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Quantum kinetic theory. VI. The growth of a Bose-Einstein condensate
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A detailed analysis of the growth of a Bose-Einstein condensate is given, based on quantum kinetic theory,
in which we take account of the evolution of the occupations of lower trap levels, and of the full Bose-Einstein
formula for the occupations of higher trap levels, as well as the Bose-stimulated direct transfer of atoms to the
condensate level introduced by Gardiegral. [Phys. Rev. Lett79, 1793(1997); 81, 5266(1998]. We find
good agreement with experiment at higher temperatures, but at lower temperatures the experimentally observed
growth rate is somewhat more rapid. We also confirm the picture of the “kinetic” region of evolution,
introduced by Kagan, Svistunov, and Shlyapnikzh. Eksp. Teor. Fiz101, 528(1992 [Sov. Phys. JETHS,
387(1992)), for the time up to the initiation of the condensate. The behavior after initiation essentially follows
our original growth equation, but with a substantially increased rate coefficient. Our modeling of growth
implicitly gives a model of the spatial shape of the density profile of the condensate-vapor system as the
condensate grows, and thus provides an alternative to the present phenomenological fitting procedure, based on
the sum of a zero-chemical potential vapor and a Thomas-Fermi-shaped condensate. Our method gives sub-
stantially different results for condensate numbers and temperatures obtained from phenomenological fits, but
fits the published column density data very well.

PACS numbes): 03.75.Fi, 05.30.Jp, 51.10y

[. INTRODUCTION otential Bose-Einstein distribution in the MIT growth ex-
p g
periment[4,7] (and as well in the experiments on Bose-
Although the race to produce a Bose-Einstein condensateinstein condensate in hydrogf8l), which may be an im-
was preceded by intense debate concerning the likely rate g€rfect model whose results could well be misleading.
its formation, the discovery that a Bose-Einstein condensate '€ theoretical description of condensate growth that we
of alkali-metal atoms could be produced relatively simplypresent is largely able to be viewed as a modification of the

[1-3], and that the growth time was of the order of Onequantum Boltzmann equation, in which, however, explicit

: o . .~ note is taken of the modification of the excitation spectrum
second, moved most theoretical activity into the mvestlgaby the existence of the condensate, including of course the

tion of the properties of the condensates so produced. SinGgct that the lowest single-particle excitation energy is the
the production of the first Bose-Einstein condensate therghemical potentiajuc(n,) of the condensate afi, atoms.
have been few theoretical investigations into condensatgquilibrium arises as a result of the equality of the chemical
growth, and only one experimept] has made any measure- potentials of uncondensed vapor and condensate, a picture
ments of growth rates. Only the work of the present authorsvhich is rather similar to that normally adopted for chemical
and co-workers, based on quantum kinetic theory, has madeactions. The quantum Boltzmann equation itself automati-
quantitative predictions on the growth rate of a Bose-cally provides the Bose stimulation, which makes transition
Einstein condensate. This work started when we showed hovtes into the condensate and other highly occupied levels
to introduce the concept of stimulated condensate growt@chieve a speed which permits the production of the conden-
resulting from kinetic process¢s], leading to a very simple Sate in a finite time. Without Bose stimulation, the produc-
formula for the growth rate. The MIT experimef#] took tion of a condensate of about 1 000 000 sodium atoms would
the form of a verification of the validity of our theoretical t@ke 30 h, rather than the 100 ms observed. .
prediction. At the same time, in Rd6] we refined the basic A\t first glance it might appear that a description which

concept of bosonic stimulation to generate a less idealizeagﬁgﬁa&g r?gthki)r?si}g S(;n gt;gu?%2ﬂ?£sggtcz:gnhaer;2necgu§t[c%g
theoretical picture, and to compare it with experiment. Thes 9 Y

initial papers were of necessity brief, and developed neithep 9\ of that coherence. This is emphatically not the case—

: .~ “the kinetics of the transfer of th lev-
the full theoretical justification on the numerical modelmg{ e kinetics of the transfer of the atoms between energy lev

elsin a trap requires the existence of a wave function for

nor the full range of possible comparison with the availableg ., energy level. The condensate level has its own wave

experimental data. In particular, no account was taken of thg,nction, and this obeys the Gross-Pitaevskii equation. The
!nformatlon available on the spatial distribution of the atomsgonerence arises because this level becomes macroscopically
in the vapor-condensate system as the condensate growgcupied. There is nprecisemoment when one can say that
from the vapor. the condensate initiates. This picture applies in a trap, in
This paper will therefore give the detailed justifications which the energy levels about which we have been speaking
and a full range of comparison with experimental data. Mostare rather well separated. The picture of a Bose-Einstein con-
particularly, we want to present a theoretically justifiabledensate, as developed in the middle part of this century as a
method of describing the condensate vapor system as ffart of condensed-matter theory, is of a homogeneous and
grows. The absence of such a description has led to a ph#éius infinitely extended system—a system for which the
nomenological fitting of vapor profiles to zero chemical thermodynamic limit is achieved. Looked at from our view-
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point, this would be achieved by making the trap broader and
ultimately flat. There is a transition point where the trap be- )
comes so flat that there is an occupation of the lowest qua
siparticle levels which becomes comparable to the occupacendensate-band
tion of the condensate itself. At this stage the traditional  density
condensed matter picture becomes relevant, but this is nc / X X
achieved in any traps presently in use.

V®) W

Il. MODEL FOR GROWTH OF A CONDENSATE

In this section, the formalism of quantum kinetic theory b)  V(x)
[9] will be used to form a model of the growth of a trapped .,  ondensate-
Bose-Einstein condensate. The Bose atoms are described b band density
a second-quantized field, in the pseudopotential approxima

tion; that is, we write \/ x XJ X

H=Hy,+H +Hy, .Y

FIG. 1. Representation of the modification of the trapping po-
tential for (a) the noncondensate band aftl the condensate band

where .
due to mean-field effects.

P, @ A. System
The system is contained in a three-dimensional harmonic
potential, characterized by the frequencigs o, andw,.

u It will be useful to define the geometrical mean frequency of
— 2| q43y it T

hZ
Hkin:J d3x l//T(X)(—ﬁVZ

. . . 1. Effective potentials arising from mean-field effects
and the ternmH arises from a trapping potential as

In this system the energies and wave functions of the
lower trap levels are quite strongly affected by the presence
Hy= f d3x V()¢ () () . (4) of the condensate, and the effect will of course change as the
condensate grows. In QKV it was shown that it is reasonable
to account for this by introducing mean-field effects, which
The pseudopotential method is used—its validity for thismake the effective potentials depend on the occupations of
kind of system was justified in QKV—whene=4ma#%?/m,  the bands. The situation is illustrated in Fig. 1. As the con-
anda is thes-wave scattering length arising from the inter- densate grows, it expels the vapor from the center of the trap,
atomic potential. and this expulsion serves to reduce the mean field of the
The situation being considered is that of a vapor cloudyapor as experienced by the condensate. The growth will be
confined in a trap in which the lower-energy levels are notassumed to be so slow that the condensate and nonconden-
significantly populated, while the higher-energy levels con-sate bands are always thermal equilibrium—that is, they
tain thermalized equilibrium populations, characterized by ayill have a well-defined temperature shared by both of them,
temperatureT and chemical potentiak, unstable against put will not have the same chemical potential. Growth there-
condensate formation. fore occurs as atoms are transferred from the vapor to the
This situation is likely to arise, to a degree of approxima-condensate, leading eventually to a unique chemical poten-
tion, if a system, which is initially in equilibrium at a tem- tjal for the whole system.
perature slightly greater than the critical temperature, is
cooled very suddenly to a temperature below the critical tem-
perature, by removing the very high-energy atoms in a rapid
evaporative cooling “cut.” The higher-energy levels will In the formalism of quantum kinetic theory, the system is
very quickly come to their equilibrium distributions, since divided into condensate and noncondensate bands. In this
the difference between the distributions before and after thpaper we will treat the situation in which the noncondensate
cut are quite small at the higher energies. However, the lowdpand is assumed to be in thermal equilibrium with a tempera-
levels will be far from equilibrium and evolve to form a ture T and chemical potentiak, and to contain the vast
condensate. This is possibly one of the easiest scenarios toajority of the atoms so that it is essentially undepleted by
model, it is also the situation investigated by the only de-the process of condensate formation.
tailed experimental study of the growth of a condensate in a The picture of growth we will use is that presented in
gas of *Na atoms[4]. QKV. In that paper, it was shown that a legitimate division

2. Condensate and noncondensate bands
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as a single level. Each subband is described by an emgrgy
and contains all the eigenstates found within the energy
range[ e,,— Ae,/2,e,+ Aey/2]. The value ofAe, is chosen
partially by the requirement that the lowest of these subbands
contains at least three levels. Smaller values\ef, would
lead subbands containing only fractions of individual levels,
which is obviously unphysical. As the condensate grows, the
mean-field effects from the high occupation of the conden-
sate level will cause the energies of the levels in the sub-
FIG. 2. Schematic representation of the simple model to changbands to increase. The valueseyf and Ae,, are therefore
the energy levels due to the mean field effects of the condensatglependent on the condensate occupation, and the manner in

Levels are evenly distributed betweé and uc(no) which in- which they are altered will be discussed later.
creases wittng. The levels appropriate to the effective potential are

approximated by a uniform distribution between the lowest-energy
level and the valu&, . B. Notation
For clarity, we set out some of our notation:

into condensate and noncondensate bands can be made in
which one distinguishes betwegarticlelike excitations, to  N: number of atoms in theondensate band )
which it is possible to assign a definite number of atoms, and
phononIiKeexcitations, which are collective modes, which ne: number of atoms in theondensate ©6)
normally involve a large average number of atoms, but are
not eigenstates of the atom number. In practice, it has been
shown[15] that the energy above which all excitations arengs: equilibrium number of atoms in theondensate (7)
essentially particlelike is relatively small. For the purposes of
our modeling, however, there are two criteria which must be (ng): chemical potential of theondensate )
considered in the definition of the condensate band. pctllo)- P

(i) The noncondensate band is considered to be time in-
dependent; therefore, the condensate band must include @l chemical potential of theoncondensate band  (9)
levels whose populations change significantly during the
condensate growth process. For the noncondensate band, the .
thermal distribution is given in the bulk bye®~#/kT &n,(X):  wave function of am, atom condensate.  (10)
—1]" L. This is only valid forE> u, and gives very large

populations where~ . The transition rates in and out of |n the situations we will consider, the number of condensate
levels in this vicinity also become very large, which contra-atomsn, will vary from zero to almosN, but this will al-

dicts the assumption that the distribution of the noncondeng,ays be substantially less than the number of atoms in the
sate band is time independent. These lower states therefojgole system, composed of both condensate and nonconden-
mustbe treated time dependently, and hence must be insate hands. Thus when the condensate is fully grown, the

cluded in the condensate band. o approximatiomny~N will be valid, and will often be used.
(i) The condensate band consists principally of levels

whose energy eigenvalues are significantly affected by the _
presence of a condensate—but levels which are not affected C. Density of states for the system

may be included if this is deSirabIe, which must be done if In the absence of any condensate, the density of states

the first criterion is to be met. _ G(E) is taken to be that of a non-interacting gas in a har-
Consequently, in this paper we will choose the condensatg,gnic well. That is

band to consist of all levels with energy less than the value
Er. We will also introduce an enerdy, <Eg, which is the 3 _\?
energy above which we can consider the energy levels to be dN(E) E- Eﬁ“’

unaffected by the condensate, as illustrated in Fig. 2. G(E)= =3 , (11
dE 27  wywy,

Noncondensate
Band

3. Grouping of energy levels into bands

The inclusion of all the condensate band energy levels ifvhereN(E) is the cumulative number of states with energy
the model means that simulations of the system require, ifess thanE and o= (wx+ w,+ w,)/3. The number of states
principle, the calculation of all the eigenfunctions of the con-in the subband with average energs, is thus g
densate band, and detailed summations over these. In prag-G(e,)Ae,,. The energy scale is such that the value of
tice the number of energy levels involved is of the order ofV+(r) =m(wix?+ wly’+ w;z?)/2 is zero at the origin.
tens of thousands, which makes an exact description imprac- Once the condensate begins to form, the mean-field ef-
tical. However, progress can be made by grouping togethefects need to be taken into account. The mean-field repulsion
energy levels in the condensate band into small “subbands,due to the condensate changes the energies of the lower
with only the ground stat&condensate statbeing described trapped states. The energy of the condensate level is equal to
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2/5
/ 15awxwywzm1/2h2

pc(Ng) = 572 No| (12)

which vanishes as,—0. However, the ground state of a

noninteracting gas in a harmonic welligw,+ w,+ w,)/2,

and so the real chemical potential should approach this value

.- asny—0. In order to interpolate the Thomas-Fermi chemical
/./ . & potential to satisfy this requirement, the following form for

