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Two-mode coherent states for SU„1,1…‹SU„1,1…
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We study two types of coherent states for two-mode realizations of the direct product group
SU~1,1!^SU~1,1! @which is locally isomorphic to SO~2,2!# constructed from the coupling of two single-mode
realizations of SU~1,1!. The basis states for the relevant representations of SU~1,1!^SU~1,1! are constructed
from the SU~1,1! Clebsch-Gordon coefficients. From these, Perelomov and Barut-Giradello coherent states are
constructed. Various properties of the states are discussed, and methods for generating them are proposed.
Some of the states can be generated by the operation of beam splitters with two-mode squeezed vacuum states
or pair coherent states as inputs. We show that a competitive two-channel two-photon process gives rise to
states of the Barut-Girardello type as the steady-state solutions of the associated master equation for appropri-
ate initial conditions.

PACS number~s!: 42.50.Dv, 03.65.Fd
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I. INTRODUCTION

Two modes of a quantized electromagnetic field can
come entangled, and may assume many other nonclas
properties through various kinds of nonlinear interactions
fact, two-mode fields admit a large number of coher
states, many of which may be associated with low-order
groups such as SU~2! or SU~1,1!. For example, if a state
containingn photons and one containing only the vacuu
are incident at the input ports of a beam splitter, the field
the output ports is an SU~2! coherent state@1#, where then
photons are binomially distributed over the two modes@2#.
The SU~2! coherent states may similarly be generated fr
the action of a frequency conversion device or of a dir
tional coupler@3#. On the other hand, the two-mode squeez
vacuum state is just a particular example of a Perelomov@4#
type of coherent state associated with a two-mode realiza
of SU~1,1! @5#. It is actually a special case of a class
two-mode SU~1,1! coherent states involving strong correl
tions between the modes@6#. The states are generated fro
the unitary evolution of two-mode number states driven b
nondegenerate parametric device~e.g., of the type that gives
rise to down-conversion or harmonic generation!. Another
interesting type of two-mode state is the pair-coherent s
first discussed in the context of quantum optics by Agarw
@7#. This type of state is actually an SU~1,1! coherent state
according to the definition of Barut and Girardello@8#; it is a
right eigenstate of the lowering operator in the su~1,1! Lie
algebra. As in the Perelomov case, the Barut-Girardello~BG!
coherent states for two-mode fields involve tight correlatio
with respect to the photon number states between the mo
and admit strong nonclassical properties such as var
forms of squeezing and violations of the Cauchy-Schw
and Bell inequalities. The pair-coherent states may be ge
ated in a process involving the competition between non
generate parametric amplification and nondegenerate
photon absorption@7#.

One other class of two-mode SU~1,1! coherent states, th
intelligent states, were discussed in the literature@9#. Intelli-
gent states are those states that equalize various possibl
1050-2947/2000/62~3!/033812~15!/$15.00 62 0338
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certainty products that can be constructed as consequenc
the su~1,1! commutation relations. Pair-coherent states ar
special case of intelligent states that involve equal unc
tainty for the relevant operators. The two-mode squee
pair-coherent state@10# is also an intelligent state, but with
unequal uncertainties.

All of these two-mode SU~1,1! coherent states may b
characterized by the fact that they may be written as su
positions of the form

(
n50

`

Cnun1q&aun&b , ~1.1!

where the modes are labeleda and b and the parameterq
(50,1,2 . . . ) is the~fixed! difference in the photon number
of the two modes and where the coefficientsCn depend on
the specific SU~1,1! state~see Sec. II for specific examples!.
The pairing of the photons in these states is due, of cours
the fact that photons are created or annihilated pairwise f
eachmode.

Of course, there are processes where photons are cre
or destroyed two at a time in asinglemode. It turns out that
such states are described by single-mode realizations
SU~1,1!. The number states of the field can be separated
the basis of parity~even or odd!, to form two representations
of SU~1,1!. The single-mode squeezed vacuum and squee
one-photon states are Perelemov SU~1,1! coherent states
@5,11#. The BG coherent states for the single mode case
just the even or odd coherent states@12# which are special
cases of the so-called Schro¨dinger cat states@13#. These
states are characterized by oscillations in the photon num
probability distributions, a phenomenon that can be int
preted as arising from interference in phase space@14#.

There is, however, one possibility that, as far as we
aware, has not been explored for the two-mode case. T
are processes, essentially two-channel processes, where
is competitive two-photon annihilation and creationbetween
the two modes. Suppose, for example, thata andb represent
the annihilation operators for photons of the same freque
but with orthogonal polarizations~perhaps left and right cir-
©2000 The American Physical Society12-1
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CHRISTOPHER C. GERRY AND ADIL BENMOUSSA PHYSICAL REVIEW A62 033812
cular polarizations, respectively!. In the case of aJ50→1
→0 atomic cascade transition between the atomic stateue&
and ug& with an off-resonant intermediate state, the effect
Hamiltonian is

H15\@G~a21b2!ue&^gu1H.c.#. ~1.2!

If, in addition, there is an external classical coherent fi
driving the transition described by the Hamiltonian,

Hext5\~G0«2ue&^gue22ivt1H.c.!, ~1.3!

then it can be shown that in the steady state, the radia
field is in an eigenstate of the operator (a21b2). As we shall
show, such states correspond to the Barut-Girardello co
ent states for the coupling of two single-mode represe
tions of SU~1,1!, that is for the direct product grou
SU~1,1!^SU~1,1! which is locally isomorphic to SO~2,2!,
SO~2,2!'SU~1,1!^SU~1,1!. The basis states fo
SU~1,1!^SU~1,1! are very different from any of the two
mode SU~1,1! states previously considered, consisting of s
perpositions of the two-mode number states containin
fixed total photon number. As a result, photon probabi
distributions for the corresponding SU~1,1!^SU~1,1! coher-
ent states are not concentrated along a line as is the cas
the two-mode SU~1,1! states of the form of Eq.~1.1! as
discussed above. Previously Bambah and Agarwal@15# have
discussed thefour-modeBG coherent states~the bipair co-
herent states! obtained by coupling together two two-mod
representations of SU~1,1!. As far as we are aware, the ra
diation fields obtained by coupling together two single-mo
representations of SU~1,1! have not previously been dis
cussed. We rectify this in the balance of this paper.

