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Substituting scheme for nonlinear couplers: A group approach

Jaromı´r Fiurášek1,2 and Jan Perˇina2

1Department of Chemical Physics, The Weizmann Institute of Science, 76100 Rehovot, Israel
2Department of Optics, Palacky´ University, 17. listopadu 50, 772 07 Olomouc, Czech Republic

~Received 18 January 2000; published 11 August 2000!

We consider a substituting scheme for nonlinear optical couplers operating by means of degenerate para-
metric down-conversion with strong coherent pumping. The proposed scheme, which provides the same uni-
tary input-output transformation as the original coupler, consists of simple linear and nonlinear optical devices:
beam splitter and optical parametric amplifiers. Using a group-theoretical approach, we find analytical formulas
for parameters of these optical elements. The scheme allows us to get a better insight into the coupler behavior,
because the complex dynamics of the coupler is transformed into a sequence of simpler evolutions governed by
the beam splitter and parametric amplifiers, whose properties are well known and understood. We demonstrate
that various dynamical regimes of the coupler are clearly reflected by the substituting device.

PACS number~s!: 42.50.2p, 42.65.Wi
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I. INTRODUCTION

Recently, increasing attention has been devoted to non
ear optical couplers. The optical coupler is a device form
from two closely lying parallel optical waveguides, who
guided modes are thus coupled by means of evanes
waves. In a nonlinear coupler, some nonlinear optical p
cess takes place in one or both waveguides. Nonlinear
plers can be employed in telecommunication systems as
optical switchers@1,2# and they can serve in optical da
processing as logical gates@3#.

The generation and propagation of nonclassical light
nonlinear couplers have been studied extensively. The
sumed nonlinear processes included degenerate@4–6# and
nondegenerate@2,7# parametric down-conversion, Kerr non
linearity @8,9#, and Raman and Brillouin scattering@10–12#.
The propagation of Schro¨dinger-cat states through the co
pler has been studied@13# and the quantum phase properti
of optical modes propagating in couplers have been inve
gated@14,15#. For a review, see@16#.

In these theoretical studies, both codirectional and con
directional couplers have been considered. Recently, the
tradirectional coupler has been realized experiment
@17,18#. The correct quantum description of light propag
tion in the contradirectional coupler has been a matter
some discussion. It was shown that a unitary input-out
transformation can be found for couplers described by q
dratic Hamiltonians@19#. However, the evolution of the field
inside the contradirectional coupler is not unitary. A bro
class of contradirectional devices can be simulated by c
rectional ones provided that parameters of codirectional
vices are suitably chosen@20#. A typical feature of the simu-
lating device proposed in@20# is that its linear and nonlinea
coupling parameters change with distance.

A broad class of nonlinear couplers can be character
by quadratic Hamiltonians. This is usually achieved by m
ing an assumption of strong coherent laser pumping of so
modes. The unitary evolution operator corresponding to
N-mode quadratic Hamiltonian represents a transforma
belonging to a symplectic groupSp(2N,R). Various prop-
erties of these transformations have been studied@21–25#.
1050-2947/2000/62~3!/033808~13!/$15.00 62 0338
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There are basically two types of transformations
Sp(2N,R). Those conserving the total photon number fo
a compact groupU(N). For example, an ideal lossless bea
splitter realizes transformation from the groupU(2) @26#.
The remaining transformations do not conserve the total p
ton number and they are called squeeze transformations.
worth noting that a class of optical fields with Gaussian q
sidistributions is invariant under symplectic transformatio
Particularly, any pure Gaussian state can be constructed
the coherent state with the use of appropriate symple
transformation.

In this paper, we investigate the symplectic transform
tions describing the operation of nonlinear couplers.
achieve some insight into the properties of this transform
tion, we decompose it into a product of simple transform
tions belonging to one-parametric subgroups ofSp(2N,R).
This factorization has a simple physical meaning: the coup
is replaced by a sequence of simpler linear and nonlin
optical devices, namely beam splitters and optical parame
amplifiers. Thus we construct a substituting scheme for
coupler and study its properties. To provide a complete p
ture, we also briefly discuss the generation of nonclass
light in the coupler.

The paper is organized as follows. In Sec. II, a substit
ing scheme for the codirectional coupler is introduced a
the analytical formulas for its parameters are obtained. T
generation of nonclassical light in the coupler is discusse
Sec. III. In Sec. IV, the numerical results and discussion
the codirectional coupler are provided. A similar treatment
the contradirectional coupler can be found in Sec. V. Fina
Sec. VI contains conclusions.

II. SUBSTITUTING SCHEME
FOR THE CODIRECTIONAL COUPLER

A. Nonlinear coupler and group Sp„4,R…

The nonlinear coupler operating by means of degene
parametric down-conversion with strong coherent pump
is depicted in Fig. 1. The two guided beams propagat
©2000 The American Physical Society08-1
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JAROMÍR FIURÁŠEK AND JAN PEŘINA PHYSICAL REVIEW A 62 033808
through the coupler are treated as single-mode fields. T
coupler can be described by the interaction momentum
erator@4#

G5\gaa21\gbb21\kab†1H.c., ~1!

wherea and b are the annihilation operators of the mod
propagating in the first and second waveguides, respectiv
and H.c. denotes the Hermitian conjugate term. We use
mentum operatorG rather than HamiltonianH. We do not
consider dispersion and assume that propagation constan
modesa andb are the same,ba5bb . Thus the momentum
operatorG is proportional to the HamiltonianH, H5cG, c
is the velocity of light beams propagating in the coupler, a
the descriptions based onG andH are equivalent. It is more
convenient to useG as we deal with propagating beams. T
Heisenberg equations for the operatorsa andb in the inter-
action picture follow fromi\dX/dz5@G,X# (X denotes an
arbitrary operator!,

da

dz
52igaa†1 ikb,

~2!
db

dz
52igbb†1 ika.