Ej (=20) Ex the chemical potential will be used:

FIG. 3. The cumulative number of states for a gas in a harmonic we(ng)=a(ng+ )25, (13
potential well. The dotted line shows the situation for a noninter-

acting g_as(no mean field effecjs The dashed line represents the.wherea=(15awxw wzm1’2ﬁ2/4\/§)2/5, and v is a constant

cumulative number of states due to the simple model proposed in oI5 y

the text to incorporate mean field effects. The solid line showsSUCh thata v =ﬁ(wx+wy+wz)/2.

the corresponding occupation per energy interva(E) ]

=G(E)[exp((E— u)/kT)—1]"%, also shown on a larger scale in 2. Estimate of B

the inset. An estimate for the value d&, , above which the excita-

tion spectrum is well described by that for a noninteracting
as, can be obtained using the number-conserving Bogoliu-

2/5

ng . Obviously the condensate level must remain the ov spectrum16,12. The quantity of interest now is the

I ¢ tat d thus th . f the other st tratio of the corrections to the energy level arising from the
owest-energy state, and thus the energies ot the other Stalf, 006 of the condensate, to the energy level determined
belowE, must also rise in some fashion. The exact nature o

DA the noninteracting gas model. For the case of the tra
the energy change is difficult to calculate, but some reasor]jy g9 P

bl mat b d which should sed in the”Na growth experiments at MIT4], numerical
able approximations can beé proposeéd which should Teprzy.ations show that the ratio is less than 10% for energies
duce the significant behavior caused by the mean-field e

facts =2uc(ny), and the corrections are of the order of only 5%
The most simply calculated estimate of the energyfor E~2.5uc(no). Thus a reasonable estimateef to be

changes is to assume the energies of the subbegpdae used in the simulations is
evenly distributed between the fixed upper limitif and

the chemical potentigl(ng), which increases witimg. In
the Thomas-Fermi approximation the rise is proportional t

the lower limit of uc(ng)~an3®. This is illustrated sche- Ea=2pc(nog), (14)
matically in Fig. 2. Both the values @, and the values of . o _
Ae,, are nown, dependent. whereng; is the equilibrium occupation of the condensate

The final value ofAe,, (after the growth of the conden- level, and this is the value df, that will be used in this
satg is set to befiw. This condition also always fulfills the Paper.
requirements that there are at least about three discrete levels
contained in the lowest-energy subband, and yet ensures that 3. Comparison with more accurate density of states

the subband has only a relatively small energy range. As a result of the predominantly single particle nature of
The density of states for the condensate band, in the preghe excitation spectrum, the cumulative number of states

ence of the condensate, is thus taken to be approximately(g) s expected to be quite well described at high energies

Gno(E)zj\/[E—,uc(no)]z, whereN is a normalization cho- by the semiclassical approximation

sen so that the cumulative number of statels ats the same

as for the noninteracting harmonic-oscillator potential. This 1 E

behavior is illustrated in Fig. 3. As the discontinuity B N(E)= Z—fi)"’j de f drf dp 8(e—Egdp.r)),

shows, this model is obviously quite simplistic, and more (2m 0

realistic models will be discussed later. (15
It should be noted that in the inset of Fig. 3 the number of
particles per energy intervdlE) is shown(the occupation Where Esip,1)=p?/2m+V+(r) + (8mhalm) &, (1))
of the condensate level is not showfor equilibrium condi- — uc(ng) is the semiclassical energy of a single particle in

tions. From this inset it can be seen that the vast majority ofhe potential created by the combination of the trapping po-
atoms do indeed reside at energies higher tBan and so  tential and the mean-field repulsion of the condensate. Equa-
the assumption that the noncondensate band is undepletéign (15) thus represents the summation over all phase-space
should be valid. cells which contain a single-particle excitation state of en-
ergy less thaik. In Ref.[16], by carrying out the momentum
and space integrals, an expression for @§) was found, for

In the Thomas-Fermi approximation, the chemical potenthe case of an isotropic harmonic trap of frequeacyn the
tial of the condensate is given by form

1. Modified Thomas-Fermi chemical potential
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0.05 . . . . — 4. Approximations
Several approximations that have been made in the deri-
0.04 | vation of this model rely on the condensate band being small
relative to the noncondensate band, andfandE, are too
- large then these approximations will not be valid. The ap-
% 0.03} proximations concerned are the following.
= (i) That the noncondensate band is so large that it
0.02 | is essentially undepleted by the process of condensate
growth.
B (i) That the scattering processes between condensate
al band atoms may be taken as being negligible compared
to the interband scattering processes, as will be assumed
0 WA later.
a L 3 It should be noted, and will be shown later, that the major
Energy in units of pc(ry) effect on the overall growth due to mean-field effects is

caused by the changes in energies of the lowest-energy lev-
- . ) ) ._els, and for these levels the model proposed here is in quite
E. The solid line shows the results obtained using the semmlassm%ood agreement with the semiclassical results. Because of

approximation for the isotropic trap equati¢b6), and the dotted .
line shows the case for the noninteracting harmonic well. Theth's’ as well as for the above reasons, the valuk pused

dashed line represents the form used in this paper \Eth will generally remain equal to 2¢(ny,). The value o is
=2uc(ng). The results were obtained for a condensate ofchosen somewhat larger. This provides a check that the so-

5000 000 atoms at a temperature of 900 nK. lutions we find do match smoothly onto the distribution
aboveEg, which is assumed not to change.

NE) - —
n—=E2\/(1—x)(x+ 7nlE) D. Dynamical processes
0

The dynamics which will be considered in order to de-
E~ 4 (1 _ [x2+&2 p?]Y2—x scribe the evolution of the condensate band arise from the
fo dsmfo dxen X2+ 22 2 following processes. .
(a) Two particles in the noncondensate band collide, one
(16) of the particles leaves with an increased energy, and the re-
maining particle enters the condensate band, now having an
where energy less thaky . Of course the reverse process must also
be considered—a noncondensate band particle colliding with
no |3 a condensate band particle and exciting it out of the conden-
: ch:ﬁw(ﬁ) : (17 sate band.
(b) A noncondensate band particle collides with a conden-
. ) . sate band particle and exchanges energy such that both par-
The chemical potentiak.c(no) is given by the Thomas- icles end up in the condensate band, and the reverse process.
Fermi approximate forni12), and the energy is given inthe  (¢) A noncondensate band particle collides with a conden-
dimensionless unit& =E/kT,. This semiclassical form for sate band particle, transferring some energy, but both par-
N(E) was found in Refs[16,15 to be practically indistin- ticles remain in their respective bands.
guishable from that found by numerical solutions of the Bo-  (d) Two particles in the condensate band collide, transfer-
goliubov spectrum over the entire range of energies. ring energy, with the result that both particles remain in the
In Fig. 4 the semiclassical form of &) obtained from condensate band, but having different energies than before
Eq. (16) is compared to that of the noninteracting harmonicthe collision.
oscillator[given by Eq.(11)], and the density of states ob- Processefc) and(d) will be termedscattering processes
tained using our model witk, equal to 2uc(ng). The fig-  since they do not change the occupation number of either
ure does not show very good agreement of our model witthand. Processdg) and(b) cause the number of particles in
the semiclassical results at moderate energies, although #te condensate band to increase, and so will be referred to as
low energies the agreement is good. At high enough energiggrowth processesThe distinction between the two types of
(not shown the noninteracting potential results become pracprocesses is illustrated in Fig. 5. Because the number of at-
tically indistinguishable from those obtained from the semi-oms in the noncondensate band is much larger than that in
classical method, the energy at which this occurs is abouhe condensate band, the scattering will be dominated by
5uc(ng) for the results in Fig. 4. It should be emphasizedprocesses of typ&), and those of typéd) will be neglected.
that this semiclassical result applies to an isotropic trap, and These processes are described by the full quantum kinetic
the consideration of the anisotropy of realistic traps, whichmaster equation obtained in QKIIl and QKV, which can be
has not yet been accounted for, may have a significant effecised to determine rate equations for the evolution of the
on the spectrum. system.

FIG. 4. The cumulative number of statesBy(below an energy

_ mc(Ng)
KT,
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Bath of higher energy atoms Bath of higher energy atoms 1. Transitions

fF There are six processes which are described by these
r \’/ml ? L .
£y \ Eq \< equations.
Ll

\ V' (i) N—N+1, with no change im. The transition prob-
ability for this process isV*(N)=R" (&y,uc(N)/%).

(i) N—N-—1, with no change im. The transition prob-
ability for this process i (N)=R™ (én_1,un_1/1h).

(i) N—N+1, with n,,—n,,+ 1. The transition probabil-

Ex S — ity for this process iaV. " (N)=R*[f,, (el + uc(N))/A].
Ay (iv) N—N-1, with n,,—n,— 1. The transition probabil-
HHH ity for this process is W2 “(N)=R (fy,(en_,
_— + un-1)/h).
r (v) N—=N+1, with n,—n,—1. The transition probabil-
Growth Scatlering ity for this process I8V~ (N)=R" (g, (— em+ un)/ 7).

(vi) N—N—1, with n,,—n,,+ 1. The transition probabil-

FIG. 5. lllustration of the two types of dynamical processes,ri],[y for this process is WK(N):R‘(gm,(—eﬂ_l

growth and scattering. Only the two noncondensate particle growt

i ' +un_1)/h).
process is showfprocesga) in the texi, and only noncondensate— HN-1 . .
condensate band scattering is shdwrocess(c)]. 'Here the functlo_nsfm andg, are ampllt'udes for the cre-
ation and destruction of atoms in quasiparticle states with

E. Growth processes energiesey,, which are defined in Ref§17,12, but whose

. . . explicit form will not need to be used heré;, is the con-
The formalism of Refs[17,12,14 gives rise to rate equa- deﬁsate wave function fod atoms. The funcﬁr’én@t(y ')
tions forN, the number of particles in the condensate band a3 e defined by ' '

a whole, anch,,, which represent the number of quasiparti-
cles in themth quasiparticle level. The derivation gives

equations in the limit thalN is sufficiently large for us to u2
write ng~N. The rate equations take the form R*(y,0')= (ZWWJ' d3rf d°K; d®K, d*K 3 d%k
dn, . . ,
d—tmznm|growth+ Nl scatt (18 X 6(Awpdr)—w')6(Ky+Ky—Kz—K)
XF1Fo(1+F3)W(r,k), (26)

The form ofhm|gmwth was given in QKIll, Sec. IVE 3, and

can be written in terms of the transition rates as
2

nn=nt+ns R (y,0')= 7 | 6 | d®K, d®K, 434 0k
Nm=nNp+tN,, (19 (Y, 0')= (2m)5h2 r 107K20R3

. o X 8(Aw1pd 1) — 0" )3(K 1+ Ky~ Kg—k
N= 2WH[(1— eWcM-mikeT)NT 1]+ S fht o), (Awdr) — )oK +Ky—Ka—k)
m

X(1+F)(1+Fy)FaW(r,k). 2
20 ( 1)( 2)FaWy(r,Kk) (27
where In these equations the following notation is used:
N =2Wy * (N)[(1—elke®rranlfelyn, +1], (21) h2K2
hwg (1= —5—+V(r), 28
h;\EZW;]Jr(N)[(1_e[7,u,C(N)+,u+Em]/kBT)nm+ 1]; wKi( ) 2m ul) 28
(22)
the relationships between forward and backward rates can be Awipz= oy, + ok, — ok, (29)
shown to be
W+(N):e[,u*,u,C(N)]/kwa(N), (23) AKEK1+K2_K3_|(, (30)
W, (N) = el#mreMN) =eml/keTyy - = (N, (24) Anhla
u= . (31
Wr';_(N):e[M_MC(N)"'fm]/kBTWr;_"(N)_ (25) m

In these equations, the energies of the quasiparticle excita- The functionF;=F(K;,r) is the distribution function for
tions €, are measured from thground-state energywhich  the noncondensate particles, and the Wigner function is

is uc(N). given by
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v 2. Approximate evaluation of transition rates
r+ E

1 .
Wy(r,k)=WJ d3vy* y(r—;)e""". (32

The rate factor®v=(N) contain integrals over all space of
The R* function is related to collisions between two non- terms containing the product d¥(K,r) terms times the
condensate band particles with momekta and K,, from  Wigner function corresponding to the ground-state wave
which the particles leave with momeria, andk. The par- ~ function We (r,K). In practice the ground-state wave func-
ticle with momentunk is now in the condensate bafice.,k  tion is very sharply peaked in comparison to the spatial de-
is smal) so that the particle with momentuki; remains in  pendence of thd=(K,r) functions which describe the re-
the noncondensate band. The functi®s(y,»’) therefore  mainder of the cloud of atoms. This means that in the spatial
represent the rates for collisions which result in a particleintegral for thew=(r) terms[from Egs.(26)] the F(K,r)
entering (+) or leaving (—) the condensate band with an terms can be approximated by their valuesrat0. This
energyfiio’. gives

u2
W+(N)=Wf d3K1J d3K2j d3K3J dk 8(AK) S[Awo40)— me(N)/A]F(K,,00F(K,,0)