The paper is organized as follows. In Sec. II, we revi
various aspects of the group SU~1,1! and the Lie algebra
su~1,1! relevant to problems in quantum optics. In Sec.
we discuss the basis states of the coupled two-mode SU~1,1!
representation obtained from those of the two single-m
representations through the SU~1,1! Clebsch-Gordon coeffi-
cients. In Sec. IV we discuss two types of coherent states
the coupled states, namely, the Perelomov coherent s
and the Barut-Girardello coherent states. Some propertie
the states are given, and methods to generate them are
discussed. We conclude the paper in Sec. V with some
marks on possible directions for further work. In an Appe
dix, we derive, in our notation, the relevant SU~1,1! Clebsch-
Gordon coefficients.

II. REVIEW OF RELEVANT ASPECTS OF SU „1,1…

We will be mostly concerned with the su~1,1! Lie algebra
rather than the SU~1,1! group so we start by introducing th
elements of that algebra, the operatorsK0 andK6 satisfying
the commutation relations

@K0 ,K6#56K6 , @K1 ,K2#522K0 . ~2.1!

The operatorK0 is a generator of compact SU~1,1! transfor-
mations, whereas the combinationsK15(K11K2)/2 and
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K25(K12K2)/2i are generators of noncompact SU~1,1!
transformations. The Casimir operator

C5K0
22 1

2 ~K1K21K2K1! ~2.2!

commutes with all the elements of the Lie algebra. The r
evant unitary irreducible representations are the positive
crete series@16#, whose bases, which are eigenstates ofK0
and C, we denote asuk,m& wherek is the so-called Barg-
mann index taking on the valuesk51/2,1,3/2,2, . . . , and
m50,1,2 . . . ,̀ . These states satisfy the relations

K0uk,m&5~m1k!uk,m&, ~2.3a!

Cuk,m&5k~k21!uk,m&, ~2.3b!

K1uk,m&5@~m11!~m12k!#1/2uk,m11&, ~2.3c!

K2uk,m&5@m~m12k21!#1/2uk,m21&. ~2.3d!

The statesuk,m& may be generated from the ‘‘ground’’ stat
uk,0& according to

uk,m&5F G~2k!

m!G~2k1m!G
1/2

~K1!muk,0&. ~2.4!

This positive discrete series is denotedDk. An alternative
labeling of the states frequently encountered in the literat
is uJ,M &, where the eigenvalue ofC is nowJ(J11) and that
of K0 is M, where nowM52J,2J11,2J12, . . . , inanal-
ogy to the angular momentum states. We prefer to use
notationuk,m&, where herem is always a positive integer o
zero and the Bargmann indexk contains the fractional part o
the spectrum ofK0 . This turns out to be an advantage
deriving the Clebsh-Gordon coefficients for the coupling
certain nonstandard representations not labeled by thek val-
ues listed above. An example of such a nonstandard re
sentation is the realization for a single-mode field, which
now discuss.

For a single-mode field described by the annihilation a
creation operatorsa and a†, respectively, the su~1,1! Lie
algebra is realized by the operators

K05 1
2 ~a†a1 1

2 !, K25 1
2 a2, K15 1

2 a†2. ~2.5!

The Casimir operator for this realization takes on the va
C52 3

16 , which means that the allowed values of the Ba
mann index arek5 1

4 and 3
4. Note that these values do no

belong to the list of allowed values given above, and so
associated representations may in some sense be interp
as ‘‘continuations’’ of the standard positive discrete seri
The correspondence between the usual number states o
single-mode field, which we denote asun&, and the SU~1,1!
basis statesuk,m& from Eq. ~2.5! is

un&⇔uk,m& for n52~m1k!21/2. ~2.6!

Several types of SU~1,1! coherent states may be con
structed, but here we shall mention only two of them: t
2-2
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TWO-MODE COHERENT STATES FOR SU~1,1!^SU~1,1! PHYSICAL REVIEW A 62 033812
Perelomov@17# coherent state and the Barut-Girardello@18#
coherent state. The former state is generated but the actio
the operator

S~z!5exp~zK12z* K2!, ~2.7!

on the ground stateuk,0&. Herez is a complex number usuall
parametrized asz52(u/2)exp(2if), where u is a hyper-
bolic angle (0<u,`), andf is an azimuthal angle (0<f
<2p). The resulting coherent state is

uj,k&5~12uju2!k (
m50

` FG~2k1m!

m!G~2k! G1/2

jmuk,m&, ~2.8!

wherej52tanh(u/2)exp(2if). Fork5 1
4 the state is just the

squeezed vacuum state, and fork5 3
4 it is the squeezed one

photon state. The operatorS(z) of Eq. ~2.7! is just the famil-
iar squeeze operator when the generators are realized
Eq. ~2.5! @17#. On the other hand, the Barut-Girardello c
herent states, which we denote asuz,k&, are defined as righ
eigenstates of the su~1,1! lowering operatorK2 ,

K2uz,k&5zuz,k&, ~2.9!

where the eigenvaluez is an arbitrary complex number. Th
solution to Eq.~2.9! is of the form

uz,k&5Nk (
m50

`
zm

@m!G~2k1m!#1/2 uk,m&, ~2.10!

whereNk is the normalization factor given by

Nk5@G~2k!uzu22k11I 2k21~2uzu!#21/2, ~2.11!

I 2k21 being a modified Bessel function. For the realization
Eq. ~2.5! the BG coherent states correspond to the even
odd coherent states fork5 1

4 and 3
4, respectively. As we

stated in Sec. I, both the Perelomov and the BG cohe
states for a single-mode field are characterized by oscilla
photon number probability distributions, interpreted as
result of interference in phase space@14#.

The standard two-mode realization of the su~1,1! Lie al-
gebra is given by

K05 1
2 ~a†a1b†b11!, K15a†b†, K25ab,

~2.12!

where the operatorsa andb are the Bose operators of the tw
independent modes. The Casimir operator for this realiza
can be written as

C5 1
4 ~D221!, ~2.13!

where the operatorD5a†a2b†b is just the difference be
tween the number of photons in the two modes. With
eigenvalue ofuDu denoted by the positive~or zero! integerq,
the Bargmann index is given byk5(11q)/2, where the de-
generacy parameterq50,1,2 . . . . Assuming that thea
mode hasq more photons than theb mode, the number state
of the two modes,una& ^ unb&5una ,nb&, organize themselve
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into the sets where the su~1,1! bases are given byuk,m&
5un1q,n&, n50,1,2 . . . ,̀ , k is given above, and from
Eqs.~2.3a! and ~2.12! we havem5n.

