two-electronic-
state system. The arrows represent the three perturbation-theo
field-matter interactions, one with each applied field. The th
fields are distinguished by their wave vectors2ka , kb , and kc .
Time increases along the vertical direction.t1 is the time interval
between the first and second interactions,t2 the time interval be-
tween the second and third interactions, andt3 the time interval
between the third interaction and coherent radiation. The two let
in the center of each diagram indicate the density-matrix elem
probed during each time interval.e ande8 designate excited elec
tronic state sublevels, andg and g8 designate ground-electronic
state sublevels.
0-3
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reg which makes a complex conjugate contribution to t
signal!. Rules for correspondence between terms in the p
turbation series@59#, and diagrams can be found in the boo
by Shen@49# and Mukamel@41#.

At second order, linear absorption is described by t
terms in the density-matrix perturbation series, and alw
appears in two related Feynman diagrams~plus their com-
plex conjugates!. One diagram depopulates the ground sta
and leaves the photon number unchanged, while the o
diagram populates the excited state and annihilates a pho
The diagrams shown above each other in Fig. 2 all have s
related ‘‘absorption pairs’’ in their first two steps, and cann
occur separately. Similarly, the last indicated element of
density matrix yields an electronic polarization whose sp
taneous radiation affects the final value of two diago
density-matrix elements at fourth order. The two extensi
of each diagram areboth required to describe the simpl
four-wave mixing process of two incoherent, sequential l
ear absorption or emission steps.

Following standard usage@41#, t1 , t2 , andt3 will be used
for the positive-ordered time intervals between perturbat
theoretic field-matter interactions. The time between the fi
and second interactions ist1 ; t2 is the interval between the
second and third interactions; andt3 is the time between the
third interaction and the present~t!. We retain the separat
unordered pulse specific interaction timesta , tb , andtc of
the complete response because they are convenient w
pulses overlap in time, and interaction order need not ma
nominal pulse order. Figure 1 shows a pulse sequenc
illustrate the relevant time variables. The experimenta
controlled maxima of the pulse envelopes are denotedta , tb ,
and tc . For convenience we use the standard three p
echo time intervalst[tb2ta andT[tc2max(ta ,tb).

The eight diagrams can be grouped in three ways@60#.
DiagramsD1 , D2 , D5 , and D6 involve evolution on the
excited electronic state duringt2 , while D3 , D4 , D7 , and
D8 evolve on the ground electronic state duringt2 . The
excited-state evolution can be understood as wave-pa
t

ix
io
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probability density motion, while the ground-state evoluti
closely approximates the motion of a ‘‘hole’’ in the equilib
rium probability density at high temperature@61#. Since
ground-state depopulation equals excited-state populatio
a two-electronic-state system, ground- and excited-state
grams usually contribute equally to degenerate four-wa
mixing signals. The second grouping is based on mac
scopic rephasing phenomena. DiagramsD2 , D3 , D6 , and
D7 involve nearly conjugate density-matrix elements w
opposite sign frequency evolutions duringt1(rge) and
t3(re8g8), so that they can yield a macroscopic inhomog
neous dipole rephasing~photon echo signal! when t3't1 .
D1 , D4 , D5 , andD8 involve similar frequency evolutions
during t1(reg) and t3(reg8), and cannot produce macro
scopic rephasing. The third grouping is based on the orde
interaction with pulsesb and c. DiagramsD1–D4 have an
interaction with pulseb before the interaction with pulsec
~‘‘properly’’ time-ordered group!, and represent the scatte
ing of pulsec off a grating formed by pulsesa andb. Dia-
gramsD5–D8 have an interaction with pulsec before that
with pulseb ~‘‘improperly’’ time-ordered group! and repre-
sent the scattering of pulseb off the grating formed by pulses
a andc. ‘‘Improper’’ time orderings can complicate the sig
nal when pulsesb and c overlap in time, and both sets o
diagrams simultaneously contribute to the signal@60,62,63#.

Since pulsesb and c both contribute to the signal wav
vector with positive signs, the eight diagrams shown in F
2 involve only four functionally distinct density-matrix path
ways. The diagrams have been numbered so thatDi and
Di 14 have the same density-matrix pathway and sample
same microscopic dynamics, though at different times an
response to different external fields. The four distin
density-matrix pathways have microscopic response fu
tions given by Eq.~3! in terms of time intervals betwee
ordered interactions of the electric fields with the syste
The four time-ordered response functionsRi are given by a
slight generalization of Eq.~7.11! from Mukamel’s mono-
graph@41# to include electronic sublevels:
R1~ t1 ,t2 ,t3!5 (
g,g8,e,e8

meg8
* me8g8me8g

* meĝ Geg8~ t3!Gee8~ t2!Geg~ t1!rgg&,

R2~ t1 ,t2 ,t3!5 (
g,g8,e,e8

me8g8
* meg8me8gmeg* ^Ge8g8~ t3!Ge8e~ t2!Gge~ t1!rgg&,

~3!

R3~ t1 ,t2 ,t3!5 (
g,g8,e,e8

me8g8
* me8gmeg8meg* ^Ge8g8~ t3!Ggg8~ t2!Gge~ t1!rgg&,

R4~ t1 ,t2 ,t3!5 (
g,g8,e,e8

me8g
* me8g8meg8

* meĝ Ge8g~ t3!Gg8g~ t2!Geg~ t1!rgg&,
where meg is the transition dipole matrix elemen
^eum̂ug&,rgg is the diagonal density-matrix element^gur̂ug&,
andGmn is the Green function for the set of density-matr
elements indicated by the subscripts. The Green funct
 ns

Gnm are defined by@Mukamel’s Eq.~7.5!# @41# their action
on an arbitrary operatorA:

Gnm~ t !A5u~ t !exp~2 iHnt/\!A exp~ iHmt/\!, ~4!
0-4
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TABLE I. Connection between Feynman diagrams and response function.*For a two level-system, no
diagram which survives the rotating-wave approximation is phase matched with wave vectoksa

52ka1kb1kc.