X[1+F(K3,0)][Ex(k)|? (33

2
w-(N+1)=ﬁ2—f d3K1j d3K2f d3K3J d3k 8(AK) [ Aw40)— me(N)/A][1+F(K,,0)]

X[1+F(K,,0]F(K3,0)[Ex(K)|%, (34)

in which E‘N(k) is the momentum_space ground_state Wa\/eHereKl(X) is a modified Bessel function. In almost all prac-
function, obtained from the spatial form by tical situations the term in square brackets in the above equa-
tion is approximately equal to unity, and ¥¢" is essentially
1 independent ofN. The value ofW™(N), the rate of transi-
k)= _f d3r ek TEy(r). (35  tions out of the condensate band, can be obtained in a similar
(2m)¥2 fashion to that forW". The ratio of forward to backward
rates is found to be given by
In Ref.[5], progress was made by assuming that the non-
condensate band distributidn(K,r) was given by the clas-
sical Maxwell-Boltzmann distribution WT(N)= ek #cMNVKT\W=(N), (39)

h2K212m+V1(r)— u
F(K,r)~exp — T : (36)  which stems from the assumption of the thermal undepleted
bath, and the definitions ak/* andW ™. From this equation

: . . and the master equation it can be seen that equilibrium is
with values of T and . which ensure the formation of a eachieved whenuo(N) = u to order 1N.

condensate once the system reaches equilibrium. Further-
more, in calculating the integrals in Eq83) and(34), it was
assumed that the range of condensate band energies was neg- 3. Simple growth equation

ligible compared to that of the noncondensate band. Thus the A rate equation for the mean number of atoms in the
range ofk was negligible compared to the rangelof,5  condensatéN) (written asN for convenience for the rest of
and the integrals i<, , 3 were calculated over all energies thjs section was obtained if5,12]

rather than just over the noncondensate band. The function
F(K,r) was also assumed to be negligible compared to
unity. The result obtained wd$]

N:2W+(N){(1_e(uc(N)w)/kBT)N+1}_ (39

4Am(ak

T)2
2ulKT|
e
wh3

W*(N)=

mc(N) (ﬂC(N)”
l .

kT kT This equation is thesimple growth equatiorused for the

(37 simulations of condensate growth in R€f5,12]. If the sys-
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tem starts withN=0, the growth begins slowlybut at a  essentially, we make the substitutibii-ng in the chemical
finite ratg. Once a significant condensate occupation is atpotential and thaVv*(N),W* *(N) functions, and se¥V,, "
tained the term proportional f8 becomes dominant, causing — 0, since this term comes from the mixing of creation and
a much faster growth rate. The growth eventually slows asinnihilation operators which arises from the Bogoliubov
rc(N) approacheg and the system settles into equilibrium. method.

This gives the curve a8 shape, as will be shown in the next By making these adjustments, and now grouping the lev-

section. _ _ _ els into subbands of energy, [measured now from zero,
By using the Thomas-Fermi chemical potentif. (12)]  rather than fromuc(N) as was the case fa,], with each
for uc(N), and the Maxwell-Boltzmann form fow=(N),  subband containing,, levels, the equations of motion for

the first simulations for the growth of a realistic condensatehe growth processes are now

were presented in Ref5]. The growth equation is simple to

solve numerically, for whatever number of particles is nec- _

essary(for example, the growth of a condensate containing Ninl growth= 2Wi, " (Ng){[1—eCm= 1K T]n_ + g}, (40)
5000000 atoms was simulated in Rd]).

4. Beyond the simple growth equation Nol growth= 2W ™ (Ng){[ 1 —el#cho)~wl/kT n, 41} (41)

The derivation of the simple growth equation contains a . ) .
number of approximations and simplifications. The major"e will make the further—possibly rather drastic—
behavior onceN becomes large should be described quiteSimplification, and entirely neglect the effect of phononlike
well by the simple growth equation, but terms which wereguasiparticles, which are known to comprise only a very
neglected may have significant effects during the initialSmall fraction of the levels normally occupied at the tem-
stages of growth. Possibly significant factors which shouldPeratures considered. Thus the excited states are now taken

first be considered are the following. to be of a purely single-particle nature, and the condensate

(i) The effect of considering all quasiparticle levétee ~ band is now described by the occupation number of the con-
excited levels in the condensate band densate leve(fthe lowest energy levehy, and by the occu-

(i) The effect of scattering process@s defined in Sec. Ppation numbers of each of the excited statgs In this case,
D). Egs.(40) and (67) become the same as Ed$8)—(25), and

(iii ) Corrections to th&v* (N) terms to consider the more May therefore be used to represent the full condensate
realistic Bose-Einstein distribution function. growth process. . o

(iv) The fluctuations around the mean number. The complete neglect of phononlike quasiparticles can be

This paper aims to consider the effects of incorporatingustified by noting that the lower of these represent shape
the first three of these factors into the growth equation. Duroscillations of the condensate itself. Thus, although these
ing the process of Bose-Einstein condensate formation, th@uasiparticle levels could become quite highly occupied, this
spectrum of eigenvalues makes a transition from the unpef€ally amounts to growth into an oscillating condensate. Ex-
turbed spectrum of trap levels to the case where the spectruffrimentally this does happen, but large quasiparticle oscil-
is strongly affected by the condensate in the ground statdations amount to a rather small fractional change in conden-
The Bogoliubov spectrum of a condensed gas is valid in théate shape, which is not expected to make much difference to
case where the number of particles in the condensgtdés ~ the overall growth.
so large that it is valid to writsng=N. Thus, during the
initial stages of condensate formation, where this is not true,
one must use another formalism. In this paper we will con- The value for the transition probabilityy™(N) found in
sider the situation in which the interaction between the parthe simple growth equatioi39) was derived by making
ticles is very weak, as is in practice the case. This means thabme rather sweeping assumptions, and as sucti3#ypis
we will be able to use the unperturbed spectrum for the initeally just an order of magnitude estimate. To obtain a more
tial stages of condensation, and only use the Bogoliubov deaccurate value the full Bose-Einstein distribution must be
scription once enough condensate has formed to make thesed forF(K,r) and the ranges of integration of the noncon-
effective interaction rather stronger. densate functions must exclude the condensate band in

The basic formalism of Ref12] can still be carried out in  which F(K,r) would become very large. We then have, from
this case, and the modification that is found is rather minor—Eq. (33),

5. Evaluation of transition probabilities

u2
W+(n0)=ﬁf d3rJ d3K1f dSKzf d3|<3f d3k S(AK) (A wqo9(r) — me(No)/R)F(K4,T)
(2m)°h E>ER E>ER E>EgR E<EgR

XF(Ka,N) (L4 F(Kg W, (1K), (42)
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with small relative to the number in the noncondensate band. The
dominant scattering processes, and the only ones which will
p((f'12l<2/2m+vT(r)—M> 1}—1
ex -

be considered, are the scattering of atoms between levels in
F(K,r)= T

the condensate band, due to interactions with noncondensate
band atomgsee Fig. 5. These stem from terms in the full
H2K2/2m+ V(1) — master equation Which_ invo_lve two condensate fi(_ald opera-
(44)  tors ¢. These terms give rise to a master equation of the
kT form, as shown in QKIIl, Eq(500):

(43

=> expg —s
s=1

Again, we have to make the following approximations. ) _ . N
(i) That the spatial dependence can be neglected, s@lsca= > YkmNim 2XkmpXhm= [ XbmXim.p1+}

F(K.)—F(K,0) and Wy (r.k)—| &x(K)|> «<en

(ii) That we can neglect thie dependence, except &,
so that the onlyk dependence left is removed by + Z Vkm(ﬁkar 1){2kapxﬁm_[xlmka,p]+}
Jd3k|&n(K)|?=1. The integrals oveK,, K,, andK; can mk

[

then be performed, to give a final form fav" (n,), found
by Davis[18], of —
+ % YkmM km{zkapxlm_[xlmkaap]+}1

1/kgT)\? =€
+ = —| — —_ 2 k m
- which is equivalent to the master equation governing the
+222 [2Zng)]"[®(z,1r+1)]%}, (45  scattering of particles by a heat b420].
r=1 Here the operators are defined by

where Xym=aray, (49)

z=e Er/keT)  z(ng)=ellrcM~ErlkeT (46)  wherea, is the destruction operator for an atom in state
with energye,. As in Sec. Il E, we treat all excitations as

The function® is the Lerch transcenderftl9], defined by  peing particlelike. The rates of the processes are determined

o by the factorsy,,,, and the fac'[orst\l_km are defined by
d(x,s,a)= >, x(a+k)s. (47) B 1
=0 Nim=—T— (50
—
This form of W (n,) gives values of about a factor of 3 ex;{ KT m) -1

greater than the previous form in E&7), depending on the

exact parameters of the system, and this gives a correspondhe last line in the master equatio#B) represents scattering

ingly faster growth than that in Reff5]. between degenerate energy levels, which will not have any
The values foW,,* (ny) are more difficult to obtain. The contribution to the time dependencergf once the levels are

W= *(ny) terms are the average of t¢" * terms for all the ~ grouped into subbands, and so can be ignored.

individual levels in the subband. Th&** terms are given The corresponding rate equation fgr=(aja,), the mean

by similar overlap integrals as used for ti¢" terms, and occupation of thekth level, can easily be found from the

for the lower-energy levels in the condensate band, the ovemaster equation. When levels are grouped into subbands

lap of the wave function with the spatial distribution of a with mean energye,, occupationn,, and with g, levels

noncondensate band particle should be similar to that for theontained in the subbands, it becomes

condensate level. Thus it is expected that Wé™* terms -

should be of the same order of magnitude \& (ny). Midscatt

Progress can therefore be made by approximating

W;, " (no) =W (ng). The effect and validity of this approxi- = 2 Vin{ Nemm(Mic 810 =~ (Niem+ 1) (N )i
mation will be investigated in Sec. Il F. &> enm
F. Scattering processes + 2 Vi (N + )y (ne+ g) — Ny (ny + g g}
Scattering processes in this paper also need to be included ek|<e|

in the evolution ofn,,. Scattering between two atoms in the (51)
noncondensate band does not have to be explicitly consid-

ered, since it has been dealt with in making the assumptioffhe transition rates,,, now represent averages over all the
that the noncondensate band is an equilibrated timeindividual level transition rates which transfer an atom from
independent thermal bath. Furthermore, the scattering behe k subband to then subband. The transition probabilities
tween two condensate band atoms will be neglected since, a4, can be found in a similar manner to tki¢" (n,) terms,
any time, the number of atoms in the condensate band igom terms of the forni12]
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4 2
ka(N)zﬁzf d3rfd3|<lf d3K2f d3kf d3k’ 8(K;—Kp—k+k")F(Ky,r)(1+F(K,,r))

XWk(erlk)Wm(ervkl)§(Aw12(r)_Qm+Qk)! (52)
|
where an,
— =§ <1+fn>fq(m2p 8(n,m;p,a)ge, Fo(1+fm)
pc(N)+en(N) et
Qp(N)= = (53
—(1+fq>fn(;p s(nm;p,a)ge fm(1+Fp) ||,
_en(N) (56)
where the following notation has been used:
and the rest of the notation is as was used in Sec. Il E. _
nm_fmgmr (57)
1. Estimates foryyn,
k S(N,MiP,A)= e i, e, ey (58)

Explicit computation involved in calculating these factors
IS |mpr.act|9al, an.df it will turn out, unnecessary wher_1 theThe terms of this equation can be simplified for the different
scattering is sufficiently strong. We shall instead estimate

thesey,, rates by using the quantum Boltzmann approach oP OT:Si:glﬁir?:SS:.se ~e. - Inthis casee.— 6. and ener
Holland et al. [21]. * §~€q- €4~ Emin> ay

By treating the excitation spectrum as given by the eigeng onservation s satisfied when

states of the trapping potential, without modification by the
presence of the condensate, and by using the ergodic as-

sumption, Hollandet al. obtained the kinetic equatidfiEq. . . N
(12) in Ref.[21]] wherefiw,q=¢€,—€q. The summation term in the first line

of Eq. (56) then becomes

€p=en+hwng, (59)

Jf,
gnE: mqu 5en+em,ep+qu(emaen ,ep,Eq) gqe ZE (1-|—fm)fm+wnq%gqe(ﬂ*ﬁwnq)/kTF(T) (60)
m R
X[fqfp(1+fm)(1+F) = (1+f)(1+ o) fnfal, where
(55)
in which 7= (8ma?w?/ 7h)t. The population of a level with (M= 2 e /T (61)