The corresponding Perelomov coherent state for the t
mode field, from Eq.~2.7!, but written in terms of the two-
mode number states, is given by@6#

Uj,
1

2
~11q!L 5 (

n50

`

Cn
qun1q,n&, ~2.14a!

where

Cn
q5~12uju2!~11q!/2F ~n1q!!

n!q! G1/2

jn. ~2.14b!

For the special caseq50 this is the two-mode squeeze
vacuum state. ForqÞ0 it is the state obtained by the actio
of the two-mode squeeze operator on the number stateuq,0&
@6#. The probability of findingn1 photons in modea andn2
photons in modeb is given by

P~n1 ,n2!5~12uju2!11q

3U(
n50

` S ~n1q!!

n!q! D 1/2

jndn1 ,n1qdn2 ,nU2

.

~2.15!

Plotted againstn1 and n2 , this probability distribution is
nonzero only along a line determined by the value ofq,
indicating the tight correlations between the modes. An
ample of such a distribution is pictured in Fig. 1 for the ca
with q50.

One further point we want to make about the states in
~2.14! is that the two modes are, in general, entangled.

FIG. 1. The joint photon number probability distributio
P(n1 ,n2) vs n1 and n2 for the two-mode squeezed vacuum sta
(q50) given by Eq.~2.14! for uju50.9.
2-3
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CHRISTOPHER C. GERRY AND ADIL BENMOUSSA PHYSICAL REVIEW A62 033812
obtain a measure of the degree to which they are entan

we may introduce the density operatorrab5uj, 1
2 (1

1q)&^j,1/2(11q)u of the complete two-mode system fro
which we obtain the density operator of thea-mode sub-
system as

ra5Trbrab5 (
n50

`

uCn
qu2un1q&aa^n1qu, ~2.16!

which is a statistical mixture. For the case of the two-mo
squeezed vacuum,q50, it has been shown that the sta
described by Eq.~2.16! has thermal-like noise@19#. Taking
the trace over thea mode ofra

2, we find that

Trara
25 (

n5q

`

uCn
qu4,1 ~2.17!

for 0,uju,1. Thus the states of the form of Eq.~2.14! are
entangled.

As for the corresponding two-mode BG coherent state
is the pair-coherent state given by@7#

Uz,
1

2
~11q!L 5 (

n50

`

An
qun1q,n&, ~2.18a!

where

An
q5Nq

jn

@n! ~n1q!! #1/2, ~2.18b!

and where the normalization factorNq is given by

Nq5@q! uzu2qI q~2uzu!#21/2. ~2.18c!

The photon number probability distribution is given by

P~n1 ,n2!5uN1u2U(
n50

`
zn

@n! ~n1q!! #1/2dn1 ,n1qdn2 ,nU2

.

~2.19!

Though this has a different shape than the Perelomov c
the distribution is still concentrated along a line determin
by the value ofq as illustrated in Fig. 2. Other two-mod
SU~1,1! coherent states such as the intelligent states@9# also
have tightly correlated photon probability distribution
Again, the state in Eq.~2.18! is an entangled state and, as
the previous case, it can be shown that

Trara
25 (

n5q

`

uAn
qu4,1 ~2.20!

for 0,z,`.

III. COUPLED BASIS FOR SU „1,1…‹SU„1,1…

We consider two modes of the quantized field, deno
the a and b modes, out of which we may construct tw
single-mode realizations of SU~1,1!. The SU~1,1! operators
of these individual modes are realized according to
03381
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K0
~1!5 1

2 ~a†a1 1
2 !, K1

~1!5 1
2 a12, K2

~1!5 1
2 a2 ~3.1!

and

K0
~2!5 1

2 ~b†b1 1
2 !, K1

~2!5 1
2 b12, K2

~2!5 1
2 b2,

~3.2!

where, of course, both sets of operators satisfy the su~1,1!
Lie algebra of Eq.~2.1!. The operators

K0ªK0
~1!1K0

~2!5 1
2 ~a†a1b†b11!, ~3.3a!

K1ªK1
~1!1K1

~2!5 1
2 ~a121b12!, ~3.3b!

K2ªK2
~1!1K2

~2!5 1
2 ~a21b2! ~3.3c!

also satisfy the su~1,1! Lie algebra of Eq.~2.1!, and generate
the direct product group SU~1,1!^SU~1,1!. The Casimir op-
erator of this group is calculated from Eq.~2.2! and in terms
of the operators for the individual modes has the form

C5K0
22 1

2 ~K1K21K2K1!5 1
4 ~a†a1b†b11!2

2 1
8 ~$a12,a2%1$b12,b2%12a12b212a2b12!,

~3.4!

where$,% is an anticommutator. We denote the basis state
the two individual modes in the obvious way,uk1 ,m1& and
uk2 ,m2& for modesa and b, respectively. We denote th
basis of the coupled representation, i.e.,
SU~1,1!^SU~1,1!, as uK,M ;k1 ,k2&, which we sometimes
abbreviate as simplyuK,M &. The labelsK and M are, of
course, related to the eigenvalues ofC andK0 according to
K(K21) and M1K, respectively. That is, the couple
statesuK,M & satisfy Eqs.~2.3! and ~2.4! with the obvious
replacementsk→K and m→M . The Kronecker product of

FIG. 2. The same as Fig. 1, but for the pair coherent state of
~2.18! for uzu57.5.
2-4
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TWO-MODE COHERENT STATES FOR SU~1,1!^SU~1,1! PHYSICAL REVIEW A 62 033812
two positive discrete series reduces to the sum of posi
discrete series according to the Clebsch-Gordon decomp
tion

Dk1^ Dk25 (
K5k11k2

`

DK , ~3.5!

where the sum proceeds in integer steps. In other words
allowed values of K are K5k11k21 l where l
50,1,2, . . . ,̀ .

The SU~1,1!^SU~1,1! basis of the coupled modes
uK,M ;k1 ,k2&, may be constructed out of the products of t
individual states of the two modes,uk1 ,m1&uk2 ,m2& accord-
ing to the series

uK,M ;k1 ,k2&5 (
m50

l 1M

C~k1 ,k2 ,K;m,l 1M2m,M !uk1 ,m&

3uk2 ,l 1M2m&, ~3.6a!

where the numbersC(k1 ,k2 ,K;m,l 1M2m,M ) are SU~1,1!
Clebsch-Gordon coefficients. The last equation could equ
well be written as

uK,M ;k1 ,k2&5 (
m50

l 1M

C~k1 ,k2 ,K;,l 1M2m,m,M !