The propagation distancez can be considered as a convenie
measure of the interaction timet5z/c. Nonlinear coupling
constantsga}xa

(2)a andgb}xb
(2)b characterize the strengt

of degenerate parametric down-conversion in the first
second waveguides, respectively.x j

(2) denotes the quadrati
susceptibility of the core of thej th waveguide, anda andb
are amplitudes of strong coherent laser pumping of the
responding second-harmonic modes. The linear coup
constantk describes the mutual coupling between modea
andb in the coupler. The assumption of strong coherent la
pumping simplifies the analysis considerably because
momentum operatorG belongs to a class of quadratic oper
tors. The Heisenberg equations~2! are linear and can be
easily solved. The momentum operatorG is a generator of a
one-parametric subgroup of the symplectic groupSp(4,R).
This group consists of all transformations generated by H

FIG. 1. Sketch of the nonlinear codirectional coupler form
from two waveguides characterized by quadratic susceptibili
xa

(2) and xb
(2) , respectively.k denotes a linear coupling consta

between the two waveguides;L is the coupler’s length.
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mitian quadratic operators constructed from operatorsa, a†,
b, andb†. The groupSp(4,R) has altogether ten generator
which can be connected with various physical devices, s
as beam splitters, phase shifters, degenerate optical para
ric amplifiers~DOPA!, and nondegenerate optical paramet
amplifiers~NDOPA! @21,26#.

In this paper, we replace the nonlinear coupler by a
quence of simpler devices: beam splitters, DOPA, a
NDOPA. In other words, we construct a substituting sche
for the nonlinear coupler and study the dependence of
properties on the propagation distancez and the coupling
parametersga , gb , andk. We show that various dynamica
regimes of the coupler are clearly reflected by the substi
ing scheme. We assume that all coupling constants in
mentum operator~1! are real. This assumption allows us
work in a four-parametric subgroup of groupSp(4,R). In
physical terms, we will need only four devices to repres
our nonlinear coupler.

Let us introduce the operators

U5a†21a2,

V5b†21b2,
~3!

W5a†b1ab†,

Y5 iab2 ia†b†.

U andV are generators of single-mode squeeze operato

Ua~u!5exp~ iuU !, Vb~v !5exp~ ivV!, ~4!

which can be realized by DOPAs.W is a generator of linear
mixing which can be achieved by the ideal lossless be
splitter BS and described by the operator

Wab~w!5exp~ iwW!. ~5!

Finally, the operatorY generates two-mode squeezing a
NDOPA can be used to implement this transformation. T
corresponding two-mode squeeze operator reads

Yab~y!5exp~ iyY!. ~6!

Commutation relations for operators~3! will be important in
the following calculations. They read

@U,V#50, @V,W#522iY,

@U,W#522iY, @V,Y#522iW, ~7!

@U,Y#522iW, @W,Y#52 i ~U1V!.

With the help of the operators~3!, we can rewriteG as

G5\~gaU1gbV1kW!. ~8!

Although only operatorsU, V, andW are present in the mo
mentum operatorG, we need alsoY to form a closed Lie
commutator algebra~7!.

The unitary evolution operatorI(z) is generated by the
momentum operator~1!,

s

8-2
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SUBSTITUTING SCHEME FOR NONLINEAR . . . PHYSICAL REVIEW A 62 033808
I~z!5exp~ iGz/\!. ~9!

We would like to decompose this unitary operator into
product of simpler unitary operators as follows:

I~z!5Yab~y!Ua~u!Vb~v !Wab~w!. ~10!

The right-hand side represents a sequence of linear mi
operator, single-mode squeeze operators, and two-m
squeeze operator. A physical device reflecting this factor
tion is shown in Fig. 2. The modesa andb are mixed at the
beam splitter BS, each mode is then squeezed in DOPA,
finally both modes are mixed in NDOPA. The scheme d
picted in Fig. 2 is similar to the nonlinear Mach-Zehnd
interferometer discussed in@27#. However, the second beam
splitter of the interferometer is replaced by NDOPA. No
also that a different type of nonlinear Mach-Zehnder int
ferometer containing Kerr media in its arms was analyzed
@28#.

The factorization given in Eq.~10! is only one of many
possibilities. Since the operators~3! do not commute, various
orderings on the right-hand side of Eq.~10! represent differ-
ent substituting schemes. Inserting the explicit express
~4!, ~5!, ~6!, and ~9! into Eq. ~10!, we can rewrite this for-
mula as

eiGz/\5eiy(z)Yeiu(z)Ueiv(z)Veiw(z)W. ~11!

The substituting scheme is fully characterized by the par
eters

u~z!, v~z!, w~z!, and y~z!, ~12!

which are functions of the propagation lengthz and which
also depend on the coupling constantsga , gb , and k. In
particular,z5L. The parameters~12! will be the main tool in
our investigation of the coupler operation.

We can use two different equivalent approaches to fi
the parameters~12!. They can be determined as a solution
the system of nonlinear differential equations or by solv
the system of nonlinear algebraic equations.

B. Differential equation approach

In order to derive differential equations for the factoriz
tion parameters~12!, we employ a general procedure whic

FIG. 2. Substituting scheme for nonlinear coupler. The coup
is replaced by a sequence of beam splitter BS, two degenerate
metric amplifiers DOPA, and one nondegenerate parametric am
fier NDOPA.M denotes auxiliary mirrors.
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was first proposed in Ref.@29#. The main idea is to differen-
tiate Eq.~11! and then to use commutation rules~7! to sim-
plify the resulting expression.

We can simplify the calculations by noting that the ope
tor U25U2V commutes with all four operatorsU, V, W,
and Y. We introduce the operatorU15U1V, new param-
eters u65(u6v)/2, and coupling constantsg65(ga
6gb)/2, which allows us to write

eiu(z)Ueiv(z)V5eiu1(z)U1eiu2(z)U2. ~13!

The nonzero commutators are

@U1 ,W#524iY,

@U1 ,Y#524iW, ~14!

@W,Y#52 iU 1 .

Now we substitute Eq.~13! into Eq. ~11! and differentiate:

\21GeiGz/\5y8YeiyYeiu1U1eiu2U2eiwW

1eiyYu18 U1eiu1U1eiu2U2eiwW

1eiyYeiu1U1u28 U2eiu2U2eiwW

1eiyYeiu1U1eiu2U2w8WeiwW, ~15!

where the primes denote derivatives with respect toz, and
the z dependence of the parametersu6 , w, and y is not
explicitly displayed for typographical simplicity. In the nex
step, Eq. ~15! is multiplied by the inverse operato
exp(2iGz/\). Due to the operator nature of Eq.~15!, we have
to distinguish multiplications from the left and from th
right. These two possibilities result in two distinct differe
tial equations for parameters~12!. Nevertheless, these tw
sets of equations are equivalent and give the same result
the initial conditions

u~0!5v~0!5w~0!5y~0!50. ~16!

