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Substituting scheme for nonlinear couplers: A group approach
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We consider a substituting scheme for nonlinear optical couplers operating by means of degenerate para-
metric down-conversion with strong coherent pumping. The proposed scheme, which provides the same uni-
tary input-output transformation as the original coupler, consists of simple linear and nonlinear optical devices:
beam splitter and optical parametric amplifiers. Using a group-theoretical approach, we find analytical formulas
for parameters of these optical elements. The scheme allows us to get a better insight into the coupler behavior,
because the complex dynamics of the coupler is transformed into a sequence of simpler evolutions governed by
the beam splitter and parametric amplifiers, whose properties are well known and understood. We demonstrate
that various dynamical regimes of the coupler are clearly reflected by the substituting device.

PACS numbes): 42.50—-p, 42.65.Wi

I. INTRODUCTION There are basically two types of transformations in
Sp(2N,R). Those conserving the total photon number form

Recently, increasing attention has been devoted to nonlira compact groufJ (N). For example, an ideal lossless beam
ear optical couplers. The optical coupler is a device formedplitter realizes transformation from the grouf{2) [26].
from two closely lying parallel optical waveguides, whose The remaining transformations do not conserve the total pho-
guided modes are thus coupled by means of evanescetin number and they are called squeeze transformations. It is
waves. In a nonlinear coupler, some nonlinear optical proworth noting that a class of optical fields with Gaussian qua-
cess takes place in one or both waveguides. Nonlinear cowidistributions is invariant under symplectic transformations.
plers can be employed in telecommunication systems as alparticularly, any pure Gaussian state can be constructed from
optical switchers[1,2] and they can serve in optical data the coherent state with the use of appropriate symplectic
processing as logical gat€3]. transformation.

The generation and propagation of nonclassical light in |, his paper, we investigate the symplectic transforma-
nonlinear co_uplers have beep studied extensively. The a%¥ons describing the operation of nonlinear couplers. To
igg}degggr?grl::t;;]pgg?aersnseﬁclr&%\?vi?gogsgfs?grfmf]erilin- achieve some insight into the properties of this transforma-

' : tion, we decompose it into a product of simple transforma-

linearity [8,9], and Raman and Brillouin scatterif0—12. . . .
The propagation of Schdinger-cat states through the cou- t|ons beIongm_g t one-pgrametnc ;ubgroups_Scp(ZN,R).
This factorization has a simple physical meaning: the coupler

pler has been studigd 3] and the quantum phase properties.

of optical modes propagating in couplers have been investiS €placed by a sequence of simpler linear and nonlinear

gated[14,15. For a review, seé16]. optical devices, namely beam splitters and optical parametric

In these theoretical studies, both codirectional and contra@MPlifiers. Thus we construct a substituting scheme for the
directional couplers have been considered. Recently, the cofoupler and study its properties. To provide a complete pic-
tradirectional coupler has been realized experimentalljure, we also briefly discuss the generation of nonclassical
[17,18. The correct quantum description of light propaga-light in the coupler.
tion in the contradirectional coupler has been a matter of The paper is organized as follows. In Sec. Il, a substitut-
some discussion. It was shown that a unitary input-outputng scheme for the codirectional coupler is introduced and
transformation can be found for couplers described by quathe analytical formulas for its parameters are obtained. The
dratic Hamiltoniang19]. However, the evolution of the field generation of nonclassical light in the coupler is discussed in
inside the contradirectional coupler is not unitary. A broadSec. lll. In Sec. IV, the numerical results and discussion for
class of contradirectional devices can be simulated by codithe codirectional coupler are provided. A similar treatment of
rectional ones provided that parameters of codirectional dethe contradirectional coupler can be found in Sec. V. Finally,
vices are suitably chosd@0]. A typical feature of the simu- Sec. VI contains conclusions.
lating device proposed if20] is that its linear and nonlinear
coupling parameters change with distance.

A broad class of nonlinear couplers can be characterized Il. SUBSTITUTING SCHEME
by quadratic Hamiltonians. This is usually achieved by mak- FOR THE CODIRECTIONAL COUPLER
ing an assumption of strong coherent laser pumping of some
modes. The unitary evolution operator corresponding to the
N-mode quadratic Hamiltonian represents a transformation The nonlinear coupler operating by means of degenerate
belonging to a symplectic groupp(2N,R). Various prop- parametric down-conversion with strong coherent pumping
erties of these transformations have been stufidd-25. is depicted in Fig. 1. The two guided beams propagating

A. Nonlinear coupler and group Sp(4,R)
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a, A qut mitian quadratic operators constructed from operatoes',

\ Xf) / b, andb'. The groupSp(4,R) has altogether ten generators,
\ v which can be connected with various physical devices, such
\% /// // as beam splitters, phase shifters, degenerate optical paramet-
: ric amplifiers(DOPA), and nondegenerate optical parametric
_______________ fmemmememee K -'-'-'-'-'-'\r'-'-'-'-'-'-'-> 7z ampllflers(NDOPA) [21,26
In this paper, we replace the nonlinear coupler by a se-
/:\ \ \ N\ quence of simpler devices: beam splitters, DOPA, and
//': x(z) & NDOPA. In other words, we construct a substituting scheme
! b ! for the nonlinear coupler and study the dependence of its
bin Dout properties on the propagation distareend the coupling
L parametersg),, g,, and«. We show that various dynamical

FIG. 1. Sketch of the nonlinear codirectional coupler formed"®9imes of the coupler are clearly reflected by the substitut-

from two waveguides characterized by quadratic susceptibilitied"d Scheme. We assume that all coupling constants in mo-

¥ and {2, respectively.« denotes a linear coupling constant Mentum operatof1) are real. This assumption allows us to

between the two waveguidels;is the coupler’s length. work in a four-parametric subgroup of grodpp(4.R). In
physical terms, we will need only four devices to represent

through the coupler are treated as single-mode fields. Thigur nonIin.ear coupler.

coupler can be described by the interaction momentum op- Let us introduce the operators

erator[4] U=a'?+a?,
G=tfig,a’+hgpb?+hkab'+H.c., 1
Ja b ( ) V= bT2+b2,
wherea and b are the annihilation operators of the modes 3)
propagating in the first and second waveguides, respectively, w=a'b+ab',
and H.c. denotes the Hermitian conjugate term. We use mo- ) )
mentum operatofs rather than Hamiltoniamd. We do not Y=iab—ia'b'.

