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We study two types of coherent states for two-mode realizations of the direct product group
SU(1,1)®@SU(1,1) [which is locally isomorphic to S@,2)] constructed from the coupling of two single-mode
realizations of SWL,1). The basis states for the relevant representations ¢1,3&®SU(1,1) are constructed
from the SU1,1) Clebsch-Gordon coefficients. From these, Perelomov and Barut-Giradello coherent states are
constructed. Various properties of the states are discussed, and methods for generating them are proposed.
Some of the states can be generated by the operation of beam splitters with two-mode squeezed vacuum states
or pair coherent states as inputs. We show that a competitive two-channel two-photon process gives rise to
states of the Barut-Girardello type as the steady-state solutions of the associated master equation for appropri-
ate initial conditions.

PACS numbd(s): 42.50.Dv, 03.65.Fd

[. INTRODUCTION certainty products that can be constructed as consequences of
the sy1,1) commutation relations. Pair-coherent states are a
Two modes of a quantized electromagnetic field can bespecial case of intelligent states that involve equal uncer-
come entangled, and may assume many other nonclassidginty for the relevant operators. The two-mode squeezed
properties through various kinds of nonlinear interactions. Irpair-coherent statfl0] is also an intelligent state, but with
fact, two-mode fields admit a large number of coherentinequal uncertainties.
states, many of which may be associated with low-order Lie All of these two-mode SU,1) coherent states may be
groups such as S8 or SU1,1). For example, if a state characterized by the fact that they may be written as super-
containingn photons and one containing only the vacuumpositions of the form
are incident at the input ports of a beam splitter, the field of
the output ports is an S8) coherent stat¢l], where then
photons are binomially distributed over the two mod2k
The SU2) coherent states may similarly be generated from
the action of a frequency conversion device or of a direcwhere the modes are labeledand b and the parametey
tional couplef3]. On the other hand, the two-mode squeezed =0,12 . . .) is the(fixed) difference in the photon numbers
vacuum state is just a particular example of a Perelopddv of the two modes and where the coefficie@ts depend on
type of coherent state associated with a two-mode realizatiothe specific S(L,1) state(see Sec. Il for specific examp)es
of SU(1,1) [5]. It is actually a special case of a class of The pairing of the photons in these states is due, of course, to
two-mode SW1,1) coherent states involving strong correla- the fact that photons are created or annihilated pairwise from
tions between the modg§]. The states are generated from eachmode.
the unitary evolution of two-mode number states driven by a Of course, there are processes where photons are created
nondegenerate parametric devieeg., of the type that gives or destroyed two at a time insinglemode. It turns out that
rise to down-conversion or harmonic generatioAnother  such states are described by single-mode realizations of
interesting type of two-mode state is the pair-coherent stat8U(1,1). The number states of the field can be separated, on
first discussed in the context of quantum optics by Agarwathe basis of parityeven or odg, to form two representations
[7]. This type of state is actually an $1J1) coherent state of SU(1,1). The single-mode squeezed vacuum and squeezed
according to the definition of Barut and Girarde]lR); itisa  one-photon states are Perelemov (80) coherent states
right eigenstate of the lowering operator in thelsl) Lie  [5,11]. The BG coherent states for the single mode case are
algebra. As in the Perelomov case, the Barut-Girard@®)  just the even or odd coherent stafd®] which are special
coherent states for two-mode fields involve tight correlationscases of the so-called Schlinger cat state$13]. These
with respect to the photon number states between the modestates are characterized by oscillations in the photon number
and admit strong nonclassical properties such as varioysrobability distributions, a phenomenon that can be inter-
forms of squeezing and violations of the Cauchy-Schwarzreted as arising from interference in phase spadé
and Bell inequalities. The pair-coherent states may be gener- There is, however, one possibility that, as far as we are
ated in a process involving the competition between nondeaware, has not been explored for the two-mode case. There
generate parametric amplification and nondegenerate tw@re processes, essentially two-channel processes, where there

HZO Coln+a)alnyy, (1.1

photon absorptiofi7]. is competitive two-photon annihilation and creatiostween
One other class of two-mode $1J1) coherent states, the the two modes. Suppose, for example, thaindb represent
intelligent states, were discussed in the literaf@i Intelli- the annihilation operators for photons of the same frequency

gent states are those states that equalize various possible umt with orthogonal polarizationgerhaps left and right cir-
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cular polarizations, respectivelyin the case of d=0—1 K,=(K,.—K_)/2i are generators of noncompact @\1)
—0 atomic cascade transition between the atomic states transformations. The Casimir operator

and|g) with an off-resonant intermediate state, the effective

Hamiltonian is C=KZ—3 (K, K_+K_K,) (2.2

H,=4[G(a?+b?)|e)(g|+H.c]. (1.2  commutes with all the elements of the Lie algebra. The rel-
evant unitary irreducible representations are the positive dis-
If, in addition, there is an external classical coherent fieldcrete serie$16], whose bases, which are eigenstateK gf

driving the transition described by the Hamiltonian, and C, we denote ask,m) wherek is the so-called Barg-

mann index taking on the valuds=1/2,1,3/2,2..., and
Hea=1(Goe?[e)(gle”# '+ H.c), (1.3 m=0,12... . These states satisfy the relations

then it can be shown that in the steady state, the radiation Kolk,m)=(m-+k)[k,m), (2.39

field is in an eigenstate of the operatar - b?). As we shall

show, such states correspond to the Barut-Girardello coher- Clk,m)=k(k—1)|k,m), (2.3b

ent states for the coupling of two single-mode representa-

tions of SU1,1), that is for the direct product group K, |k,my=[(m+1)(m+2k)]¥Jk,m+1), (2.3

