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Quantum theory of time refraction
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The concept of time refraction is introduced to describe the effects of a sudden change of the optical
properties of a dielectric medium. This can be seen as the most elementary process associated with photon
acceleration and frequency upshifting. The quantum theory of such a process shows that the initial wave splits
into time-transmitted and time-reflected waves propagating in opposite directions after the occurrence of a time
discontinuity of the refractive index. The time refraction laws, analogous to the well known Fresnel formulas
and Snell's law, are also derived. It is shown that, in quantum terms, time refraction is equivalent to a
squeezing transformation.

PACS numbds): 42.50—p, 78.70--g

[. INTRODUCTION thrown some light on the processes of time-varying dielectric
media. The interest of this kind of system is the possibility of
In recent years, the concept of photon acceleration hagreation of photon§17,18, which has been interpreted as a
been explored in the context of plasma physics, and it is nowonadiabatic distortion of the electromagnetic vacuum state.
well understood, in both theory1-4] and experiments The main aim of this work is to establish the quantum
[5—7]. This is a general concept that can be used to describ@eory of time refraction, due to the sudden change of the
a large number of optical phenomena, in plasmas and iffi€lectric constant of an infinite medium. We choose an in-
other optical medid8]. It can be defined as a nonresonantfinite medium because, unlike most cases studied in quantum
process of interaction of waves in a space- and time9Ptcs, photon accelerat_lon can take place in free space. Alsfo,
dependent medium, which results in a change of the energy? thl§ case, thel analogies between the usual space rgfractlon
and momentum of the propagating wave packets. and time 'refractlon can be more clearly stated. Followmg.the
The development of intense laser systems has allowed fétuantization method of Glaubgt1] and Cirone, Rgazewski,
many possibilities of photon acceleration, among which weand Mostowsk{17], we use creation and annihilation opera-
distinguish the frequency shift induced by relativistic ioniza-t0rs that no longer describe the usual photons in empty
tion fronts[5,7), flash ionizatior{9], nonlinear perturbations, SPace, but the elementary excitations of the radiation field in
and wake field§10]. In general, photon acceleration can bef[he_presenc.:e of matter. When the dplectnc constant changes
perceived as a space-time refracti@. By space-time re- in time (or in spacg, the photon gains a new meaning, re-
fraction we mean the phenomenologies of light crossingulting in a change of the photon ener@y momentun
space- and time-dependent boundaries between two different N Sec. Il we begin by recalling the quantum theory of
optical media. Pure space refraction is well known from clasSpace refraction, in order to define the relevant field opera-
sical optics and has been recently studied in quantum optid®'s and to settle the basis for comparison. In Sec. Ill, we

[11,12). Related work on the quantum theory of spatial beanfsStablish the quantum theory of time refraction and derive
splitters should also be mentiongtB,14). the time equivalents of Fresnel's and Snell's laws for the

In this work we shall focus on pure time refraction, which f[eld operators. Such Iaws_ are formally i_dentical to those de-
appears as a natural extension of the refraction concept. THed by one of us[8] using the classical approach. The
idea of time refractiori8] explores the formal analogies be- duantum theory confirms, as expected, the classical results,
tween photon acceleration and ordinary refraction, whicPut it also shows that purely quantum effects can occur. Fi-
helps us to gain insight into the elementary aspects of th8ally, in Sec. IV, we state our conclusions.
photon dynamics. During ordinary refraction a beam of pho-
tons suffers deflection as it crosses the stationary boundary Il. SPACE REFRACTION
between two optical media, i.e., the photon wave vector is ) )
altered due to the space variation of the optical properties of L€t Us consider a sharp boundary between two stationary,
the medium. Likewise, when the optical properties of thesem[-lnfmlte,_ nond_|sper5|ve, and nondissipative dl_elect_rlc
medium change with time but remain constant in space, w&edia. For simplicity, we assume that the two media, with
expect the photon light frequency to be changed. This effecfielectric constants equal & ande,, have the boundary at
of frequency shifting is as universal as ordinary refraction =0, and that the waves propagate alongxiais. This can
Associated with time refraction we can find expression?€ described by the dielectric functioa(x)=e,H(—x)
analogous to the Fresnel formulas and Snell's law, whicht €2H(X), whereH(t) is the Heaviside function. We assume
relate the electromagnetic field before and after the time pefthate; and e, are well known values, which are not explic-
turbation of the optical properties of the medi(ig]. itly calculated by a microscopic theory, but correspond to a