>E
energye, is f,,, and the degeneracy of levels at that energy mTER

ii n- TTe c_ollisionl k?rnerlg]](em,en,ep,eq) is g(;veanrom The approximation which has been made is that {},)
the overlap integrals for the states n, g, andp. How- ~1, which should be acceptable since statds of high

Cver, when the energies of the levels considgred are Spre%%ergy(i.e., in the noncondensate bandhe calculation of
?wte Iﬁr tai)hart, '1?"_""”@& al. found from numer!cal clalllcula— I'(T) requires a knowledge of the spectrum of energies in the
lons that the collision kemed(emin,€n,p,€q) IS Well ap- — 5condensate band, which is complicated for an anisotropic

proximated by the degeneragymin. Hereen, is the smallest trap. The form for ansotropic harmonic potential (T) is
of the energies in the collision. In our model the energie%asny calculated though, and gives

will always be quite well spread, a®) they must be in

different subbands, each subband being quite well separated CER/KT
from the next in terms of mean energy; aiwl the scattering F(T): R (62)
processes we are attempting to describe must bgande, 1—e helkT

in the noncondensate band aggande, in the condensate

band. Thus in our model we may safely usewherew is the frequency of the potential. We will therefore

9(€min.€n,€p,€q)~Je . make the approximation th&{(T)~I"(T) for the determina-
By summing ovem andp terms(which are levels higher tion of y,.,, using the geometrical mean frequency of the

thanEg), the effect of all the noncondensdtidath” ) levels  real trap as the frequency of the isotropic potential. Thus

on the condensate band atoms may be calculated. The kinetie( w,wyw,) 3in Eq. (62).

equation for the scattering now becomes Remaining termsSimilar reasoning leads to the results
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On E (1+fp+ﬁqu)fp~gn 2 eluep)/kT (63

ep>ER ep>Er

=g,e*“Tr(T), (64)
9q 2 Fo(1+fmine )~gee” T(T,R), (65)
emn>ER ng

On 2 fpinog (1+fp)=gae® " 0 (T).  (66)

ep> R

2. Total scattering equation

PHYSICAL REVIEW A 62 033606

(iii ) the density of states in the system is as described in
Sec. II C;

(iv) the ergodic approximation is valid, and that states in
the condensate band which have similar energies may be
“binned” together for the purpose of describing their evolu-
tion;

(v) the fluctuations of the occupation numbers around the
mean numbers may be ignored;

(vi) the rate constant®v** for the growth processes
which change the occupations of the excited states in the
condensate band are equal to the rate constant for the growth
of the condensate level,

(vii) the rate constant for the scattering processes in an

The total kinetic equation governing the scattering pro-2nisotropic well of geometrical mean frequeneys equal to

cesses is now given by

8ma’w?

. w
nm| scatft— TeM/kBTF(T)

1
X1 > —[N(gm+nme temdeT—n (g +ny)]
k<m gm

1
+E _[nk(gm+nm)—nm(gk-f—nk)e_h“’km/kBT] .
k>m Gk

(67)

The notatiork>m is now being used to meas>e,,. This

that in an isotropic well with frequency;
(viii) three-body collisional processes may be ignored.

IIl. NUMERICAL SOLUTIONS OF THE GROWTH

The rate equations derived to describe the growth of a
condensate in Sec. Il are quite straightforward to solve nu-
merically, and the solutions can be obtained in a matter of a
few seconds as opposed to other numerical solutions which
have been very time consuming. The nature of these solu-
tions will be discussed and comparisons will be made with
experimental data published in Ré¢fl]. The parameters of
the system modeled were chosen to be the same as in the
MIT growth experiments:

is the rate equation governing scattering processes, it is (i) Using a dilute gas of*Na atoms, characterized by an

equivalent to Eq(51) if the following transformations are

made:
N(wnq)ae_hw"q/“, (68)
1+N(wng)—1, (69)
8matw? e (T) o
Yng— 7 o when n>gq,
(70)
8ma’w? e T (T) o
Yng— T o when n<gq.
(7D

G. Rate equations including scattering and growth

The total rate equation governing the evolution of this

system is then given by adding E@O0) to Eq. (67),

Nm= nm| growtht nml scatts (72)

swave scattering length ai=2.75 nm[22,4].

(i) With an axially symmetric(“‘cigar shaped’) har-
monic trapping potential described by the frequenaigs
=wy=2mXx82.3 Hz andw,= 27X 18 Hz, and giving a geo-
metrical mean frequency ad=27X50 Hz[4,23].

(iii ) With a total number of atoms of the order of’16he
numbers found in the condensate level once equilibrium is
reached are in the range<d.0® to 1x 107, giving a conden-
sate occupation of between 5 and 30% of the total number of
atoms[4,23]. In the majority of cases the thermal bath was
therefore depleted by only a small amount, and the unde-
pleted model which is used here should be a good approxi-
mation.

(iv) With temperatures in the range 0.5—-LK [4,23].

A. Results
1. Simple growth equation results

Numerical solutions of the simple growth equation

No=2W" (no){(1—elclh)-»keT)ny 1}, (73)

and for the condensate level evolutioftl) is used in place are easily obtained5], and an example of the resulting
of Eq. (40). It is useful here to review the major approxima- growth curve is shown in Fig. 6. This curve shows a charac-
tions that have been made in order to derive these equatiortristic S shape, the slow initial growth occurs as a result of

It was assumed that:

spontaneous+ 1) terms in Eq.(73) and then, once the oc-

(i) the noncondensate band is very large, so it is essercupation becomes large enough, the stimulated growth terms

tially undepleted, and it is in equilibrium;

(those proportional tmg) dominate and the growth acceler-

(ii) the influence of collective excitations is negligibly ates. The condensate grows quickly, until it approaches equi-
small, so that the states in the condensate band are all @brium where it slows again gg-(ng) approacheg, giving

single-particle nature;

the final part of the S-shape nature.

033606-11



M. D. LEE AND C. W. GARDINER PHYSICAL REVIEW A62 033606

[=>}
>
—_
[==]
[=)}

12x 107

Condensate Occupation, 7
Occupation Number, n,,,

0 1 2 0 0.2 0.4 0.6 0.8 1
Time (s) Time (s)

FIG. 6. Typical results of the simple growth equation for the FIG. 7. Typical results of the new growth equations for the
growth of a Bose-Einstein condensate in the MIT apparatus at growth of a Bose-Einstein condensate using the same parameters as
temperature of 900 nK withu=43.F w. The initial condensate in Fig. 6. The condensate levdold) reaches the equilibrium popu-
occupation was taken to be 100 atoms. lation of 5x 1P atoms, the other lines represent the evolution of the

populations of the other subbands in the condensate band. Note the

The derivation of the simple growth equation contained amuch faster growth than in Fig. 6.
number of significant approximations and assumptions. In
effect it describes the situation in which the occupations ofpopulations considered, forming the condensate band. Fur-
all levels higher in energy than the ground state are treated dBermore, the energies of these levels will be increased by
time independent, giving an undepleted thermal bath in conthe growth of the condensate, due to increased mean-field
tact with only the condensate level. Furthermore, the popuiteractions. To describe this situation the model described in
lations of the levels in this bath are given by the Maxwell- Sec. || must be implemented. Considering at first only the
Boltzmann distribution, rather than the correct Bose-Einsteiri‘growth” processes, the evolution was found in Sec. Il E 4
distribution, and no mean-field effects are introduced. Thdo be given by
simple growth equation is therefore just a first approximation .
for the growth, and was merely intended to give an order of Nl growth= 2Wi, " (No){[1— eem=#/KT]n g L, (74)
magnitude description of the growth process. Indeed, as shall
be shown in a subsequent section_, e_xperimental measure- ho|gm\Mhz2W+(no){[1_e[m;(no)w]/kT]nOJr 1}, (75
ments 4] have shown that, although it gives the correct order
of magnitude for time scale of the grOWth, the Simple grOWthwhere, for reasons given in Sec. I, we approximate
equation does not describe the rate of growth to any closqy\/:1+(n0) by W™ (n,). This form of evolution is essentially
than a factor of about 3. the simple growth equation applied to several energy levels.

It is now possible to perform a more accurate calculation
of W*, using the Bose-Einstein distribution to describe the

In order to improve the description of the growth over thatpopulation of levels abové&y (i.e., in the noncondensate
of the simple growth equation, the first improvement whichband, and summing only over the noncondensate band lev-
will be made is the more accurate calculationVdt, using  els. The new form ofW* is given by Eq.(45).
the full Bose-Einstein distribution. However, for lower-  Sample solutions to the coupled differential equations
energy levels the equilibrium populations determined by th&74) and(75) are shown in Fig. 7. The rate of growth of the
Bose-Einstein distribution are very large. Having such largecondensate has increased substantiggnerally by at least
populations in these levels will obviously not be a gooda factor of 3 over that predicted by the simple growth equa-
model of a system rapidly cooled from a point wheravas  tion, this is due to the more accurate calculatioMéf(n).
negative to a region where has become positive, since the However, the shape of the growth is still essentially the same
changes in populations of these levels required during thias that given by the simple growth equation.
process are so substantial that a fairly long time will be re- It can be seen from Fig. 7 that the lower-energy levels
quired for the levels to come to equilibrium. It is therefore also experience very substantial growth in this model. Indeed
unphysical to consider a situation where the low-energy levthe occupations of some of these levels can exceed the con-
els have reached their equilibrium populations before thelensate occupation substantially before relaxing back to their
condensate level has even started to evolve. For these reaquilibrium values. This is of course not a realistic scenario,
sons, it is not consistent to simply use the Bose-Einsteimnd is certainly not one that has been observed in any ex-
distribution to find W* in the model considered by the periments. Note that the number of subbands used in this
simple growth equation. figure (and most of the other figures presentéd substan-

In order to develop a consistent description there need ttally fewer than would normally be used. Generally the
be a number of lower-energy levels with time-dependennumber of subbands required is about 20-50, depending on

2. New model of growth processes
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the exact parameters; however, these cannot be well distin- 6x100
guished from each other in a graph. Therefore, throughout
this paper, most of the depictions of the growth of subbands
will show only a few of them.

Once scattering processes are includege beloy, re-
ducing the number of subbands used causes the growth to
become slower. It also causes the model to become less re-
alistic, since an individual level may then be described by an
average energy quite different from its actual energy. If the
number of subbands is increased, an asymptotic limit to the
speed of the growth is reached, however this is also unreal-
istic since now some subbands contain only fractions of in-
dividual energy levels. The choice used in practice is such 0 ol 02 03 04 05
that in their final equilibrium states the subbands have widths Time (s)
of Aw. This choice is close to the asymptotic limit, and en-

sures at least three individual levels are contained in the first 2x105 | Y j
subband. ]
1
\/—_
3. Inclusion of scattering processes @

growth, which has now lost much of the S-shape nature that 0

previous solutions had shown. The speed of the growth after 80 120 160 200

the initiation is changed little by the inclusion of the scatter- Time (ms)

ing processes, since in this region growth is completely ) - )

dominated by the growth processes. The second effect is that FIG- 8. Typical results of the total growth equatitncluding

the populations of the excited states no longer exceed p|al§_cattermg processefor the growth of a Bose-Einstein condensate

sible levels. using the same parameters as in Fig(a.The growth of the con-
The reasons behind these changes are interlinked. Withoggnsatéground stateoccupation. The inset shows the same growth

scattering, all of the levels in the condensate band start t§/¢diCtéd by the total new modéolid line) compared to the

grow, and at quite similar rates. The difference in the growttﬁrOWth predicted without considering scattering procesdashed

ne), and that of the simple growth equation with an initial popu-
rate between the very low energy states and that of the COMtion of 100 atomgdotted ling. (b) The growth of the explicitly

@bnsidered subbands. The condensate level itself is the bold curve.

_Of states in _the lower subbands a large population can fomrl‘he top five subbands are those in the noncondensate band which
in them, which can become very much larger than the congere explicitly considered. Note the different time scales on the
densate level population. Once any one subband acquiresggaphs.

sufficient population, the stimulated term in the growth pro-

cess begins to dominate, and the population increases everSe ~£.€ " was equivalent to that for an isotropic har-
further. In the absence of scattering processes, the only wayonic oscillatorI(T), which affects the scattering rates.

in which the excess population in these states can be trans- The second important approximation was made in the so-
ferred to the condensate level, where it will be found in thelution of the equations governing the growth processes,
equilibrium situation, is by a transfer back to the noncondenwhere theW,, " (n,) terms were assumed to be equal to
sate band followed by another collision which transfers itw* (n,), which has a value given by E(5). This approxi-
directly to the condensate level. mation has no effect on the growth rate of the condensate

If scattering processes are considered, atoms may now bevel if the scattering terms are not considered, since then
transferred directly between different levels in the condenthere are no interactions between different levels in the con-
sate band in a collision. Any excess population in the excitedlensate band. The effects of these two approximations are
states can then be quickly transferred out of the state befordiscussed below.
the stimulated growth process becomes too dominant.