SU(1,)®SU(1,1) which is locally isomorphic to SQ@,2),

SQO(2,2~SU(1,)®SU(1,1). The basis states for K_|k,my=[m(m+2k—1)]"3k,m—1).  (2.30

SU(1,)®SU(1,1) are very different from any of the two-

mode SU1,1) states previously considered, consisting of su-The statesk,m) may be generated from the “ground” state
perpositions of the two-mode number states containing #&,0) according to

fixed total photon number. As a result, photon probability
distributions for the corresponding $1J1)®SU(1,1) coher-

ent states are not concentrated along a line as is the case for
the two-mode S(,1) states of the form of Eq(1.1) as

discussed above. Previously Bambah and Agafdal have  This positive discrete series is denotBd. An alternative
discussed théour-modeBG coherent state@he bipair co-  |abeling of the states frequently encountered in the literature
herent statésobtained by coupling together two two-mode s |J,M), where the eigenvalue & is nowJ(J+ 1) and that
representations of SW,1). As far as we are aware, the ra- of Ko is M, where nowM = —J,—J+1,—-J+2, ..., inanal-
diation fields obtained by coupling together two single-modepgy to the angular momentum states. We prefer to use the
representations of SW,1) have not previously been dis- notation|k,m), where heremis always a positive integer or
cussed. We rectify this in the balance of this paper. zero and the Bargmann indécontains the fractional part of
The paper is organized as follows. In Sec. Il, we reviewihe spectrum oK,. This turns out to be an advantage in
various aspects of the group 8LJ) and the Lie algebra geriving the Clebsh-Gordon coefficients for the coupling of
su1,1) relevant to problems in quantum optics. In Sec. lll certain nonstandard representations not labeled by the-
we discuss the basis states of the coupled two-mod&,3U  yes listed above. An example of such a nonstandard repre-
representation obtained from those of the two single-modgentation is the realization for a single-mode field, which we
representations through the @LI) Clebsch-Gordon coeffi- now discuss.
cients. In Sec. IV we discuss two types of coherent states for gqr g single-mode field described by the annihilation and

the coupled states, namely, the Perelomov coherent statggeation operators and a', respectively, the €a,1) Lie
and the Barut-Girardello coherent states. Some properties @fgebra is realized by the operators

the states are given, and methods to generate them are also

discussed. We conclude the paper in Sec. V with some re- Ko=%(a'a+3), K_=%1a? K,=%a'™ (25
marks on possible directions for further work. In an Appen-

dix, we derive, in our notation, the relevant @L1) Clebsch-  The Casimir operator for this realization takes on the value

12

T'(2k)
(K)"k0). (24

KM= T2k m)

Gordon coefficients. C=— <, which means that the allowed values of the Barg-
mann index ar&k=3 and 3. Note that these values do not
Il. REVIEW OF RELEVANT ASPECTS OF SU (1,1) belong to the list of allowed values given above, and so the

associated representations may in some sense be interpreted
We will be mostly concerned with the 1) Lie algebra  as “continuations” of the standard positive discrete series.
rather than the S(,1) group so we start by introducing the The correspondence between the usual number states of the
elements of that algebra, the operatifgsandK . satisfying  single-mode field, which we denote a®, and the SUL,1)

the commutation relations basis statesk,m) from Eq.(2.5) is
[Ko,Ki]=%K., [Ki Ko ]==2Ko. (2.0 Inye|k,m) for n=2(m+k)—1/2. (2.6
The operatoK is a generator of compact $U1) transfor- Several types of S(1,1) coherent states may be con-

mations, whereas the combinatioks=(K,+K_)/2 and structed, but here we shall mention only two of them: the
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PerelomoV[17] coherent state and the Barut-Girardgl@]
coherent state. The former state is generated but the action ¢
the operator

S(z)=exp(zK,. —z*K_), 2.7

on the ground stat,0). Herez is a complex number usually
parametrized ag=—(6/2)exp(i¢), where 6 is a hyper-
bolic angle (G< #<x), and ¢ is an azimuthal angle @ ¢
<2m). The resulting coherent state is

©

|§,k>=<1—|§|2>kmE:0

1/2

' (2k+m)
Mk,m), (2.9

m!I'(2k)

whereé= —tanh(@2)exp(—i¢). Fork= 3 the state is just the
squeezed vacuum state, and ket 2 it is the squeezed one-
photon state. The operat8(z) of Eq. (2.7) is just the famil-
iar squeeze operator when the generators are realized as
Eqg. (2.5 [17]. On the other hand, the Barut-Girardello co-
herent states, which we denote|dsk), are defined as right
eigenstates of the 61,1) lowering operatoK _ ,

FIG. 1. The joint photon number probability distribution
K_|¢,ky=¢|¢,k), (2.9  P(ny,n,) vsn, andn, for the two-mode squeezed vacuum state
(q=0) given by Eq.(2.14) for |£|=0.9.
where the eigenvaluéis an arbitrary complex number. The

solution to Eq.(2.9) is of the form into the sets where the &yl) bases are given bjk,m)
" . =|n+q,n), n=0,12... =, k is given above, and from
_ 4 Egs.(2.33 and(2.12 we havem=n.
|£.k)= N"mE:o [m!T(2k+ m)]1’2|k’m>’ (2.19 The corresponding Perelomov coherent state for the two-
mode field, from Eq(2.7), but written in terms of the two-
whereN, is the normalization factor given by mode number states, is given [§]