Until now, the concept of photon acceleration has beerPhenomenological description of the media. A
described only in the context of classical theory. The quan- If photons with frequencw and initial wave vectok; are
tum theory was never explored, even if somewhat relateghropagating in medium 1 and interact with the boundary, we
work on time-dependent dielectrics in cavitigkb—17 has  can write for the associated electric field operator, valid in
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the semi-infinite regiorx<<0, and for a given polarization familiar version of these Fresnel formulas, by multiplying
(N=1 or 2, them by exp{iwt) and adding their Hermitian conjugates.
We get
E(x,t)=E;(x,t) + E,(x,1),

1
where the incident and reflected field operators are E(OD)+E(0)=E(0), E(0H-E(00)= ;Et(o’t)'
@

- o Jho . . - .
Ei(x, ) =i/ 5A{au(ki pei—al(k; tye "k e(k)), These new operator relations are formally identical to the
! (1) Fresnel formulas for classical fields.

Ill. TIME REFRACTION

= e kT e ikes
E(xy=i Z_Q[al(kr et —a (ke ne ek, Let us consider an infinite, nondispersive, and nondissipa-
(2 tive dielectric medium, characterized by a real dielectric con-
stante;. We then assume a time discontinuity at tibe0,
with ki=wn;/c andk,=k;. We have introduced here the \here the dielectric constant suddenly changes from this ini-

time-dependent destruction and creation operdtbisl7] tial value €; to a new valuee,. This can be described by a
. . - . time-dependent dielectric consta{t) = e;H(—t) + eoH(t),
a(k,h=a(kje ', a'(kt)=al(k)e'x, (3)  where agairH(t) is the Heaviside function.

The electric field operator for a single mokl@nd a given

which satisfy the following commutation relations: polarization f =1 or \=2) in the medium is written as

[a,(k),a] (K)]= 8w S5+ - These field operators are strictly
equivalent to those obtained for propagation in vacuum, the . . = . AT U X
only difference being the replacement of the vacuum permit-  E(",D)=1€ Z“’i[aj(k’t)e —aj(kt)e ™). (8
tivity e, by the appropriate dielectric constant of the me- .
dium, €;. We use the inde=1 for t<0 andj=2 for t>0. The

In the second mediumx¢0), we can define the electric displacement vector and the magnetic field operators are de-
field operator associated with the transmitted wave as termined by

R D(k)=gE(X), B(xt)=—io [VXEXD]. (9
Ed(x,1)=i\/ 5T{ax(k;,t)e"*—ay(k;,t)e” " *Je(k,)

2¢€; The new pair of operatora, and ag are different from the
(4) old onesa; and a{, because the meaning of a phot@m
elementary excitation of the fielédhanges with the refractive

with ki=wn,/c=ki(n,/ny). The corresponding magnetic . .
t— @2 i(n2/ny) P g 9 index att=0. In order to relate them, we use the classical

. . = o -1 =
fml»d( o)p]erators are determined bB(x,t)=—iw [V continuity conditions for the fields in timgl7]:
XE(X,t)].
The quantization of the electromagnetic field is based on D(r,t=0")=D(r,t=0"), B(r,t=0")=B(r,t=0").
the assumption that the field operators satisfy Maxwell's (10

equations. This means that the boundary conditions for these .

operators have to be formally identical to those for the clasThese equalities are independent pfvhich means that the
sical fields. Both the electric and magnetic fields are tangertvave numberk| is conserved and Eqg10) can easily be

to the boundary between the two media; thus we know, fronfeduced to the following relations between the new and old
the classical theory, that they are continuous: operators:

. - § o

E.(01)+E,(01)=E,(0}), B;(0t)+B,(0t)=B,(0}). ay(k)=Aay(k) —Bay(—k), (11)

) R R .

al(—k)=Aa}(—k)—Bay(k), (12

E ti tely the t ith th ti d -
g Sepaaiel e ferms Wil The same Ame Cepe ihere A= (1+ a?)/2a,B= (1~ a?)/2a, anda=(ny /n,) 2

' These equations are the time equivalents for the Fresnel for-

mulas, and can be called the Fresnel formulas for time re-

. 2 R . a?-1 .
ay(k)=——au(k), ay(k)=——ay(k) () fraction.
T T We should note thad?—B2?=1, which is the fundamen-
tal relation for hyperbolic functions. So we can define the
with a=(n;/n,)2 squeezing parameter as=argcoshf)=argsinhB). Then,

These expressions can be seen as the Fresnel formuls® above equations can be rewritten with the help of a
relating the transmission and refraction destruction operatorgiouble mode squeezing operator
It can easily be drawn that the same expressions are valid for . . . .
the creation operators. We can derive from E8).a more S=exfr(a(k)a(—k)—a'(k)a'(—k))], (13
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which couples both moddsand —k, in the form p(n+s,s)
a(k)=Sa(ks', aj(k)=sa(ks’. (19 0.5 a

So, at the quantum level, we conclude that time refraction 0.6 ﬁb
can be described as a squeezing transformation. This shows )
that each field mode existing fa<0 with a given wave 0.4l
vectork will be coupled with two modes existing fdr>0 e
with wave vectorsk and —k. This is responsible for the 0.2~ N i
existence of two sets of photons associated with transmitted e e e
and reflected waves, in a way similar to the usual space 2 4 6 8 “10°
refraction.