3uk1 ,l 1M2m&uk2 ,m&, ~3.6b!

although we shall stay with the former convention throug
out the balance of the paper. Numerous derivations of
SU~1,1! Clebsch-Gordon coefficients have been given in
literature@20# mostly using the angular-momentum-like n
tation. We derive and present explicit formulas for these
efficients in the present notation in the Appendix.

Note that, according to Eq.~2.6!, our state of Eq.~3.6! is
a superposition of the product states where modea contains
n152(k11m)2 1

2 photons, and modeb containsn252(k2
1 l 1M2m)2 1

2 photons. Thus we may write Eq.~3.6! in
terms of the number states as

uK,M ;k1 ,k2&

5 (
m50

l 1M

C~k1 ,k2 ,K;m,l 1M2m,M !

3u2~k11m!21/2&u2~k21 l 1M2m!21/2&.

~3.7!

Note that for these basis states the total number of photon
the two modes, for a givenM andK, is 2(M1K)21.

We consider a few examples. For the case withk15k2
5 1

4 and with K5k11k25 1
2 ( l 50), the first few coupled

basis states, in terms of the number states for each m
work out to be

uK5 1
2 ,M50&5u0,0&, ~3.8a!
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uK5 1
2 ,M51&5

1

&
~ u2,0&1u0,2&), ~3.8b!

uK5 1
2 ,M52&5A3

8
~ u4,0&1u0,4&)1

1

2
u2,2&, ~3.8c!

etc. Note that the total number of photons in each of
components of the coupled basis is just 2M . It is easy to
check these results by repeatedly applying the raising op
tor @Eq. ~3.3b!# to the ground stateu0,0&. In fact, we may
dispense with Eq.~3.6! containing the Clebsch-Gordon coe
ficients, and obtain a simple general formula for the state
the coupled representation in terms of the two-mode num
states by writing

uK5 1
2 ,M &5N2M~a121b12!Mu0,0&

5N2M(
l 50

M
@~2l !! ~2M22l !! #1/2

~M2 l !! l !
u2l ,2M22l &,

~3.9!

where we have used the binomial expansion on the oper
expression, and where a factor ofM! has been absorbed int
the normalization factorN2M . This normalization factor may
be evaluated as

N2M5F(
l 50

M
~2l !! ~2M22l !!

@~M2 l !!L! #2 G21/2

5
1

2M , ~3.10!

and thus we finally have

uK5 1
2 ,M &5

1

2M (
l 50

M
@~2l !! ~2M22l !! #1/2

~M2 l !! l !
u2l ,2M22l &.

~3.11!

We note that only even states of the field are excited, wh
is as expected since it is the two even sets of states from
mode that are being coupled to form the new basis. I
worth remarking here that the coupled basis states for
other allowed values ofK could be derived the same way E
~3.11! was, by replacing the ground stateu0,0& by the
‘‘ground’’state of the corresponding coupled representati
However, it should be remembered that these ground st
are generally not product states as, for example, for the s
in Eq. ~3.14a! below.

It is interesting to note that the states of Eq.~3.8! are
precisely those generated from the action of a 50/50 be
splitter with the number statesuM ,M & M50,1,2 . . . at the
input ports@1#. That is to say, using the angular-momentu
formalism with which a 50/50 beams splitter may be d
scribed by the rotation operatorUBS5exp@2i(p/2)J1# @1#,
where J1 is an angular-momentum operator given in t
Schwinger@21# realization asJ15(a†b1ab†)/2, it can be
shown@1# that

UBSuM ,M &5~2 i !MuK5 1
2 ,M &. ~3.12!
2-5
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In fact, the state of Eq.~3.8b! has been generated by a bea
splitter from the input stateu1,1& obtained from the output o
a parametric down-converter in an experiment on tw
photon interference by Honget al. @22#. More recently, the
state of Eq.~3.8c! has been generated by a beam splitter fr
the state input stateu2,2&, again obtained from parametri
down-conversion, in an experiment on four-photon interf
ence by Ou, Rhee, and Wang@23#.

The joint probability of findingn1 photons in modea and
n2 in modeb for the coupled basis states is given by

P~n1 ,n2!5u^n1 ,n2uK,M ;k1 ,k2&u2

5U (
m50

l 1M

C~k1 ,k2 ,K;m,l 1M2m,M !

3dn1,2~k11m!21/2dn2,2~k21 l 1M2m!21/2U2

.

~3.13!

In Fig. 3 we collectively plotP(n1 ,n2) versusn1 andn2 for
the case withl 50 for variousM’s. The important point is
that the basis of SU~1,1!^SU~1,1! consists of superposition
of product states alongperpendicularsto the diagonal in the
in the n12n2 plane whereM increasesalong the diagonal.
Unlike the standard two-mode realization of SU~1,1! as dis-
cussed in Sec. II, the numbers of photons in each of
modes are not tightly correlated, although the total num
of photons in the two modes for a givenK andM, in fact the
number 2M , is fixed, as already noted. The photon probab
ity distribution for the case withk15 3

4 andk25 1
4 , and with

K51(l 50), is shown in Fig. 4. In this case only the od
states of thea mode are occupied, and only the even state
the b mode.

One important point to be made here is that the ‘‘groun
states for the coupled representation in the cases for w
l 50 are just the product of the ground states of the t
modes, i.e., uK,0&5uk1,0&uk2,0&, with K5k11k2 . Such
states are obviously not entangled. However, for cases w
l .0, the corresponding ground statesare entangled. For ex-
ample, for the case withk15k25 1

4 and l 51, such thatK
5 3

2 , in terms of the photon number states the ground sta

uK5 3
2 ,M50&5

1

&
~ u0,2&2u2,0&). ~3.14a!

The first and second excited states are given as

uK5 3
2 ,M51&5

1

&
~ u0,4&2u4,0&) ~3.14b!

and
03381
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uK5 3
2 ,M52&5

1

A32
~ u2,4&2u4,2&)

1AS 15

32D ~ u0,6&2u6,0&), ~3.14c!

respectively. These states are clearly entangled and we
return to this point below. Note that the total number
photons in the basis states for this case is 2M12, and further
note that the number stateu2M12,2M12& does not occur in
the basis for this case ofK5 3

2 . In Fig. 5 we plot the photon
number probability distribution for some of the basis sta
for the coupled states withK5 3

2 . It is evident that states
along the diagonal of then12n2 plane are not populated
The suppression of these states can certainly be constru
a result of interference. Here we shall not consider cases
higher values ofK.