Nk=[T(2K)[Z]"# Ma-a(21ED]7 Y2 (21D

I 1 being a modified Bessel function. For the realization of

Eq. (2.5 the BG coherent states correspond to the even angpere

odd coherent states fdk=% and 2, respectively. As we

‘g,%(1+q)>220 Cdn+q,n), (2.143

stated in Sec. |, both the Perelomov and the BG coherent o (N+Q)]Y2

states for a single-mode field are characterized by oscillating Ch=(1—|g»trare n|—q'} & (2.14p

photon number probability distributions, interpreted as the o

result of interference in phase spddd]. For the special casg=0 this is the two-mode squeezed
The standard two-mode realization of thelsd) Lie al-  vacuum state. Fog+0 it is the state obtained by the action

gebra is given by of the two-mode squeeze operator on the number fatie

[6]. The probability of findingn; photons in mode andn,

Ko=3(a'a+b’™b+1), K,=a'b’, K_=ab, photons in modé is given by

(2.12
where the operatosandb are the Bose operators of the two

independent modes. The Casimir operator for this realization
can be written as

P(nlynz):(1_|§|2)l+q

(n+g)!)H2

C=3%(A%-1), 213 (2.19

where the operatoA =a'a—b'b is just the difference be- Plotted againsh, and n,, this probability distribution is
tween the number of photons in the two modes. With thenonzero only along a line determined by the valueqpf

2

eigenvalue ofA| denoted by the positivéor zerg integerqg,  indicating the tight correlations between the modes. An ex-
the Bargmann index is given = (1+q)/2, where the de- ample of such a distribution is pictured in Fig. 1 for the case
generacy parameteq=0,12.... Assuming that thea  with g=0.

mode hag more photons than themode, the number states  One further point we want to make about the states in Eq.
of the two modes|n,)®|ny)=|n,,ny), organize themselves (2.14) is that the two modes are, in general, entangled. To
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obtain a measure of the degree to which they are entangle

we may introduce the density operatqy,,=|£,3(1
+0q))(&,1/2(1+q)| of the complete two-mode system from
which we obtain the density operator of tkemode sub-
system as

o0

Pa:Terab:nZO ICﬂ|2ln+q>aa<n+q|, (2.16

which is a statistical mixture. For the case of the two-mode |
squeezed vacuung=0, it has been shown that the state
described by Eq(2.16 has thermal-like noisgl9]. Taking
the trace over tha mode ofp2, we find that

%)

Trapgzgq |Cdt<1 (2.17

for 0<|&/< 1. Thus the states of the form of E@.14 are

entangled.
As for the corresponding two-mode BG coherent state, it
is the pair-coherent state given py] FIG. 2. The same as Fig. 1, but for the pair coherent state of Eq.
1 w0 (2.19 for |¢|=7.5.
,=(1+q)) =2, Aln+q,n), 2.18
‘g 2 q)> 20 intan (2182 K'=3(a'a+3), KP=3a?, KW=3a? (3.
where and
&n K(Z)Zl(bTb-l- l) K@=1p+t2 g@_1p2
q_ 0 2 2/ + 2 ’ — 2 ’
An=Nari (g™ (218 (3.2
and where the normalization factbi, is given by where, of course, both sets of operators satisfy th&,%u
Lie algebra of Eq(2.1). The operators
No=[a!]¢[~%q(2]¢)1 (2.189 o
Ko=K{"+K§’=3 (aTa+b"b+1), (3.3a
The photon number probability distribution is given by
. ;o ) K,:=KP+K?@=1(a"2+b*?), (3.3b
— 2
P(ny,nz) =[Ny nzo W/ﬁ5nl,n+q5n2,n : K_ =KD +K?=1 (a2+b?) (3.30

2.1

(219 also satisfy the q1,1) Lie algebra of Eq(2.1), and generate
Though this has a different shape than the Perelomov casthe direct product group SW,1)®SU(1,1). The Casimir op-
the distribution is still concentrated along a line determinederator of this group is calculated from E@.2) and in terms
by the value ofq as illustrated in Fig. 2. Other two-mode of the operators for the individual modes has the form
SU(1,2) coherent states such as the intelligent stE@éslso
have tightly correlated photon probability distributions. ~ C=K3—3(K,K_+K_K,)=3%(a'a+b'b+1)2
Again, the state in Eq2.18) is an entangled state and, as in
th% previous case, it(f:an 8)be shown thzgt —s({a™®,a%+{b"? b} +2a"*b?+2a%"?),

(3.9

o

Trap§= 2 |Aﬁ|4< 1 (2.20 where{,} is an anticommutator. We denote the basis states of
e the two individual modes in the obvious wak, ,m;) and
for 0<(¢<o. |k,,m,) for modesa and b, respectively. We denote the
basis of the coupled representation, i.e., of
SU(1,)®SU(1,1), as|K,M;kq,k,), which we sometimes
abbreviate as simplyK,M). The labelsK and M are, of
We consider two modes of the quantized field, denotectourse, related to the eigenvalues®andK, according to
the a and b modes, out of which we may construct two K(K—1) and M+K, respectively. That is, the coupled
single-mode realizations of $W,1). The SU1,1) operators states|K,M) satisfy Egs.(2.3) and (2.4) with the obvious
of these individual modes are realized according to replacement&— K andm—M. The Kronecker product of

Ill. COUPLED BASIS FOR SU (1,D®SU(1,1)
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two positive discrete series reduces to the sum of positive

1
discrete series according to the Clebsch-Gordon decomposi- [K=3M=1)= 7(|2,0>+ [0,2), (3.8b
tion 2
- ) 3 1
DkeDR= > Dy, (35 [K=2.M=2)=1/5(140+[04)+5[2.2, (3.89
K=k7+k,

heetc. Note that the total number of photons in each of the
components of the coupled basis is jud?l 21t is easy to
check these results by repeatedly applying the raising opera-
tor [Eq. (3.3b] to the ground staté0,0). In fact, we may
dispense with Eq(3.6) containing the Clebsch-Gordon coef-
ficients, and obtain a simple general formula for the states of
the coupled representation in terms of the two-mode number
states by writing

where the sum proceeds in integer steps. In other words, t
allowed values of K are K=k;+k,+| where |
=0,1,2... oo.