The operator exp(2iGz/\) is expressed as an inversion of th
right-hand side of Eq.~11! and the following relations are
used to simplify Eq.~15!:

eisU1We2 isU15W cosh~4s!1Y sinh~4s!,

eisU1Ye2 isU15Y cosh~4s!1W sinh~4s!,

eisWU1e2 isW5U1cos~2s!22Y sin~2s!,
~17!

eisWYe2 isW5Y cos~2s!1
1

2
U1sin~2s!,

eisYU1e2 isY5U1cosh~2s!22W sinh~2s!,

eisYWe2 isY5W cosh~2s!2
1

2
U1sinh~2s!,

wheres is an arbitrary real number. A proof of these form
las is very simple. We prove the first one, the others can

r
ra-
li-
8-3



o

tio

-

r

E

ra
.

b

is-
ful
eir

n

a

n a

e

a 4

JAROMÍR FIURÁŠEK AND JAN PEŘINA PHYSICAL REVIEW A 62 033808
verified in the same way. We consider the left-hand side
the first formula in Eq.~17! as a function ofs and calculate
its derivatives,

f ~s!5eisU1We2 isU1,

f 8~s!5 ieisU1@U1 ,W#e2 isU154eisU1Ye2 isU1, ~18!

f 9~s!54ieisU1@U1 ,Y#e2 isU1516eisU1We2 isU1,

where we have made use of the commutation rules~14!.
Comparing the first and third lines in Eq.~18!, we find the
differential equation forf (s),

f 9~s!516f ~s!, ~19!

where the prime means the derivative. Solving this equa
with appropriate initial conditionsf (0)5W and f 8(0)
54Y, we immediately obtain

f ~s!5W cosh~4s!1Y sinh~4s!, ~20!

and hence we have derived the first formula in Eqs.~17!.
Let us first consider multiplication of Eq.~15! by

exp(2iGz/\) from the right. To give an example, we explic
itly deal with the fourth line in Eq.~15!. Recalling thatU2

commutes with all operators and applying repeatedly the
lations ~17!, we find

eiyYeiu1U1eiu2U2w8We2 iu2U2e2 iu1U1e2 iyY

5w8F2
1

2
U1sinh~2y!cosh~4u1!

1W cosh~2y!cosh~4u1!1Y sinh~4u1!G . ~21!

The same exercise is repeated with the first three lines in
~15!. Introducing the explicit form~8! of the momentum op-
eratorG and comparing coefficients standing with the ope
tors U6 , W, andY on the left- and right-hand sides of Eq
~15!, we obtain four differential equations. SinceU2 com-
mutes with all operators, the equation foru2 separates,u28
5g2 . A trivial integration yields

u~z!2v~z!5~ga2gb!z. ~22!

The remaining three coupled equations can conveniently
written in the matrix form

Nright

dP

dz
5C, ~23!

where

Nright5S cosh~2y! 2 1
2 cosh~4u1!sinh~2y! 0

22 sinh~2y! cosh~4u1!cosh~2y! 0

0 sinh~4u1! 1
D

and
03380
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P5S u1

w

y
D , C5S g1

k

0
D . ~24!

Alternatively, multiplying Eq.~15! by exp(2iGz/\) from the
left, we arrive at

Nleft

dP

dz
5C, ~25!

where

Nleft5S cos~2w! 0 2 1
2 cosh~4u1!sin~2w!

0 1 2sinh~4u1!

2 sin~2w! 0 cosh~4u1!cos~2w!
D ,

and Eq.~22! remains unchanged. The existence of two d
tinct systems of differential equations will become use
later when we investigate the asymptotic behavior of th
solution.

C. Group algebraic approach

From the group-theoretical point of view, the factorizatio
~10! states that the group element exp(iGz/\) is a composi-
tion of four other group elements, each of them being
member of certain one-parametric subgroup ofSp(4,R). If
we know the group composition rule, we are able to obtai
set of algebraic equations connectingu(z), v(z), w(z), and
y(z) with gaz, gbz, and kz. This can be achieved in th
Heisenberg representation. The vector

A5S a

a†

b

b†

D ~26!

is introduced and each group element is represented by
34 matrix M . Any quadratic Hermitian operatorX can be
associated with the matrixMX as follows:

exp~2 iXz!A exp~ iXz!5MX~z!A. ~27!

Particularly, we have

MU~u!5S cosh~2u! i sinh~2u! 0 0

2 i sinh~2u! cosh~2u! 0 0

0 0 1 0

0 0 0 1

D , ~28!

MV~v !5S 1 0 0 0

0 1 0 0

0 0 cosh~2v ! i sinh~2v !

0 0 2 i sinh~2v ! cosh~2v !

D , ~29!
8-4
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SUBSTITUTING SCHEME FOR NONLINEAR . . . PHYSICAL REVIEW A 62 033808
MW~w!5S cosw 0 i sinw 0

0 cosw 0 2 i sinw

i sinw 0 cosw 0

0 2 i sinw 0 cosw

D ,

~30!

and

MY~y!5S coshy 0 0 sinhy

0 coshy sinhy 0

0 sinhy coshy 0

sinhy 0 0 coshy

D . ~31!

For the operatorG/\ we can write

MG~z!5exp~ iFz!, ~32!

whereF is the 434 matrix,

F5S 0 2ga k 0

22ga 0 0 2k

k 0 0 2gb

0 2k 22gb 0

D . ~33!

Explicit expressions for elements of matrixMG(z) can be
found in papers where Heisenberg equations~2! were solved
using the Laplace transform technique@4,6#. The eigenvalues
of matrix iF determine the dynamics of the codirection
coupler. They read

l j56~ga2gb!6@~ga1gb!22k2#1/2; ~34!

all four combinations of signs must be taken into accou
Real parts ofl j give the speed of exponential amplificatio
re
e

03380
l

t.

and imaginary parts yield the frequency of oscillations.
We can distinguish two different dynamical regimes:
~i! uga1gbu,uku, the linear coupling is dominant, th

coupler operates below threshold, eigenvalues are comp
~ii ! uga1gbu.uku, the nonlinear interaction dominate

the coupler operates above threshold, all eigenvalues are
There are also two important specific cases:

~iii ! ga5gb5g, 2ugu,uku, all four eigenvalues are purel
imaginary,l j56 i @k224g2#1/2;

~iv! ga52gb5g, the eigenvalues arel j562g6 ik.
We return to these regimes in the discussion in Sec. I
With the help of the above matrices, Eq.~11! can be re-

written into

MG~z!5MY~y!MU~u!MV~v !MW~w!. ~35!