consider dispersion and assume that propagation constant58f
modesa andb are the sameB,= B,,. Thus the momentum
operatorG is proportional to the Hamiltoniahl, H=cG, ¢ U (uy=expiul), Vy(v)=expivV), (4)

is the velocity of light beams propagating in the coupler, and

the descriptions based @handH are equivalent. It is more which can be realized by DOPA®/ is a generator of linear
convenient to us& as we deal with propagating beams. Themixing which can be achieved by the ideal lossless beam
Heisenberg equations for the operatarandb in the inter-  splitter BS and described by the operator

action picture follow fromizdX/dz=[G,X] (X denotes an

andV are generators of single-mode squeeze operators

arbitrary operator Wap(W) =exp(iwW). (5)
da _ Finally, the operatorY generates two-mode squeezing and
E=2|gaa*+|xb, NDOPA can be used to implement this transformation. The
@ corresponding two-mode squeeze operator reads
$:2igbb++i,<a, VarlY) =exXpliyY). ©®
z

Commutation relations for operato3) will be important in
The propagation distan@ran be considered as a convenientthe following calculations. They read
measure of the interaction time=z/c. Nonlinear coupling _
constantgy,= x?a andg,= x{?’B characterize the strength [U,V]=0, [V,W]=-2iY,
of degenerate parametric down-conversion in the first and
second waveguides, respectivej&{‘?) denotes the quadratic
susceptibility of the core of thgth waveguide, and and 8
are amplitudes of strong coherent laser pumping of the cor-
responding second-harmonic modes. The linear couplin
constantk describes the mutual coupling between modes
andb in the coupler. The assumption of strong coherent laser G=1(gaU+gpV+«kW). ()
pumping simplifies the analysis considerably because the
momentum operatd® belongs to a class of quadratic opera- Although only operatord), V, andW are present in the mo-
tors. The Heisenberg equatioit®) are linear and can be mentum operatofs, we need alsdr to form a closed Lie
easily solved. The momentum operafiis a generator of a commutator algebrér).
one-parametric subgroup of the symplectic gr&p(4,R). The unitary evolution operatdf(z) is generated by the
This group consists of all transformations generated by Hermomentum operatofl),

[UW]=—-2iY, [V,Y]=-2iW, @)
[U,Y]=—2iW, [W,Y]=—i(U+V).

With the help of the operator®), we can rewriteG as
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DOPA was first proposed in Ref29]. The main idea is to differen-
M_ 2 4y M tiate Eg.(11) and then to use commutation ruléd to sim-
plify the resulting expression.
We can simplify the calculations by noting that the opera-
tor U_=U -V commutes with all four operatots, V, W,
andY. We introduce the operatdy , =U +V, new param-

b: eters u.=(u*v)/2, and coupling constantsgy.=(g,
" M b, DOPA by M +0p)/2, which allows us to write
FIG. 2. Substituting scheme for nonlinear coupler. The coupler eu(@Vglv(@V= gl (V. glu-(2VU— (13

is replaced by a sequence of beam splitter BS, two degenerate para-
metric amplifiers DOPA, and one nondegenerate parametric amplil "€ Nonzero commutators are
fier NDOPA. M denotes auxiliary mirrors.

[U, , W]=-4iY,
I(Z)ZGXQiGZ/ﬁ). (9) [U+,Y]=—4iW, (14)
We would like to decompose this unitary operator into a [W,Y]=—iU, .

product of simpler unitary operators as follows:
Now we substitute Eq13) into Eqg.(11) and differentiate:

T(2)= VablY)UalU) Vo(0) Wan(W). (10 51O yry gl Ur iU g
The right-hand side represents a sequence of linear mixing

i iyY, ’ iu, U, qiu_U_ Lqiww
operator, single-mode squeeze operators, and two-mode +eXlu U etrrre e

squeeze operator. A physical device reflecting this factoriza- eVl Uiy J glt-U-giwwW
tion is shown in Fig. 2. The modesandb are mixed at the T
beam splitter BS, each mode is then squeezed in DOPA, and +elYYelusUsgli-U_yy \WweWW — (15)

finally both modes are mixed in NDOPA. The scheme de-

picted in Fig. 2 is similar to the nonlinear Mach-Zehnderwhere the primes denote derivatives with respect,tand

interferometer discussed [27]. However, the second beam the z dependence of the parameters, w, andy is not

splitter of the interferometer is replaced by NDOPA. Noteexplicitly displayed for typographical simplicity. In the next

also that a different type of nonlinear Mach-Zehnder inter-step, Eq. (15 is multiplied by the inverse operator

ferometer containing Kerr media in its arms was analyzed irexp(—iGz/#). Due to the operator nature of E45), we have

[28]. to distinguish multiplications from the left and from the
The factorization given in Eq(10) is only one of many right. These two possibilities result in two distinct differen-

possibilities. Since the operatdi® do not commute, various tial equations for parametefd2). Nevertheless, these two

orderings on the right-hand side of E40) represent differ-  sets of equations are equivalent and give the same results for

ent substituting schemes. Inserting the explicit expressionthe initial conditions

(4), (5), (6), and(9) into Eqg. (10), we can rewrite this for-

mula as u(0)=v(0)=w(0)=y(0)=0. (16)

elGZ/h — gy (2)Ygiu(2)U giv (Viw(DW. (12) The operator exp{iGz/#) is expressed as an inversion of the
right-hand side of Eq(11) and the following relations are

The substituting scheme is fully characterized by the paramySed to simplify Eq(15):
eters e'sU+We 'sU+ =W cosh4s)+ Y sinh(4s),

u(2), v(z), w(z), andy(z), (12 ei5U+Ye_iSU+=Ycosr(4s)+Wsinr(4s),
which are functions of the propagation lengttand which
also depend on the coupling constagts g,, and . In
particular,z=L. The parameter&l2) will be the main tool in 1 (17)
our investigation of the coupler operation. e'sWy e isW=Y cog2s)+ = U sin(2s),