Interaction times Diagrams Response t1 t2 t3

(tb>ta>tc) D1 andD4 R11R4 tb2ta ta2tc tc

(ta.tb>tc) D2 andD3 R21R3 ta2tb tb2tc tc

(ta>tc.tb) D6 andD7 R21R3 ta2tc tc2tb tb

(tc.ta>tb) D5 andD8 R11R4 tc2ta ta2tb tb

(tc>tb.ta) * 0 tc2tb tb2ta ta

(tb.tc.ta) * 0 tb2tc tc2ta ta
r

r
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n

-
he
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r
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where u(t) is the Heaviside step function, andHm is the
Hamiltonian of statem. The Green functions contain a facto
exp(2ivnmt) oscillating at the Bohr frequencyvnm5(En
2Em)/\. The brackets in Eq.~3! denote a full trace ove
both system and bath coordinates. The sums are usu
taken to include an inhomogeneous ensemble average. I
optical Bloch limit, Gnm(t)5u(t)exp(2Gnmt)exp(2ivnmt),
whereGnm is a dephasing rate (1/T2) whennÞm, or a popu-
lation relaxation rate (1/T1) whenn5m. The response func
tion Ri can be used in calculating the polarization from t
ac
n

i

n

e
te
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diagram Di ~for i 51 – 4) and, using different time argu
ments, Di 24 ~for i 55 – 8). The interaction ordering fo
which each diagram contributes, the response functions,
the connection between the ordered positive time interv
t1 , t2 , and t3 and the unordered positive interaction tim
ta , tb , and tc are given in Table I for polarization wav
vectorksa52ka1kb1kc .

The complex phase-matched partŜ(3)(ksa ,ta ,tb ,tc) of
the complete third-order response functionx (3)(ta ,tb ,tc) is
written out in Eq.~5!:
Ŝ~3!~ksa ,ta ,tb ,tc!55
~ i /\!3N@R1~tb2ta ,ta2tc ,tc!1R4~tb2ta ,ta2tc ,tc!# ~tb>ta>tc!

~ i /\!3N@R2~ta2tb ,tb2tc ,tc!1R3~ta2tb ,tb2tc ,tc!# ~ta.tb>tc!

~ i /\!3N@R2~ta2tc ,tc2tb ,tb!1R3~ta2tc ,tc2tb ,tb!# ~ta>tc.tb!

~ i /\!3N@R1~tc2ta ,ta2tb ,tb!1R4~tc2ta ,ta2tb ,tb!# ~tc.ta>tb!

0 ~tc>tb.ta!

0 ~tb.tc.ta!

, ~5!
a
e-

der
tion
the

ec-

x
se

-

s

where N is the number density. Likex (3), the complex

phase-matched responseŜ(3)(ksa ,ta ,tb ,tc) is zero for
negativeta by causality. The response for positiveta is
divided by three planes (ta5tb , tb5tc , andtc5ta) into
six regions corresponding to the six ways to order 3 inter
tions. For positiveta , the phase-matched response has o
one surface of discontinuity~the union of the planeta5tc
for tb>tc , with the planeta5tb for tc>tb) where the
response drops abruptly to zero when the interactions w
pulsesb and c both precede that witha. The discontinuity
arises in the rotating-wave approximation because the o
resonant grating formed byb andc in a two electronic state
system has wave vectorkb2kc and scatters pulsea into
directionska6(kb2kc), where it does not contribute to th
signal of interest. Only four interaction orderings contribu
-
ly

th

ly

to a given fully noncollinear third-order polarization in
two-electronic-state system. The strength of a given tim
ordered contribution to the polarization depends on the or
in which the pulses reach the system, but the interac
order need not match the nominal pulse order when
pulses overlap in time.

To obtain the phase-matched polarization with wave v
tor, ksb5ka2kb1kc , the labels for pulsesa andb are inter-
changed. Equation~6! gives the expression for the comple
phase-matched part of the third-order respon
Ŝ(3)(ksb ,ta ,tb ,tc) in the ksb direction. The two orderings
with b and c first do contribute to the signal with phase
matching direction,ksb5ka2kb1kc , while the two order-
ings with a andc first do not contribute to the signal in thi
direction:
0-5
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Ŝ~3!~ksb ,ta ,tb ,tc!55
~ i /\!3N@R2~tb2ta ,ta2tc ,tc!1R3~tb2ta ,ta2tc ,tc!# ~tb.ta>tc!

~ i /\!3N@R1~ta2tb ,tb2tc ,tc!1R4~ta2tb ,tb2tc ,tc!# ~ta>tb>tc!

0 ~ta>tc.tb!

0 ~tc.ta.tb!

~ i /\!3N@R1~tc2tb ,tb2ta ,ta!1R4~tc2tb ,tb2ta ,ta!# ~tc.tb>ta!

~ i /\!3N@R2~tb2tc ,tc2ta ,ta!1R3~tb2tc ,tc2ta ,ta!# ~tb>tc.ta!.

~6!
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The nonlinear polarization with wave vectorks is given
by a triple convolution over the complex phase-matched p
of the third-order responseŜ(3)(ks ,ta ,tb ,tc):

P~3!~ksa ,t !5E
0

`E
0

`E
0

`

Ŝ~3!~ksa ,ta ,tb ,tc!Êa* ~ t2ta!

3Êb~ t2tb!Êc~ t2tc!dtadtbdtc1c.c..

~7!

The form of delayed pulses must match the experimen
calculate the phase of the nonlinear polarization. The elec
fields used here are of the envelope delayed form gener
by an interferometer path difference~i.e., the maxima of the
field oscillations always occur at the same times relative
the maximum of the field envelope! @38#. The complex elec-
tric fields are given byÊa(t)5ê(t2ta)exp@2iva(t2ta)#,
wherea5a, b, c, andta represents the delay of pulsea ~so
that pulsesa, b, andc are centered at timesta , tb , and tc ,
respectively!. The complex envelopeê(t)5e(t)exp@i„vat
2f(t)…#, wheree(t) is the real envelope defined below E
~1!, allows the inclusion of chirp or phase shifts. The orig
of time is set at the center of pulsec (tc50). When the
explicit complex time-domain fields are inserted into Eq.~7!,
we obtain

P~3!~ksa ,t,ta ,tb!5E
0

`E
0

`E
0

`

Ŝ~3!~ksa ,ta ,tb ,tc!

3êa* ~ t2ta2ta!êb~ t2tb2tb!êc~ t2tc!

3exp@ iva~ t2ta2ta!#

3exp@2 ivb~ t2tb2tb!#

3exp@2 ivc~ t2tc!#dtadtbdtc1c.c.

~8!

Restricting e85e and g85g, Eq. ~8! differs from earlier
treatments of noncollinear three-pulse scattering based on
same formalism@51,60# only by a constant phase (i 3) and
the use of envelope pulse delays. The third-order polariza
with wave vectorksb5kc2kb1ka is given by
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P~3!~ksb ,t,ta ,tb!5E
0

`E
0

`E
0

`

Ŝ~3!~ksb ,ta ,tb ,tc!

3êa~ t2ta2ta!êb* ~ t2tb2tb!êc~ t2tc!

3exp@2 iva~ t2ta2ta!#

3exp@1 ivb~ t2tb2tb!#

3exp@2 ivc~ t2tc!#dtadtbdtc1c.c..