With the inclusion of the scattering processes, the effects
of two important approximations must be considered. In  The magnitude of the scattering rate was assumed to be
the derivation of the equations governing the scatteringequal to that for an isotropic harmonic oscillator in the deri-
processes it was assumed that the value I&fT) vation of Eq.(67). In Fig. 9, the growth of the condensate

a)l

4x109 |

o
o
0 =

)

2x106 |

Condensate Occupation, ny

Condensate
Occupation,

0
0 Time (s) 1

If we include scattering processes, as given by @64),
the picture is dramatically changed. Solutions for the result-
ing evolution equation$72) are shown in Fig. 8. This figure
shows that the scattering has two main effects. First, the
initiation of the condensate level growth occurs much more
sharply, this gives a substantial change to the shape of the

1x10° |

Occupation Numbers

4. Effect of the scattering rate approximation
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FIG. 9. The dependence on the rate for scattering processes of G. 10. The eff h ¢ h of th q ‘
the condensate level growth. Growth curves from left to right had hFl t'hl ‘ IT eoeW?C} on the ratcre] 0 g(rjovl\;t 0 Itftet anh‘::‘sae
factorsT (T) of 1000(T), T(T), T(T)/2, T(T)/10, T(T)/100, and  '/Nen the values oy, "(no) were changed. From left to right the

tively. wherB(T) is the factor for the isofropic h curves correspond to values £ * (ng) of 10W* (ng), 2W* (ng),
zero, respectively, wherE(T) is the factor for the isotropic har- ., v "+ (4 )2, and W (ng)/10. Conditions correspond to
monic potential given by equatiq62). These results were obtained those in Fig. 8
using the same parameters as used in Fig. 8. T

level is shown for several different scattering rates. The 6. Initial conditions

growth slows slightly if the rate is decreased. If the rate is A problem which has to be considered in solving the total
increased, the growth becomes faster until it reaches arate equation$72) is the determination of the correct initial
asymptotic limit at which point it is the rate of the growth conditions. Because the noncondensate band is assumed to
processes which determines the speed of growth. The resulie a thermal bath of atoms at equilibrium, the initial popu-
show that the overall growth changes by only a relativelylations for the explicitly considered levels in this band are
small amountand certainly smaller than present experimen-found from[exp((E— x)/kT)— 1]~ 1. Obviously this cannot

tal uncertainties in growth experimeptprovided that the be used to give the initial populations in the condensate band
rate is within two orders of magnitude of that for the isotro- when the model is attempting to describe growth of the con-
pic trap. Since it seems unlikely that the corrections due talensate. It is not immediately obvious what the appropriate
the anisotropy would change the rate by much more than onigitial conditions should be for the condensate band. In Fig.
order of magnitude, the approximation of using the isotropicl1, four different initial conditions are shown:

rate factor seems to be valid. It is interesting to note that a (a) No initial population in the condensate band. This is
scattering rate of only about 1% of the isotropic case is usuthe most artificial of the four possibilities presented.

ally sufficient to prevent the occupations of the subbands (b) Initial population of zero in the condensate level and
becoming very large as they do in the absence of any scaéxcited-state occupations given by a linear dependence on
tering. energy rising to match that of the noncondensate babg at

5. Effect of W™ factors 60

The effect of the approximatiolV,, " (ng)~W*(ng) is
shown in Fig. 10 which shows the behavior of the growth for
different values of the W, *(ny) terms. Changing
W *(ng) changes the rate of growth of the excited states,
and thus changes the probability of atoms being scattered
from the excited states into the condensate level, giving a
corresponding change in the overall growth of the conden- I
sate. The results show that provided;, *(n,) lies in the ©

W
o

(d

B
(o)

W
o

Population per eigenstate

[\
o

range V" (ng)>W,. " (ng)>W*(ng)/2 then the growth 0l
rate does not change significanfompared to experimental
7 : (b) (@
uncertainties and the change caused by using an accurate 0 ) ,
scattering rate However, outside of this range the growth is 0 1 2 3

altered considerably. The expectation is tigt " (ny) will
lie in the desired range, since it is an average over quantities . .

similar toW* (n,), and as such should be of the same mag- I"Condensate | Non-condensate Band

nitude. The “standard” approximations for the rate con- Band

stants that will be used in the following results will be  FIG. 11. Depiction of the four different initial populations tri-
W2 (ng)=W7(no) andT(T)=T(T). aled, as described in the text.

Energy (in units of ER)
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FIG. 13. The energy spectrum of the subbands as a function of
ny, modified to account for the mean-field interactions with the
0 5 ' o1 ' 0z 03 growing condensate. I(8) the levels are modified by changing all

Time (s) levels in the condensate band, as has been used to obtain the pre-
) ) o _vious results. In(b) these effects are accounted for by the new
FIG. 12. Growth curves determined using the initial conditions yyoge|, explained in the text. The lowest-energy level is the conden-
descrlped in tr.]e. j[ext. Th.e. curves, from sloyvest to fas.t.est growtheate level, whose energy igc(n,). The dotted line represents
were given by initial conditionga)—(d) respectively. Conditions are 2, (), the maximum energy at which mean-field corrections are
the same as for Fig. 8. assumed to be significant. This figure shows the evolution of the
energies for a temperature of 900 nK, and with a filegjuilibrium)
(c) Initial populations of condensate band states all equatondensate occupation of&L0°. The few levels whose energies
to the value of exp((Eg— u)/kT)— 1] 1. never change are those levels in the noncondensate (adode
(d) Initial populations given by a linear extrapolation of Eg) which are explicitly considered.
the noncondensate populations, meetjegp((E— u)/kT)
—1]7* tangentially atEg. and the lower limit of uc(ng); the energies of all levels
In Fig. 12 the growth curves corresponding to each of thdigher thanyuc(no) will not be altered. This is similar to
differing initial conditions are shown. The different initial the previous model, with the alteration that the upper limit of
conditions can be seen to have little effect on the shape of thée levels whose energies are changed is no longer fixed, but
growth; the main effect is really just a small shift in the instead rises with increasing,. The energy of a leved, is
initiation time. This effect is generally quite small comparedthen given by
to the effects of changing(T) andW,, " (n,), as seen in the o o
preceding sections. The fact that the initial conditions can be €m for en>vyuc(ng)
changed by so much and yet have little effect on the growth en=
curve is due mainly to the inclusion of the scattering terms. ,uc(no)+e2]
The scattering terms very quickly cause the levels in the
condensate band to come to a kind of quasiequilibrium from

whatever initial state they are put in. Thus we conclude that. . . . . .
an exact knowledge of the initial conditions is not important.e'genSt"ﬂes for a noninteracting gas in a hgrmonlc pqtennal.
The energy spectrum of the subbands given by this new

Since the exact initial conditions do not seem to be im- : e :
portant, in all further calculations initial conditidie) will be model is shown in Fig. 13, and compared to the previous
used, as it is about midway between the extremes of ¢ases energy spectrum. In the older model used so far in this paper
and (d). all energy levels in the condensate band are changed by the

growth of the condensate. However, the extent of the con-
densate band is determined by the final occupation number
of the condensatg.e., by the final value oftc(ng)]. In the

The previous results were all obtained by taking thenew model, the levels are modified in a more consistent fash-
mean-field effects due to the condensate into account in thien, the energy levels for any given condensate population
manner described in Sec. Il A6. That is to evenly distributeare determined by the condensate population at that time,
the energies of the subbands between the fixed upper limit offhich appears to be a more logical approach.

E, and theny-dependent lower limiuc(ng). Thus all levels In Sec. Il C 2 it was shown that a fair estimate By was
below E, [fixed at 2uc(ngs), whereng; is the final occu- a value of 2uc(ng¢). The value fory will normally be taken
pation of the condensate leVyelre modified at all times. This to be 2, so that at equilibrium all energy levels belBgwill
artificial model can be improved on, since the number ofbe modified.

levels affected by the condensate depends upon its occupa- The effect of this new model, compared to the earlier
tion. In other words, when there is only a small condensat@approach, on the overall growth is very small, smaller in fact
present it has a significant effect on only the lower subbandghan any of the other effects discussed in this section, and it
while the upper subbands are essentially unmodified. An imis barely discernible. This would seem to indicate that it is
proved (although still a little artificial method is the follow- the mean-field effects on the energies of the lower few sub-
ing: all levels belowyuc(ng) (wherevy is an arbitrary pa- bands which are important when considering the growth of
rametey will be compressed to fit between this upper limit the condensate, since in both the old and new models the

(76)

1
1—;) for ef,<yuc(no),

hereeﬁ1 are the unchanged energy levels, as given by the

7. Modifications of the energies of the subbands
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lower levels experience quite similar changes. Since the The results found in Ref4] were that condensate growth
mean-field effects of the condensate on the higher level®ok on the order of 100-200 ms depending on the exact
seems to have only a very small effect, the precise value afonditions. It was found that the growth could be well fitted
Er would appear to have little effect so long as it is reasony a solution of the simple growth equatién3), which can
ably high. The value of 2¢(no¢) seems to be a good value, be put in the approximatébut in practice very accurate
since it is high enough that the energy perturbations oform
higher energies do not have a large effect on the growth, and
it is low enough that the majority of atoms are found at No= k1No[1—(Ng/Ng) %], (77
higher energies, giving an undepleted thermal bath.
where, againng; is the equilibrium condensate population.
The solutions to this equation exhibit the S-shaped growth
B. Comparison of results with experiment profile of Fig. 6.

At the present point in time there has only been one pub- The conclusion drawn in Ref4] was that a curve of this
lished experiment which has investigated in any detail the¢hape was evidence for the importance of bosonic stimula-
growth of a Bose-Einstein condensate. The experiment walon in the growth processes, since a purely relaxational pro-
performed at MIT using a trapped gas‘0Na atoms, and the cess would be described by solutions of
results were published in 1998 in R¢4. )

No= k2(Nos—No). (78)
1. MIT experimental method
However, the rate constanks found by the MIT group by
itting to the data obtained did not agree to better than an
order of magnitude with the predictions of the simple growth
quation of

The MIT experiments were performed in the following
way: The gas of atoms was confined in an approximatel
harmonic magnetic trap. It was then cooled using laser cool
ing and evaporative cooling techniques to a temperaturg
slightly higher than the critical temperature necessary for the
formation of a Bose-Einstein condensate. At this point the K1=2W+(n0)ﬁ. (79)
system is essentially in thermodynamic equilibrium, and then kT
it is suddenly put into a nonequilibrium configuration of ) . . )
lower energy, by means of a rapid evaporative cooling seut? The simple growth equation did well to give the cqrrect or-
which removes all atoms in states above a certain energy in @€' of magnitude rates; however, most of the predicted rates
time of about 10 ms. The system is then left to relax tofor higher temperatures seemed to be too smaII_ by about
equilibrium with no further cooling. The cut will have factor of 3. As the temperature decreased the d|§crepancy
brought the temperature of the gas below the critical temincreased, the predicted rates became slower, while the ex-

perature and so, to reach equilibrium, a condensate wilPerimentally fitted rate constants became larger. _
form. The formation of the condensate is observed at several [N contrast, the solutions to the growth model presented in
stages during the evolution by the means of phase-contralfliS paper no longer show the S shape, but are in fact closer
microscopy. in shape to the solutions of Eq78). These curves were
This method attempts to achieve, probably as closely as i©und by MIT to describe the data quite poorly if the growth
realistically possible, an almost thermalized bath in contacptarted at timet=0 (the time at which the cut finished
with a condensate band, as has been assumed in our theorg@WeVer, if an initiation time was allowed before the growth
ical treatment. The cut which removes the higher-energy at€gan, such solutions became quite close fits, although they
oms causes the wings of the energy distribution to be trunstill did not describe the initially slow growth giving the S
cated. Experience with solutions of the quantum Boltzmant$hape to the growth. The results obtained in this paper show
equation and related methof®4,21,1] shows that the ef- that, while the general shape is that of solutions to &8},
fect of this will first be “felt” by the higher-energy atoms there is also an initiation time present before the growth be-
remaining. The higher levels will therefore be expected tad!NS. o _ . . _
thermalize more quickly, with thermalization gradually mov-  AS @ specific comparison with experiment, Fig. 14 shows
ing through to the lower energies. Thus at some point aftef€ comparison between the growth curve predicted here and
the cut the majority of the atoms will be approximately in the experimental data. The data are similar to those in Ref.

equilibrium, with the lower-energy atoms still in very non- [4], but were not actually published. They were provided by
equilibrium states. MIT as being the growth of a condensate with an equilibrium

population of about X 10° atoms, at a temperature of 1200
nK [23].
In the growth experiments statistical uncertainties are es-
Phase-contrast microscopy produces two dimensional imtimated[25] to be 10% for relative number measurements,
ages of the system with an intensity proportional to the col-15% for temperatures. Systematic uncertainties are estimated
umn density of the system. From data of this type temperaas 20% in absolute number measurements, and 8% for tem-
tures, total numbers of atoms, and condensate levglerature measurements. Condensate occupations of less than
occupations were extracted by the MIT group, and were prei0® atoms could not be discerned against the background of
sented in Ref[4]. the thermal vapor clouf4].