FIG. 3. ~a! Joint photon number probability distribution from
Eq. ~3.13! for the coupled basis states of Eq.~3.7! for the cases
k15k25

1
4 , and l 50; henceK5

1
2 . The states shown are forM

50,1,2,3, . . . . Thevalue of M increasesalong the diagonal, and
thus the basis states for a givenM are along lines perpendicular t
the diagonal as indicated in~b!, which is a two-dimensional version
of ~a!, suppressingP(n1 ,n2), indicating the photon number state
comprising the basis states for theK5

1
2 coupled basis.
2-6
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TWO-MODE COHERENT STATES FOR SU~1,1!^SU~1,1! PHYSICAL REVIEW A 62 033812
IV. COHERENT STATES FOR SU„1,1…‹SU„1,1…

We now construct coherent states appropriate to the gr
SU~1,1!^SU~1,1!. As there are several types of cohere
states for SU~1,1!, so there will be for SU~1,1!^SU~1,1!. We
shall restrict our attention to just two types: Perelomov a
Barut-Girardello.

The Perelomov coherent state is given by

uj,K&5S~z!uK,0;k1 ,k2& ~4.1a!

5~12uju2!K (
M50

` FG~2K1M !

M !G~2K ! G1/2

3jMuK,M ;k1 ,k2& ~4.1b!

5 (
M50

`

(
m50

l 1M

A~ l ,M ,m,j!uk1 ,m&uk2 ,l 1M2m&,

~4.1c!

where

FIG. 4. Same as Fig. 3, but withk15
3
4 , k25

1
4 , andl 50; hence

K51.
03381
up
t

d

A~ l ,M ,m,j!5~12uju2!KjMFG~2K1M !

M !G~2K ! G1/2

3C~k1 ,k2 ,K;m,l 1M2m,M !. ~4.2!

We note that the operatorS(z), the squeeze operator of Eq
~2.7!, from Eqs.~3.3!, factors into a product of squeeze o
erators for the two modes, i.e.,

S~z!5exp~zK12z* K2!5S1~z!S2~z!, ~4.3!

where Si(z)5exp(zK1
(i)2z*K2

(i)) for i 51 and 2. These
squeeze operators could be realized by a pair of degene
parametric amplifiers acting with identical coupling streng
and phases of the classical pump fields. In terms of the p
ton number states, the Perelomov state may be written a

uj,K;k1 ,k2&5 (
M50

`

(
m50

l 1M

A~ l ,M ,m,j!u2~m1k1!21/2&

3u2~ l 1M2m1k2!21/2&. ~4.4!

FIG. 5. Same as Fig. 3, but withk15k25
1
4 , and l 51; hence

K5
3
2 .
2-7
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CHRISTOPHER C. GERRY AND ADIL BENMOUSSA PHYSICAL REVIEW A62 033812
With l 50, the ground state in Eq.~4.1! is just the two-mode
product state

uK,0&5uk1,0&uk2,0)&5u2k121/2&u2k221/2&, K5k11k2
~4.5!

~group states on the left and middle and number states on
right! and thus, because of the factorization of the sque
operator according to Eq.~4.3!, it follows that the corre-
sponding SU~1,1!^SU~1,1! Perelomov coherent state facto
into a product of single-mode SU~1,1! coherent states, i.e.
product two single-mode squeezed vacuum states:

uj,K&5uj,k1& ^ uj,k2&, K5k11k2 . ~4.6!

Thus there is no entanglement in this case. For the spe
casek15k25 1

4 , using Eq.~4.1! the Perelomov state take
the form

uj,K5 1
2 &5~12uju2!1/2 (

M50

`

jMuK5 1
2 ,M &, ~4.7!

where the coupled statesuK5 1
2 ,M & are given in terms of the

two-mode number states by Eq.~3.8!.
The photon number probability distribution for the stat

of Eq. ~4.1c! is given by

P~n1 ,n2!5u^n1 ,n2uj,K&u2

5U (
M50

`

(
m50

l 1M

A~ l ,M ,m,j!dn1,2~m1k1!21/2

3dn2,2~ l 1M2m1k2!21/2U2

. ~4.8!

This distribution is displayed for variousuju for the important
case ofk15k25 1

4 and for the casesl 50 and 1 in Fig. 6. We
note that the distributions are symmetric about the diago
and they contain ‘‘holes’’ wherever eithern1 or n2 ~or both!
is an odd integer. For the case withl 50, these oscillations in
the probability distribution are the result of the oscillatio
present in the photon statistics of each of the modes s
rately, those states being single-mode squeezed vac
states as contained in Eq.~4.6!, with each of the single mode
states being of the form of Eq.~2.8!.

At this point we can demonstrate an interesting res
namely, that if a two-mode squeezed vacuum state, an
tangled state, is incident at the two input ports of a 50
beam splitter whose action is described by the previou
introduced rotation operatorUBS5exp@2i(p/2)J1#, then the
output state of the beam splitter is an SU~1,1!^SU~1,1! Per-
elomov coherent state of Eq.~4.6! with k15k25 1

4 , which is
an unentangledstate. That this, the beam splitter dise
tangles the two-mode squeezed vacuum states into a pro
of two single-mode squeezed vacuum states. It is easy to
how this comes about. From Eq.~2.14!, the squeezed
vacuum state~for which q50) is
03381
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Uj,k5
1

2L 5~12uju2!1/2 (
M50

`

jMuM ,M & ~4.9!

where we have setn5M . Now applying the operatorUBS to
both sides and using Eq.~3.11!, we obtain

UBSuj,k5 1
2 &5~12uju2!1/2 (

M50

`

~2 i j!MuK5 1
2 ,M &

5u2 i j,K5 1
2 &, ~4.10!

where the right-hand side is, apart from a shift in the ph
of the parameterj, identical to Eq.~4.7! which, as we have

FIG. 6. Joint photon probability distribution of Eq.~4.8! for the
Perelomov coherent state of Eq.~4.4! for uju50.85, for the case
k15k25