This establishes a system of nonlinear algebraic equat
for u(z), v(z), w(z), andy(z). Though it might seem tha
the system is overdetermined because the matrices hav
elements, this is not the case. Matrices on the left- and rig
hand sides have such a special structure that the factoriza
~35! yields only four independent equations.

In order to find an analytical solution of Eqs.~35!, we
consider the input two-mode coherent stateuja&ujb& propa-
gating through the substituting device. After mixing at t
beam splitter, the complex amplitudesja andjb are changed
but the modesaI andbI remain in coherent states. Then ea
mode propagates through the parametric amplifier. At
outputs of DOPAs, modesaII and bII are in single-mode
squeezed states, but they are not correlated. The correl
betweena and b originates in NDOPA, which yields the
outputsaout and bout. The output state is a pure Gaussi
state. Any Gaussian state is fully determined by the cohe
components~complex amplitudes! ja5^a&, jb5^b&, and by
the correlation matrix
S52S 2~Ba1 1
2 ! Ca D̄ab* Dab

Ca* 2~Ba1 1
2 ! Dab* D̄ab

D̄ab Dab 2~Bb1 1
2 ! Cb

Dab* D̄ab* Cb* 2~Bb1 1
2 !

D , ~36!
or-

ce of
e to
ting
ence
the elements of which are the noise parameters

Ba5^Da†Da&, Ca5^~Da!2&,

Bb5^Db†Db&, Cb5^~Db!2&, ~37!

D̄ab52^Da†Db&, Dab5^DaDb&,

where Da5a2^a& and Db5b2^b&. The matrix S has
complex elements. Some authors prefer to use real cor
tion matrix elements which are formed by correlations b
la-
-

tween quadraturespa , qa , pb , andqb . The relation between
these two formalisms is given by a simple unitary transf
mation@23#. It was shown in@24# that the correlation matrix
of any Gaussian state can be diagonalized by a sequen
canonical transformations. We adopt this approach her
find analytical expressions for parameters of the substitu
scheme. We start with the output state and apply a sequ
of inverse unitary transformations exp(2iyY),
exp(2iuU), exp(2iVv), and exp(2iwW) on it. At each step
some off-diagonal elements of matrix~36! vanish. This al-
lows us to findu, v, w, andy.
8-5
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JAROMÍR FIURÁŠEK AND JAN PEŘINA PHYSICAL REVIEW A 62 033808
In the first step we determiney. We apply the inverse
transformation exp(2iyY) to the output modes and requir
that this transformation destroys mutual coupling betwe
modesaII andbII ,

AII 5MY~2y!MG~z!A in . ~38!

Then the noise parameters of the output modes for the in
coherent states read

Ba,out5uMG,12u21uMG,14u2,

Bb,out5uMG,32u21uMG,34u2, ~39!

Dab,out5MG,11MG,321MG,13MG,34.

ParameterDab,out is real here. After inverse transformatio
~38! we have

aII 5coshyaout2sinhybout
† ,

~40!
bII 5coshybout2sinhyaout

† .

These modes are uncorrelated, which means thatDab,II 50
and D̄ab,II 50. The first condition yields

y5
1

2
arg tanh

2Dab,out

11Ba,out1Bb,out
. ~41!

It is worth emphasizing that this expression was obtain
only from Dab,II 50. Nevertheless, the matrices have suc
structure that, after inverse transformation, both mutual c
relationsDab,II and D̄ab,II vanish.

In the second step we use the same strategy to find
parametersu andv. We introduce the matrix

M II 5MY~2y!MG~z!. ~42!

The inverse transformations lead to

AI5MU~2u!MV~2v !M II A in ~43!

and the modesaI andbI are in the coherent states. We w
need the noise parameters of modesaII andbII :

Ba,II 5uMII ,12u21uMII ,14u2,

Ca,II 5MII ,11MII ,121MII ,13MII ,14,
~44!

Bb,II 5uMII ,32u21uMII ,34u2,

Cb,II 5MII ,31MII ,321MII ,33MII ,34,

andCa,II andCb,II are purely imaginary. Parametersu andv
are found from the conditionsCa,I50 andCb,I50, respec-
tively, yielding
03380
n
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u5
1

4
arg tanh

22iCa,II

112Ba,II
,

~45!

v5
1

4
arg tanh

22iCb,II

112Bb,II
.

Finally we have to determinew. To accomplish this task
we calculate the matrix

M I5MU~2u!MV~2v !M II . ~46!

This matrix is identical withMW(w),

M I5MW~w!. ~47!

Thus we can write

cosw5MI ,11, sinw52 iM I ,13. ~48!

These two equations determinew uniquely within the inter-
val @2p,p#. We emphasize again that analytical expre
sions for elements of the matrixMG(z) exist and the above
given formulas foru, v, w, andy form an analytical solution
of the system~35!. We do not write down explicit expres
sions for the parameters as functions ofz because the formu
las are very lengthy and complicated. For numerical calcu
tions, the above given scheme has been directly adopted

III. GENERATION OF NONCLASSICAL LIGHT
IN NONLINEAR COUPLERS

We assume that a coherent light is fed to the input of
coupler. The coherent input light is a feasible and natu
choice. First we discuss the generation of squeezed light
then we address sub-Poissonian light generation.

A. Light squeezing in nonlinear couplers

Let us begin with some general remarks. Since we ass
that the input state is the two-mode coherent stateuja ,jb&,
the output state is a pure Gaussian state, created via s
symplectic transformation from the input state. The light
squeezed when a variance of some quadrature compone
below the level of vacuum fluctuations. This definition c
be applied to both single- and multimode fields. For
N-mode field, the quadratureX reads

X5
1

A2
@A1A†#, ~49!

where

A5(
j 51

N

cjaj , ~50!

andcj are arbitrary complex numbers fulfilling

(
j 51

N

ucj u251, ~51!
8-6
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which ensures validity of the commutation relation@A,A†#
51. One can calculate the variances^(DX)2& of all quadra-
tures X and select the lowest variance. If this variance
lower than the coherent state value 1/2, then the ligh
squeezed. This general definition of multimode squeez
was proposed in@23#. Squeezing defined in such a way
invariant under transformations from the compact gro
U(N), because the class of all$cj% fulfilling the normaliza-
tion condition ~51! does not change under theU(N) trans-
formations.