We can use two different equivalent approaches to find 2
the parameterél2). They can be determined as a solution of
the system of nonlinear differential equations or by solving
the system of nonlinear algebraic equations.

e'SWU, e SW=U_ cog2s)—2Y sin(2s),

e'SYU, e sY=U_ cosh2s) — 2Wsinh2s),

. . 1
e'SYWe 'SY=W cosh2s) — 5U.sinh(2s),
B. Differential equation approach

In order to derive differential equations for the factoriza- wheres is an arbitrary real number. A proof of these formu-
tion parametergl2), we employ a general procedure which las is very simple. We prove the first one, the others can be
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verified in the same way. We consider the left-hand side of u, g.

the first formula in Eq(17) as a function of and calculate
its derivatives,

f(s)=€UrWe sV,
f/(s):ieisUJr[UJr ,\N]efisU+24eisU+Ye*isU+’ (18)
f”(S):4ieiSU+[U+ ,Y]e*iSU-F: 16eiSU+WefiSU+,

where we have made use of the commutation riled.
Comparing the first and third lines in E(L8), we find the
differential equation forf(s),

f"(s)=16f(s), (19

where the prime means the derivative. Solving this equation

with appropriate initial conditionsf(0)=W and f’(0)
=4Y, we immediately obtain
f(s)=Wcosh4s)+Y sinh4s), (20

and hence we have derived the first formula in E43).
Let us first consider multiplication of Eq(15 by

exp(—iGz/h) from the right. To give an example, we explic-

itly deal with the fourth line in Eq(15). Recalling thatU _

(24)
y 0

Alternatively, multiplying Eq.(15) by exp(=iGzZ%) from the
left, we arrive at

dP
Niett 5, =C. (29
where
cog2w) 0 — 1cosh4u,)sin(2w)
Niet= 0 1 —sinh(4u,) )
2sin2w) 0 coshi4u, )cog2w)

and Eq.(22) remains unchanged. The existence of two dis-
tinct systems of differential equations will become useful
later when we investigate the asymptotic behavior of their
solution.

C. Group algebraic approach

From the group-theoretical point of view, the factorization

commutes with all operators and applying repeatedly the re¢10) states that the group element e{%) is a composi-

lations (17), we find

eiyYeiquUJreiu,U,W/\Ne—iu,u,e—iquUJre—iyY

1
=w'| — zU,sinh(2y)cosh4u )

tion of four other group elements, each of them being a
member of certain one-parametric subgroupSe(4,R). If

we know the group composition rule, we are able to obtain a
set of algebraic equations connecting@), v(z), w(z), and
y(z) with g,z, g,z, and kz. This can be achieved in the

2 Heisenberg representation. The vector
+Wcosh2y)cosi4u )+ Ysinh4u,)|. (21 a
T
a
The same exercise is repeated with the first three lines in Eq. A= b (26)
(15). Introducing the explicit form8) of the momentum op- +
eratorG and comparing coefficients standing with the opera- b

torsU., W, andY on the left- and right-hand sides of Eg.

(15), we obtain four differential equations. Sinte. com-
mutes with all operators, the equation for separates,”
=(g_. A trivial integration yields

u(z)—v(2)=(9a—9p)Z. (22

is introduced and each group element is represented by a 4
X4 matrix M. Any quadratic Hermitian operatof can be
associated with the matrix y as follows:

exp—iXz)A exp(iXz)=Myx(2)A. (27)

The remaining three coupled equations can conveniently be Particularly, we have

written in the matrix form

dP
NrightE =C, (23
where
cosi2y)  — icoshk4u,)sinh2y) O
Niighe= [ —2 sinh(2y) cosh4u, )cosh2y) 0
0 sink(4u ) 1
and

coshi2u) isinh(2u) 0 O
—isinh(2u) cosh2u) 0 O
Mu(uw)= 0 0 10
1

0 0 0
0 0

My(v)= (29

cosli2v)
—isinh(2v)

i sinh(2v) |’
cosh2v)

o O O -
o O ~» O
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COSW 0 i sinw 0 and imaginary parts yield the frequency of oscillations.
We can distinguish two different dynamical regimes:

My(w)=| . cosw 0 —siw ' (i) |gat9p<|k|, the linear coupling is dominant, the
i sinw 0 cosw 0 coupler operates below threshold, eigenvalues are complex;
0 —isinw 0 COSW (i) |gat+9dp/>|«|, the nonlinear interaction dominates,
(30) the coupler operates above threshold, all eigenvalues are real.
There are also two important specific cases:
and (i) ga=9p=0, 2|9|<|«|, all four eigenvalues are purely
_ imaginary,\;= =i[ k*—4g*]"3
coshy 0 0  sinhy (iv) ga= —0gp=0, the eigenvalues am;= +2g+i«x.
0 coshy sinhy 0 We return to these regimes in the discussion in Sec. IV.
My(y)= 0 sinhy coshy O (1) With the help of the above matrices, E4.1) can be re-
written into
sinhy 0 0 coshy
For the operatoG/# we can write Ma(2)=My(y)My(W)My(0)Mw(W). (35
Mg(z)=expiFz), (320  This establishes a system of nonlinear algebraic equations
) ) for u(z), v(z), w(z), andy(z). Though it might seem that
whereF is the 4<4 matrix, the system is overdetermined because the matrices have 16

elements, this is not the case. Matrices on the left- and right-

0 29a K 0 hand sides have such a special structure that the factorization

—-29, O 0 —K (35) yields only four independent equations.
=1 . 0 0 2, (33 In order to find an analytical solution of Eq€35), we
b consider the input two-mode coherent stgig)| &) propa-
0 -k —20p O gating through the substituting device. After mixing at the

beam splitter, the complex amplitudésand &, are changed
but the modes, andb, remain in coherent states. Then each
mode propagates through the parametric amplifier. At the
outputs of DOPAs, modesg,; and b;, are in single-mode
squeezed states, but they are not correlated. The correlation
betweena and b originates in NDOPA, which vyields the
Nj=*(ga—On) £[(ga+t gp)2— K21V (34) outputsa,,; and blout- The output state i.; a pure Gaussian
state. Any Gaussian state is fully determined by the coherent
all four combinations of signs must be taken into accountcomponentgcomplex amplitudesé,=(a), &,=(b), and by
Real parts of\; give the speed of exponential amplification the correlation matrix