The SU1,)®SU(1,1) basis of the coupled modes,
|[K,M;kq,k,), may be constructed out of the products of the
individual states of the two modelk, ,m,)|k,,m,) accord-
ing to the series

[+M
K, M:Kq ko) = EO C(Kq, Ky, K:m,1+M—m,M)|ky,m) [K=3,M)=Npy(a™?+b*?)"0,0
o
M | _ 171172
X |ky,l +M—m), (3.6a =Ny > L(2])!(2M —2])!] |21,2M —21),
=) (M—=D!!
where the number§(k,,k,,K;m,I+M—m,M) are SU1,1) (3.9
Clebsch-Gordon coefficients. The last equation could equally
well be written as where we have used the binomial expansion on the operator
expression, and where a factorMft has been absorbed into
1+M the normalization factoN,,, . This normalization factor may
|K, MKy ko) = EO C(Kq,ky, K 1+ M—m,m,M) be evaluated as
=
M —-1/2
X |kq,I+M=m)|ky,m), (3.6b Ny =| S 2nt2zm-=2n! 1 31
M| & v-n | 2 9

although we shall stay with the former convention through-
out the balance of the paper. Numerous derivations of thend thus we finally have
SU(1,1) Clebsch-Gordon coefficients have been given in the
literature[20] mostly using the angular-momentum-like no- 1M [(21)1(2M —21)1]H2
tation. We derive and present explicit formulas for these co- |K=3,M)= 2_M|Eo M= |21,2M — 21 ).

efficients in the present notation in the Appendix.

Note that, according to Eq2.6), our state of Eq(3.6) is 3.1
a superposition of the product states where madentains
n,=2(k,+m)—3 photons, and modb containsn,=2(k,
+1+M—m)—3 photons. Thus we may write E¢3.6) in
terms of the number states as

We note that only even states of the field are excited, which
is as expected since it is the two even sets of states from each
mode that are being coupled to form the new basis. It is
worth remarking here that the coupled basis states for the
other allowed values df could be derived the same way Eq.

[K.Mka ko) (3.1) was, by replacing the ground state,0) by the
I+M “ground”state of the corresponding coupled representation.
= 2 C(kq, ko, K;m,I+M—m,M) However, it should be remembered that these ground states
m=0 are generally not product states as, for example, for the state
X|2(ky+m)— 1/2)[2(kp+1 +M—m)—1/2), N EQ. (3143 below.

It is interesting to note that the states of E§.8) are
3.7 precisely those generated from the action of a 50/50 beam
splitter with the number statd$1,M) M=0,12... at the
Note that for these basis states the total number of photons iAput ports[1]. That is to say, using the angular-momentum
the two modes, for a giveM andK, is 2(M +K) — 1. formalism with which a 50/50 beams splitter may be de-
We consider a few examples. For the case witk-k,  scribed by the rotation operatdfgs=exg —i(w/2)J;] [1],
=7 and withK=k;+k,=3 (1=0), the first few coupled where J; is an angular-momentum operator given in the
basis states, in terms of the number states for each modgchwinger[21] realization as);=(a'b-+ab')/2, it can be

work out to be shown[1] that

|K

L, M=0)=[00), (3.89 UpdMM)=(~i)M[K=4,M). (3.12
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In fact, the state of E(3.8b) has been generated by a beam
splitter from the input statfd,1) obtained from the output of
a parametric down-converter in an experiment on two-
photon interference by Honet al. [22]. More recently, the
state of Eq(3.80 has been generated by a beam splitter from
the state input staté?,2), again obtained from parametric
down-conversion, in an experiment on four-photon interfer-
ence by Ou, Rhee, and Wap23|.

The joint probability of findingn; photons in modea and
n, in modeb for the coupled basis states is given by

P(ny,n2)=[{ng,ny|K,M;Kq ko)
|+M
=| > C(ky ko, K;m,I+M—m,M)
m=0

2

X Bn, 2(ky +m)— 11200, 2ky+ 1 +M—m)— 112 -

(3.13

In Fig. 3 we collectively plotP(n;,n,) versusn,; andn, for

the case with =0 for variousM’s. The important point is
that the basis of S(1,1)®@SU(1,1) consists of superpositions
of product states alongerpendiculargo the diagonal in the

in the n;—n, plane whereM increasesalong the diagonal.
Unlike the standard two-mode realization of @1) as dis-
cussed in Sec. Il, the numbers of photons in each of the

modes are not tightly correlated, although the total number o 1z 3 4 s

of photons in the two modes for a giv&andM, in fact the (b) n,

number 2V, is fixed, as already noted The photon probabil-

ity distribution for the case witk; =2 andk,=%, and with FIG. 3. (a) Joint photon number probability distribution from

K=1(1=0), is shown in Fig. 4. In this case only the odd Ed- 3. 13) for the coupled baS|s states of E@®.7) for the cases

states of tha mode are occupied, and only the even states ok1=k.=7, and1=0; henceK=3. The states shown are fou

the b mode. =0,1,2,3... . Thevalue ofM |ncreasesalong the diagonal, and
One important point to be made here is that the “ground”thus the baS|s states for a givBhare along lines perpendicular to

states for the coupled representation in the cases for which€ diagonal as indicated i), which is a two-dimensional version

|=0 are just the product of the ground states of the twd of (a), suppressind®(ny,n,), |nd|cat|ng the photon number states

modes, ie. |K 0)= |k1,0>|k2,0) with K=Kk, +k,. Such comprising the basis states for tK(-:c2 coupled basis.

states are obviously not entangled. However, for cases where

>0, the corresponding ground state® entangled. For ex- 3

ample, for the case with;=k,=% and|=1, such thatk [K=2,M=2)= \/—

=3, in terms of the photon number states the ground state is

(12.9-14,2)

+

15
§2>(|0,6>—|6,0)), (3.140

[K=3 M= >=—(|o 2-12,0). (3.143 .
respectively. These states are clearly entangled and we shall
return to this point below. Note that the total number of
. . ) photons in the basis states for this caseNs22, and further
The first and second excited states are given as note that the number sta2M +2,2M + 2) does not occur in
the basis for this case &f=32. In Fig. 5 we plot the photon
number probability distribution for some of the basis states
for the coupled states witK=3. It is evident that states
along the diagonal of the;—n, plane are not populated.
The suppression of these states can certainly be construed as
a result of interference. Here we shall not consider cases for
and higher values oK.