The squeezing fully determines whether a Gaussian s
is nonclassical or not. All nonclassical Gaussian states
squeezed states. The lowest variance can be called the
eralized squeeze varianceh and it can be found as a lowe
eigenvalue of the correlation matrixS @23,12#. Multimode
squeezing can be measured with the use of multimode
modyne detection; then the complex amplitudes of stro
local oscillators play a role of coefficientscj @12#. In our case
modesa andb have the same frequency and one local os
lator is sufficient. The unitary transformations leading
various superpositions~50! can be achieved by passive op
cal elements. This approach allows us to measureh and it
can be extended to multimode optical homodyne tomogra
with one local oscillator@30,31#, because the quantum sta
of the multimode field is fully determined by the measur
quadrature distributionsw@X(c1 ,c2 , . . . ,cN)#.

For the pure Gaussian state it holds that ifh j is an eigen-
value ofS, then also 1/(4h j ) is an eigenvalue ofS @32#. In
our case we deal with four eigenvaluesh1 , 1/(4h1), h2, and
1/(4h2). The generalized squeeze varianceh is the lowest of
the eigenvalues,

h5minH h1 ,
1

4h1
,h2 ,

1

4h2
J . ~52!

The light is squeezed forh,1/2. The sum of the eigenvalue
is the trace TrS,

(
j 51,2

S h j1
1

4h j
D5Tr S5212Ba12Bb . ~53!

The sum of the squares of the eigenvalues is TrS2,

(
j 51,2

S h j
21

1

16h j
2D 5 (

j 51,2
S h j1

1

4h j
D 2

215Tr S2.

~54!

The eigenvalues can be determined from Eqs.~53! and~54!.
After some algebra, one arrives at the expression for
generalized squeeze variance,

h5
1

2
~x2Ax221!, ~55!

where

x5
1

2
$Tr S1@2~Tr S211!2~Tr S!2#1/2%.
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It holds thatx>1 andh<1/2. We emphasize that the for
mula ~55! is valid only for pure Gaussian states. For a giv
Tr S the squeezing will be weakest ifh15h2. Inserting this
into the above equations, we get a simple estimation for
generalized squeeze variance,

hest5
1

2
1

^nS&
2

2
1

2
@~^nS&11!221#1/2; ~56!

here

^nS&5Ba1Bb , ~57!

which represents in our case a total number of photons
ated by spontaneous down-conversion in the coupler. Th
photons occur in correlated pairs and enhance the squee
The formula~56! gives a lower estimate of the squeezin
h<hest; the actual squeezing can be stronger than that
dicted by Eq.~56!. The squeezing increases~i.e., varianceh
decreases towards zero! with increasing^nS&. We can con-
clude that the nonlinear coupler always generates sque
light from the coherent input. However, to observe ma
mum squeezing inherent to the output state, one must m
sure a variance of an appropriate quadrature,

Xab5
1

A2
@caa1cbb1H.c.#. ~58!

How strong can squeezing be generated in the coupler
the codirectional coupler,̂nS& approximately exponentially
increases during the propagation,

^nS&' exp~2LRz!; ~59!

hereLR is the largest value among the positive real parts
the eigenvalues~34!. For strong parametric amplificatio
~high ^nS&), Eq. ~56! yields

h'
1

4^nS&
'

1

4
exp~22LRz!. ~60!

An example of light squeezing in the coupler is given in F
3. An exponential decrease of varianceh is modulated by
oscillations originating from linear coupling between mod
a andb.

B. Sub-Poissonian light generation

Let us consider a general case of theN-mode field in a
Gaussian state. The total photon number is

n5(
j 51

N

nj5(
j 51

N

aj
†aj , ~61!

whereaj is the annihilation operator of thej th mode. The
light is sub-Poissonian if the variance^(Dn)2& is lower than
the mean̂ n&. Thus the normally ordered variance

V5^:~Dn!2:&5^~Dn!2&2^n& ~62!
8-7
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is negative for sub-Poissonian light. The variance of a
Gaussian state can be expressed in terms of complex am
tudesj j and correlations of fluctuationsBj , Cj , D jk , and
D̄ jk . We decompose operatorsaj into aj5Daj1j j and we
write Dn as

Dn5(
j 51

N

~Daj
†Daj2Bj !1A1A†; ~63!

here

A5(
j 51

N

j j* Daj . ~64!

Notice the similarity with Eq.~50!. Inserting Eq.~63! into
Eq. ~62!, we have

V5 (
j Þk51

N

~ uD jku21uD̄ jku2!1(
j 51

N

~Bj
21uCj u2!

1^~A1A†!2&2(
j 51

N

uj j u2. ~65!

The only negative term, which can give rise to su
Poissonian statistics, is the last one. The necessary cond
for V,0 reads

^~A1A†!2&,(
j 51

N

uj j u2. ~66!

After renormalization, this gives the squeezing condition d
cussed in the preceding subsection. This is not surprisin
the Gaussian light is not squeezed, then it has classical
logue and cannot exhibit sub-Poissonian statistics. The v
anceV depends onj j . The lowest possible value of̂(A
1A†)2& is determined by the generalized squeeze varia
h,

FIG. 3. Squeezing of light in the codirectional coupler. Th
spatial evolution of generalized squeeze varianceh ~solid line! was
obtained forga50.6, gb50.5, andk52; both modes are initially
in a coherent state. The dashed line shows an estimationhest based
on formula ~56!. In this and all following figures, relative dimen
sionless units are used for the coupling constantsga , gb , andk and
for the distancez.
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^~A1A†!2&>2h(
j 51

N

uj j u2. ~67!

Inserting this into Eq.~65!, we have

Vmin5 (
j Þk51

N

~ uD jku21uD̄ jku2!1(
j 51

N

~Bj
21uCj u2!

2~122h!(
j 51

N

uj j u2. ~68!

The last term is negative for squeezed states.
Now we can return to the generation of sub-Poisson

light in nonlinear couplers. The input coherent state evol
into the pure squeezed Gaussian state. The complex am
tudesj j (z) depend linearly on inputsj j (0) and we can reach
any requiredj j (z) if we suitably choose the input cohere
stateuja(0),jb(0)&. Thus we can, in principle, generate su
Poissonian light at any distancez simply by choosing the
input state in such a manner thatj j (z) will minimize ^(A
1A†)2& and will be large enough to overcome the positi
terms in Eq.~68!. For a given input, however, both correla
tions and complex amplitudes are amplified. The posit
terms in Eq.~68! increase as exp(4LRz) while the negative
term increases only as exp(2LRz). Finally, the amplified
quantum noise prevails and the light becomes sup
Poissonian for longz even if the sub-Poissonian region h
been reached for smallz. Such a behavior has been inde
obtained in@4,6# and we illustrate it in Fig. 4.