Another aspect of time refraction is that it is accompanied £y 1. Final photon probability distributiofiog(n)|2, for initial
by a shift of the photon frequency, because the photon wavgacuum(a) and Fock states with=3 (b), n=6 (c), andn=15 (d).
number|k| is conserved but it satisfies a different dispersionwe have assumed=0.5, corresponding ta,= 1.65;.
relation, due to the change of the refractive index. From the
wave number conservation we can then easily extract a rela-

tion between the initial and the final photon frequencies:,[h | t iated with phot lerati
w1N1= w,N,. This relation can be called the Snell’'s law for J1¢ €léMmentary process associated with photon acceteration.

time refraction[8]. This is a natural extension of the theory of the usual space

Let us now consider, as an example, the transformation Oriefraction, and leads to the derivation of the Fresnel formulas
an initial Fock state corresponding tophotons propagating e_md Snell’s_law for time refr_act|on. It was als_o shown that
along a given direction, with wave vectiorIn the process of time refraction can be described by a squeezing transforma-

time discontinuity, the models and —k become coupled, as
shown by the above Fresnel formulas for time reflection. Iti
then useful to introduce symmetric Fock vectops,n’);
=|n,,n");=Iny);In",);, where the inde) =1 refers tot

Our theoretical model allowed us to confirm and to justify
Sat the elementary quantum level the main features of time
refraction already known from classical thedB], namely,
photon frequency shifting, and the production of a reflected

<0, andj=2 tot>0. _ wave (or wave propagating in the opposite senater the
Using well known procedurefsi9,20,, we derive occurrence of a time discontinuity of the refractive index of a
~ medium. The existence of this reflected wave is ultimately
n,0)1= 2, by(n)|n+s,s), (15 justified by a specific quantum effect, namely, the emission
°=0 of pairs of photons in opposite directions from out of the
with vacuum. These pairs of real photons are created from out of

st the vacuum fluctuations by the time perturbation, and can
N rer-yrev I "RSp—(n+s) appear as isolated or can be added to the initially existing
by(n)=1~(B/A) sin! B™A ' (16) photons. Actually, the existing photons also change in na-
) . _ ture, because they get a new frequency and obey a new dis-
This result shows that, after the occurrence of a time dispersjon relation after the occurrence of a time perturbation.
continuity att=0 in the value of the refractive index of an The present theory can be improved in at least two
infinite dielectric medium, there is a probabili(n,0)#1  gjstinct aspects. One is to replace the nondispersive medium
of observing the statfn,0), with the same number of pho- py 4 dispersive and dissipative medium. This could be useful
tons and the same wave vector but with a shifted frequencyto examine the effects associated with the creation of a
On the other hand, there is also a finite probabipyn,s)  plasma from an initial neutral gas. The other corresponds to
#0 of observing a number+s>n of photons propagating - the more general case of a moving perturbation of the refrac-
with the initial wave vectok, and a numbes>0 propagat- tive index, or a moving boundary between two different me-
ing in the opposite directior-k (see Fig. 1 for a numerical dia, which would lead to space-time refraction. Such a
examplg. These two simultaneous groups of photons can b&oundary could be due to an ionization front. These two
interpreted as the time-transmitted and time-reflected wave&spects are known from the classical theory but have never
Obviously, by “time-reflected” waves we do not mean re- been formulated in quantum terms, and will be the object of
flected in time but rather waves propagating in the oppositduture work. . _ _
direction resulting from a time discontinuity. We could pro- _ Finally, it should be noted that a varying dielectric me-

ceed in a similar way for initial coherent states. dium is optically equivalent to a varying gravitational field
[21]. It is then obvious that the creation of pairs of photons in

vacuum by the mechanism of time refraction is connected
with the emission of Unruh radiation by an accelerated di-

In this work we have developed a quantum theory of timeelectric boundary22], and with the Hawking mechanism of
refraction, which results from a sudden change of the refracblack-hole evaporatiofi23]. Such connections will be dis-
tive index of a dielectric medium, and can be considered asussed in future work.

IV. CONCLUSIONS
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