Explicit expressions for elements of matimMs(z) can be
found in papers where Heisenberg equati@)svere solved
using the Laplace transform techniqu4eg6]. The eigenvalues
of matrix iF determine the dynamics of the codirectional
coupler. They read

_(Ba+ %) Ca _;b Dab
CI  —(Ba+3)  Di Dab
S=— B ) , (36)
Dap Dap —(Bpt 2) Co
2b D Co  —(Bytd)
|
the elements of which are the noise parameters tween quadraturgs, , g5, Py, andq, . The relation between
: ) these two formalisms is given by a simple unitary transfor-
B.=(Aa'Aa), C,=((Aa)%), mation[23]. It was shown irf24] that the correlation matrix
) of any Gaussian state can be diagonalized by a sequence of
Bp=(Ab'Ab), C,=((Ab)?), (87  canonical transformations. We adopt this approach here to
- find analytical expressions for parameters of the substituting
D.p= —(AaTAb), Dap=(AaAb), scheme. We start with the output state and apply a sequence

of  inverse unitary  transformations expiyyY),
where Aa=a—(a) and Ab=b—(b). The matrix S has exp(-iuU), exp(—iVv), and exp{-iwW) on it. At each step
complex elements. Some authors prefer to use real correlsome off-diagonal elements of matr{86) vanish. This al-
tion matrix elements which are formed by correlations bedows us to findu, v, w, andy.
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In the first step we determing We apply the inverse 1 —2iCqy
transformation expfiyY) to the output modes and require u=zamg tanhm,
that this transformation destroys mutual coupling between all (45)
modesa,, andb,, 1 —2iCyp
v=—argtanh——="—.
Ai=My(—Y)Mg(2)Ay. (39 4 1+2Bo

. . Finally we have to determine. To accomplish this task
Then the noise parameters of the output modes for the input, 4 cilate the matrix

coherent states read
, 5 M =My(—uMy(—v)My,. (46)
Baou= Mg 1d“+|Mg14°,
This matrix is identical withM(w),

Bb.ou=|Mg 34+ Mg 34, 39
b,out | G,32| | G,34I ( ) M|=|V|W(W). (47)
Dab,ou=Mg,11Mg 32t Mg 13M G 34- Thus we can write
ParameteD .y, is real here. After inverse transformation cosw=M,,;, sinw=-—iM, 3. (48)

(38) we have
These two equations determimeuniquely within the inter-
a, =coshyag,— sinhybgm, val [—m,7]. We emphasize again that analytical expres-
(40) sions for elements of the matriM ;(z) exist and the above
given formulas fow, v, w, andy form an analytical solution
of the system(35). We do not write down explicit expres-
sions for the parameters as functionzdfecause the formu-
las are very lengthy and complicated. For numerical calcula-

by = coshy bo,— sinhy ag,.

These modes are uncorrelated, which means ihaf, =0

andD,p, =0. The first condition yields tions, the above given scheme has been directly adopted.
1 2Dab,out IIl. GENERATION OF NONCLASSICAL LIGHT
y argtanh——————. (471
2 1+Bg,outt Bp,out IN NONLINEAR COUPLERS

It is worth emphasizing that this expression was obtained W€ assume that a coherent light is fed to the input of the

only from D, ,=0. Nevertheless, the matrices have such é:ou_pler. The cohgrent input light is_ a feasible and _natural
structure that, after inverse transformation, both mutual corS0ice- First we discuss the generation of squeezed light and
relationsD andD.... . vanish then we address sub-Poissonian light generation.

ab, Il ab,ll .

In the second step we use the same strategy to find the

parametersi andv. We introduce the matrix A. Light squeezing in nonlinear couplers

Let us begin with some general remarks. Since we assume

M, =My(—y)Mg(2). (42)  that the input state is the two-mode coherent stéteé,),
the output state is a pure Gaussian state, created via some
The inverse transformations lead to symplectic transformation from the input state. The light is
squeezed when a variance of some quadrature component is
A=My(—u)My(—v)M, A (43) below the level of vacuum fluctuations. This definition can

be applied to both single- and multimode fields. For an

and the modes, andb, are in the coherent states. We will N-mode field, the quadratuié reads
need the noise parameters of modgsandb, :

1
X=—[A+AT], (49)
Baii =My 1%+ My 142, J2
Can=My 1My 12+ My 1aMy 14, where
, , (44) N
Bo,ii =My 3d“+ My 347, A:jzl cja, (50)

Co.1 =My 3iM ) 30+ My 35M ) 34, . -
bl ST 32 L 33T 34 andc; are arbitrary complex numbers fulfilling

andC, ; andCy, are purely imaginary. Parametersindv N
are found from the condition€, =0 andCy, =0, respec- 2 lc|2=1 (51)
tively, yielding = ’
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which ensures validity of the commutation relatipA,A'] It holds thaty=1 and »<1/2. We emphasize that the for-
=1. One can calculate the variandga X)?) of all quadra- mula(55) is valid only for pure Gaussian states. For a given
tures X and select the lowest variance. If this variance isTr S the squeezing will be weakest if; = 7,. Inserting this
lower than the coherent state value 1/2, then the light isnto the above equations, we get a simple estimation for the
squeezed. This general definition of multimode squeezingeneralized squeeze variance,

was proposed ii23]. Squeezing defined in such a way is

invariant under transformations from the compact group 1 (ng) 1 5 1.
U(N), because the class of 4lt;} fulfilling the normaliza- Testpt Ty E[(<n5>+ D=1 (56
tion condition(51) does not change under thg(N) trans-
formations. here
The squeezing fully determines whether a Gaussian state
is nonclassical or not. All nonclassical Gaussian states are (ng)=B,+By, (57)

squeezed states. The lowest variance can be called the gen-

eralized squeeze varianegand it can be found as a lowest Which represents in our case a total number of photons cre-
eigenvalue of the correlation matr® [23,12. Multimode  ated by spontaneous down-conversion in the coupler. These
squeezing can be measured with the use of multimode hd2hotons occur in cprrelated pairs and enhance the squeezing.
modyne detection; then the complex amplitudes of strong he formula(56) gives a lower estimate of the squeezing,
local oscillators play a role of coefficients[12]. In our case 7= 77est; the actual squeezing can be stronger than that pre-
modesa andb have the same frequency and one local oscil-dicted by Eq.(56). The squeezing increasés., variancen