3 M=1)= (/0.4 —
K=iM=1)=—(04-[40) (314
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(b)

(b) n

FIG. 5. Same as Fig. 3, but witky=k,=7, andl=1; hence
FIG. 4. Same as Fig. 3, but with=3, k,= %, andl=0; hence K=
K=1.

NIw

[(2K+M)]Y?

IV. COHERENT STATES FOR SU(1,)®SU(1,1) A(LM,m, &) = (1—|¢[?)KeM TR

We now construct coherent states appropriate to the group
SU(1,)®SU(1,1). As there are several types of coherent X C(ky Ky, Kim,I+M—m,M). (4.2
states for SUL,1), so there will be for SL,1)®@SU(1,1). We
shall restrict our attention to just two types: Perelomov and\e note that the operat®(z), the squeeze operator of Eq.

Barut-Girardello. (2.7, from Egs.(3.3), factors into a product of squeeze op-
The Perelomov coherent state is given by erators for the two modes, i.e.,
|€,K)=S(2)|K,0:kq ko) (4.13 S(z)=expzK, — 2K _)=S,(2)S,(2), 4.3
—(1- K S [F(ZK“LM) 1 where S(z)=expeK{-z*K") for i=1 and 2. These
M=o | M!T(2K) squeeze operators could be realized by a pair of degenerate
" _ parametric amplifiers acting with identical coupling strengths
X EVK,Miky ko) (410 angd phases of the classical pump fields. In terms of the pho-
o ton number states, the Perelomov state may be written as
w4+
= > > A(M,m,é&)|ky,mhlky, I+ M—m), w 14M
M=0 m=0
(4.10 |EK Ky ko)= 2 2 A(LM,m,&)[2(m+ky) —1/2)
M=0 m=0
where X[2(1+M —m+ky) —1/2). (4.9
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With 1=0, the ground state in Eg4.1) is just the two-mode ! n,
product state

|K,0>: | k1,0>|k2,0)> = |2k1_ 1/2>|2k2_ 1/2>, K: k1+ k2

(4.9
(group states on the left and middle and number states on th 2
right) and thus, because of the factorization of the squeeze
operator according to Eq4.3), it follows that the corre-
sponding SW1,1H)®SU(1,1) Perelomov coherent state factors
into a product of single-mode SW,1) coherent states, i.e. a
product two single-mode squeezed vacuum states:

P(ni,nz)

|EK)Y=]& k@€, ky),  K=kytks. (4.6)

Thus there is no entanglement in this case. For the specie
casek;=k,=7%, using Eq.(4.1) the Perelomov state takes
the form

(@)
|§,K:%>:(1_|§|2)1/2M2:0 MK=3.M), (4.7

where the coupled statéi€ = 3,M) are given in terms of the
two-mode number states by E@.9).

The photon number probability distribution for the states
of Eq. (4.19 is given by

ik

P(nlvn2)2|<nlvn2|§vK>|2

0.05 P(ni1,n2)

% 1+M
= ME:O mzo ALM,M,€) 6y aimiy)- 12
2
X On, 201+ M-m+ky)~1/2 - 4.9

This distribution is displayed for varioug for the important
case ofk,; =k,= 1 and for the casels=0 and 1 in Fig. 6. We
note that the distributions are symmetric about the diagonal
and they contain “holes” wherever eithey or n, (or both ) S
is an odd integer. For the case with 0, these oscillations in _ F!G. 6. Joint photon probability distribution of EG#.8) for the
the probability distribution are the result of the oscillations Perelomov coherent state of E@.4) for |¢[=0.85, for the case
present in the photon statistics of each of the modes sep#:; k2= and (@ 1=0 (henceK=3) and (b) I=1, (henceK
rately, those states being single-mode squeezed vacuum?2)-
states as contained in E@.6), with each of the single mode .
states being of the form of E2.8). 1

At this point we can demonstrate an interesting result, ‘f’k: §>:(1_|§|2)1/2M§=:0 £'IM,M) (4.9
namely, that if a two-mode squeezed vacuum state, an en-
tangled state, is incident at the two input ports of a 50/5Qyvhere we have set=M. Now applying the operatddgsto
beam splitter whose action is described by the previouslyoth sides and using E¢8.11), we obtain
introduced rotation operatdyzs=exd —i(#/2)J,], then the

/)

output state of the beam splitter is an @1)®@SU(1,1) Per- -

elomov coherent state of E¢.6) with k;=k,= %, which is Ugdé k= %>:(1—|§|2)1/22 (—iV|K=3,M)

an unentangledstate. That this, the beam splitter disen- M=0

tangles the two-mode squeezed vacuum states into a product =|-i&K= %>, (4.10

of two single-mode squeezed vacuum states. It is easy to see
how this comes about. From Ed2.14), the squeezed where the right-hand side is, apart from a shift in the phase
vacuum statéfor which g=0) is of the parameteg, identical to Eq.(4.7) which, as we have
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shown, is a factorizable state of the form of E4.6). Such a
disentanglement may also result from the interaction of a 05
two-mode squeezed vacuum state with a frequency converter
modeled by the Hamiltoniakl =%2«J,, where « depends

on the second-order nonlinear susceptibility of the medium
and where, as beford;=(a'b+ab")/2. Obviously, this is
essentially the same interaction as for the beam splitter, at ¢4
least for certain choices of internal phases for the latter. At
timest such that Zt= #/2, the disentangled states appear in
the output modes. Previously, Gagen and Milb{24] stud- 02
ied the photon statistics of the two-mode squeezed vacuum
states evolving under such an interaction. These authors
made the claim that the action of the frequency converter is

to produce, from a two-mode squeezed vacuum state charac:
terized by strong correlations between the photons of the two 00