1
4 , and ~a! l 50 ~henceK5

1
2 ) and ~b! l 51, ~henceK

5
3
2 ).
2-8
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TWO-MODE COHERENT STATES FOR SU~1,1!^SU~1,1! PHYSICAL REVIEW A 62 033812
shown, is a factorizable state of the form of Eq.~4.6!. Such a
disentanglement may also result from the interaction o
two-mode squeezed vacuum state with a frequency conv
modeled by the HamiltonianH5\2kJ1 , wherek depends
on the second-order nonlinear susceptibility of the medi
and where, as before,J15(a†b1ab†)/2. Obviously, this is
essentially the same interaction as for the beam splitte
least for certain choices of internal phases for the latter.
timest such that 2kt5p/2, the disentangled states appear
the output modes. Previously, Gagen and Milburn@24# stud-
ied the photon statistics of the two-mode squeezed vac
states evolving under such an interaction. These aut
made the claim that the action of the frequency converte
to produce, from a two-mode squeezed vacuum state cha
terized by strong correlations between the photons of the
input modes, states with anticorrelations between the p
tons in the two output modes. The appearance of
‘‘holes’’ in the joint photon number probability distribution
was taken as the signal for the anticorrelations, and the
for which 2kt5p/2 was supposed to display maximum a
ticorrelations. But, as we have seen, our states are in
disentangled, and thus there are no anticorrelations or co
lations between the photons in the two output modes,
effect noted by Gagen and Milburn@24# being merely the
result of the direct product of two single-mode squeez
vacuum states. That such a disentanglement should o
was previously demonstrated using operator methods@25#. It
is important to understand that the individual coupled ba
states of the form of Eqs.~3.8b!, ~3.8c!, etc., as generated i
the experiments of Refs.@22# and @23# do exhibit anticorre-
lations, as these authors demonstrated in the laboratory
the superposition of these states in the form of Eq.~4.7!
evidently does not exhibit them.

On the other hand, if the ground state is an entangled s
( l .0), then the Perelomov coherent state is also an
tangled state, in fact, generally an entanglement of sque
number states of each of the modes. For example in the
for k15k25 1

4 and l 51 with the ground state given by Eq
~3.14a! the SU~1,1!^SU~1,1! Perelomov coherent state
given by

uj,K53/2&5
1

&
@S1~z!u0&S2~z!u2&2S1~z!u2&S2~z!u0&],

~4.11!

which is an entanglement of squeezed vacuum and sque
two-photon states.

If we disregard modeb, the marginal photon probability
distribution for modea is given by

P~n1!5(
n2

P~n1 ,n2!. ~4.12!

In Fig. 7 we plot examples of this distribution for the cas
k15k25 1

4 for l 50 and 1. Oscillations in the distribution
are evident in both cases, but in the former we observe
familiar ‘‘thermal-like’’ behavior expected for the single
mode squeezed vacuum state. Because of the symmet
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the states with respect to the photon numbers of the
modes, the marginal distribution for modeb is identical to
that of modea.

Anticorrelations between the two modes are characteri
by the normalized cross-correlation functions

Ga,b
~2!5

^a†b†ba&

^a†a&^b†b&
. ~4.13!

Whenever this function is less than unity, the states are
ticorrelated. It is evident that in the case of the Perelom
states for l 50 the numerator factors into the produ
^a†a&^b†b&, and thus the cross-correlation function takes
expected value of unity. For the case ofl 51 we expect the
states to exhibit anticorrelations, and these are seen in Fi
where we plotGa,b

(2) as a function ofuju.
The BG coherent states for SU~1,1!^SU~1,1! are defined

just as in Eq.~2.9! as eigenstates of the lowering operat
K25K2

(1)1K2
(2),

FIG. 7. For the Perelomov coherent states withuju50.85, the
marginal photon probability distributionP(n1) vs n1 for modea for
the casek15k25

1
4 , and ~a! l 50 ~hence K5

1
2 ) and ~b! l 51,

~henceK5
3
2 ). The marginal distribution for modeb is identical.
2-9
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CHRISTOPHER C. GERRY AND ADIL BENMOUSSA PHYSICAL REVIEW A62 033812
K2uz,K;k1 ,k2&5 1
2 ~a21b2!uz,K;k1 ,k2&5zuz,K;k1 ,k2&,

~4.14!

whose solution is of the form of Eq.~2.10!, which we write
here as

uz,K;k1 ,k2&5NK (
M50

`
zM

@M !G~2K1M !#1/2 uK,M ;k1 ,k2&,

~4.15!

where

NK5@G~2K !uzu22K11I 2K21~2uzu!#21/2. ~4.16!

From the substitution of Eq.~3.6! into Eq. ~4.15! the BG
coherent state is given in terms of the basis states of the
modes as

uz,K,k1 ,k2&5 (
M50

`

(
m50

l 1M

B~ l ,M ,m,z!uk1 ,m&uk2 ,l 1M2m&,

~4.17!

where

B~ l ,M ,m,z!5NK

zM

@M !G~2K1M !#1/2

3C~k1 ,k2 ,K;m,l 1M2m,M !.

~4.18!

In terms of the photon number states of each mode,
~4.17! may be written as

uz,K;k1 ,k2&5 (
M50

`

(
m50

l 1M

B~ l ,M ,m,z!u2~k11m!21/2&

3u2~k21 l 1M2m!21/2&. ~4.19!

We first consider the photon probability distributions. T
joint probability of findingn1 photons in modea andn2 , in
modeb is given by

FIG. 8. The functionsG(2) vs uju for the Perelomov coheren
state for the casel 51. We note the existence of correlations b
tween the modes.
03381
o

q.

P~n1 ,n2!5u^n1 ,n2uz,K;k1 ,k2&u2

5U (
M50

`

(
m50

l 1M

B~ l ,M ,m,z!dn1,2~m1k1!21/2

3dn2,2~ l 1M2m2k2!21/2U2

. ~4.20!

We display this function in Fig. 9 for various values ofuzu for
the casesl 50 and 1. In Fig. 10 we display the correspondi
marginal distributionsP(n1). In the present cases, in con
trast to the Perelomov-type coherent state of Eq.~4.2! for
K5k11k2( l 50), the BG coherent state of Eq.~4.9! is an
entangled state. To show that this is the case, we calcu
the trace of the square of the reduced density operator o
a mode, which works out to be

FIG. 9. Joint photon number distribution for the BG cohere
state withk15k25

1
4 andz55.5 for ~a! l 50 and~b! l 51.
2-10
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TWO-MODE COHERENT STATES FOR SU~1,1!^SU~1,1! PHYSICAL REVIEW A 62 033812
Tra~ra
2!5(

s50

`

(
n50

` U(
r 50

`

B~ l ,s1r 2 l ,r ,z!