lator is sufficient. The unitary transformations leading todecreases towards zgrwith increasing(ns). We can con-
various superposition&0) can be achieved by passive opti- clude that the nonlinear coupler always generates squeezed
Ca| e|ements_ Th|s approach a”OWS us to meagﬂmﬂ]d it I|ght from the therent input. HOWeVer, to observe maxi-
can be extended to multimode optical homodyne tomograph§um squeezing inherent to the output state, one must mea-
with one local oscillatof30,31], because the quantum state Sure a variance of an appropriate quadrature,

of the multimode field is fully determined by the measured

quadrature distributions/| X(c,C5, ... ,Cyn)]- 1
For the pure Gaussian state it holds thagjfis an eigen- Xab_ﬁ[caa+cbb+ H.c.. (58)
value of S, then also 1/(4;) is an eigenvalue o8 [32]. In
our case we deal with four eigenvalugs, 1/(471), 7., and How strong can squeezing be generated in the coupler? In
1/(47,). The generalized squeeze variancks the lowest of  the codirectional couplens) approximately exponentially
the eigenvalues, increases during the propagation,
(ng)~ exp(2Ag2); (59)

i 1 1
77=m|n[ 7]1,4—7717772,4_772]- (52
hereAr is the largest value among the positive real parts of

The light is squeezed fap<1/2. The sum of the eigenvalues the eigenvalueq34). For strong parametric amplification

is the trace T6, (high{ns)), Eq. (56) yields
> + ! ) TrS=2+2B,+2B (53 t ! o —2ARz) (60)
i+ —|=TrS= . ~———~—exp— Z).
iSi2 g 49 a b g 4ng) 4 R
The sum of the squares of the eigenvalues iS?Tr An example of light squeezing in the coupler is given in Fig.
3. An exponential decrease of variangeis modulated by
E , 1 2 ( 112 ) oscillations originating from linear coupling between modes
T+ —— | = it-—] —1=Trs. a andb.
= 5 1677].2 = i 4y,
(54)

B. Sub-Poissonian light generation

The eigenvalues can be determined from E§8) and(54). Let us consider a general case of tRenode field in a
After some algebra, one arrives at the expression for th&aussian state. The total photon number is
generalized squeeze variance,

N N
+
1 n=2 nJ:E ajay, (61)
7= 5= x*=1), (55) =t
wherea; is the annihilation operator of thgh mode. The
where light is sub-Poissonian if the varian¢€An)?) is lower than

the mean(n). Thus the normally ordered variance

= }{Tr S+[2(Tr$*+1)—(Tr9?]"3
72 ' V=(:(An)2)=((An)%)—(n) (62)
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0.4

0.3

n
02

[5(0)]

01}

0.0

FIG. 3. Squeezing of light in the codirectional coupler. This
spatial evolution of generalized squeeze variangsolid line) was FIG. 4. Sum photon number variangdor different initial com-
obtained forg,=0.6, g,=0.5, andx=2; both modes are initially plex amplitudes¢,(0)=&,(0)=|£(0)|exp(/4). Both modes are
in a coherent state. The dashed line shows an estimatighased initially in coherent states. The coupling parameters gye g,
on formula(56). In this and all following figures, relative dimen- =0.5 andx=0.25. The region of sub-Poissonian light<0) be-
sionless units are used for the coupling constgptsy, , andx and comes larger with increasing(0)].
for the distancez.

N
is negative for sub-Poissonian light. The variance of any <(A+AT)2>>2772 |§j|2_ (67)
Gaussian state can be expressed in terms of complex ampli- j=1
tudes¢; and correlations of fluctuation8;, C;, Dy, and

Djx. We decompose operatogs into a;=Aa;+ ¢; and we Inserting this into Eq(65), we have

write An as N . N
N Viin= > (IDj[2+[Djl)+ > (BZ+|Cjl?)
j#k=1 j=1
An=2 (Aa/Aaj—B))+A+AT; (63) "
=1
—(1-29) 2 1§/2 (69)
here j=1

N The last term is negative for squeezed states.
A=Y & Aa. (64) Now we can return to the generation of sub-Poissonian
=1 light in nonlinear couplers. The input coherent state evolves
into the pure squeezed Gaussian state. The complex ampli-
tudesé;(z) depend linearly on input§(0) and we can reach
any requiredé;(z) if we suitably choose the input coherent
N o N state| £4(0),£,(0)). Thus we can, in principle, generate sub-
V= (IDl2+DplD+ 2, (Bf+ICi?) Poissonian light at any distanasimply by choosing the
I#k=1 =1 input state in such a manner thgi(z) will minimize ((A
N +A"?2) and will be large enough to overcome the positive
+{(A+ AT)2>— 2 |§j|2_ (65  terms in Eq.(68). For a given input, however, both correla-
=1 tions and complex amplitudes are amplified. The positive
, . ) , terms in Eq.(68) increase as exp(4:2z) while the negative
The only negative term, which can give rise t0 Sub-yorn increases only as exp(2). Finally, the amplified
Poissonian statistics, is the last one. The necessary Cond't'QﬂJantum noise prevails and the light becomes super-
for V<0 reads Poissonian for long even if the sub-Poissonian region has
N been reached for smatl Such a behavior has been indeed
<(A+AT)2><JEl |§j|2_ (66) obtained in[4,6] and we illustrate it in Fig. 4.

Notice the similarity with Eq.(50). Inserting Eq.(63) into
Eq. (62), we have

. L . .. . IV. DISCUSSION ON THE CODIRECTIONAL COUPLER
After renormalization, this gives the squeezing condition dis-

cussed in the preceding subsection. This is not surprising. If In this section we present a discussion on the codirec-
the Gaussian light is not squeezed, then it has classical anienal coupler. We distinguish between various regimes of
logue and cannot exhibit sub-Poissonian statistics. The varthe coupler operation which were listed in connection with
anceV depends or¢;. The lowest possible value ¢fA  formula(34) for eigenvalues; .