~9!

Pulse-pair pump-probe measurements~sometimes re-
ferred to as heterodyne-detected phase-locked pump-pr!
were proposed@42# as an alternate way to characterize rela
ation processes with memory~e.g., solvation! and measured
in Refs. @43#, @64#. In pulse-pair pump-probe measureme
the pump ‘‘pulse’’ is a collinear pulse pair, with pulse pa
delay t, and the probe, which arrives at timeT after the
second pulse in the pulse pair, is noncollinear. In a nonc
linear three-pulse scattering experiment, the signal ene
can be an asymmetric function oft, but the signals in theksa
and ksb directions are mirror images of each other about
50. The partly collinear pulse-pair pump-probe experime
superimposes these two signal fields. Two pump-probe fie
~one excited by each pulse in the pulse pair with the pro
pulse! are also radiated in the same direction as the pu
pair pump-probe field, and must be subtracted to obtain
pulse-pair pump-probe signal@43#. The modulation of the
spectrum of the pulse pair causes an amplitude modulatio
the probe at the initial dipole frequencyveg as a function of
the delayt between the pump pulses. The pump-probe s
nals generated by a single pulse in the pump pulse pai
not contribute to the modulation in the signal, which is e
tirely due to the three-pulse contributions. Phase match
dictates that the signal field will be emitted along the wa
vector of the third excitation pulse (ks5ksa5ksb5kc).
When pulsesa andb are collinear, the part of the third-orde
polarization with wave vectorks5kc that depends on al
three excitation fields is given by

Pabc
~3! ~kc ,t,ta ,tb!5P~3!~ksa ,t,ta ,tb!1P~3!~ksb ,t,ta ,tb!.

~10!

The subscriptabcon Pabc
(3) (kc) indicates that contributions to

the nonlinear polarization which do not depend on all th
pulses are excluded.
0-6
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PHASE-RESOLVED TIME-DOMAIN NONLINEAR . . . PHYSICAL REVIEW A 62 033820
We now turn to the phase of the polarization. At fir
order (x (1) process!, each pulse excites dipoles which the
radiate freely~free-induction decay or FID! in the same di-
rection. For positiveveg ~absorption!, the dipoles lag the
excitation field byp/2 at exact resonance@65#. For an infinite
plane wave, the freely radiated field lags the source polar
tion by p/2 for each frequency component@66#. Resonant
components of the linear FID are thusp out of phase with
the excitation field, and interfere destructively with it, cau
ing absorption@65#. In centrosymmetric media, the next no
zero responses are third-order nonlinear responses (x (3) pro-
cess! to all combinations of the input pulses@49#. For a two-
electronic-state system, a three-pulse experiment prod
three saturated free-induction decays, six pump-probe
nals, six self-diffraction signals, and three three-pulse s
tering signals. When all three perturbation theoretic inter
tions involve the same pulse, thei 3 phase factor in Eqs.~5!
and ~6! indicates that the third-order nonlinear polarizati
lags the pulse by 3p/2 at exact resonance whenveg is posi-
tive. As in the linear case, the phase between the third-o
polarization and the exciting field depends on detuning. T
resonant third-order polarization isp out of phase with the
linear polarization~saturated FID!, and radiates in phase wit
the excitation field, leading to reduced or saturated abs
tion. Any combination of two pulses excites a third-ord
polarization in which one pulse formally interacts twice a
the other once. The use of two formal interactions with pu
a to bleach the absorption seen by pulsec through excitation
of a nonlinear polarization with wave vectorks5kc1ka
2ka is one of the six pump-probe signals. This increas
probe transmission is called a positive pump-probe sig
here. Two-pulse self-diffraction signals@19# ~e.g., two pulse
echoes@41#! can be detected in background-free directio
such asks52kb2ka . In three-pulse scattering, three iden
cal pulses with different wave vectors each formally inter
once, and signals of approximately the same frequency
emitted in the directionsksa , ksb , and ksc5ka1kb2kc .
Setting t50 and fb5fa , so that the first two pulses ar
identical and coincident on the sample, thei 3 phase factor
indicates that the nonlinear polarization lags pulsec by 3p/2
at exact resonance whenveg is positive. In general, a chang
in the sign ofvnm can introduce ap phase shift correspond
ing to a distinction between absorption and emission. T
phase is always the same when all population starts in
lower state of a two electronic state system, and will not
considered further.

The microscopic factors contributing to the phase of
third-order nonlinear polarization are now introduced. If t
excitation pulsesa, b, andc are phase shifted byfa , fb ,
and fc , respectively, the nonlinear polarization with wa
vector ksa5kc1kb2ka is phase shifted by (fc1fb2fa)
@38,41,42#. In general, constant spectral phase shiftsfa of
the excitation pulses produce a constant spectral phase
fs5(safa of the nonlinear polarization with wave vecto
ks5(saka ~wheresa561 anda5a,b,c). Polarizers and
waveplates can accurately approximate constant spe
phase shifts over narrow spectral regions, and have b
used to phase shift the signal and/or local oscillator in pi
second polarization spectroscopy@67,68#. A similar phase
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shift is used in magnetic resonance for isolating the signa
interest@69,70#.

There is also a term in the phase arising from dipole
cillation during t. Settingv05va5vb5vc and examining
the complex integral in Eq.~8!, the resonant field oscillate
as exp@2iv0(ta2tb2tc)#. Combining Eqs.~3!, ~4!, and~5!, it
can be seen that the response functionŜ(3) oscillates as
exp@iveg(ta2tb)#exp@2ive8g8 tc#, approximately canceling
the resonant field oscillations in Eq.~8! and leaving only a
slowly oscillating term.~This is strictly true only for the
properly ordered response. Since the improperly ordered
sponse contributes only when pulsesb and c overlap, an
approximate swap betweentb and tc in the improperly or-
dered response is used for this discussion.! This cancellation
was enforced by the rotating-wave approximation from
beginning. However, the resonant field oscillations with t
delays ta and tb are not approximately canceled, an
exp@iv0(tb2ta)# can be pulled outside the integral along wi
exp@2i(vc1vb2va)t#5exp@2iv0t#. For transform-limited
pulses, the effect of the slowly oscillating term left by th
rotating-wave approximation can be approximated usingta
't2ta , tb't2tb , andtc't ~Fig. 1!, and combined with
the field oscillations to yield exp@iveg(tb2ta)#exp@2ive8g8t#.
With the definitiont[(tb2ta), the component of the non
linear polarizationP(3)(ksa) radiating at frequencyve8g8 has
a pulse-delay-dependent phase modulation2vegt. When
discussing thet-dependent phase of a polarization whi
changes temporal shape witht, it is convenient to reference
the phase to that of the last pulse~c! at t50, so that the phase
of P(3)(ksa) is fsa2fc52vegt1(fb2fa). An entirely
similar analysis of the noncollinear third order polarizati
P(3)(ksb) with wave vectorksb5kc2kb1ka , given by Eq.
~9!, indicates that the phase isfsb2fc51vegt2(fb
2fa). The two phase shifts are exactly equal and oppo
because the scattered signal fields are equal and opp
orders of diffraction off the grating formed by pulsesa and
b. If the experiment employs carrier-wave-delayed puls
~which can be generated by acousto-optic modulation o
continuous-wave laser@46# or frequency-domain phase con
trol methods @71#!, vegt should be replaced by (veg
2v0)t, wherev0 is the carrier frequency.