2. MIT Experimental results and theoretical comparisons
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FIG. 15. Comparison of theoretical growth with MIT experi-
mental data. The experimental data is the same as that used in Fig.
FIG. 14. Comparison of theoretical growth curves with datal4. The theoretical curves were determined by using temperatures
experimentally obtained at MITdots. The measured temperature of 1000 nK(solid line) and 850 nK(dashed ling The rate constants
for the experimental data was 1200 nK. In the main part of thewere taken to be their standard values E(T):F(T) and
figure the solid line shows the theoretical fits with standard ratew: *(ny) =W*(no). Again, the initial condensate populations for
constant approximations at 1200 nK, the dashed line shows thgach curve were set to>510%.
theoretical curve obtained by usind'I'(T)=I'(T)/10 and
W *(ng) =W (ng)/2. The dotted line shows the growth predicted
by the simple growth equation of Reff5] [Eq. (39)], which is
shown on a larger scale in the inset. The initial condensate popu

Time (s)

extremely difficult to distinguish condensate level atoms
IJ_rom low-energy excited state atoms in experimental mea-
tions for each curve were set to<&.0, the experimental value at Surement. If the measured “condensate occupation” was in
t=0. The origin in the time axis represents the time at which thefact the occupation of the lowest five levefer example,
quick cooling “cut” in the experiment was finished. this would alter the growth curve in some important regions.
The main effect would be that the growth would appear more
As Fig. 14 shows, the growth predicted by our model isgradual during the early times, and would not seem to have
quite a good fit to the data, and the order of magnitude isuch a sharp initiation. This is a possible explanation for the
certainly predicted well. This is a substantial improvementS shape that was found in the MIT data. Clearly what is
over the growth predicted by the simple growth equation aneeded are theoretical predictions for the overall spatial den-
the same conditions which gives growth over about 1.5 s, asity distributions during the growth, rather than merely oc-
opposed to the experimental results of about 0.15 s. At theupation numbers for the various states. This will be ad-
stated parameters the theoretical fit could still be improveddressed in Sec. IV.
The dashed line in Fig. 14 indicates that by adjusting the The majority of the data contained in Ré¢#] were pre-
scattering rate and values W, (as was discussed in pre- sented in the form of rate constants for fits to experimental
vious sectionsa better fit may be obtained. data of the type described by E(7). Figure 16 shows a
The temperature plays a sensitive role in these comparfomparison of our theoretical growth curves as compared to

sons, since the rate of growth is quite sensitive to tempera-

ture. Furthermore, as will be seen in Sec. IV, the fitting i B8
method may play a significant role. In Fig. 15 the theoretical a) b) |
curve is plotted(using the standard values of the scattering '
rate andw,;, ") for two lower temperatures. It can be seen
that the fit is very good for the 850-nK results, and not quite
so good, but still quite close, in the case of the 1000-nK
curve.

This highlights a difficulty in comparing theoretical pre-
dictions with experimental measurements of condensate
growth. The spatial density distribution of the thermal cloud 5 16. Comparison of theoretical growfthin lines with
(from which the temperature is measurechanges only  cyryes fitted at MIT to experimental data in REf] (broad lines.
slightly with temperature, whereas the growth rate is quiterhe MIT curve fits are represented as broad lines, to indicate that
strongly dependent on the temperature. There are other profhey are fitted curves with unknowut probably substantiglin-
lems as well, the most prominent of these being the difficultycertainties.(a) Theory, T=830 nK, Nos= 7.6 10°; experiment,T
of experimentally determining the condensate occupation=810-890 nK,ny;=(7.5-7.85x1(P. (b) Theory, T=590 nK,
The spatial distributions of particles in the first few excitedn,;=2.3x10°; experiment, T=580-610 nK, ng;=(2.1-2.5)
states are quite narrow functions, and they can overlap the 1°. The initial populations were treated as free parameters to
condensate level distribution significantly. It then becomesest match the initiation of the growth with the MIT curves.

Condensate Number

0 0.25 0.5 0 0.5 1
Time (s) Time (s)
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solutions of Eq(77) using a selection of the MIT fitted con- a)
stantsk,. The figure shows good overall agreement with the
experimental data. The agreement is better at higher tem-
peratures. At the lower temperatures reached in the experi-
ment the agreement is less good. — . .
However, the results of this paper still show an overall 0 50 100 150 200 250
decrease in the the rate of growth with decreasing tempera-
ture. This is the opposite trend to that experimentally ob-
served. This could partly be due to uncertainties in extracting
numbers from the experimental data. Another possible expla-
nation is that in order to cool to such low temperatures from

Denisity p(r)
(arb. units)
.

r2p(r)
(arb. units)

just above the critical temperature in 10 ms a large propor- 0 50 100 150 200 250

tion of the atoms must be removed. This will give rise to a Radius, » (pm)

system in a highly nonequilibrium state, the relaxation from

which may be inadequately described by our model. FIG. 17. Sample radial spatial density distribution for conden-

sate having reached thermal equilibriufa). Solid line—total den-
sity distribution; dashed line—density distribution due to excited
IV. SPATIAL DENSITY DISTRIBUTION states only(b) Density times radius squared. These results are for
OF A CONDENSATE SYSTEM the trap parameters used in the MIT growth experimghi23]

q In the MIT”expecrjmgentsh Into condensatg growt] 2the wherevﬁ,f{:(r) is the effective potential experienced by an
ata were collected by p a;e—contrast mlcrqscmﬁ/, ﬂ’. atom. This gives a density of states
the measurement of change in the phase of light after it has

passed through the vapor cloud. The result is a two- dN(E)

dimensional plot of the column density integrated along the 9(E)= dE

third dimension. As discussed in Sec. lll, the extraction of )

the population per energy level from this experimental data 1 3 P off

is complicated. Therefore, in order to more easily enable “he dr | d°P 5 E_ﬁ_VNC(r) . (82

comparison with experiment, it is desirable to obtain from . o
our theoretical results predictions of the spatial distributionUSing the local-density approximation, for an energy sub-

of the condensate as it grows. When the system is in equiand with energye,, and width Aey,, the average spatial
librium this distribution is well known, but this is not the distribution atoms in the bantaveraged over all the wave

case during the condensate growth that we are interested ifyinctions of all the states in the banday be obtained by
g g rémoving thed® integral and integrating oved>P. This

gives
A. Semiclassical phase-space description 5
: . 1 P

In order to convert the results of the model into spatialp (r)= ﬁgj d3p s em———Vﬁﬁc(r) Aep, (83
distributions, the spatial probability distributions for each en- 2m
ergy band need to be found. The distribution for the ground _ U2 312113 e
statepgq(r) is well described by the Thomas-Fermi approxi- = (4m27 m™/h%) Aey Vem=Vic(r)- (84)
mation for the wave function: 1. Resulting spatial density distribution

podr)= | pre(r)|? We will use the semiclassical distributions for the excited

states, and the Thomas-Fermi wave function for the conden-
sate. The total radial probability distribution may be calcu-
[1c(o) = V(r)16(uc(ng) —V(r)), lated by normalizing each level, and then summing over all
the levels. The distributions are normalized so as to give the
(80) appropriate population in each level. For the bands bé&gw
. . ) ) these populations are given by the numerical results of our
whereV+(r) is the trapping potential, and(x) is the step  podel. For those abovEg the population is determined by
function. This is a very good approximation to the shape okhe Bose-Einstein distribution functiorF (E) = [ exp((E
the condensate wham is large, failing only at the very edge — 1)/kT)—1]"L. This gives the spatial density distribution
of the co.r_1densa_te wher_e the numerical solution to the Grossy, the whole condensate system in three dimensions.
Pitaevskii equation vanishes smoothly. An example of the resulting spatial density distribution
. A description of the spatial distributions fpr each of the for a system at equilibrium is shown as Fig. 17. In the first
higher-energy subbands can be found by using a semiclassiayt of this figure the total density is plotted as a function of
cal phase-space approach. The cumulative number of statggjiys, as well as the density due to the excited states only.
below an energy is given by The density due to the excited states can be seen to be sig-
nificantly decreased in the region of the condensate. In Fig.
17(b) the density multiplied by the radius squared is plotted;
this is proportional to the total number of atoms found at any

- 4mhla

1 P2
N(E):FJ d3rfd3P G(E—ﬁ—Vﬁﬁc(r) , (81)
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radius (due to the three-dimensional nature of the distribu-
tion). From this it can be seen that, even though the density
in the center due to the condensate is much larger than else-
where, the majority of the atoms are still found in the sur-
rounding vapor cloudas was assumed in the derivation of
the model.

When the system is in equilibrium these results can be
checked. At equilibrium the noncondensate spatial distribu-
tion can be obtained directly from E2). The total number
of noncondensed atombl, is

o 1
M:fo g(s)mds, (89

0 50 100 150 200 250 300
Radius,  (um)

Non-condensate density, p(r) (arb. units)

which corresponds to the local density formgffr):

1 SE—PZ2m—VEfi(r)) h
- 3
p(r) 3 dsf d°P oK ] (86) §
2 1 %-
P - -
am VR —a £
=—| d&°P | ex am -1 3
h3 KT 2
(87) z
3
Carrying out the integral over momentum space gives §
3

0 50 100 150 200 250 300

mkT\¥2 (Ve —u
) 3/2( — ) (89) Radius, r (um)

P“):(m kT

FIG. 18. Comparison of the noncondensate density distribution
- at equilibrium calculateda) from the sum of 1200 individual en-
_ o ergy level distributions(dashed, and using theGs,(z) function
GU(Z):;::l n-7e "™ 89 (solid); (b) as for(a), but using the sum of 2000 energy levels.

where

A comparison of the noncondensate density obtained usschewski[29] found that the semiclassical density distribu-
ing Eq. (88) and that calculated by summing E®4) over tion (including the mean-field repulsions by the thermal
1200 levels is shown in Fig. 18. It can be seen that thecloud gives excellent agreement with exact quantum Monte
agreement between the two methods, for teégiilibrium  Carlo simulations for dilute gas condensates in equilibrium.
situation, is good. The agreement improves if more energyhus we expect that the density given by our semiclassical
levels are included in the sum over E&4), and using about method is a very good description of the realistic system.
2000 levels gives very good agreement. Our semiclassical
method therefore shows good agreement with the expected 2. Description of a realistic experimental system

distribution at equilibrium, and this is the only case in which  Thea next step that must be performed, in order to compare
we can be certain of the theoretically correct result. with experimental results, is to perform a column integral
_In obtaining the results in this section we have only con-ajong one dimension, yielding a function of two spatial di-
sidered effects of the mean-field repulsion due to the condenyensions only. This is relatively straightforward to achieve
sate atoms, both on the thermal vapor cloud and on the COumerically.
densate itself. In order to be truly consistent the model Fina|ly the asymmetry of the real traps must be taken into
should also include the effects of the mean-field repulsionyccount. The previous arguments for the exact noninteracting
due to the thermal cloud on the system. This is quite easilyyaye functions assumed the use of a spherically symmetric
achieved mathematically, but it does increase the computgray \whereas the realistic traps used are strongly anisotropic
tional time by a very substantial amount. However, recently, the 7 dimension. However, in all the previous semiclassi-

Naraschewski and Stamper-Kui28] compared the density arguments the only effect is to chande from ma?2r2/2
distributions obtained both with and without considering the,[0 mwfy(x2+y2)/2+ mwﬁzz/Z where now

mean-field repulsions of the thermal cloud, for an equilib-

rium condensate system. They found that the overall density
distributions for the two cases were practically indistinguish- Wxy= o, (90)
able except for a very small deviation at the edge of the
condensate. Furthermore, Holzmann, Krauth, and Nara- ®,= wl\, (91
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0= (0,0, (92 o
S Pinv(ZX=0)= J pv(zy.x=0)dy (97)
A= (wy/0,)?5 (93
Due to the harmonic nature of the trap, one can recover m(kT)? mw§ 5
the origingl 'form of the potential by scaling the dimensions :27rh3wy 2 2kTZ .
used. Defining
(98)
z=7/\, (94) The column density function due to the condensate,
pintc, IS obtained by integrating the Thomas-Fermi wave
X=xyN, (95) function given by Eq(80) over one dimension,
J— yl(z) /.,Lc(no) m
Y=y, 00 pmczx=0)- | — (w22 wly?) | dy,
vl U 2u
the potential now returns to the fornd+(r)=mw?r?/2, (99
where the scaled radius is given by \x?+y?+z°. Equa- Where
tion (84) can now still be used, and the column density inte- 5
gration performed as for an isotropic potential, and the re- yi(2)= 2pc(ng) _ @z, (100
sulting function ofx and z needs only to be rescaled to ! mw§ w)z, ’

recover the answer in terms afand z. This scaling also ) o
affects the numerical column integration, with the effect tha@nd whereu=4m#“a/m, giving
the result needs to be scaled overall by a facton of/