+A")?2) is determined by the generalized squeeze variance We start from the subthreshold regime. Thdependent

7, parametersy, v, w, andy are shown in Fig. 5. We have
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FIG. 5. Parameters of substituting scheme for codirectional cou- FIG. 6. Parameters of substituting scheme for codirectional cou-
pler below the thresholdg,=1, g,=0.5, andx=2. pler above the threshold,= 1.5, g,=0, andx=1.

chosen thatg,| #|gp| in Fig. 5. Nevertheless, the slopes of This two-step process creates pairs of entangled photons in
an average linear increager decreaseof u andv have the the modesaandb and it leads to the presence of NDOPA in
same absolute valugg,—gp|/2, which corresponds to the the substituting scheme. _ _

real part of the subthreshold eigenvalugs Eq. (34). This The distances wherg=0 deserve special attention. Let
symmetry is a consequence of strong linear coupling in thélS assume a two-mode coherent state at the inpyt=1,
subthreshold regime, which ensures that both modes benetften we have single-mode squeezed states in madesat
almost equally from amplification in the first and secondthe output and these two modes are not correlated. This situ-
waveguides of the coupler. Taking into account B29), we  ation appears periodically for certain lengths of the coupler

can express the average lingadlependence afi andv as and is typical for subthreshold operation. WHghincreases,
the nonlinear mixing in NDOPA becomes important. This

1 1 mixing introduces additional noise in the single modemnd
U~=(ga—0p)z, v~=(gp—0.)z (69) b compensated by the correlations betweeandb. Though

2 2 the two-mode field remains in the pure Gaussian state, the

single modes are in mixed states. Thus the NDOPA sup-
The linear increase ofv is related to the imaginary part of presses single-mode squeezing of separate modedb. In
\;, and readswv~z«[1—(ga+0p)%/«x*]*% The two-mode Sec. lll we have introduced the quadratdg, exhibiting the
squeeze parametgrexhibits a substantially different behav- strongest squeezing. As a rule, this quadrature changes with
ior in that it oscillates periodically. Making use of the differ- increasing|y| from the single-mode quadrature towards the
ential equation$23), one can find a useful relation between two-mode quadrature with almost equal contributions from
u, andy: the modesa andb.
The difference between the exartlependence afi,v,w
and a linear behavior is particularly strong around the thresh-
(700  old. When the coupler is at the threshold agg=g,=
*«/2, all four eigenvalues\; are zero andMg(z)
= exp(Fz)=E+iFz. In this casey, v, andy increase(or
It is clear from Eq.(70) thaty is bound for allz, unless| «| decreasglogarithmically withz, as can be deduced from the
=|gat bl analytical algebraic solution presented in Sec. II C.

In the substituting scheme, the main part of the parametric The properties of the substituting scheme change radically
amplification takes place in DOPAs. This reflects that onlywhen the coupler operates above the threshold, see Fig. 6.
degenerate parametric processes occur in the coupleAsymptotically, the single-mode squeeze parameiemsdy
NDOPA mixes the amplified beams. Though this mixingincrease linearly withz while w andy reach some finite
does not significantly contribute to the amplification, it asymptotic values. These asymptotic values can be found by
strongly affects the output. The role of NDOPA can be un-a tedious analysis of the algebraic formulas from Sec. I C. It
derstood as follows. In each waveguide of the coupler, deis, however, much more convenient to employ the differen-
generate parametric downconversion creates pairs of corréal equations22), (23), and(25) derived in Sec. |1 B. Tak-
lated photons. Due to the linear coupling, one of the photon#g the limits forz—oe,
can be transferred to the second waveguide, but the quantum
correlations between these two photons remain unchanged.

Kk cosh(2y)+(ga+gp)sinh(2y) = WK@Q'

|coth(4u,)|—1, y'—0, w’'—0, (71
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0.2 L 02 T worth noting thatu(z)=uv(z) oscillate between negative and
01 | o0l I positive values. For certain lengthsu(z)=v(z) =0 and the
coupler can be represented by a simple sequence of beam
u 0.0 v 0.0 splitter and NDOPA. Assuming a coherent state at the input
01| ] 01 _ of such a coupler, we have the two-mode squeezed state at
1 - the output.
025w 6 8 10 T _Finally, we comment on the case wheg=—g,=g. The
z zZ eigenvalues; are complex\j=*g=ik, and the coupler is
below the threshold. The opposite signs of nonlinear cou-
20 ————— 0.2 ————TT pling constants result in a kind of decorrelation between
I modesa andb. The analytical expressions for the parameters
15 g 0.0 ;
] (12) take on very simple form
10| . 0.2
w 1 y i u(z)=9z, Ww(z)=«z,
5+ ) 04| (73
okl P AL LA & v(2)=-gz Yy(2)=0.
0 2 4 6 8 10 0 2 4 6 8 10
z z Sincey(z)=0 for all z, the coupler is equivalent to the se-

guence of a beam splitter and two DOPASs. This property was
already found for other values of coupling constayis g, ,

and k, but only as a special case for certain distarnces

this special configuration, the above feature holds forall

FIG. 7. Parameters of substituting scheme for symmetric codi
rectional coupler below the threshold,=0.5, g,=0.5, and«
=2.

we obtain from Eqs(22), (23), and(25) V. CONTRADIRECTIONAL COUPLER

0a—0Opb YatOp K 2|12 ; . T
ul.= + _ In this section we apply the substituting scheme approach
as 2 2 9at b ' to the nonlinear contradirectional coupler of the lengthn
11 the contradirectional coupler, the modeandb propagate in
;9 0a +gb+ Ja 1— K opposite directions. A degenerate parametric down-
Vas— ™ 5 2 9p+0a ' conversion takes place in one or both waveguides and the

(72 modesa andb are linearly coupled. A nonzero linear cou-
1 K pling between the counterpropagating modes can be
WaSZEarCSiF{W), achieved by means of distributed feedback grating created in
a’tdb the couplef 17,18, which leads to spatial modulation of the
linear coupling parametek. The strong phase mismatch

Vo= — 3 arg tan;é K ); AB=Bat By (both propagation constants are positiys,
2 Gat b >0) is compensated by the grating whose spatial period is
A=2m/Ap.