The product of four transition dipoles in the respon
function @Eq. ~3!# also contributes a variable phase factor
the signal, mentioned briefly by Mitsunaga, Kintzer, a
Brewer@45#. Two demonstrations that this phase can only
0 or p will be given. The first demonstration applies if a
even number of transition moments of the same type~e.g.,
four electric dipole transitions or four magnetic dipole tra
sitions! form a closed cycle. Feynman energy ladder subd
grams@40# showing four different sublevels involved in th
sums in Eq.~3! are useful~Fig. 3!. The transition dipole
products can all be rearranged into the following form:

^gumue&^eumug8&^g8umue8&^e8umug&. ~11!

This expression is invariant to the arbitrary phase fact
chosen for anyuc&. Definingua&5mue& andub&5mue8&, Eq.
~11! becomes^gua&^aug8&^g8ub&^bug&. Recognizing that
the product of projection operatorsua&^aig8&^g8ib&^bu is a
0-7
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projection operator and hence Hermitian, the product of tr
sition moments must be real. If only three levels are involv
~e.g., subdiagramsd1–d6 in Fig. 3: V- or L-type double
resonances in optics;@72# regressively connected transition
of orderq50 in NMR @70#!, the product can be rewritten a
mabmab* mbcmbc* and must be real and positive or zero. Neg
tive real products, which are possible for subdiagramsd7 and
d8 in Fig. 3, were first observed for four-level transitions
strongly coupledABXspin systems by two-dimensional Fo
rier transform magnetic resonance@73#. These four-level
four-wave-mixing transitions will be called ‘‘parallel’’ by
analogy to magnetic resonance~they are designated paralle
to orderq51 in NMR @70#!. In nonlinear optics, vibration-
electronic four-level signals have been known as cohe
anti-Stokes Raman scattering~CARS! or coherent Stokes
Raman scattering~CSRS! @40,49#, and some known four-
level signals~e.g., subdiagramd7 in Fig. 3! require three
excitation frequencies@74,75#. The product of transition di-
poles in Eq.~11! is real and negative for a four-level trans
tion involving thev50 and 1 levels of two electronic state
with slightly displaced but otherwise identical harmonic p
tentials.

The above discussion assumes that the four transitions
connected in a closed cycle as in Fig. 3. In the presenc
relaxation processes that transfer@76,77# or generate coher
ence@78,79#, a closed-cycle connection may not hold, a
the above demonstration that the transition dipole produc
real breaks down. If the Hamiltonian is invariant under tim

FIG. 3. Some energy ladder Feynman subdiagrams represe
by the double-sided Feynman diagramD3 for a system with two
sublevels in each electronic state. There are 16 energy ladder
diagrams for every double-sided diagram in Fig. 2. Of the 16 s
diagrams forD3 , only the eight beginning in the upper sublevel
the ground state are shown. Time runs from left to right with fie
matter interactions in the ordera, b, andc. The wavy line on the
right indicates the radiating polarization. Subdiagramsd1 and d2

represent ground-state bleaching of the initially excited transit
while subdiagramsd3 andd4 representV-type double resonances
Subdiagramsd5–d8 all represent resonant stimulated Raman p
cesses. Note that only subdiagramsd7 andd8 involve all four levels
and four different transition dipole matrix elements. Subdiagramd8

can radiate outside the spectrum of the excitation pulses. The o
eight subdiagrams originating in the other sublevel can be grou
in the same way, and a similar grouping holds for the 16 ene
ladder subdiagrams belonging to all eight double-sided diagram
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reversal, it may be taken to be real and orthogonal with r
eigenfunctions@80#. ~The reality of the eigenfunctions wa
used by Armstronget al. to calculate the phase of nonlinea
optical signals generated by monochromatic sources@39#.!
Since this implies each transition dipole matrix element m
be taken as real, the transition dipole product is real eve
the presence of relaxation generated coherence. This t
reversal demonstration does not apply to magnetic reson
because the external magnetic field breaks time reversa

Finally, the emitted field is phase shifted relative to t
polarization. The nonlinear polarization acts as a source
spontaneously emitted electromagnetic radiation in M
well’s equations@41,49#. The second-order differential equa
tion connecting the polarization to the electric field@Eq.
3.21~a! of Shen@49## is linear in both the electric field and
the nonlinear polarization~if we ignore the field dependenc
of the source polarization!. A Fourier decomposition
into complex frequency-domain electric fields an
source polarizations is therefore possible.Êsig(v)
[*2`

` Esig(t)exp(ivt)dt and P̂(3)(v) are defined as the in
verse Fourier transforms ofEsig(t) andP(3)(t). The infinite
plane wave and negligible pump depletion approximatio
give Êa(v,r¢)5Êa(v,0)exp(ik¢a•r¢), a5a,b,c @49#. Assum-
ing slow changes in complex spectral amplitudeêsig(v,z)
[Êsig(v,z)exp(2ikz) over a wavelength,u]2êsig(v,z)/]z2u
!uk]êsig(v,z)/]zu ~slowly evolving wave approximation
@54#! then yields the field at the sample exit:

Êsig~v!5
2p l

n~v!c
iv P̂~3!~v!sinc~Dkl/2!exp~ iDkl/2!.

~12!