04

P(n1)

input modes, states with anticorrelations between the pho- 012345678 910111213141516171819
tons in the two output modes. The appearance of the @ ny

“holes” in the joint photon number probability distribution 035

was taken as the signal for the anticorrelations, and the case

for which 2«t=7/2 was supposed to display maximum an- 0.30

ticorrelations. But, as we have seen, our states are in fact
disentangled, and thus there are no anticorrelations or corre- 25
lations between the photons in the two output modes, the
effect noted by Gagen and Milbuifr24] being merely the 0.20
result of the direct product of two single-mode squeezed T
vacuum states. That such a disentanglement should occuli o.15
was previously demonstrated using operator meth28 It

is important to understand that the individual coupled basis 016
states of the form of Eq$3.8b), (3.80, etc., as generated in

the experiments of Ref$22] and[23] do exhibit anticorre- 0.05
lations, as these authors demonstrated in the laboratory, but
the superposition of these states in the form of Eq47) 0.00 : A A > i z
evidently does not exhibit them. (b) |
On the other hand, if the ground state is an entangled state 1

(1>0), then the Perelomov coherent state is also an en- FIG. 7. For the Perelomov coherent states wWigh-0.85, the

tangled state, in fact, generally an entanglement Of_ SqueeZ‘?ﬁarginal photon probability distributioR(n,) vsn, for modea for
number states of each of the modes. For example in the cagg, casek;=k,=%, and (@) 1=0 (henceK=2%) and (b) =1

for k;=k,=3 andl=1 with the ground state given by Eq. (hen
(3.143 the SU1,1)®SU(1,1) Perelomov coherent state is
given by

ceK= %). The marginal distribution for mode is identical.

the states with respect to the photon numbers of the two
modes, the marginal distribution for modbeis identical to

1 that of modea.
£ K=3/2)= 5[Sl(z)|0>52(z)|2>—Sl(z)|2)82(z)|0>], Anticorrelations between the two modes are characterized
(4.1 by the normalized cross-correlation functions

which is an entanglement of squeezed vacuum and squeezed G2 — (aTbTba> 41
two-photon states. ab " (ata)(bob) - (4.13
If we disregard modéy, the marginal photon probability
distribution for modea is given by Whenever this function is less than unity, the states are an-
ticorrelated. It is evident that in the case of the Perelomov
_ states for|=0 the numerator factors into the product
P(n,) nzz P(ny.Nn). 4.12 (a'a)(b'b), and thus the cross-correlation function takes the

expected value of unity. For the caselefl we expect the
In Fig. 7 we plot examples of this distribution for the casesstates to exhibit anticorrelations, and these are seen in Fig. 8,
ky=k,=1 for =0 and 1. Oscillations in the distributions Where we plotG{) as a function ofé.
are evident in both cases, but in the former we observe the The BG coherent states for 8J1)@SU(1,1) are defined
familiar “thermal-like” behavior expected for the single- just as in Eq.(2.9) as eigenstates of the lowering operator
mode squeezed vacuum state. Because of the symmetry iif =K®+K?),
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feka)

0.04 -

0.1 0.2 0.3 0.4 0.5

FIG. 8. The functionsG® vs |¢ for the Perelomov coherent
state for the casé=1. We note the existence of correlations be-
tween the modes.

K_|¢,K;ky, ko) =3 (@2 +b?)[{,Kiky ko) =¢

£, KKy Ko),
(4.19

whose solution is of the form of E¢2.10, which we write
here as

|§1K;klak2>:NK 2 [M|F(2K+M)]1/2|K1Myklak2>r 4’]70.075

M=0
(4.19

20

where
Nk=[T(2K)[Z|7 2 121172 (418

From the substitution of Eq(3.6) into Eq. (4.15 the BG
coherent state is given in terms of the basis states of the twi
modes as

© |+M
LKk koy= 2 X BOLM,mO)[ky,m)kp [ +M—m),
M=0 m=0 (b)
(4.17
FIG. 9. Joint photon number distribution for the BG coherent
where state withk1=k2=%1 and{=5.5 for(a) =0 and(b) | =1.
M
B(I,M,m,?)=N 4 P(ny,nz)=[(n1,nl ¢ Kiky ko) |?
BN KIMIT (2K + M) ]2 o iew
X C(k11k2!K;m:| +M - m!M) = MEZO mE:O B(l 1M :m:§)5n1,2(m+kl)—1/2
(4.18 5
In terms of the photon number states of each mode, Eq. X On, 20+ M-m—k,)~1/2| - (4.20
(4.17 may be written as
co M We display this function in Fig. 9 for various values|gffor
1£,K Ky ko) = ME:O mEZO B(I,M,m,{)[2(ky+m)—1/2) the case$=0 and 1. In Fig. 10 we display the corresponding
marginal distributions?(n;). In the present cases, in con-
X[2(ky+1+M—m)—1/2). (4.19  trast to the Perelomov-type coherent state of &q2 for

K=k;+k,(1=0), the BG coherent state of E4.9) is an
We first consider the photon probability distributions. Theentangled state. To show that this is the case, we calculate
joint probability of findingn, photons in mode andn,, in  the trace of the square of the reduced density operator of the
modeb is given by a mode, which works out to be
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0.10 Trace(o?)

