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Quantum kinetic theory. VI. The growth of a Bose-Einstein condensate

M. D. Lee and C. W. Gardiner
School of Chemical and Physical Sciences, Victoria University, Wellington, New Zealand

~Received 20 December 1999; published 11 August 2000!

A detailed analysis of the growth of a Bose-Einstein condensate is given, based on quantum kinetic theory,
in which we take account of the evolution of the occupations of lower trap levels, and of the full Bose-Einstein
formula for the occupations of higher trap levels, as well as the Bose-stimulated direct transfer of atoms to the
condensate level introduced by Gardineret al. @Phys. Rev. Lett.79, 1793~1997!; 81, 5266~1998!#. We find
good agreement with experiment at higher temperatures, but at lower temperatures the experimentally observed
growth rate is somewhat more rapid. We also confirm the picture of the ‘‘kinetic’’ region of evolution,
introduced by Kagan, Svistunov, and Shlyapnikov„Zh. Eksp. Teor. Fiz.101, 528~1992! @Sov. Phys. JETP75,
387~1992!#…, for the time up to the initiation of the condensate. The behavior after initiation essentially follows
our original growth equation, but with a substantially increased rate coefficient. Our modeling of growth
implicitly gives a model of the spatial shape of the density profile of the condensate-vapor system as the
condensate grows, and thus provides an alternative to the present phenomenological fitting procedure, based on
the sum of a zero-chemical potential vapor and a Thomas-Fermi-shaped condensate. Our method gives sub-
stantially different results for condensate numbers and temperatures obtained from phenomenological fits, but
fits the published column density data very well.

PACS number~s!: 03.75.Fi, 05.30.Jp, 51.10.1y
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I. INTRODUCTION

Although the race to produce a Bose-Einstein conden
was preceded by intense debate concerning the likely rat
its formation, the discovery that a Bose-Einstein condens
of alkali-metal atoms could be produced relatively simp
@1–3#, and that the growth time was of the order of o
second, moved most theoretical activity into the investi
tion of the properties of the condensates so produced. S
the production of the first Bose-Einstein condensate th
have been few theoretical investigations into condens
growth, and only one experiment@4# has made any measure
ments of growth rates. Only the work of the present auth
and co-workers, based on quantum kinetic theory, has m
quantitative predictions on the growth rate of a Bos
Einstein condensate. This work started when we showed
to introduce the concept of stimulated condensate gro
resulting from kinetic processes@5#, leading to a very simple
formula for the growth rate. The MIT experiment@4# took
the form of a verification of the validity of our theoretica
prediction. At the same time, in Ref.@6# we refined the basic
concept of bosonic stimulation to generate a less ideal
theoretical picture, and to compare it with experiment. Th
initial papers were of necessity brief, and developed neit
the full theoretical justification on the numerical modelin
nor the full range of possible comparison with the availa
experimental data. In particular, no account was taken of
information available on the spatial distribution of the ato
in the vapor-condensate system as the condensate g
from the vapor.

This paper will therefore give the detailed justificatio
and a full range of comparison with experimental data. M
particularly, we want to present a theoretically justifiab
method of describing the condensate vapor system a
grows. The absence of such a description has led to a
nomenological fitting of vapor profiles to azero chemical
1050-2947/2000/62~3!/033606~26!/$15.00 62 0336
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potential Bose-Einstein distribution in the MIT growth ex
periment @4,7# ~and as well in the experiments on Bos
Einstein condensate in hydrogen@8#!, which may be an im-
perfect model whose results could well be misleading.

The theoretical description of condensate growth that
present is largely able to be viewed as a modification of
quantum Boltzmann equation, in which, however, expli
note is taken of the modification of the excitation spectru
by the existence of the condensate, including of course
fact that the lowest single-particle excitation energy is
chemical potentialmC(n0) of the condensate ofn0 atoms.
Equilibrium arises as a result of the equality of the chemi
potentials of uncondensed vapor and condensate, a pic
which is rather similar to that normally adopted for chemic
reactions. The quantum Boltzmann equation itself autom
cally provides the Bose stimulation, which makes transit
rates into the condensate and other highly occupied le
achieve a speed which permits the production of the cond
sate in a finite time. Without Bose stimulation, the produ
tion of a condensate of about 1 000 000 sodium atoms wo
take 30 h, rather than the 100 ms observed.