the primes again denote derivatives with respect.tt is

A We use the same notation for the coupling constants as
worth noting that the formula foy,scan be found only from ping

I . X before and we assume again that these constants are all real.
Eq. (23). Similarly, Eq.(25) IS necessary to determings.  The jnput-output transformation of a nonlinear contradirec-
Notice that the slopes: 2u, and *2v,; are just the i~ ional coupler can be determined in three steps. We begin
genvalues\; of the matrixiF. Above the threshold, the non- ith Heisenberg equations of moti¢®) following from mo-
linear interaction locks the signal in the waveguide where ityentum operatofl). We assume that the motepropagates

was injected and it suppresses linear coupling with the segsackward, thus we change the sign of the derivative
ond waveguide. The modesandb do not benefit equally

from amplification in both waveguides and the slopgésand db db
v s differ wheng,#g,. The asymptotic values af/,5 and dz  dz
Y. decrease with increasing ratig,+g,|/| x| and, eventu-
ally, they can become very small. High above the thresholdin the Heisenberg equatiof2) and we obtain new equations
u~g,z, v~gpz, k~0, y=0, and the coupler behaves like of motion. Notice that these equations cannot be obtained
two independent DOPAs. from a Hermitian momentum operator. Upon solving the
We conclude with some remarks on two special dynamiimodified Heisenberg equations, we find expressionafbj)
cal regimes of the coupler. The exponential amplificationandb(L) as linear combinations af(0), a'(0), b(0), and
completely disappears whegy,=g,=g and |g|<|«|/2. In b'(0). Theoperatorsa(L) andb(L) do not fulfill standard
this case, all four eigenvalu€84) are purely imaginary. As commutation relations because the evolution following from
illustrated in Fig. 7u andv periodically oscillate similarly to  the modified Heisenberg equations of motion is not unitary.
y. Sinceg,=g,, it holds thatu(z)=v(z) as follows from  We must apply proper boundary conditions to retain correct
Eq. (22). The substituting scheme reflects the symmetry becommutation relations. The inputs of the coupler a(@)
tween the first and second waveguides of the coupler. It iandb(L) and the outputs ara(L) andb(0). Thelatter can

(74)
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be expressed in terms of the former and thus we arrive atar 04 F—r—T—71—— 01l —r—T— T
input-output transformation realized by the nonlinear contra- 4, [ ] 0.0 l
directional coupler. It was proven ii9] that this transfor- -
mation is unitary provided that the Heisenberg equations of u 0-2 v -0.1
motion are linear. 01 ] 02|
The input-output transformation belongs to the same clas: -
of symplectic transformations as the input-output transfor- 90 =5~ ===, 03
mations realized by the nonlinear codirectional coupler. Par- L
ticularly, when all coupling constants are real, we can restrict
ourselves to the four-parametric subgroup of the group 2.0 ————T 0.0 —
Sp(4,R) and the substituting scheme for the contradirec- \ 1

. . L 15} - 0.1
tional coupler is exactly the scheme shown in Fig. 2. How- .

ever, the dependence of the parameters of the substitutinw 1.0 - 1 y 02

scheme on the length of the coupler and on the values of the ¢ 5 I

coupling constants strongly differs from what we have ob- -

tained for the codirectional coupler. 000" % "2 ¢ s 10 045
The parameter§l2) can be determined in a manner de- L L

scribed in Sec. Il. The application of the analytical solution

as described in Sec. Il C is straightforward. The maltti¢d) FIG. 8. Parameters of substituting scheme for contradirectional

can be derived according to the above given prescription anepupler below the thresholdj,=0.5, g,=0.1, andx=1.

the analytical expressions for its elements can be found in

Refs.[5,6]. We address the differential equation approachwhere

here in some detail. It should be noted that we have the _

unitary input-output operataf(L) for the contradirectional 9+ (L)

coupler in the form of matrixM(L). We must replace all C=| &(L) (79

operators by corresponding matrices in E4®) and(15). If Ban(L)

we multiply Eq.(15) from the right by the inverse operator
and 9. (L)=[0a(L) = gu(L)]/2. Notice the difference: the

M~1(L), the left-hand side of this equation takes the form
right-hand sides in Eq477) and (78) becomelL-dependent.

10

Sy =
-h-—
a\-_
o

d -
[d—LM(L) M~ YL)=i[Fa(L)U+Tp(L)V+E(L)W A new coupling parametgg;ab characterize_s thg strength pf
nondegenerate parametric down-conversion in the codirec-
+Tan(L)Y], (75)  tional simulating device discussed [ia0].

We start our discussion from the eigenvalues correspond-

whereU, V, W, andY denote matrix representations of the ing to th_e modifieq Heisenberg equations of motion for con-
operatorsU, V, W, andY, respectively. The matrix for  tradirectional nonlinear coupler,

any operatoiX is constructed as
yop N==(0at 00 [ K2+ (0a—0p) 212 (80)

X = 1 M x(X) _ (76 All four eigenvalues are real. Recall that in the case of the
i dx X=0 codirectional coupler we identified two basic regimes of the
coupler operation, corresponding to four complex or four
The coupling paramete§,(L), Up(L), %(L), andF,,(L)  real eigenvalues. It turns out that the threshold can be defined
can be determined from EZ5). It was shown irff20] that a  also for a contradirectional coupler, and the subthreshold and
wide variety of contradirectional devices can be simulated byabove-threshold regimes of operation are clearly distinguish-

codirectional devices, provided that the coupling parametergble. However, the threshold condition differs from that for
of simulating codirectional device vary with distance accord-the codirectional coupler. The threshold is reached when two

ing to Eq.(75). eigenvalues are zero; thém, + gp| =[ ¥+ (9.— g,)?]*2 and
Having found the coupling parameters, we can writethe threshold condition reads

down the differential equations for parametaers, w, andy. 5

The system of equations is very similar to E(g2) and(23), K =490y - (82)