1zl

0.08 +

0.06
=
g
0.04 ol
0.02 0.6
FIG. 11. Tr(p2) vs |¢| for the BG coherent state for the case
0.00 with | =0. We note that the state is increasingly entangled for in-
creasing|{].
n1
(a) ) <M
1k=5)=[10(2[ZD] 2> ==IM,M), (4.22
M=o M!
025
where we have seh=M. Applying the operator to both
020 sides and using Eq3.11), we obtain
1\ _ 71/200 (" _1
015 Uad ¢ k=32)=[10(2|)]" 2 2 —r—IK=5M)
& =|-i¢,K=1%), (4.23
0.10
where the last equality follows from Ed4.12), with the
understanding that; =k,= 3.
0.05 In Fig. 12 we plot the corresponding cross-correlation
function G} of Eq. (4.13 for the BG coherent states as a
0.00 function of |¢| for the casd =0. It is apparent that our BG
’ 0123456 7 8 9 1011121314 1516 17 18 19 state exhibits anticorrelations over a wide range of the pa-
n rameter|{].
(b) ! We have already discussed methods that might be used to

_ generate the Perelomov states. All that is required is a pair of
FIG. 10. For the BG coherent states {¢t=5.5, the marginal ~ degenerate parametric down-converters acting on suitably
photon probability distributio?(n,) vs n, for modea for the case  prepared entangled or unentangled “ground” states. Further-

ki=k,=7, and (@ 1=0, (henceK=3) and (b) I=1, (henceK  more, in the case when the “ground” state is in fact that the
=32). The marginal distribution for mode is identical.

L)

Tra(Pi):SEO ;() 20 B(|,S+I’f|,r,§) 0.425 |-

2
. (4.2

0.35

XB*(l,v+r—1,r,0)

In Fig. 11 we plot this quantity as a function (@, where it
is evident that the trace gf is less than unity, and thus we
have an entangled state.

As in the case of the Perelomov states, a 50/50 bean**":
splitter, acting as previously described in terms of the opera- —
tor J;, can be used to generate the BG coherent states for the ' : ’ !
case withk; =k,= 7. Only this time the incident state onthe  FIG. 12. The function&® vs | for the BG coherent state for
beam splitter must be a pair-coherent state with degeneraglie casd =0. We note the existence of correlations between the
parameteg=0 (or k=13), where, from Eq(2.18), modes.

0.3

(k4
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two-mode vacuum state, the corresponding Perelomov state G

consists merely of a product of two single-mode squeezed K_[g)=—i ;|¢>- (4.29
vacuum states. Such a state results from the passage of a

two-mode squeezed vacuum state through a 50/50 beam

splitter, with certain choices of internal phases. Now if the initial state of the system is a “ground” state
On the other hand, if a pair-coherent state with parametefrom the SU1,1)®SU(1,1) basis,|K,M=0:k; ,k,), then, be-
q=0 is incident on a 50/50 beam splitter, the output state ircause the interactions contained in the master equation of Eq.
this case will be a BG coherent state of the group(4.24) create or destroy photons two at a time competitively
SU(1,1)®SU(1,1). Unlike the case of the incident two-mode in the two modes, only those states can be generated that are
squeezed vacuum state, in the present case the output modgmtained within the basi§|K,M;ky,k,)}. In the steady-
are entangled. Incident pair coherent states in cases for whiciate limit, the pure state solution is the @1)®SU(1,1)
q>0 do not seem to vyield coherent states ofBG state| #y=|¢,K;Kq1,ky) given by Eq.(4.12 with (=
SU(1,D®SU(1,)) in the output beams. —iG/«k. Interestingly, in the limit ofshort time, for which
Finally we describe a possible mechanism for generatingve may neglect the dissipative term of the master equation,
our states, not using passive optical devices such as beagme initial state IK,M=0;k;,k,) evolves to the
splitters, and perhaps able to generate a wider class of statg$)(1,1)@SU(1,1) Perelomov coherent staté,K;kq,k,)

than is possible with such devices. As mentioned in Sec. lwith ¢=—tanh|Glt)exdi(¢g+7/2)], Where ¢ is the
the competition between the interactions described by thghase ofG.

Hamiltonians of Egs(1.2) and(1.3) in the steady state pro-

duces eigenstates of the operatsr+ b>=2K_, one ex-

ample of which is the BG state. A detailed analysis following V. CONCLUSIONS

along the lines in Ref[26] shows that, upon the adiabatic ,

elimination of the atomic states, the dynamical evolution of !N this paper, we have constructed two sets of coherent

the density operatgs of the field is described by the master states for the direct product group associated with two modes
equation of the quantized field. The construction of the basis states of

the group comes about in much the same way as in the cou-
i pling of two angular-momentum systems through the use of
- g[Heﬁ,p]—2;<(K+K,p—2K,pK+ +pK,K_), the Clebsch-Gordon coefficients for &), only here we use
the corresponding SW,1) Clebsch-Gordon coefficients. We

c7p_
at

(4.24 have discussed coherent states of the Perelomov and Barut-
Where the effective Hamiltonian is Girardello types, and presentgd schemes for generating such
states by the use of beam spitters and competitive processes

Heg=24(GK., +G*K ), 4.25 involving two channels. This work could be extended in at

least two directions(i) to the SU1,1)®SU(1,1) counterparts

. . Lo to the more general SW,1) states such as the intelligent
and wherex is related to a th!rd-order susceptibility for two- state[27]; and (ii) to the coupling of more than two SIL1)
channel two-photon absorption. Elsewhere we shall numeri:

cally study the time evolution of various initial states, but representations, such as the three mode states for
here we are interested mainly in the steady-state«) so- SUL, J@SUT,)@SU(1,1), etc. In the latter case, it would

. . . be necessary to employ the corresponding Racah coefficients
lutions. To this end we introduce the operator for SU(1,1). Itis not clear at this time if the coupling of three
G SU(1,)) representations is of any physical relevance, so we

B=K_+i—, (4.2  do not pursue such states here.
K Finally, we point out that in all the above, we have had
optical fields in mind. However, it was previously shown that
in terms of which the master equation of E4.24 may be  various one- and two-mode $11) states may also be real-
rewritten as izable in the vibrational motion of trapped i0f28]. Thus
there is the strong possibility that, with modifications of the
procedures proposed in Ref&8], perhaps incorporating the
notion that the two-dimensional motion of a trapped ion can
act as a beam splitt¢29], our states may be generated in the