At first glance it might appear that a description whi
appears to be based on the quantum Boltzmann equa
would have nothing to say about condensate coherence o
origin of that coherence. This is emphatically not the case
the kinetics of the transfer of the atoms between energy
els in a trap requires the existence of a wave function f
each energy level. The condensate level has its own w
function, and this obeys the Gross-Pitaevskii equation. T
coherence arises because this level becomes macroscop
occupied. There is noprecisemoment when one can say th
the condensate initiates. This picture applies in a trap
which the energy levels about which we have been spea
are rather well separated. The picture of a Bose-Einstein c
densate, as developed in the middle part of this century
part of condensed-matter theory, is of a homogeneous
thus infinitely extended system—a system for which t
thermodynamic limit is achieved. Looked at from our view
©2000 The American Physical Society06-1
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M. D. LEE AND C. W. GARDINER PHYSICAL REVIEW A62 033606
point, this would be achieved by making the trap broader
ultimately flat. There is a transition point where the trap b
comes so flat that there is an occupation of the lowest q
siparticle levels which becomes comparable to the occu
tion of the condensate itself. At this stage the traditio
condensed matter picture becomes relevant, but this is
achieved in any traps presently in use.

II. MODEL FOR GROWTH OF A CONDENSATE

In this section, the formalism of quantum kinetic theo
@9# will be used to form a model of the growth of a trapp
Bose-Einstein condensate. The Bose atoms are describe
a second-quantized field, in the pseudopotential approxi
tion; that is, we write

H5Hkin1HI1HT , ~1!

where

Hkin5E d3x c†~x!S 2
\2

2m
¹2Dc~x!, ~2!

HI5
u

2E d3x c†~x!c†~x!c~x!c~x!, ~3!

and the termHT arises from a trapping potential as

HT5E d3x VT~x…c†~x!c~x!. ~4!

The pseudopotential method is used—its validity for t
kind of system was justified in QKV—whereu54pa\2/m,
anda is thes-wave scattering length arising from the inte
atomic potential.

The situation being considered is that of a vapor clo
confined in a trap in which the lower-energy levels are
significantly populated, while the higher-energy levels co
tain thermalized equilibrium populations, characterized b
temperatureT and chemical potentialm, unstable agains
condensate formation.

This situation is likely to arise, to a degree of approxim
tion, if a system, which is initially in equilibrium at a tem
perature slightly greater than the critical temperature,
cooled very suddenly to a temperature below the critical te
perature, by removing the very high-energy atoms in a ra
evaporative cooling ‘‘cut.’’ The higher-energy levels wi
very quickly come to their equilibrium distributions, sinc
the difference between the distributions before and after
cut are quite small at the higher energies. However, the lo
levels will be far from equilibrium and evolve to form
condensate. This is possibly one of the easiest scenario
model, it is also the situation investigated by the only d
tailed experimental study of the growth of a condensate
gas of 23Na atoms@4#.
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A. System

The system is contained in a three-dimensional harmo
potential, characterized by the frequenciesvx , vy , andvz .
It will be useful to define the geometrical mean frequency
the trap asv5(vxvyvz)

1/3.

1. Effective potentials arising from mean-field effects

In this system the energies and wave functions of
lower trap levels are quite strongly affected by the prese
of the condensate, and the effect will of course change as
condensate grows. In QKV it was shown that it is reasona
to account for this by introducing mean-field effects, whi
make the effective potentials depend on the occupation
the bands. The situation is illustrated in Fig. 1. As the co
densate grows, it expels the vapor from the center of the t
and this expulsion serves to reduce the mean field of
vapor as experienced by the condensate. The growth wil
assumed to be so slow that the condensate and noncon
sate bands are always inthermal equilibrium—that is, they
will have a well-defined temperature shared by both of the
but will not have the same chemical potential. Growth the
fore occurs as atoms are transferred from the vapor to
condensate, leading eventually to a unique chemical po
tial for the whole system.

2. Condensate and noncondensate bands

In the formalism of quantum kinetic theory, the system
divided into condensate and noncondensate bands. In
paper we will treat the situation in which the noncondens
band is assumed to be in thermal equilibrium with a tempe
ture T and chemical potentialm, and to contain the vas
majority of the atoms so that it is essentially undepleted
the process of condensate formation.

The picture of growth we will use is that presented
QKV. In that paper, it was shown that a legitimate divisio

FIG. 1. Representation of the modification of the trapping p
tential for ~a! the noncondensate band and~b! the condensate ban
due to mean-field effects.
6-2
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QUANTUM KINETIC THEORY. VI. THE GROWTH OF . . . PHYSICAL REVIEW A 62 033606
into condensate and noncondensate bands can be ma
which one distinguishes betweenparticlelike excitations, to
which it is possible to assign a definite number of atoms,
phononlikeexcitations, which are collective modes, whic
normally involve a large average number of atoms, but
not eigenstates of the atom number. In practice, it has b
shown @15# that the energy above which all excitations a
essentially particlelike is relatively small. For the purposes
our modeling, however, there are two criteria which must
considered in the definition of the condensate band.