IV. DISCUSSION ON THE CODIRECTIONAL COUPLER

In this section we present a discussion on the codir
tional coupler. We distinguish between various regimes
the coupler operation which were listed in connection w
formula ~34! for eigenvaluesl j .

We start from the subthreshold regime. Thez-dependent
parametersu, v, w, and y are shown in Fig. 5. We have

FIG. 4. Sum photon number varianceV for different initial com-
plex amplitudesja(0)5jb(0)5uj(0)uexp(ip/4). Both modes are
initially in coherent states. The coupling parameters arega5gb

50.5 andk50.25. The region of sub-Poissonian light (V,0) be-
comes larger with increasinguj(0)u.
8-8
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chosen thatugauÞugbu in Fig. 5. Nevertheless, the slopes
an average linear increase~or decrease! of u andv have the
same absolute valueuga2gbu/2, which corresponds to th
real part of the subthreshold eigenvaluesl j , Eq. ~34!. This
symmetry is a consequence of strong linear coupling in
subthreshold regime, which ensures that both modes be
almost equally from amplification in the first and seco
waveguides of the coupler. Taking into account Eq.~22!, we
can express the average linearz dependence ofu andv as

u'
1

2
~ga2gb!z, v'

1

2
~gb2ga!z. ~69!

The linear increase ofw is related to the imaginary part o
l j , and readsw'zk@12(ga1gb)2/k2#1/2. The two-mode
squeeze parametery exhibits a substantially different behav
ior in that it oscillates periodically. Making use of the diffe
ential equations~23!, one can find a useful relation betwee
u1 andy:

k cosh~2y!1~ga1gb!sinh~2y!5
k

cosh~4u1!
. ~70!

It is clear from Eq.~70! that y is bound for allz, unlessuku
5uga1gbu.

In the substituting scheme, the main part of the parame
amplification takes place in DOPAs. This reflects that o
degenerate parametric processes occur in the cou
NDOPA mixes the amplified beams. Though this mixi
does not significantly contribute to the amplification,
strongly affects the output. The role of NDOPA can be u
derstood as follows. In each waveguide of the coupler,
generate parametric downconversion creates pairs of co
lated photons. Due to the linear coupling, one of the phot
can be transferred to the second waveguide, but the quan
correlations between these two photons remain unchan

FIG. 5. Parameters of substituting scheme for codirectional c
pler below the threshold;ga51, gb50.5, andk52.
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This two-step process creates pairs of entangled photon
the modesa andb and it leads to the presence of NDOPA
the substituting scheme.

The distances wherey50 deserve special attention. Le
us assume a two-mode coherent state at the input. Ify50,
then we have single-mode squeezed states in modesa, b at
the output and these two modes are not correlated. This
ation appears periodically for certain lengths of the coup
and is typical for subthreshold operation. Whenuyu increases,
the nonlinear mixing in NDOPA becomes important. Th
mixing introduces additional noise in the single modesa and
b compensated by the correlations betweena andb. Though
the two-mode field remains in the pure Gaussian state,
single modes are in mixed states. Thus the NDOPA s
presses single-mode squeezing of separate modesa andb. In
Sec. III we have introduced the quadratureXab exhibiting the
strongest squeezing. As a rule, this quadrature changes
increasinguyu from the single-mode quadrature towards t
two-mode quadrature with almost equal contributions fro
the modesa andb.

The difference between the exactz dependence ofu,v,w
and a linear behavior is particularly strong around the thre
old. When the coupler is at the threshold andga5gb5
6k/2, all four eigenvaluesl j are zero andMG(z)
[ exp(iFz)5E1 iFz. In this case,u, v, andy increase~or
decrease! logarithmically withz, as can be deduced from th
analytical algebraic solution presented in Sec. II C.

The properties of the substituting scheme change radic
when the coupler operates above the threshold, see Fi
Asymptotically, the single-mode squeeze parametersu andv
increase linearly withz while w and y reach some finite
asymptotic values. These asymptotic values can be foun
a tedious analysis of the algebraic formulas from Sec. II C
is, however, much more convenient to employ the differe
tial equations~22!, ~23!, and~25! derived in Sec. II B. Tak-
ing the limits forz→`,

ucoth~4u1!u→1, y8→0, w8→0, ~71!

u- FIG. 6. Parameters of substituting scheme for codirectional c
pler above the threshold;ga51.5, gb50, andk51.
8-9
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we obtain from Eqs.~22!, ~23!, and~25!

uas8 5
ga2gb

2
1

ga1gb

2 F12S k

ga1gb
D 2G1/2

,

vas8 5
gb2ga

2
1

gb1ga

2 F12S k

gb1ga
D 2G1/2

,

~72!

was5
1

2
arcsinS k

uga1gbu D ,

yas52
1

2
arg tanhS k

ga1gb
D ;

the primes again denote derivatives with respect toz. It is
worth noting that the formula foryas can be found only from
Eq. ~23!. Similarly, Eq.~25! is necessary to determinewas.

Notice that the slopes62uas8 and 62vas8 are just the ei-
genvaluesl j of the matrixiF. Above the threshold, the non
linear interaction locks the signal in the waveguide wher
was injected and it suppresses linear coupling with the s
ond waveguide. The modesa and b do not benefit equally
from amplification in both waveguides and the slopesuas8 and
vas8 differ when gaÞgb . The asymptotic values ofwas and
yas decrease with increasing ratiouga1gbu/uku and, eventu-
ally, they can become very small. High above the thresh
u'gaz, v'gbz, k'0, y'0, and the coupler behaves lik
two independent DOPAs.

We conclude with some remarks on two special dyna
cal regimes of the coupler. The exponential amplificat
completely disappears whenga5gb5g and ugu,uku/2. In
this case, all four eigenvalues~34! are purely imaginary. As
illustrated in Fig. 7,u andv periodically oscillate similarly to
y. Sincega5gb , it holds thatu(z)5v(z) as follows from
Eq. ~22!. The substituting scheme reflects the symmetry
tween the first and second waveguides of the coupler.

FIG. 7. Parameters of substituting scheme for symmetric c
rectional coupler below the threshold;ga50.5, gb50.5, andk
52.
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worth noting thatu(z)[v(z) oscillate between negative an
positive values. For certain lengthsz, u(z)[v(z)50 and the
coupler can be represented by a simple sequence of b
splitter and NDOPA. Assuming a coherent state at the in
of such a coupler, we have the two-mode squeezed sta
the output.