Evidently, the steady-state solutions, for whigh 9t=0, are motion of a trapped ion. This possibility will be explored
those density operators satisfying the eigenvalue problem €!Sewhere.

p
a—f:—ZK(BTBp—ZBpBT'FpBTB)- (4.27)

= = T
Bp=0=pB". (4.28 ACKNOWLEDGMENT
The general solution is a mixed state, but for certain initial This research was supported by grants from Research
conditions the solution may be a pure state in which case w€orporation, PSC-CUNY, and the Research Foundation of
may write p=|#){i|, where |) satisfies the eigenvalue CUNY. C.C.G. wishes to thank R. Campos for helpful dis-
problemB|)=0, or, equivalently, cussions.
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APPENDIX from which follows the recursion relation

In this appendix, we derive the $U1) Clebsch-Gordon
(CG) coefficients for the coupling of two discrete unitary
representations of SW,1) of Bargmann indicek; andk,.
Numerous derivations of these coefficients have been given
in the literature, usually in the notation analogous to that
used in the case of angular momentum(3J20]. As stated It is evident that only those states are coupled for which
in Sec. Il, this notation has the disadvantage that it does nan; +my=const. Settingn;+m,=I, 1=0,12... », the re-
separate the integer and fractional parts of the spectrum @fursion can be solved to yield
the operatoiK, in contrast to the notation used in this pa-

(my+1)(my+2k,)
(my+1)(my+2ky)

172
} . (AB)

Cm1+ 1m,~ — le Jmy+1

per. Furthermore, we have found a difficulty with the results
previously derived when it comes to the coupling of the non-
standard cases for which the Bargmann indices take on the

values; or 3.
We begin by writing the basis of the $U1)®SU(1,1)
states as

|K,M;kq ko)

= E C(klIKZ!K;ml!mZ!M)|kliml>|k2!m2>!

my.m;
(A1)
where the number€(k; ,k,,K;m;,m,,M) are the SUL1,1)

CG coefficients. We first consider the ground state of the

coupled representation, wheké=0:

|K10;k11k2>: E le,m2|klrml>|k2!m2>v (AZ)
my,my

where for the moment and for convenience we have seI
C(kl,kZ,K;ml,m2,0)=leimz. Acting on the state of Eq.

|) T'(2ky)T(2ky+1)

1/2
Cai-q=(~ 1>q[<q T(2k+ q)F(2k2+l—q)} Cor

(AT)
whereCy, is determined from normalization to be
I\ T(2k)T(2ky+1 vz
co,|=2() (2l (2 )_ . (A8)
=0\l T2k +r)I'(2k,+1—q)

Thus our ground state may now be written as

|
|K,o;k1,kz>=q§0 C(kq,kz,K;0,1=q,0)[ky,a)|kz,| =),
(A9)

where we have se€(ky,k;,K;q,1—0q,0)=Cqy, 4. Apply-

ing the operato o =K§M+K(?) to this last equation it is
easy to show that the allowed values kKf and hence the
allowed representations of $U1)®SU(1,1), are given by

(A2) with the operatoiK _ of Eq. (3.39 gives us, since we K=ky+ko+1, 1=0,1,2 ... p.

have a ground state,
K_|K,0;kq,kz)

=0= 2 Cpy m(KY+KP)[ky,my)|kp,my),

mp,my
(A3)
or, equivalently,
0= 2, Cp, my{[ma(my+2k;— 1)1 ks, my — 1)lkz,my)
1,112
+[my(my+ 2k, — 1) 1%k ,my) ko ,mp— 1)} (A4)
We may rewrite this last expression as
> {Cryram,[(My+1)(my +2k,)]H2
myp,My

+Crny my+ 2l (M 1) (My+ 2kp) 1Y kg ,my) [k, my)

=0, (A5)

To obtain the states fdvl >0, we now apply to Eq(A9)
the raising operatoK, of Eq. (3.3b M times. However,
making use of Eq(2.4), we first rewrite Eq(A9) as

|
|K’O'kl’k2>:qgo C(kl!kZIK;qil _q10)

I'(2kI'(2ky) vz
X Q=) T2k, + )T 2kt 1—q)

X(KM)IUKP)' 9k, 00[kp,0).  (AL0)

Now writing

M
KY=(KP+KE)M=2> (AS)<K9>>9(K<P>M“’,
p=0
(A11)

applying it to Eq.(A10) and making multiple uses of Eq.
(2.4), we obtain
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F(ZK) 172 | M

|K,M;k1,kz>=[m

=0 p=0

X

(p+a)!I+M—-p—q!'T'(2k;+p+q)T'(2k,+1+M—-p—Qq)

PHYSICAL REVIEW /&2 033812

M
E Z C(klvk2!K:q!|_q10)( p)

ql(l=a)!'T'(2k; +q)I'(2k,+1-0q)

1/2
} |ky,p+a)|kol +M—p—q).

(A12)

We note that there is a degeneracy with respeptdadq. We thus need to collect the coefficients for with consgahtg. To

this end we rewrite EqA12) as

I+M

[K,M;Kq ko) = > C(Kyq Ky, K;m,I+M—m,M)|ky,m)|ky, I +M—m),
m=0

(A13)

where theC(kq,k,,K;m,I+M—m,M) are the SW1,1) Clebsch-Gordon coefficients, and are given by

C(kq ,koK;mI+M—m,M)

1

I M
:2 2 5m,p+q(_1)q
g=0 p=0

M
Al (I =o' '(2ky +)I'(2kp+1—q) ( P)

><[I!I“(ZK)F(Zkl)F(Zkz—i—I)(p—i— ! (1+M—p—q)!T'(2k; +p+T'(2ky+1+M—p—q)| 2

I
X

>

|
r=0

) T(2ky)T(2ky+1)
r

where, of course, it is understood thétk, +k,+1.

T(2k+ 1)L (2k,+1—1)

MIT(2K+M)
—1/2

, (Al4)
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