~i! The noncondensate band is considered to be time
dependent; therefore, the condensate band must includ
levels whose populations change significantly during
condensate growth process. For the noncondensate ban
thermal distribution is given in the bulk by@e(E2m)/kT

21#21. This is only valid forE.m, and gives very large
populations whenE'm. The transition rates in and out o
levels in this vicinity also become very large, which contr
dicts the assumption that the distribution of the noncond
sate band is time independent. These lower states there
must be treated time dependently, and hence must be
cluded in the condensate band.

~ii ! The condensate band consists principally of lev
whose energy eigenvalues are significantly affected by
presence of a condensate—but levels which are not affe
may be included if this is desirable, which must be done
the first criterion is to be met.

Consequently, in this paper we will choose the condens
band to consist of all levels with energy less than the va
ER . We will also introduce an energyED,ER , which is the
energy above which we can consider the energy levels to
unaffected by the condensate, as illustrated in Fig. 2.

3. Grouping of energy levels into bands

The inclusion of all the condensate band energy level
the model means that simulations of the system require
principle, the calculation of all the eigenfunctions of the co
densate band, and detailed summations over these. In
tice the number of energy levels involved is of the order
tens of thousands, which makes an exact description imp
tical. However, progress can be made by grouping toge
energy levels in the condensate band into small ‘‘subband
with only the ground state~condensate state! being described

FIG. 2. Schematic representation of the simple model to cha
the energy levels due to the mean field effects of the conden
Levels are evenly distributed betweenED and mC(n0) which in-
creases withn0. The levels appropriate to the effective potential a
approximated by a uniform distribution between the lowest-ene
level and the valueED .
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as a single level. Each subband is described by an energem
and contains all the eigenstates found within the ene
range@em2Dem/2,em1Dem/2#. The value ofDem is chosen
partially by the requirement that the lowest of these subba
contains at least three levels. Smaller values ofDem would
lead subbands containing only fractions of individual leve
which is obviously unphysical. As the condensate grows,
mean-field effects from the high occupation of the cond
sate level will cause the energies of the levels in the s
bands to increase. The values ofem and Dem are therefore
dependent on the condensate occupation, and the mann
which they are altered will be discussed later.

B. Notation

For clarity, we set out some of our notation:

N: number of atoms in thecondensate band, ~5!

n0: number of atoms in thecondensate, ~6!

n0,f : equilibrium number of atoms in thecondensate, ~7!

mC~n0!: chemical potential of thecondensate, ~8!

m: chemical potential of thenoncondensate band, ~9!

jn0
~x!: wave function of ann0 atom condensate. ~10!

In the situations we will consider, the number of condens
atomsn0 will vary from zero to almostN, but this will al-
ways be substantially less than the number of atoms in
whole system, composed of both condensate and noncon
sate bands. Thus when the condensate is fully grown,
approximationn0'N will be valid, and will often be used.

C. Density of states for the system

In the absence of any condensate, the density of st
G(E) is taken to be that of a non-interacting gas in a h
monic well. That is

G~E![
dN~E!

dE
5

S E2
3

2
\v̄ D 2

2\3vxvyvz

, ~11!

whereN(E) is the cumulative number of states with ener
less thanE and v̄5(vx1vy1vz)/3. The number of states
in the subband with average energyem is thus gm
5G(em)Dem . The energy scale is such that the value
VT(r )5m(vx

2x21vy
2y21vz

2z2)/2 is zero at the origin.
Once the condensate begins to form, the mean-field

fects need to be taken into account. The mean-field repul
due to the condensate changes the energies of the lo
trapped states. The energy of the condensate level is equ

e
te.

y
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M. D. LEE AND C. W. GARDINER PHYSICAL REVIEW A62 033606
the chemical potentialmC(n0), which increases withn0. In
the Thomas-Fermi approximation the rise is proportiona
n0

2/5. Obviously the condensate level must remain
lowest-energy state, and thus the energies of the other s
belowED must also rise in some fashion. The exact nature
the energy change is difficult to calculate, but some reas
able approximations can be proposed which should re
duce the significant behavior caused by the mean-field
fects.

The most simply calculated estimate of the ene
changes is to assume the energies of the subbandsem are
evenly distributed between the fixed upper limit ofED and
the lower limit of mC(n0)'an0

2/5. This is illustrated sche-
matically in Fig. 2. Both the values ofem and the values of
Dem are nown0 dependent.