The proportionality of the spontaneously emitted field tov
~charge velocity! rather thanv2 ~charge acceleration! results
from the infinite plane-wave approximation@66#. This spon-
taneous radiation factor has been included in two rec
treatments of second-harmonic frequency-resolved opt
gating @25,26#. ~In the treatment of Ref.@26#, the infinite
plane-wave result was multiplied by an additional frequen
factor arising from diffraction limited focal spot size depe
dence on wavelength@81#. The complex space-time evolu
tion @54,82# of four-wave-mixing signals with focused beam
is not treated here.! Imperfect phase matching can lead
phase shifts of the signal@e.g., the exp(iDkl/2) factor above#,
and complex interactions between propagating pha
mismatched signal and excitation pulses have been stu
through their effect on the signal energy@83#. Perfect phase
matching (Dkl50) will be assumed, so that these comple
ties disappear. For narrowband pulses,v may be approxi-
mated as constant@v5v0 sgn(v)#, and Eq.~12! indicates
that the emitted signal field lagsp/2 behind the nonlinear
source polarization. Ignoring the frequency dependence
the refractive indexn(v) ~which is reasonable for dilute
chromophores in transparent media if the pulse spectrum
not too wide!, Eq. ~12! becomes the Fourier transform of
derivative, to yield

Esig~ t !>2
2p l

nc

dP~3!~ t !

dt
, ~13!
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wherel is the length of the sample,n is the refractive index
of the medium,c is the speed of light in vacuum, an
P(3)(t) is given by Eq.~8!, ~9!, or ~10!. Equation~13! can be
used to calculate the signal electric field from the third-or
nonlinear polarization.

For a two-level system in the optical Bloch limit, the no
linear polarization can be explicitly calculated ford function
pulses@84#. For t>0, the signal field is given by

E~ t,t,T!5
2p l

nc
~G21veg

2 !1/2exp@2G~ t1utu!#

3exp~2T/T1!cos@veg~ t2t!1f#

3@12~1/2!d~T!u~2t!#, ~14!

whereveg is the~positive! electronic transition frequency,G
is the dipole decay rate (1/T2), T1 is the population grating
lifetime, and f5arctan(G/veg) is an extra emission phas
shift. No signal is emitted beforet50. ForT50, a disconti-
nuity in the signal field occurs att50, where the field jumps
by a factor of 2 for positivet. Mathematically, pulses
straddle the discontinuity inS(3) at ta5tc for negativet
~which reduces the signal by a factor of 2!, while pulses
straddle the continuous proper-improper boundary attb
5tc for positivet. Physically, scattering pulseb off a grat-
ing that is halfway formed bya and c compensates for the
half-complete formation of theab grating atT50 only for
positivet. Equation~14! differs from Eq.~1! given by Hybl
et al. ~which was valid only forT.0) because the time de
rivative of the polarization is used to obtain the field~instead
of an approximatep/2 phase shift!. The polarization emis-
sion yields an additional phase shift arctan(G/veg) of the
emitted field through the decay of the nonlinear polarizat
envelope. In the case of large Gaussian inhomogene
broadening @center v0 , full width at half maximum
A8 ln(2)s], the emitted field has a time-dependent amplitu
change and emission phase shiftf(t)5arctan@s2(t2t)/v0#.
The apparent complexity of the radiated field suggests
P̂(3)(v) obtained from the inverse Fourier transform of t
field using Eq.~12! may be more useful for microscopicall
oriented investigations. In the following numerical calcu
tions, the ‘‘pseudofield’’

F~ t !5
1

2p E
2`

`

i sgn~v!P̂~3!~v!exp~2 ivt !dv ~15!

is used to remove the time-dependent amplitude and p
shifts caused by polarization radiation.

III. CALCULATIONS

All calculations were done on Intel-based 300-MHz p
sonal computers using Microsoft Fortran 4.0. The algorit
for the triple convolution was based on code generously p
vided by Dr. Jae-Young Yu, which was modified to compu
the triple integrals in Eq.~8! while fully exploiting the
rotating-wave approximation. For noncollinear excitati
pulses, P(3)(ksa) was calculated from Eq.~8!, and
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P(3)(ksb) was calculated from Eq.~9!. For excitation by col-
linear pulsesa andb, the three pulse nonlinear polarizatio
Pabc

(3) (kc) was calculated from Eq.~10!. The excitation pulses
had Gaussian envelopese(t)5e0 exp„22 ln@2#t2/tp

2
… with in-

tensity full width at half maximumtp and transform limited
temporal phasef(t)5vat with carrier frequencyva (a
5a,b,c). The response functionsRi were given by Eq.
~8.15! in Mukamel’s monograph@41# with the line-shape
function g(t) given by Eq.~A2! in the Appendix. The inte-
grals overta , tb , andtc were computed using the Gaus
Legendre quadrature routineGAULEG.F @85#. The interaction
times ta in the triple integrals ranged over (t2ta)62.5tp ,
where tp is the Gaussian pulse duration. For most calcu
tions, six quadrature points for each integral were enough
convergence to better than the accuracy limit imposed by
62.5tp range. To check the algorithm and code, several s
nals were calculated and compared to published res
@60,64,86# ~for details, see Ref.@87#!.

Figure 4 shows surface plots of the calculated sig
pseudofields Fsig(t) ~left column! and pseudo-field-
envelopesf sig(t) ~right column! as a function oft for many
values oft at four fixed values ofT. The system is a Gauss
ian oscillator @M (t)5exp(2t2/tg

2)# with tg5100 fs,
(l/2pc)5600 cm21, and (veg/2pc)51000 cm21. D was set
using the high temperature relationD252lkBT/\ at tem-
perature of 298 K. The frequencyveg and reorganization
energyl were chosen to yield only a few oscillations of th
signal field for ease of visualization. The calculation us
nearly impulsive pulses (tp50.1 fs), so the signal is zero fo
t,0 and reflects the impulse response. Signal fields
shown for T50, 1 fs, 50 fs, and 1 ps. In all four panel
Fsig(t) oscillates in both thet andt dimensions. The varia-
tion in the phase of the oscillations in botht andt encodes
the transition frequency onto the signal even after the ini
coherence has decayed. The phase referenced tot50 varies
with t approximately asveg . A Fourier transform of these
signals with respect tot leads to peaks centered at the a
sorption frequency6(veg1l).

At T50 @Fig. 4~a!#, when the pulse duration is longe
than the population timeT, there is a sharp twofold rise in
the calculated field and field envelope att50. As in the
Bloch model@Eq. ~14!#, this jump disappears atT51 fs @Fig.
4~b!#, when the pulses no longer overlap. ForT50 and 1 fs,
the emitted signal can be characterized as a stimulated
ton echo: for a given value oft, the maximum in the signa
as a function oft occurs as an echo att5t @4,5,88#. This
variation of signal emission time witht is the signature of an
effectively inhomogeneous rephasing process. AtT550 fs
@Fig. 4~c!#, there is still some movement of the signal env
lope f sig(t) with t, but by T51 ps @Fig. 4~d!# the signal
envelope’s shape does not vary witht and the signal is more
properly characterized as three-pulse scattering.