Finally, we comment on the case whenga52gb5g. The
eigenvaluesl j are complex,l j56g6 ik, and the coupler is
below the threshold. The opposite signs of nonlinear c
pling constants result in a kind of decorrelation betwe
modesa andb. The analytical expressions for the paramet
~12! take on very simple form

u~z!5gz, w~z!5kz,
~73!

v~z!52gz, y~z!50.

Sincey(z)50 for all z, the coupler is equivalent to the se
quence of a beam splitter and two DOPAs. This property w
already found for other values of coupling constantsga , gb ,
andk, but only as a special case for certain distancesz. In
this special configuration, the above feature holds for allz.

V. CONTRADIRECTIONAL COUPLER

In this section we apply the substituting scheme appro
to the nonlinear contradirectional coupler of the lengthL. In
the contradirectional coupler, the modesa andb propagate in
opposite directions. A degenerate parametric dow
conversion takes place in one or both waveguides and
modesa and b are linearly coupled. A nonzero linear cou
pling between the counterpropagating modes can
achieved by means of distributed feedback grating create
the coupler@17,18#, which leads to spatial modulation of th
linear coupling parameterk. The strong phase mismatc
Db5ba1bb ~both propagation constants are positive,b j
.0) is compensated by the grating whose spatial perio
L52p/Db.

We use the same notation for the coupling constants
before and we assume again that these constants are all
The input-output transformation of a nonlinear contradire
tional coupler can be determined in three steps. We be
with Heisenberg equations of motion~2! following from mo-
mentum operator~1!. We assume that the modeb propagates
backward, thus we change the sign of the derivative

db

dz
→2

db

dz
~74!

in the Heisenberg equations~2! and we obtain new equation
of motion. Notice that these equations cannot be obtai
from a Hermitian momentum operator. Upon solving t
modified Heisenberg equations, we find expressions fora(L)
andb(L) as linear combinations ofa(0), a†(0), b(0), and
b†(0). Theoperatorsa(L) andb(L) do not fulfill standard
commutation relations because the evolution following fro
the modified Heisenberg equations of motion is not unita
We must apply proper boundary conditions to retain corr
commutation relations. The inputs of the coupler area(0)
andb(L) and the outputs area(L) andb(0). Thelatter can

i-
8-10
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be expressed in terms of the former and thus we arrive a
input-output transformation realized by the nonlinear con
directional coupler. It was proven in@19# that this transfor-
mation is unitary provided that the Heisenberg equations
motion are linear.

The input-output transformation belongs to the same c
of symplectic transformations as the input-output transf
mations realized by the nonlinear codirectional coupler. P
ticularly, when all coupling constants are real, we can rest
ourselves to the four-parametric subgroup of the gro
Sp(4,R) and the substituting scheme for the contradir
tional coupler is exactly the scheme shown in Fig. 2. Ho
ever, the dependence of the parameters of the substitu
scheme on the length of the coupler and on the values o
coupling constants strongly differs from what we have o
tained for the codirectional coupler.

The parameters~12! can be determined in a manner d
scribed in Sec. II. The application of the analytical soluti
as described in Sec. II C is straightforward. The matrixM (L)
can be derived according to the above given prescription
the analytical expressions for its elements can be found
Refs. @5,6#. We address the differential equation approa
here in some detail. It should be noted that we have
unitary input-output operatorI(L) for the contradirectiona
coupler in the form of matrixM (L). We must replace al
operators by corresponding matrices in Eqs.~10! and~15!. If
we multiply Eq.~15! from the right by the inverse operato
M21(L), the left-hand side of this equation takes the form

F d

dL
M ~L !GM21~L !5 i @ g̃a~L !U1g̃b~L !V1k̃~L !W

1g̃ab~L !Y#, ~75!

whereU, V, W, andY denote matrix representations of th
operatorsU, V, W, andY, respectively. The matrixX for
any operatorX is constructed as

X5
1

i

d

dx
MX~x!U

x50

. ~76!

The coupling parametersg̃a(L), g̃b(L), k̃(L), and g̃ab(L)
can be determined from Eq.~75!. It was shown in@20# that a
wide variety of contradirectional devices can be simulated
codirectional devices, provided that the coupling parame
of simulating codirectional device vary with distance acco
ing to Eq.~75!.

Having found the coupling parameters, we can wr
down the differential equations for parametersu, v, w, andy.
The system of equations is very similar to Eqs.~22! and~23!,

du2

dL
5g̃2~L ! ~77!

and

Nright

dP

dL
5C̃, ~78!
03380
an
-

f

ss
-
r-
t

p
-
-
ng
he
-

d
in
h
e

y
rs
-

where

C̃5S g̃1~L !

k̃~L !

g̃ab~L !
D ~79!

and g̃6(L)5@ g̃a(L)6g̃b(L)#/2. Notice the difference: the
right-hand sides in Eqs.~77! and ~78! becomeL-dependent.
A new coupling parameterg̃ab characterizes the strength o
nondegenerate parametric down-conversion in the codi
tional simulating device discussed in@20#.

We start our discussion from the eigenvalues correspo
ing to the modified Heisenberg equations of motion for co
tradirectional nonlinear coupler,

l j56~ga1gb!6@k21~ga2gb!2#1/2. ~80!

All four eigenvalues are real. Recall that in the case of
codirectional coupler we identified two basic regimes of t
coupler operation, corresponding to four complex or fo
real eigenvalues. It turns out that the threshold can be defi
also for a contradirectional coupler, and the subthreshold
above-threshold regimes of operation are clearly distingu
able. However, the threshold condition differs from that f
the codirectional coupler. The threshold is reached when
eigenvalues are zero; thenuga1gbu5@k21(ga2gb)2#1/2 and
the threshold condition reads

k254gagb . ~81!

The coupler is below threshold whenk2.4gagb and above
threshold whenk2,4gagb .

Figure 8 shows the parameters of the substituting sch
when the coupler is below the threshold. We can see tha
parameters asymptotically reach some finite value. T
asymptotic behavior of the contradirectional coupler is w
known in the literature. The analytical expressions for t
asymptotic values of parameters are

FIG. 8. Parameters of substituting scheme for contradirectio
coupler below the threshold;ga50.5, gb50.1, andk51.
8-11
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uas5
1

2
arg tanh

ga2gb

@k21~ga2gb!2#1/2
,

vas5
1

2
arg tanh

gb2ga

@k21~ga2gb!2#1/2
,

~82!

was5
p

2

k

uku
,

yas50.