The final value ofDem ~after the growth of the conden
sate! is set to be\v. This condition also always fulfills the
requirements that there are at least about three discrete l
contained in the lowest-energy subband, and yet ensures
the subband has only a relatively small energy range.

The density of states for the condensate band, in the p
ence of the condensate, is thus taken to be approxima
Gn0

(E)5N@E2mC(n0)#2, whereN is a normalization cho-

sen so that the cumulative number of states atED is the same
as for the noninteracting harmonic-oscillator potential. T
behavior is illustrated in Fig. 3. As the discontinuity atER
shows, this model is obviously quite simplistic, and mo
realistic models will be discussed later.

It should be noted that in the inset of Fig. 3 the number
particles per energy intervalf (E) is shown~the occupation
of the condensate level is not shown! for equilibrium condi-
tions. From this inset it can be seen that the vast majority
atoms do indeed reside at energies higher thanER , and so
the assumption that the noncondensate band is undep
should be valid.

1. Modified Thomas-Fermi chemical potential

In the Thomas-Fermi approximation, the chemical pot
tial of the condensate is given by

FIG. 3. The cumulative number of states for a gas in a harmo
potential well. The dotted line shows the situation for a nonint
acting gas~no mean field effects!. The dashed line represents th
cumulative number of states due to the simple model propose
the text to incorporate mean field effects. The solid line sho
the corresponding occupation per energy intervalf (E)
5G(E)@exp„(E2m)/kT…21#21, also shown on a larger scale i
the inset.
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mC~n0!5S 15avxvyvzm
1/2\2

25/2
n0D 2/5

, ~12!

which vanishes asn0→0. However, the ground state of
noninteracting gas in a harmonic well is\(vx1vy1vz)/2,
and so the real chemical potential should approach this v
asn0→0. In order to interpolate the Thomas-Fermi chemic
potential to satisfy this requirement, the following form fo
the chemical potential will be used:

mC~n0!5a~n01n!2/5, ~13!

wherea5(15avxvyvzm
1/2\2/4A2)2/5, and n is a constant

such thatan2/55\(vx1vy1vz)/2.

2. Estimate of ED

An estimate for the value ofED , above which the excita-
tion spectrum is well described by that for a noninteract
gas, can be obtained using the number-conserving Bogo
bov spectrum@16,12#. The quantity of interest now is the
ratio of the corrections to the energy level arising from t
presence of the condensate, to the energy level determ
by the noninteracting gas model. For the case of the t
used in the23Na growth experiments at MIT@4#, numerical
calculations show that the ratio is less than 10% for energ
>2mC(n0), and the corrections are of the order of only 5
for E;2.5mC(n0). Thus a reasonable estimate ofED to be
used in the simulations is

ED52mC~n0,f !, ~14!

wheren0,f is the equilibrium occupation of the condensa
level, and this is the value ofED that will be used in this
paper.

3. Comparison with more accurate density of states

As a result of the predominantly single particle nature
the excitation spectrum, the cumulative number of sta
N(E) is expected to be quite well described at high energ
by the semiclassical approximation

N~E!5
1

~2p\!3E
0

E

d« E drE dp d„«2Esp~p,r !…,

~15!

where Esp(p,r )5p2/2m1VT(r )1(8p\2a/m)ujn0

2 (r )u
2mC(n0) is the semiclassical energy of a single particle
the potential created by the combination of the trapping
tential and the mean-field repulsion of the condensate. Eq
tion ~15! thus represents the summation over all phase-sp
cells which contain a single-particle excitation state of e
ergy less thanE. In Ref.@16#, by carrying out the momentum
and space integrals, an expression for Eq.~15! was found, for
the case of an isotropic harmonic trap of frequencyv, in the
form
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QUANTUM KINETIC THEORY. VI. THE GROWTH OF . . . PHYSICAL REVIEW A 62 033606
N~Ẽ!

n0
5Ẽ2A~12x!~x1h/Ẽ!

1E
0

Ẽ
d«̃

4

pz~3!
E

0

1

dx «̃hA@x21 «̃2/h2#1/22x

x21 «̃2/h2
,

~16!

where

h5
mC~n0!

kTc
, kTc5\vS n0

z~3! D
1/3

. ~17!

The chemical potentialmC(n0) is given by the Thomas
Fermi approximate form~12!, and the energy is given in th
dimensionless unitsẼ5E/kTc . This semiclassical form for
N(E) was found in Refs.@16,15# to be practically indistin-
guishable from that found by numerical solutions of the B
goliubov spectrum over the entire range of energies.