Figure 5 shows the same calculation with 20-fs pulses
T50 @Fig. 5~a!#, T550 fs @Fig. 5~b!#, and T51 ps @Fig.
5~c!#. The differences between the signals calculated w
impulsive pulses and the signals calculated with finite ba
width pulses is their extent in time and the displacement
the peak of the signals in thet dimension. The finite band
0-9
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FIG. 4. Signal fields and field envelopes calculated with impulsive pulses@the intensity full width at half maximum~FWHM! is 0.1 fs#
for T50 ~a!, 1 fs ~b!, 50 fs ~c!, and 1 ps~d! for a Gaussian oscillator with time constanttg5100 fs. Each field and field envelope has be
normalized so that each of the signals peaks at the same value. The phase modulation in the signal is such that a slice along eitt or
t axis yields a signal that oscillates near the Bohr transition frequency (veg51000 cm21). The discontinuity in the signal att50 is present
only when the excitation pulses overlap. AtT50 andT51 fs the signal displays ‘‘echo’’ behavior; the time of maximum signal envelo
e(t) changes witht. At T550 fs, the time of maximum signal envelope stills shows somet dependence; byT51 ps the signal envelope
maximum is independent oft and peaked att50. ForT50, 1 fs and 50 fs, the maximum integrated signal energy occurs att.0 ~i.e., a peak
shift is observed!, while for T51 ps the field peaks att50 for all t.
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width signals persist longer in both thet and t dimensions.
The three pulse echo ‘‘peak shift’’~value of t with maxi-
mum signal energy integrated overt! @5,60# to positivet is
larger for longer pulses, but has decayed to zero byT
51 ps for both impulsive and 20-fs pulses. ForT50, the
sharp rise observed att50 for d-function pulses has becom
a derivative discontinuity consistent with the switch fro
scanning pulseb ~negativet! to scanning pulsea ~positivet!
at t50. This derivative discontinuity is also evident in th
calculations shown in Fig. 7~a! of Ref. @60#. Figure 3 of Ref.
@89# shows experimental evidence for a three-pulse echo
rivative discontinuity att50.
03382
e-

Figure 6 shows the signal fields and envelopes for sign
measured in theksa andksb directions of a noncollinear ex
periment, and the signal field and envelope of a pulse-p
pump-probe signal~the probe field and FID are not in
cluded!. In pulse-pair pump-probe measurements the thr
pulse signal is a sum of the two oppositely phase-modula
noncollinear signals in the directionsksa and ksb . The sig-
nals shown were calculated atT51 fs with impulsive pulses
(tp50.1 fs) for the Gaussian oscillator used in Figs. 4 and
The fields emitted in theksa and ksb directions are mirror
images of each other aboutt50. Each is phase modulate
but not amplitude modulated. In the pulse-pair pump-pro
0-10
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FIG. 5. Signal fields and field envelopes calculated from a Gaussian oscillator with time constanttg5100 fs, with 20-fs intensity FWHM
pulses forT50 fs ~a!, 50 fs ~b!, and 1 ps~c!. The discontinuity atT50 andt50 for d-function pulses in Fig. 4 becomes a derivativ
discontinuity for finite bandwidth pulses. This derivative discontinuity appears only when the second and third excitation pulses o
time ~the pulse duration is greater than population periodT!. The echolike behavior of the signal envelope for smallT has been obscured
but is manifest in the signal maxima at positivet. With 20-fs pulses the peak shift is larger than for impulsive excitation atT50 and 50 fs,
but has again decayed byT51 ps. The phase modulation is essentially unaffected by the pulse duration.
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configuration (ksa5ksb), the interference between theksa
and ksb signal fields produces a signal that is amplitu
modulated as well as phase modulated. The sum of these
oppositely phase modulated fields produces amplitude mo
lation when the two fields overlap in time. The pulse-p
pump-probe field contains time intervals when amplitu
modulation dominates (t'0 andt'0) and intervals when
phase modulation dominates (t'utu.0). The amplitude
modulation has full constructive interference att50, and
persists well outside thed-function pulse overlap att50 but
does not extend over allt @90#. If the sum of the emitted field
and the third~probe! pulse is frequency resolved@32#, the
in-phase ~absorptive/emissive! components of this signa
field can be selectively detected.

IV. DISCUSSION

Measurements of the phase shift of a third-order nonlin
signal relative to the excitation pulses can be used to c
pletely characterize the third-order nonlinear response
cause the unknown absolute phase common to all pulses
cels out @35#. Phase control and phase-resolv
measurements thus open up new directions in nonlinear
tics. The systematic treatment of the phase of nonlinear
tical signals given here provides a theoretical foundation
such explorations in resonant four-wave mixing.
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The use of excitation pulse phase to control the phas
the signal has been exploited to isolate desired signals
few nonlinear optical experiments@46,91#. Strategies for sys-
tematic isolation of high-order nonlinear signals of intere
by phase cycling the excitation pulses and receiver phase
well developed in magnetic resonance@69,70#. Implementa-
tion of these strategies with broadband pulses requires
eration of constant spectral phase shifts by acousto-optic
fraction or frequency-domain phase shifting of individu
Fourier components.

For broadband pulses, the spontaneous radiation of
nonlinear polarization produces a field that is not a sim
p/2 phase-shifted version of the nonlinear polarization. T
slowly evolving wave approximation used to obtain t
spontaneous radiation phase shift is surprisingly accurate
pulses as short as one optical cycle@54#. For a Lorentzian
line, the spontaneous radiation produces an extra cons
time-domain phase shift detectable only by measuring
phase shift relative to the excitation pulses at the sam
~e.g., using the method outlined by Gallagheret al. @35# with
optics held to tolerances sufficient to eliminate const
phase differences@38#!. For an inhomogeneously broadene
sample, the radiation produces a signal chirp which is m
surable by frequency-resolved optical gating or other imp
mentations of spectral interferometry. For perfect pha
matching, Eq.~12! can be used to remove complex radiati
0-11
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FIG. 6. Signal fields and envelopes for the two noncollinear phase-matching geometries:ksa52ka1kb1kc ~a! andksb5ka2kb1kc

~b!, and the pulse-pair pump-probe geometryksa5ksb ~c!. For theksa noncollinear geometry, the initial value of the signal field att50 is
cosinusoidally modulated at the initial dipole oscillation frequency as2vegt ~phase modulation!, but the envelope varies smoothly witht
~no amplitude modulation!. For the noncollinearksb signal, the phase of the signal field is modulated asvegt in a counter-rotating sense t
the ksa signal field. By collapsing the fields emitted in theksa and ksb directions onto each other in a partially collinear geometry w
ka5kbÞkc with signal wave vectorkc , the signal field becomes amplitude modulated when the countermodulated signals overlap i
and phase modulated when they do not. Amplitude modulation at the initial dipole oscillation frequency can be seen in the oscillatio
field envelope neart5t50. At larget and ut u, the signal field envelope is not amplitude modulated at electronic frequencies, but the
fields are still phase modulated.
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dynamics~using only the refractive index and frequency! to
reveal the nonlinear polarization.