2 2 3/2
[gssuming the integration is in one of the two shorter dimen- Pintc(Z,x=0)= ﬂ M - 2222) . (10D
sions and that the result is in the asymmetiangen dimen- 3u Moy, Wy

sion, as is the case for the “cigar” geometry traps of MIT )
g9sr9 yrap M In the measurement procedure used, the phase-shift data

» were not calibrated independently. The phase-shift data,
B. MIT fitting method which we shall call Phg), were fitted to dinear combina-
In the MIT experiments, the data for the numbers of con-tion of the form
densate atoms and temperatures are obtained from fitting to
the density profile obtained. The raw data obtained are in the PN(2)=Sypint,v+ Schint,c - (102

form of two-dimensional images and, although these can bﬁ"here are thuswo independent scale factors, Sind Sc
fitted, in order to save time and computational resources the P v

. : ; . __Which relate the observed profile to the fit functions. The
fit was mostly performed only to a one-dimensional SIICenumber of condensate atoms was obtained from the spatial
through the center of the condensp28]. This density pro- P

file is fitted from a function formed by the combination of a width zo of the Thomas-Fermi functiopiy,c. These are

condensate density profile and noncondensate profile. Threelated by

MIT fitting proc_:edure .is a phenomenological procedure pint.c(Zo,x=0)=0 (103
which neglects interactions between the condensate and the
vapor. It is based on two observations: when
(i) The behavior of the thermal cloud in the wings of the
profile is almost independent of the chemical potential—its 2_2Mc(no)
behavior in the wings can thus be used to determine the %= mwz2
temperature of the vapor. .
(i) The center of the profile is dominated by the conden- 15u(m/2)323) **2n2®
sate, and this—after subtracting the contribution of the = 87 mwz; (109

vapor—can be fitted to the parabolic Thomas-Fermi profile, z

to determine the condensate chemical potential and thus t
number in the condensate.

The explicit procedure actually used was not clearly de
scribed in Ref[4], but was described in full in Ref7]. In
this particular experiment a linear combination of a Thomas
Fermi function and g«=0 Bose-Einstein distribution was
fitted to the observed profile using a procedure which, usin
our notation, takes the following form. For that part of the
density due to the vapofor noncondensaleone sets the
chemical potential to zero and integrating along one dimen-
sion gives a contribution to the column densifgr a slice In Fig. 19 we show a least-squares fit of a linear combi-
wherex=0) of the form nation of a zero chemical potential and a Thomas-Fermi con-

Rfiusngez3.

This fitting method was found to give very good fits to the
‘phase-shift data obtained. However, it has no fundamental
basis, and in particular the identification of the fitted
Thomas-Fermi shape with the condensate itself is not easy to
justify when independent scale factors as in E)2 are

sed.

C. Comparison of fitting methods
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FIG. 19. Equilibrium data obtained from MI[4] fitted using
the MIT procedure as described in the tésolid smooth curvg FIG. 21. The best fit to the same data used in the previous two

and showing the component due to the nonconderidathed ling figures. The parameters used ware 900 K, ny=4x 10 and the
Parameters used wefe=800 nK, 9 000 000 condensate atoms. The density scale factor was 1.86.0 .
density scale factors were 1040 ! for the condensate, and

— 14
2.85¢< 10" for the vapor. in this fit. The fit is very good, but it should be noted that the

scale factors differ by a factor of more than 2.
densate profile—that is, of the form E({.02—for an equi- The same data can be fitted using the distributions from
librium distribution. The data used was obtained from Fig. 2Ed. (84). Figure 20 shows the same equilibrium data, fitted
of Ref. [4], for which the MIT group obtained values @ by using the same parameters but by using the semiclassical
=800 nK with 9000000 condensate atoms present in equidistribution—as before, we use tfleandn, determined by
librium after 160 mg23]. Also shown is the contribution to the MIT group using their procedure, so that the only free
the distribution due to the noncondensate atoms only. NotRarameter is aingle scale factor. This spatial distribution

that thez axis has been scaled by a factor of 3.2 over that ifi0€S not fit the experimental data so well. However, if we
Ref. [4], correcting a typographical errf23]. allow T andng to be determined byur fitting procedure, we

In this fit, as for all the following cases, the density scaleo?taln ?Tv_eg%go?(d f'.i'hT4h§Og%Ség't W%S fourt1d V\t"th parag"n-
factors (necessary to convert from the arbitrary unit scale®'€rs o= e wi condensate atoms and a

. . density scale factor of 1.9610 4 and is shown in Fig. 21.
re;ultmg from the expenmentg! measurem}emtsrg deter The temperature determined by our method at 900 K is not
mined by the least-squares fitting procedure. Since we use

the T andn, determined by the MIT group using their pro-

cedure, these two scale factors are the only free parameters "é\ 120
=1
_ —g 100+
z 120 -
5 % 80 |
€ 100} &
= 2 60}
) a | K E
= 80 | 3 ' 3
bE. o 40 | F— %
g ol g / |
[a] 9 %
E 40 ¢ g) () I e,
= 2
Lo) 20| = -400 -200 0 200 400
3 z (Um)
1}
<
50 0 by ; ; ; ; : ; ; : FIG. 22. Comparison of the two fit function&) Dashed line:
k= -400 -200 0 200 400 the MIT zero chemical potential vapor fit as in Fig. 1B) Gray
z (um) solid line: our best fit as in Fig. 21. The horizontal dotted lines

represent the widths of the Thomas-Fermi condensate functions for
FIG. 20. Equilibrium data as for the previous figure, fitted by the two casedc) Gray dot-dashed line: this represents the MIT fit,
using the semiclassical method proposed in this paper. Temperatubeit plotted using the same scale factor for the thermal cland an
and number of condensate atoms were taken to be the same as veaspropriately adjusted factor for the condensate for our fit, in
used previously T=800 nK andny=9x10f); however, the den- order to demonstrate that although the shapes of the two fits are the
sity scale factor was changed to 1:710™ 14 same, they do represent different physics.
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FIG. 23. Comparison between
experimental data from Ref4]
0 01 and theoretical spatial density dis-
-500 0 500 -500 0 500 tributions, calculated using the

semiclassical density distributions
and the growth model described in

120 120 . .
=i t= 120ms this paper. The scale factor is
1.96x10 ' The first frame
30 30 shows the distribution before the
cooling “cut” below the critical
Z temperature was performed. The
40 40 parameters used weile=900 nK

and ng=4x10°. The (lowen
solid curves show the theoretical
0 0f curves using initial conditior(c)
described in Sec. llIA 6. In the

Integrated Column Density, pipt(z) (arb. units)

-500 0 500 -500 0 500 .
second and third frames tHeip-
pen dashed curves depict the re-
120 120 sults obtained using initial condi-
t=40ms t=160ms tion (d) which become essentially
indistinguishable from the condi-
80 80 tion (c) curves for the final three
profiles.
40 40
0 0
-500 0 500 -500 0 500
z (um) z (Lm)

very different from the 800 K determined by the MIT proce- densate number of 220% because of the fifth power relation-
dure, but the condensate number by our method is, at 4hip between the peak width and the condensate number.
X 10P, less than half of the MIT value of91CF.

In order to compare the MIT fit and our best fit, we have D. Analysis of spatial distributions of the growing condensate
plotted the two fit functions on the same graph in Fig. 22. As
can be seen, the two are almost indistinguishable. Howeve

. g. (84), comparisons with the MIT growth data are pos-
the fact that the condengate numbers Q|ffer by a factor of Zip\o |, Fig. 2 of Ref[4] the density profiles of the system
shows that the assumption that the width of the “conden-

N ) ) ) are given for a single condensate growth run, and these are
sate” peak in the MIT fit determines the condensate numbefenroduced here in Fig. 23. The profiles are one-dimensional
is not justified here. slices through the center of the system, in thigong) axis.

The MIT fit manages to produce almost exactly the cor-|n addition to this graphical information, we also have the
rect profile as follows. Our profile has rather distinct “shoul- knowledge that after the final profile, & 160 ms, no fur-
ders” adjacent to the condensate peak, which merge rathgher growth was observed to ocd@3]. (The first profile, at
smoothly into the condensate peak. This behavior is mimt=—40 ms, is taken before the rf cut, is thus not part of the
icked in the MIT fit by lowering the temperature of the vapor growth sequence, and is not included in our)fits
by about 10%, which tends to make the vapor cloud rise The final profile can therefore be taken to correspond to
more rapidly as one approaches the center of the trap, and ltlgermodynamic equilibrium, and the fits to the equilibrium
broadening slightly and flattening considerably the condenprofile were compared in Sec. IVC. From this data, MIT
sate peak. At the same time, the “shoulders” in our fit areextracted values oT =800 nK andng=9x1CP. If these
continued further into the system, until the true narrower and/alues are used to compute the corresponding growth curve,
smaller condensate peak occurs. The actual peak widths dift is found that the predicted growth does not ceasd at
fer by about 18%, which then produces the change in con=160 ms, but instead continues until at leést250 ms.

With the aid of the spatial distributions calculated using
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10x106 . . . . _ . . . . condition (d), described in Sec. Il A 6, the agreement with
experiment again becomes very impressive. It is interesting

9 T to note that the spatial density distribution in this frame de-

8 /'6 | pends significantly on the initial conditions, which were
e A | found to have only a very small effect on the growth curve in
Z /,/ Sec. Il A 6. This is because the 40-ms frame is taken at a
g © / time very close to the initiation of the fast growth of the
g 5 y | condensate population, and the spatial distribution at this
g / time is quite strongly dependent on exactly when the growth
% 4 / AT does start, since any difference in the initiation time creates a
T 3 ’ / 1 relatively large change in the occupation numbers which are
°c , / @) still quite low at this time.

Loy E. Conclusions

0 0 } 0',05 0'.1 oi15 0'2 0i25 0',3 0'.35 0',4 0',45 05 The conclusions of this section depend on the use of the

single set of growth profiles which has been published, but
are consistent and convincing.

FIG. 24. Condensate growth curves corresponding to the fits to (i) The phenomenological MIT fitting procedure appears
the growth data of Fig. 23a) (Solid line) and(b) (dashed ling fits  to overestimate the condensate number by a factor of 2, and
with T=900 nK andng ;= 4x 10° with initial conditions(c) and(d) to give a temperature about 10% too small.

Time (s)

of Fig. 11.(c) (Dot-dashed ling fit using the MIT valueT =800 nK (i) Quite independently, the time of growth predicted us-
andng=8Xx 10°. Gray vertical lines indicate the times at which the ing the parameters extracted by MIT fitting procedure is too
profiles were taken. slow by a factor of about 1.5.

. . ! (iii) However, fitting the same data using the theoretically
Nevertheless, using a single scale factor, a fit can b@gqrect profiles gives values of temperature and final conden-
found to the five growth profiles by using the procedure dexate number which lead to a growth curve in agreement with
scribed in S_ec. IV A, with the corldensate(:)ﬁnumber of the finalhe experimental data for the growing condensate profiles.
profile, att=160 ms, given byny=7.5x10°. However, the It is possible that this is the source of the apparent
predlctgd p_roflles for subsequent times up to qbout 250 M8peedup found in many of the growth curves, for which spa-
show significant further developmetorresponding to the a1 profiles are not available. However, it is emphasized by
fact that the condensate numbggmgst continue to grow 10 the experimenterf25] that the phase contrast data used in
reach its ultimate value of ®10°), in contradiction to the  hese fits probably requires additional correction to take ac-
observation that no further growth occurs. count of finite optical resolution and scattering effects, and
If mstea(-tllwle use parameters corresponding to our best fj, 5t these corrections—although probably quite minor—
to the equilibrium data, namelgio;=4x10° and T=900  coyid well be different for the condensate and vapor profiles,
nK, the predicted growth is faster, and _growth is in fact com-yyhich have very different shapes, sizes, and densities.
plete att=160 ms, as can be seen in condensate growth |t s clear that the lack of any independent calibration of
curve given in Fig. 24. Using a single scale factor for all five the phase contrast determination of column density is the
profiles a very good fit is found for the last five profiles by major source of uncertainty in the interpretation of the data.

using the procedure described in Sec. IV A—the theoreticalne wide range of scale factors found would be eliminated
spatial distribution curves are compared to the experlmentegy such a calibration.

data in Fig. 23. Taking the variance of the data points to be

about 20, we fingy?>= 1300 for this fit, which is to be com- V. COMPARISON WITH OTHER

pared to an expecteg?= 1272+ 50, whereas the fit assum- T.HEORETICAL TREATMENTS

ing that the growth curve and profiles are characterized by

Nos=9x10° and T=800 nK hasy?=2575—that is, the Most of the other theoretical treatments have attempted to

is 24 standard deviations from the expected value. This cordescribe the formation of a condensate in a homogeneous,
responds to a speedup by a factor of about 1.5, which is afintrapped situation. No real quantitative predictions have yet
the order of magnitude of some of those found in our fits inemerged from any of the work that has been performed on
the previous section, and has two basic causes: trapped dilute atomic gas Bose-Einstein condensation, and so

(i) The higher temperature increases the intrinsic growtlcomparisons unfortunately will have to be qualitative at best.
rate which is roughly proportional 2.