3B* ~ l ,n1r 2 l ,r ,z!U2

. ~4.21!

In Fig. 11 we plot this quantity as a function ofuzu, where it
is evident that the trace ofra

2 is less than unity, and thus w
have an entangled state.

As in the case of the Perelomov states, a 50/50 be
splitter, acting as previously described in terms of the ope
tor J1 , can be used to generate the BG coherent states fo
case withk15k25 1

4 . Only this time the incident state on th
beam splitter must be a pair-coherent state with degene
parameterq50 ~or k5 1

2 ), where, from Eq.~2.18!,

FIG. 10. For the BG coherent states foruzu55.5, the marginal
photon probability distributionP(n1) vs n1 for modea for the case
k15k25

1
4 , and ~a! l 50, ~henceK5

1
2 ) and ~b! l 51, ~henceK

5
3
2 ). The marginal distribution for modeb is identical.
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uz,k5 1
2 &5@ I 0~2uzu!#21/2 (

M50

`
zM

M !
uM ,M &, ~4.22!

where we have setn5M . Applying the operator to both
sides and using Eq.~3.11!, we obtain

UBSuz,k5 1
2 &5@ I 0~2uzu!#21/2 (

M50

`
~2 i z!M

M !
uK5 1

2 ,M &

5u2 i z,K5 1
2 &, ~4.23!

where the last equality follows from Eq.~4.12!, with the
understanding thatk15k25 1

4 .
In Fig. 12 we plot the corresponding cross-correlati

function Ga,b
(2) of Eq. ~4.13! for the BG coherent states as

function of uzu for the casel 50. It is apparent that our BG
state exhibits anticorrelations over a wide range of the
rameteruzu.

We have already discussed methods that might be use
generate the Perelomov states. All that is required is a pa
degenerate parametric down-converters acting on suit
prepared entangled or unentangled ‘‘ground’’ states. Furth
more, in the case when the ‘‘ground’’ state is in fact that t

FIG. 11. Tr(ra
2) vs uzu for the BG coherent state for the cas

with l 50. We note that the state is increasingly entangled for
creasinguzu.

FIG. 12. The functionsG(2) vs uzu for the BG coherent state fo
the casel 50. We note the existence of correlations between
modes.
2-11
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CHRISTOPHER C. GERRY AND ADIL BENMOUSSA PHYSICAL REVIEW A62 033812
two-mode vacuum state, the corresponding Perelomov s
consists merely of a product of two single-mode squee
vacuum states. Such a state results from the passage
two-mode squeezed vacuum state through a 50/50 b
splitter, with certain choices of internal phases.

On the other hand, if a pair-coherent state with param
q50 is incident on a 50/50 beam splitter, the output state
this case will be a BG coherent state of the gro
SU~1,1!^SU~1,1!. Unlike the case of the incident two-mod
squeezed vacuum state, in the present case the output m
are entangled. Incident pair coherent states in cases for w
q.0 do not seem to yield coherent states
SU~1,1!^SU~1,1! in the output beams.

Finally we describe a possible mechanism for genera
our states, not using passive optical devices such as b
splitters, and perhaps able to generate a wider class of s
than is possible with such devices. As mentioned in Sec
the competition between the interactions described by
Hamiltonians of Eqs.~1.2! and ~1.3! in the steady state pro
duces eigenstates of the operatora21b252K2 , one ex-
ample of which is the BG state. A detailed analysis followi
along the lines in Ref.@26# shows that, upon the adiabat
elimination of the atomic states, the dynamical evolution
the density operatorr of the field is described by the mast
equation

]r

]t
52

i

\
@Heff ,r#22k~K1K2r22K2rK11rK1K2!,

~4.24!

where the effective Hamiltonian is

Heff52\~GK11G* K2!, ~4.25!

and wherek is related to a third-order susceptibility for two
channel two-photon absorption. Elsewhere we shall num
cally study the time evolution of various initial states, b
here we are interested mainly in the steady-state (t→`) so-
lutions. To this end we introduce the operator

B5K21 i
G

k
, ~4.26!

in terms of which the master equation of Eq.~4.24! may be
rewritten as

]r

]t
522k~B†Br22BrB†1rB†B!. ~4.27!

Evidently, the steady-state solutions, for which]r/]t50, are
those density operators satisfying the eigenvalue problem

Br505rB†. ~4.28!

The general solution is a mixed state, but for certain ini
conditions the solution may be a pure state in which case
may write r5uc&^cu, where uc& satisfies the eigenvalu
problemBuc&50, or, equivalently,
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K2uc&52 i
G

k
uc&. ~4.29!

Now if the initial state of the system is a ‘‘ground’’ stat
from the SU~1,1!^SU~1,1! basis,uK,M50;k1 ,k2&, then, be-
cause the interactions contained in the master equation o
~4.24! create or destroy photons two at a time competitiv
in the two modes, only those states can be generated tha
contained within the basis$uK,M ;k1 ,k2&%. In the steady-
state limit, the pure state solution is the SU~1,1!^SU~1,1!
BG state uc&5uz,K;k1 ,k2& given by Eq. ~4.12! with z5
2 iG/k. Interestingly, in the limit ofshort time, for which
we may neglect the dissipative term of the master equat
the initial state uK,M50;k1 ,k2& evolves to the
SU~1,1!^SU(1,1) Perelomov coherent stateuj,K;k1 ,k2&
with j52tanh(kuGut)exp@i(fG1p/2)#, where fG is the
phase ofG.

V. CONCLUSIONS

In this paper, we have constructed two sets of coher
states for the direct product group associated with two mo
of the quantized field. The construction of the basis state
the group comes about in much the same way as in the
pling of two angular-momentum systems through the use
the Clebsch-Gordon coefficients for SU~2!, only here we use
the corresponding SU~1,1! Clebsch-Gordon coefficients. W
have discussed coherent states of the Perelomov and B
Girardello types, and presented schemes for generating
states by the use of beam spitters and competitive proce
involving two channels. This work could be extended in
least two directions:~i! to the SU~1,1!^SU(1,1) counterparts
to the more general SU~1,1! states such as the intelligen
state@27#; and~ii ! to the coupling of more than two SU~1,1!
representations, such as the three mode states
SU~1,1!^SU~1,1!^SU(1,1), etc. In the latter case, it woul
be necessary to employ the corresponding Racah coeffic
for SU~1,1!. It is not clear at this time if the coupling of thre
SU~1,1! representations is of any physical relevance, so
do not pursue such states here.