The role of the transition dipole product in altering th
phase of a four-wave-mixing signal is interesting becaus
may provide a way to measure the relative phase of f
different transition dipole matrix elements. For example
may be possible to measure the relative signs of four dif
ent Franck-Condon overlap integrals in an electronic tra
tion by phase-resolved four-wave mixing~the product also
appears in quantum beats!. This vibronic transition dipole
product is included semiclassically in the numerical calcu
03382
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t
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tions presented here, and may underlie the negative pu
probe signals previously calculated for a two-electronic-st
system at low temperature@61#. The negative signals in thes
nonperturbative calculations of pump-probe signals were
terpreted as resulting from absorption increases cause
population transfer to unpopulated vibrational levels thou
impulsive stimulated Raman scattering.

The utility of the delay dependent phase modulation
comes apparent whend-function pulses are considered. The
the third-order polarizationP(3)5(S(3)1c.c.) exhibits a
pulse-delay-dependent phase shiftvegt at the Bohr fre-
0-12
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quency of the initially excited dipole even while emitting
a different frequency. In the fully noncollinear case, the
optical frequency oscillations which encode the initial ex
tation frequency occur only in the phase of the polarizat
and not in the amplitude. Since the pioneering work of R
@1#, most treatments of photon echoes have followed Hah
treatment of spin echoes in the rotating frame@92#. Many
equations for nonlinear optical signals assume delays of
carrier wave type generated in magnetic resonance@38#.
Some expressions for the third-order polarization or emit
field explicitly differ from Eq.~8! only by predicting a phase
modulation at (veg2v0)t, where v0 is the carrier fre-
quency of the excitation pulses@e.g., Ref.@49#, Eq. ~21.22!;
Ref. @41# ~Eq. 10.13!#. These equations predict the sign
phase when carrier wave pulse delays are used~e.g., nuclear
magnetic resonance, the optical experiments of Warren
Zewail @46#!. The cosinusoidal phase modulation at (veg
2v0)t for carrier wave delays does not reveal the sign
(veg2v0). @93# In contrast, Eq.~8! shows that phase modu
lation as a function oft generated by envelope delaye
pulses provides absolute frequenciesveg .

Although their equation for the polarization was written
the rotating frame, the authors of Ref.@12# clearly discussed
phase modulation of the polarization as a function oft in the
lab frame for two pulse echos. For an inhomogeneou
broadened sample, signal phase modulation at the in
electronic frequencyproducesphoton echos. The situatio
for three-pulse echoes is somewhat different because
can persist after electronic coherence is gone@4#. In particu-
lar, echo amplitude beats have been observed as a functi
t for T exceeding the upper state lifetimeT1 @8,9#, and the
initial electronic frequency has been recovered from a pha
modulated signal for whichT exceeded the electroni
dephasing timeT2 @36#. The storage of the electroni
frequency-dependent phase can be illuminated by cons
ing interference between single spectral components
crossing plane waves@36#. Crossing waves produce a spat
intensity gratingI (r )52I „11cos@(ka2kb)•r2vt#…, where
I is the intensity of a single beam,v is the frequency, andt
is the delay produced by path-length differences atr50. As
t increases, the grating maxima move continuously along
directionka2kb , so thatvt can be regarded as the phase
the grating. For excitation of an inhomogeneously broade
two-level system by broadband pulses, each resonant
quency produces an independent population grating w
phasevegt. A grating phase shiftf leads to a phase shif
mf in the mth order of diffraction. Phase modulation of th
population grating, which is stored in the spatial position
the excited and unexcited molecules, translates directly
phase modulation of the scattered signal field@38#. It should
be emphasized that phase modulation at the initial dip
oscillation frequency can be observed with a third pulse e
after all molecular coherences have been destroyed.

When the first two excitation pulses are collinear, the
perposition of noncollinear phase-modulated signals p
duces an amplitude and phase modulated signal. Compa
Eqs.~5! and~6!, a signal generated by collinear pulsesa and
b may exist for all six pulse orderings. The four orderin
with tc.ta or tc.tb @the bottom four terms in Eqs.~5! and
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~6!# contain phase-modulated contributions from only one
the two noncollinear signals, and will remain phase mod
lated in the collinear case. In contrast, the two orderings w
ta.tc and tb.tc @the two top terms in Eqs.~5! and ~6!#
will have oppositely phase-modulated contributions fro
both noncollinear signals. The sum of these two opposit
phase-modulated signals will be at least partially amplitu
modulated, so the collinear signal will be both amplitude a
phase modulated. Another valid view is that the colline
amplitude modulation simply results from the excitatio
source~pulsesa and b! blinking on and off throughout the
sample as the delay is varied. The description of amplitu
modulation as arising from superposition of two opposite
phase-modulated signals is valuable because it empha
the role of the material. As an example, a material with
resonance which is narrow compared to the pulse spect
can produce amplitude-modulated signals which persist
side the range of temporal pulse overlap. This result can
understood from a frequency domain view: the spectral co
ponents which excite the material will all blink together un
the interpulse delay exceeds the inverse linewidth of the tr
sition. Frequency- and delay-dependent modulation of
position of excited molecules within the sample in the no
collinear case becomes modulation of the excited state po
lation throughout the sample for collinear excitation.

In the absence of relaxation, the final frequency can
volve both new upper and new lower states (ve8g8) for t
.0. V(ve8g) or L(veg8) double resonances with one com
mon level can appear for allt. The four-level parallel four-
wave-mixing signal (veg andve8g8) in the absence of relax
ation has no frequency domain double resonance analog
is known from investigations of CARS/CSRS@67,70,71# and
multilevel interference effects in photon echoes~see refer-
ences in Mitsunaga, Kintzer, and Brewer@45#!, and provides
valuable information about the level structure. When cro
relaxation takes place duringT, the signal can involve new
upper and lower states for anyt. The signal phase modula
tion with t provides a way to connect the final emissio
frequency to the frequency of the initial dipole oscillatio
which caused it. This correlation of initial and final freque
cies under the inhomogeneous linewidth provides not o
the difference frequencies seen in intensity beats@8,12,14#,
but also absolute frequency information not present in diff
ence frequency beats. This correlation is conveniently rep
sented in the frequency domain by two-dimensional Fou
transformation@36,55,70,94#. Femtosecond 2D Fourier trans
form spectroscopy should be a useful probe of correlati
disorder, and electronic coupling, and their time develo
ment @10,15–17#.