(i) Although the lower final numben, —reduced by a
factor of about 2—reduces the gain slightly, this is far out-
weighed by the need for the growth curve to rise less than One of the techniques used to describe condensate growth
half the height. has been the quantum Boltzmann equation, which has been

The frame at 40ms shows the least good agreement; howsed by Snoke and Wolfe80], Semikoz and Tkachep31],
ever, the agreement can be improved by the choice of differand Holland, Williams, and Coop¢21], as well as forming
ent initial conditions, as is shown in Fig. 23. Using initial the basis of the theory of the kinetic stages in the work of

A. Quantum Boltzmann equation approach
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Kagan, Svistunov and Shlyapnikdd2,33. Although the
theory described in this paper was developed from the quan- 107 .

tum Kinetic theory[10-12, it turns out that essentially the 106
same equations may be obtained by modifying the quantum 105]. i
Boltzmann equation approach as follows: 1045

(i) The quantum Boltzmann equation in an ergodic form 103] ...

is used, a form similar to that used in RE21], 102

10

Occupation Numbers (fin)

of(e,) 8ma‘w?
. wh

> S(AE)g(emn)

em.€p.€q 10-1]

X[f(ep)f(eg)(1+f(em))(L+1(en))
- f(em)f(en)(1+f(ep))(1+ f(eq))]v (109

FIG. 25. The growth of a condensate of 9000000 atoms, as
where n,=g,f(ey) is the number of particles with energy predicted by the model in this paper. Plotted {&,), the popula-
€, Emn=Min(en.€,.6,.6;) andAE=e,+e,—e,—¢€,. tion per individual level with energe,,, and the energies of the
(i) The energy levels in the condensate band are modifiel§vels as functions of time. The valuesfde,,) ande,, are plotted
as discussed in Sec. Il A 7, in order to account for the mean@n log scales. The lines almost parallel to the time axis are not lines
field interactions due to the presence of the condensate. of constant energy, but rather lines of constant level number, whose
(i) The levels in the noncondensate band are summeanergies change with time. Not all levels are shown in order to
over and assumed to be time independent. This allows mucrﬂake the behavior legible. The solid black curve 'repres.ents the
gt an el Sz, SIS 0 b modeled a oo 1 oncerete el (1) o i e
to the 100-1000 atom systems typically simulated in previ_energy distribution has thepforri(E)OCE’l'Gl. The terr,lperature of
ous attempt_s. . . . . the system was 800 nK.
(iv) Collisions between two particles which were both ini-
tially in the condensate band were neglected, this is a valid ) o ) ) )
the noncondensate band. Ref. [32]. Svistunov predicted the formation of a particle-
Using these modifications, and the rates for the scatterinflux wave in energy space during the initial stages, which
and growth processes found from quantum kinetic theorjransports particles toward lower-energy states. The arrival
(see Sec. Il | the quantum Boltzmann equation will give Of this wave at the lowest-energy state at trdical time
rise to the set of differential equatiolig2) whose solutions Would give rise to an energy distribution function of the form
provided the results in this paper. f(E)<E~"° After the critical time this behavior would be
Of the above references, only the work of Holland, Will- ost due to a particle-flux wave propagating to higher ener-
iams, and Cooper conducted any simulations for the growties. The simulations of Semikoz and Tkaclj8%] showed
of a trapped condensate. They found that their simulations dhis behavior to some extent, although they found that the
condensate occupation number evolution behavech@s behavior at the critical time wal(E)=<E
=nos(1—e~Y7), wherer was a fitted parameter. A function The work by Svistunov in Ref.32] related to the case of _
of this form can be made to fit the results obtained by ouflomogeneous systems; however, he recently reworked his
model reasonably well, provided that an initiation time is Methodology to consider a gas confined by a harmonic trap-
allowed for, as was anticipated might be necessary in Refing potential. In this case he foup84] that the dependence
[21]. The same functional form was obtained using the quanat the critical time now tended towafdE)o<E =,

tum Boltzmann master equation approach in Reéf] by In Fig. 25 the results our model of condensate growth are
Jakschet al. shown in a somewhat different form. The occupation num-

It should be noted that, although the quantum kinetic debers for both the condensate level and excited states are plot-

scription for the growth of themeanoccupation numbers ted as a function of their energy and the titnete the loga-
also turns out to be described by a modified quantum Boltztithmic scaleg From this graph several points can be noted.
mann equation approach, the full quantum kinetic theor;FirSt, the front corner shows quite how rapidly the initial
treats aspects of condensate dynamics which are not accénditions, however arbitrary, are smoothed out by scattering
sible via the quantum Boltzmann equation. Such aspects irfrocesses, and the discontinuous initial conditions rapidly
clude the treatment of fluctuations, phase and phase decoh@pPproach a realistic distribution. The growth of the conden-

ence, and the inclusion of Bogoliubov-like quasiparticlesate is rather small up to the point labeled as the critical time,
states. after which the condensate grows enormously. The popula-

tions of the excited states approach equilibrium very rapidly
after the critical time, much more rapidly than the conden-
sate level does.

Major theoretical work into the growth of condensate in  As the critical time is approached, the distribution ap-
recent years has been performed by Kagan, Svistunov, amtoaches a straight line as shown in Fig. 25. At the critical
Shlyapnikov. They divided the growth into three stages, thé¢ime, when this distribution is linear with the logarithm of

B. Comparison with work of Kagan et al.
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the energy, the energy dependence was found to be of thEhe main improvements over the simpler description in Ref.
form f(E)«E~ 1 which is in good agreement with the pre- [5] are the more accurate calculation of the growth rate factor
diction of Svistunov ofe =, W*(ng), the consideration of the time dependence of the
As far as estimates of time scales are concerned, Kagalgwer-energy levels, and the inclusion of the scattering of
Svistunov, and Shlyapnikov predicted that the evolution ofparticles between these levels. The modifiatt factors
the system up until initiation would occur on the time scalehave the greatest effect, generally increasing the rate of
of the classical collision timery, that the initiation of the growth by a factor of about 3, dependent on the exact param-
condensate growth would occur on a much faster time scaleters. The inclusion of the other levels and their scattering
and that the final growth would occur on the time scale necalso leads to an increase in the rate of growth, mainly by
essary for the annihilation of vortices in homogeneous gaseseducing the amount of time taken for the initiation of the
and the decay of fluctuations in the phase of the condensatgrowth; that is, the time before the stimulated growth pro-
In the treatment of Kagan, Svistunov, and Shlyapnikovcesses, due to the Bose statistics of the system, become
the time scale for the first kinetic stage was postulated for alominant.
homogeneous gas; however, a comparison can still be made. The model describes the evolution of time-dependent en-
A first estimate ofro=(onv;) ! can be obtained by using €rgy levels in the lowest states, coqpled with a time indepen-
the classical value foo, the mean thermal velocity in a dent thermal bath of atoms occupying the higher-energy lev-
gas, ofvr=+2kT/m, and the cross section defined by els. The results give growth curves whose shapes are

=8maZ The value fom, the mean density, will be taken as approximately those given by

the density of the noncondensate particles in the center of the

trap given by - 0 for t<t;
mkT 3/2 VT(O) 0 noYf(l_ei(titi)/T) for t>t,

2wﬁ4 3’2( kT )

(107)

n= (106)

wheret; is some initiation time. This form agrees with the
[see Eq. 8% where G,(2)=3;_,e 9/q®. Taking V(0) general form of the results of Hollaret al.[21] and Jaksch

=0, and using a temperature of 900 nK, the collision time i€t al.[11] once an initiation time is allowed. The results also

70=27 ms. This temperature corresponds to that of theeem to be in qualitative agreement with features of the de-
growth in Fig. 8, which shows that the time until initiation is SCTiPtion proposed by Kagan, Svistunov and Shylapnikov.

of the order of Z,. Thus our treatment does agree with the The results are not very sensitive to the exact nature in

picture of Kagaret al.in that this stage occurs over the order Which the mean-field effects on the lower levels were ac-
of a few . counted for, so long as the energies of the very lowest levels

A note about the collision times is needed here. In examere altered in a consistent fashion. The initial conditions

ining the validity of the ergodic approximation, Jakseral ~ USed did not have a large effect on the growth curves, how-
found that it was valid only for quantities averaged over€Ver they can be important when the s_patlal Qen5|ty p.roflles
about ten collision timegL1]. The above time scale, is not of the system are calculated for comparison with experiment.
the time scale over which collisions occur in the condensate | "€ €volution of the model depends upon approximations
system in reality. It is rather the classical collision time for amade for the rate factorE(T) and W, "(no). The results
classical gas in equilibrium below the critical temperatureOPtained show that the growth is not very different as long as
but with no condensate present, and is obviously artificial.the actual value of(T) falls within about a factor of 10 of
Once the condensate begins to form, the density increasdd€ approximation, and as long as the actual values of
significantly, and the actual mean collision time was found inWm ' (No) lies within a factor of 2 ofW™ (no).
Ref. [11] to be more than two orders of magnitude smaller Overall the rates of growth predicted now agree rather
than,. Thus the ergodic assumption should still be valid forwell with the growth rates measured from experimental data
our treatment, even given the large valuergf [4]. However, at lower temperatures the trend in growth rates
The time scales found by Kaga al. for the second and Shows some divergence, with the experimental rates becom-
third stages of evolution have only been determined for thdng quicker while the predicted rates become slower. This
case of a homogeneous gas, and so accurate comparisdRgy be a result of the substantial cooling necessary to
with our model for these stages are not able to be performedichieve these temperatures, giving rise to a highly nonequi-
Our model does agree that the initiation stage occurs on #Prium system which is inadequately described by our
much faster time scale than the first kinetic stage. The pregnodel. .
ence of vortices has not been considered in our treatment, However, it could also be related to the use of the MIT

nor has any consideration been given to the phase fluctu@henomenogical fitting procedure by which condensate num-
tions, and so comparisons cannot be made with the thirgers and temperatures have been extracted from the conden-

stage of evolution in the description of Kaganhal. sate profiles in the experiment, since our method of extract-
ing these data, as given in Sec. IV, has a reasonably sound
theoretical basis, and gives considerably different values of
the condensate number, and somewhat different values of

In this paper a model of the growth of a condensate, detemperature, from the method used in the experiment. In the
rived from quantum kinetic theory10-12, is presented. one set of experimental profile data which we have been able

VI. CONCLUSIONS
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to check, only the values given by our method give a growttnumbers. These may be significant in determining the initia-
curve which fits the profile data. The values given by thetion time, which is when the occupation of the condensate
MIT method give a theoretical growth rate which is too slow level becomes large enough for the stimulated growth pro-
by a factor of about 1.5—in other words, an apparentcesses to take over.
speedup of the experimental condensate growth by a factor (iv) As the model stands, the noncondensate band “bath”
of 1.5, caused by the underestimate of condensate numbef atoms is treated as being time independent. A major ex-
and vapor temperature which result from the phenomenotension of the model would be to include the dynamics of the
logical fitting procedure used. noncondensate band in the evolution. Extension to include a
Further work which could be undertaken within the time-dependent bath will be treated elsewH&®).
framework of this model includes the following.
(i) An accurate determination of the rate factb(d') and
W " (no) analytically, or at least finding constraints on their
values by comparison with more experimental data. We would especially like to thank Wolfgang Ketterle and
(i) An inclusion of some Bogoliubov phononlike quasi- Hans-Joachim Miesner for discussions regarding the inter-
particle nature in the description of the lower-energy levelspretation of their data, as well as Yuri Kagan and Boris Svis-
since all excited levels in this paper were treated as Hartredgunov for discussions concerning their work on the kinetic
Fock particlelike quasiparticles, which will be valid for most theory of condensate initiation. The research was supported
of the higher levels but not for the lower-energy excitations.by the Royal Society of New Zealand under Marsden Fund
(i) A consideration of the fluctuations in occupation Contract Nos. PVT-603 and PVT-902.
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