Finally, we point out that in all the above, we have h
optical fields in mind. However, it was previously shown th
various one- and two-mode SU~1,1! states may also be rea
izable in the vibrational motion of trapped ions@28#. Thus
there is the strong possibility that, with modifications of t
procedures proposed in Refs.@28#, perhaps incorporating the
notion that the two-dimensional motion of a trapped ion c
act as a beam splitter@29#, our states may be generated in t
motion of a trapped ion. This possibility will be explore
elsewhere.
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APPENDIX

In this appendix, we derive the SU~1,1! Clebsch-Gordon
~CG! coefficients for the coupling of two discrete unita
representations of SU~1,1! of Bargmann indicesk1 and k2 .
Numerous derivations of these coefficients have been g
in the literature, usually in the notation analogous to t
used in the case of angular momentum, SU~2! @20#. As stated
in Sec. II, this notation has the disadvantage that it does
separate the integer and fractional parts of the spectrum
the operatorK0 , in contrast to the notation used in this p
per. Furthermore, we have found a difficulty with the resu
previously derived when it comes to the coupling of the no
standard cases for which the Bargmann indices take on
values1

4 or 3
4.

We begin by writing the basis of the SU~1,1!^SU(1,1)
states as

uK,M ;k1 ,k2&

5 (
m1 ,m2

C~k1 ,k2 ,K;m1 ,m2 ,M !uk1 ,m1&uk2 ,m2&,

~A1!

where the numbersC(k1 ,k2 ,K;m1 ,m2 ,M ) are the SU~1,1!
CG coefficients. We first consider the ground state of
coupled representation, whereM50:

uK,0;k1 ,k2&5 (
m1 ,m2

Cm1 ,m2
uk1 ,m1&uk2 ,m2&, ~A2!

where for the moment and for convenience we have
C(k1 ,k2 ,K;m1 ,m2,0)5Cm1 ,m2

. Acting on the state of Eq

~A2! with the operatorK2 of Eq. ~3.3c! gives us, since we
have a ground state,

K2uK,0;k1 ,k2&

505 (
m1 ,m2

Cm1 ,m2
~K2

~1!1K2
~2!!uk1 ,m1&uk2 ,m2&,

~A3!

or, equivalently,

05 (
m1 ,m2

Cm1 ,m2
$@m1~m112k121!#1/2uk1 ,m121&uk2 ,m2&

1@m2~m212k221!#1/2uk1 ,m1&uk2 ,m221&%. ~A4!

We may rewrite this last expression as

(
m1 ,m2

$Cm111,m2
@~m111!~m112k1!#1/2

1Cm1 ,m211@~m211!~m212k2!#1/2%uk1 ,m1&uk2 ,m2&

50, ~A5!
03381
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from which follows the recursion relation

Cm111,m2
52Cm1 ,m211F ~m211!~m212k2!

~m111!~m112k1!G
1/2

. ~A6!

It is evident that only those states are coupled for wh
m11m25const. Settingm11m25 l , l 50,1,2 . . . ,̀ , the re-
cursion can be solved to yield

Cq,l 2q5~21!qF S l
qD G~2k1!G~2k21 l !

G~2k11q!G~2k21 l 2q!G
1/2

C0,l ,

~A7!

whereC0,l is determined from normalization to be

C0,l5F (
r 50

l S l
r D G~2k1!G~2k21 l !

G~2k11r !G~2k21 l 2q!G21/2

. ~A8!

Thus our ground state may now be written as

uK,0;k1 ,k2&5 (
q50

l

C~k1 ,k2 ,K;q,l 2q,0!uk1 ,q&uk2 ,l 2q&,

~A9!

where we have setC(k1 ,k2 ,K;q,l 2q,0)5Cq,l 2q . Apply-
ing the operatorK05K0

(1)1K0
(2) to this last equation it is

easy to show that the allowed values ofK, and hence the
allowed representations of SU~1,1!^SU(1,1), are given by
K5k11k21 l , l 50,1,2, . . . ,̀ .

To obtain the states forM.0, we now apply to Eq.~A9!
the raising operatorK1 of Eq. ~3.3b! M times. However,
making use of Eq.~2.4!, we first rewrite Eq.~A9! as

uK,0,k1 ,k2&5 (
q50

l

C~k1 ,k2 ,K;q,l 2q,0!

3F G~2k1!G~2k2!

q! ~ l 2q!!G~2k11q!G~2k21 l 2q!G
1/2

3~K1
~1!!q~K1

~2!! l 2quk1,0&uk2,0&. ~A10!

Now writing

K1
M5~K1

~1!1K1
~2!!M5 (

p50

M S M
p D ~K1

~1!!p~K1
~2!!M2p,

~A11!

applying it to Eq.~A10! and making multiple uses of Eq
~2.4!, we obtain
2-13
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uK,M ;k1 ,k2&5F G~2K !

M !G~2K1M !G
1/2

(
q50

l

(
p50

M

C~k1 ,k2 ,K;q,l 2q,0!S M
p D

3F ~p1q!! ~ l 1M2p2q!!G~2k11p1q!G~2k21 l 1M2p2q!

q! ~ l 2q!!G~2k11q!G~2k21 l 2q! G1/2

uk1 ,p1q&uk2,l 1M2p2q&.

~A12!

We note that there is a degeneracy with respect top andq. We thus need to collect the coefficients for with constantp1q. To
this end we rewrite Eq.~A12! as

uK,M ;k1 ,k2&5 (
m50

l 1M

C~k1 ,k2 ,K;m,l 1M2m,M !uk1 ,m&uk2 ,l 1M2m&, ~A13!

where theC(k1 ,k2 ,K;m,l 1M2m,M ) are the SU~1,1! Clebsch-Gordon coefficients, and are given by
C~k1,k2K;m,l1M2m,M!

5(
q50

l

(
p50

M

dm,p1q~21!q
1

q!~l2q!!G~2k11q!G~2k21l2q!
SMp D

3Hl!G~2K!G~2k1!G~2k21l!~p1q!!~l1M2p2q!!G~2k11p1q!G~2k21l1M2p2q!

M!G~2K1M! J1/2

3F (
r 50

l S l
r D G~2k1!G~2k21 l !

G~2k11r !G~2k21 l 2r !G21/2

, ~A14!

where, of course, it is understood thatK5k11k21 l .
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