A few macroscopic factors which influence the phase
the signal have not been treated here. Perhaps the mos
vious are phase mismatch and propagation/depletion of
waves as they travel through the sample. The finite be
diameter can also give rise to phase shifts~e.g., Guoy phase
shift in passing through a focus! @65#. The combined effect
of spatial and polarization radiation phase shifts merits
vestigation using the slowly evolving wave approximati
developed by Brabec and Krausz@54,81,82#. The influence
0-13
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of crossing angle broadening and dependence of the si
diffraction angle on frequency also deserve exploration.

V. CONCLUSION

Five sources of constant phase shifts for resonant, f
phase-matched, noncollinear four-wave-mixing signals h
been identified: the signs of the frequencies~absorption vs
emission!; the phases of the excitation pulses; the transit
dipole product; coherence oscillation during the delays
tween pulses; and the spontaneous radiation dynamics o
nonlinear polarization. These factors are all relevant to
periments with a broadband phase-matching geometry on
tically thin samples: phase matching and propagation iss
add further complexity. The excitation pulse phase can
principle, be experimentally controlled, and may be use
for separating different types of signals. The effects of sp
taneous radiation dynamics can be removed in the freque
domain. The electric fields of noncollinear four-wave-mixin
signals are phase modulated at the initial dipole oscillat
frequency by the delayt between the first two pulses.

There is a simple physical picture of this phase modu
tion. The first pulse excites coherently oscillating dipo
throughout the sample. The second pulse stores the di
phase in the frequency-dependent, periodically modula
position of excited molecules within the sample. Upon ex
tation by a third pulse, this molecular excitation grating a
as a source of spontaneous radiation which imprints the g
ing phase onto the phase of the diffracted signal. It is imp
tant to emphasize that the initial dipole phase can be rec
ered by the third pulse even afterall molecular coherence ha
been destroyed. If the signal field~including constant phas
shifts relative to the excitation pulses! is measured for a se
ries of delays, the signal can be separated according to
coherence oscillation frequency by Fourier transformat
with respect to the pulse delay. This provides a route
frequency resolution within the pulse spectrum in nonlin
spectroscopy. Similar labeling is possible using a closely
lated amplitude modulation of signals in partially colline
geometries. Coherence labeling should be valuable for s
ies of level structure, vibrational and excitonic coupling,
laxation dynamics, and examination of correlations hidd
by inhomogeneous broadening.
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APPENDIX: BROWNIAN OSCILLATOR MODEL

The calculations presented here used the Brownian o
lator model, which predicts the optical properties of a tw
level system that is linearly coupled to coordinates wh
interact with a heat bath of harmonic oscillators. This is
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reasonable model for the electronic states of molecule
condensed phases. A fundamental quantity in the Brown
oscillator model for four-wave-mixing signals is the Bo
transition frequency correlation functionM (t),

M ~ t !5
^Dv~0!Dv~ t !&

^Dv2&
, ~A1!

whereDv(t)5^v&2v(t) @60#. ^v& is the average transition
frequency, and the brackets indicate an average over
ground-electronic-state coordinate probability density. Sin
M (t) is a correlation function,M (0)51 and @dM/dt# t50
50. Physically, the electronic excitation of the chromopho
is too fast for the nuclei to respond instantaneously.

The multimode Brownian oscillator model uses a fr
quency correlation functionMi(t) for each modei. The cor-
relation functions for damped harmonic motion are given
Eq. ~20! of Ref. @95#. In the high temperature (kBT/\.v i)
limit, the homogeneous line-shape function for each mo
gi(t), is given by@95#

FIG. 7. Illustration of Brownian oscillator parameters and sem
classical Franck-Condon mapping between coordinates and
quency. The upper and lower electronic potential curves have
same harmonic vibrational frequencyvv , different equilibrium po-
sitions separated by a displacementd, and an energy gap of\veg

between minima. The difference potentialVe(q)2Vg(q) is repre-
sented by the dot-dashed line. The solid curve on the lower po
tial represents the classical thermal distribution of vibrational co
dinates at temperatureT. The width of the absorption spectrum o
the left is dictated by a Franck-Condon mapping~shown by dotted
lines! of coordinates to frequencies using the difference potentiaD
determines the width of the absorption spectrum, which is cente
at frequency (veg1l).
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gi~ t !5 il iE
0

t

dt1Mi~ t1!1D i
2E

0

tE
0

t1
dt1dt2Mi~ t2!.

~A2!

l i is the reorganization energy of modei, and D i
2 is the

coupling strength of thei th mode to the bath. The Brownia
oscillator line-shape functions used in these calculations
sume the bath has no memory of earlier states of the sys
and are valid only in the high-temperature limit@96,97#.

Figure 7 illustrates the Brownian oscillator parameters
is assumed that the ground- and excited-state potentials
harmonic with the same vibrational frequenciesv i . Each
oscillator is displaced by the dimensionless normal mo
displacementdi , so thatl i5(1/2)v idi

2, and the total Stokes
shift is 2l52Sl i . In the semiclassical~high temperature!
limit, l and D2 are related byD i

252(kBT/\)l i @95#. The
width of the spectrum can also be obtained by class
Franck-Condon coordinate-frequency mappingv(q)
5@Ve(q)2Vg(q)#/\ @98#. The classical thermal distributio
of vibrational displacementsq is given by P(q)
5A\vv/2pkT exp@2\vvq

2/2kT#. The absorption lineshap
g~v! can be expressed asg(v)}2P(q)/(dv/dq)
5P„q(v)…/v id, where q(v)5(veg1l2v)/v id is
v.

s

m

L.

n

v

O

T
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an inverse function of v(q)5(veg1l2v iqdi). This
yields g(v)}exp@2„v2(veg1l)…2/2D2#, where D2

52(kBT/\)l.
The overall homogeneous line-shape function in the m

timode Brownian oscillator model is given byg(t)
5Sgi(t). The steady-state absorption and emission li
shapes~for Einstein B! are

ga~v!}
1

p
ReH E

0

`

dt exp@2 i ~v2veg!t#exp@2g~ t !#J ,

gf~v!}
1

p
ReH E

0

`

dt exp@2 i ~v2veg!t#exp@2g* ~ t !#J .

~A3!

Since the additive line-shape functiong(t) appears in an
exponential that is Fourier transformed to yield the spectru
the effect of each mode on the spectrum is a convoluti
The imaginary part ofg(t) determines the center frequenc
of a transition, while the real part determines the width. E
pressions for the third-order impulse response functionsRi in
Eq. ~3! in terms of the line-shape functiong(t) may be found
in Eq. ~8.15! of Mukamel’s monograph@41#.
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