du_ The coupler is bzelow threshold whert>4g,g, and above
T:g’(L) (77 thre_shold when“<4g,0, - o
Figure 8 shows the parameters of the substituting scheme
when the coupler is below the threshold. We can see that all
and parameters asymptotically reach some finite value. This
asymptotic behavior of the contradirectional coupler is well
dP_E (78) known in the literature. The analytical expressions for the
- asymptotic values of parameters are
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1.0 02 ———
u ! arg tanh 92" %
K [<+(ga=g0)*1"?
uosf b v 0l 1
v L arg tanh 9~ 9a
as— o I ,
2 [«?+(9a=9n) 1™ ) R 0.0 ot
82
o (62 L L
W= 7,
& 2 |K| 0.6 T T 1 0.0 T 1 T
Yas= 0. 0.4 ]
W y 02 .
Several conclusions can be made from Fig. 8 and formulas 0.2 I .
(82). The nonlinear coupliny between modes andb is
strongest for some finite, decreases for lonfy, and even- 0-00 R 3 = '0-40 R 3 4
tually vanishes. The linear coupling increases with. and L L

reaches asymptotic value’2, which means that the modas
andb are interchanged at the beam splitter. Thus we have the FIG. 9. Parameters of substituting scheme for contradirectional
following simple picture for the asymptotic behavior of the coupler at the thresholdj,=1, g,=0.25, andx=1.

coupler: the input of moda is fully transferred to the output hat all ¢ h ot | d
of modeb and vice versa. Moreover, each mode is squeezeg 2+ &' Parameters reach some nonzero asymptotic value an
he intermodal coupling is present even for very ldngrhe

The squeezing of both modes is the same because the pa?aa}ialytical expressions for the asymptotic values of the pa-
metric down-conversions in both waveguides equally con- .
tribute to the squeezing. We should mention the special Casrgmeters could be found_followmg the approach of Sec. ”.C
. ; - X : and using the asymptotic form of the input-output matrix
in which g,=g,. The squeezing parameters asymptotlcaIIyM(LHw)
vanish,u,s=v =0, because squeezings in the first and sec- '
ond waveguides cancel each other. The input of the first Jat0p |gat gyl
waveguide is transferred to the output of the second wave- AdL)=— —al0)+i— —
guide without any change, only with phase shiftr/2 (de- 9 9o
pending on the sign ok). The same relation holds also for lgatayl 9a= b, ;
the input of the second waveguide and the output of the first Hi— —b(L)+ ——Db(L),
one. The asymptotic behavior of the coupler imposes a limit 83)
on the squeezing which can be generated in the coupler from lgat gyl Ob—0a
a coherent state input, because the amplification is saturated bad 0)=i ———a(0)+ ———a'(0)
’ K

and reaches some finite asymptotic value. On the other hand,
this means that the amplification of noise, discussed in Sec. 9.+ 95 lgat gyl :
1B, does not occur here, and the asymptotically sub- + 29, b(L)+i 2—gab (L),
Poissonian light can be generated in the coufir

With the help of these results, we can simply explain 2 —T—TT 15— 7
some phenomena discussed %6]. The authors considered | , I
input coherent states or coherent states with superimpose 1.0 1
thermal noise. They found that the noise in input mdde ulr T A I
suppresses the generation of sub-Poissonian light in raode I ] 05 1
for longer coupler lengthk. This result is not surprising in I
view of our discussion. When the coupler is long enoughand 0 ==~~~ 0 T 3 1 s
it operates below threshold, the output of madeepends L L
only on the input of modé. It is thus obvious that the noise
in mode b must lead to the suppression of sub-Poissonian 0.4 ————— 0.0 ————F————
light generation at the output of modelt was also found in -
[6] that the output of the coupler can return to the coherent | | 0.1 .
state for lond-. This phenomenon appears for the symmetric w 0.2 -
coupler withg,= g, . We have shown that for such a coupler | 02 .
the asymptotic transformation is(0)= *ia(0) anda(L)
==*ib(L). Thus the output coherent stated(L) is actually 0.0 ———

. (]
an input coherent state im(L). L L

The behavior of the contradirectional coupler changes
when the threshold is reached. The paramet&®s for the FIG. 10. Parameters of substituting scheme for contradirectional
coupler exactly at the threshold are shown in Fig. 9. Noticecoupler above the threshold;=1, g,=0.5, andx=1.

a'(0)

K

«

&
w
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where it is assumed that—« and k?=4g,g, holds. We have discussed generation of nonclassical light in the
If we move above the threshold, we can observe that bothoupler and found that the coupler always generates
w andy reach asymptotically zero and the nonlinear couplersqueezed light from the input coherent state. We have pro-
behaves like two independent DOPAs, see Fig. 10. The readded a simple estimation of squeeze variance relating it to
son for this change of the behavior is that the nonlinear inthe mean number of photons generated by spontaneous
teraction is now strong enough to suppress the transfer fromown-conversion in the coupler.
the input of the first waveguide to the output of the second We have demonstrated that properties of the substituting
one. Single-mode squeeze parameters asymptotically irscheme clearly reflect various dynamical regimes of the co-
crease linearly with. according to directional coupler and we have obtained simple asymptotic
formulas for the parameters of the device when the coupler is
above the threshold. It was shown that in certain cases the
coupler can be replaced by a sequence of beam splitter and

. _ _ _two DOPAs or by a combination of a beam splitter and
The increase is the same for both modes even if the couplingpopA.

1
|uad =lvad=5{19at g6l —[«*+(9a=90)°1"3. (84

constantsy, andg, differ.

VI. CONCLUSIONS

In conclusion, we have considered a substituting schem

for directional and contradirectional nonlinear optical cou

We have shown that the idea of the substituting scheme is
fully applicable also to the contradirectional coupler. We
have identified the threshold condition for the contradirec-
tional coupler and adopted the parameters of the substituting
€cheme to study the behavior of subthreshold and above-

plers. The scheme represents a unitary transformation re
ized by the coupler. The advantage of the substituting
scheme lies in its relatively simple structure. It is formed by
a sequence of beam splitter, two DOPAS, and one NDOPA.
Using the group-theoretical approach and considering propa- This work was partly supported by Grant No. VS96028
gation of the two-mode coherent state through the device, wand Research Project CEZ: J14/98: 15100009 “Wave and
were able to find analytical expressions for the parameters d?article Optics” of the Czech Ministry of Education and by
the substituting scheme. Grant No. 202/00/0142 of the Czech Grant Agency.

qt,?reshold regimes of operation. Some results obtained earlier
ere simply explained.
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