Several conclusions can be made from Fig. 8 and formu
~82!. The nonlinear couplingy between modesa and b is
strongest for some finiteL, decreases for longL, and even-
tually vanishes. The linear couplingw increases withL and
reaches asymptotic valuep/2, which means that the modesa
andb are interchanged at the beam splitter. Thus we have
following simple picture for the asymptotic behavior of th
coupler: the input of modea is fully transferred to the outpu
of modeb and vice versa. Moreover, each mode is squeez
The squeezing of both modes is the same because the
metric down-conversions in both waveguides equally c
tribute to the squeezing. We should mention the special c
in which ga5gb . The squeezing parameters asymptotica
vanish,uas5vas50, because squeezings in the first and s
ond waveguides cancel each other. The input of the
waveguide is transferred to the output of the second wa
guide without any change, only with phase shift6p/2 ~de-
pending on the sign ofk). The same relation holds also fo
the input of the second waveguide and the output of the
one. The asymptotic behavior of the coupler imposes a li
on the squeezing which can be generated in the coupler f
a coherent state input, because the amplification is satur
and reaches some finite asymptotic value. On the other h
this means that the amplification of noise, discussed in S
III B, does not occur here, and the asymptotically su
Poissonian light can be generated in the coupler@5#.

With the help of these results, we can simply expla
some phenomena discussed in@5,6#. The authors considere
input coherent states or coherent states with superimp
thermal noise. They found that the noise in input modeb
suppresses the generation of sub-Poissonian light in moa
for longer coupler lengthsL. This result is not surprising in
view of our discussion. When the coupler is long enough a
it operates below threshold, the output of modea depends
only on the input of modeb. It is thus obvious that the nois
in mode b must lead to the suppression of sub-Poisson
light generation at the output of modea. It was also found in
@6# that the output of the coupler can return to the coher
state for longL. This phenomenon appears for the symme
coupler withga5gb . We have shown that for such a coupl
the asymptotic transformation isb(0)56 ia(0) and a(L)
56 ib(L). Thus the output coherent state ina(L) is actually
an input coherent state inb(L).

The behavior of the contradirectional coupler chang
when the threshold is reached. The parameters~12! for the
coupler exactly at the threshold are shown in Fig. 9. Not
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that all parameters reach some nonzero asymptotic value
the intermodal coupling is present even for very longL. The
analytical expressions for the asymptotic values of the
rameters could be found following the approach of Sec. I
and using the asymptotic form of the input-output mat
M (L→`),

aas~L !5
ga1gb

2gb
a~0!1 i

uga1gbu
2gb

a†~0!

1 i
uga1gbu

k
b~L !1

ga2gb

k
b†~L !,

~83!

bas~0!5 i
uga1gbu

k
a~0!1

gb2ga

k
a†~0!

1
ga1gb

2ga
b~L !1 i

uga1gbu
2ga

b†~L !,

FIG. 10. Parameters of substituting scheme for contradirectio
coupler above the threshold;ga51, gb50.5, andk51.

FIG. 9. Parameters of substituting scheme for contradirectio
coupler at the threshold;ga51, gb50.25, andk51.
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where it is assumed thatL→` andk254gagb holds.
If we move above the threshold, we can observe that b

w andy reach asymptotically zero and the nonlinear coup
behaves like two independent DOPAs, see Fig. 10. The
son for this change of the behavior is that the nonlinear
teraction is now strong enough to suppress the transfer f
the input of the first waveguide to the output of the seco
one. Single-mode squeeze parameters asymptotically
crease linearly withL according to

uuas8 u5uvas8 u5
1

2
$uga1gbu2@k21~ga2gb!2#1/2%. ~84!

The increase is the same for both modes even if the coup
constantsga andgb differ.

VI. CONCLUSIONS

In conclusion, we have considered a substituting sche
for directional and contradirectional nonlinear optical co
plers. The scheme represents a unitary transformation
ized by the coupler. The advantage of the substitut
scheme lies in its relatively simple structure. It is formed
a sequence of beam splitter, two DOPAs, and one NDO
Using the group-theoretical approach and considering pro
gation of the two-mode coherent state through the device
were able to find analytical expressions for the parameter
the substituting scheme.
ti,

k
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m

.
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03380
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e
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We have discussed generation of nonclassical light in
coupler and found that the coupler always genera
squeezed light from the input coherent state. We have p
vided a simple estimation of squeeze variance relating i
the mean number of photons generated by spontane
down-conversion in the coupler.

We have demonstrated that properties of the substitu
scheme clearly reflect various dynamical regimes of the
directional coupler and we have obtained simple asympt
formulas for the parameters of the device when the couple
above the threshold. It was shown that in certain cases
coupler can be replaced by a sequence of beam splitter
two DOPAs or by a combination of a beam splitter a
NDOPA.

We have shown that the idea of the substituting schem
fully applicable also to the contradirectional coupler. W
have identified the threshold condition for the contradire
tional coupler and adopted the parameters of the substitu
scheme to study the behavior of subthreshold and abo
threshold regimes of operation. Some results obtained ea
were simply explained.

ACKNOWLEDGMENTS

This work was partly supported by Grant No. VS960
and Research Project CEZ: J14/98: 15100009 ‘‘Wave
Particle Optics’’ of the Czech Ministry of Education and b
Grant No. 202/00/0142 of the Czech Grant Agency.
ia-

. A

v. A

A

:

si-
@1# G. Assanto, A. Laureti-Palma, C. Sibilia, and M. Bertolot
Opt. Commun.110, 599 ~1994!.

@2# J. Janszky, C. Sibilia, M. Bertolotti, P. Adam, and A. Peta
Quantum Semiclassic. Opt.7, 509 ~1995!.

@3# H. Hatami-Hanza and P.L. Chu, Opt. Commun.124, 90
~1996!.

@4# J. Perˇina and J. Perˇina, Jr., Quantum Semiclassic. Opt.7, 541
~1995!.

@5# J. Perˇina and J. Perˇina, Jr., Quantum Semiclassic. Opt.7, 849
~1995!.

@6# J. Perˇina and J. Perˇina, Jr., J. Mod. Opt.43, 1951~1996!.
@7# N. Korolkova and J. Perˇina, Opt. Commun.137, 263 ~1997!.
@8# A. Chefles and S.M. Barnett, J. Mod. Opt.43, 709 ~1996!.
@9# N. Korolkova and J. Perˇina, Opt. Commun.136, 135 ~1997!.

@10# J. Perˇina, Jr. and J. Perˇina, Quantum Semiclassic. Opt.9, 443
~1997!.
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