In Fig. 4 the semiclassical form of N(E) obtained from
Eq. ~16! is compared to that of the noninteracting harmo
oscillator @given by Eq.~11!#, and the density of states ob
tained using our model withED equal to 2mC(n0). The fig-
ure does not show very good agreement of our model w
the semiclassical results at moderate energies, althoug
low energies the agreement is good. At high enough ener
~not shown! the noninteracting potential results become pr
tically indistinguishable from those obtained from the sem
classical method, the energy at which this occurs is ab
5mC(n0) for the results in Fig. 4. It should be emphasiz
that this semiclassical result applies to an isotropic trap,
the consideration of the anisotropy of realistic traps, wh
has not yet been accounted for, may have a significant e
on the spectrum.

FIG. 4. The cumulative number of states N(E) below an energy
E. The solid line shows the results obtained using the semiclas
approximation for the isotropic trap equation~16!, and the dotted
line shows the case for the noninteracting harmonic well. T
dashed line represents the form used in this paper withED

52mC(n0). The results were obtained for a condensate
5 000 000 atoms at a temperature of 900 nK.
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4. Approximations

Several approximations that have been made in the d
vation of this model rely on the condensate band being sm
relative to the noncondensate band, and ifER andED are too
large then these approximations will not be valid. The a
proximations concerned are the following.

~i! That the noncondensate band is so large tha
is essentially undepleted by the process of conden
growth.

~ii ! That the scattering processes between conden
band atoms may be taken as being negligible compa
to the interband scattering processes, as will be assu
later.

It should be noted, and will be shown later, that the ma
effect on the overall growth due to mean-field effects
caused by the changes in energies of the lowest-energy
els, and for these levels the model proposed here is in q
good agreement with the semiclassical results. Becaus
this, as well as for the above reasons, the value ofED used
will generally remain equal to 2mC(n0,f). The value ofER is
chosen somewhat larger. This provides a check that the
lutions we find do match smoothly onto the distributio
aboveER , which is assumed not to change.

D. Dynamical processes

The dynamics which will be considered in order to d
scribe the evolution of the condensate band arise from
following processes.

~a! Two particles in the noncondensate band collide, o
of the particles leaves with an increased energy, and the
maining particle enters the condensate band, now having
energy less thanER . Of course the reverse process must a
be considered—a noncondensate band particle colliding w
a condensate band particle and exciting it out of the cond
sate band.

~b! A noncondensate band particle collides with a cond
sate band particle and exchanges energy such that both
ticles end up in the condensate band, and the reverse pro

~c! A noncondensate band particle collides with a cond
sate band particle, transferring some energy, but both
ticles remain in their respective bands.

~d! Two particles in the condensate band collide, transf
ring energy, with the result that both particles remain in t
condensate band, but having different energies than be
the collision.

Processes~c! and~d! will be termedscattering processes,
since they do not change the occupation number of ei
band. Processes~a! and ~b! cause the number of particles i
the condensate band to increase, and so will be referred
growth processes. The distinction between the two types o
processes is illustrated in Fig. 5. Because the number o
oms in the noncondensate band is much larger than tha
the condensate band, the scattering will be dominated
processes of type~c!, and those of type~d! will be neglected.

These processes are described by the full quantum kin
master equation obtained in QKIII and QKV, which can
used to determine rate equations for the evolution of
system.
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E. Growth processes

The formalism of Refs.@17,12,14# gives rise to rate equa
tions forN, the number of particles in the condensate band
a whole, andnm , which represent the number of quasipar
cles in the mth quasiparticle level. The derivation give
equations in the limit thatN is sufficiently large for us to
write n0'N. The rate equations take the form

dnm

dt
5ṅmugrowth1ṅmuscatt. ~18!

The form of ṅmugrowth was given in QKIII, Sec. IV E 3, and
can be written in terms of the transition rates as

ṅm5ṅm
11ṅm

2 , ~19!

Ṅ52W1@~12e(mC(N)2m)/kBT!N11#1(
m

$ṅm
12ṅm

2%,

~20!

where

ṅm
1[2Wm

11~N!@~12e[mC(N)2m1em]/kBT!nm11#, ~21!

ṅm
2[2Wm

21~N!@~12e[ 2mC(N)1m1em]/kBT!nm11#;
~22!

the relationships between forward and backward rates ca
shown to be

W1~N!5e[m2mC(N)]/kTW2~N!, ~23!

Wm
11~N!5e[m2mC(N)2em]/kBTWm

22~N!, ~24!

Wm
12~N!5e[m2mC(N)1em]/kBTWm

21~N!. ~25!

In these equations, the energies of the quasiparticle ex
tions em are measured from theground-state energy, which
is mC(N).

FIG. 5. Illustration of the two types of dynamical process
growth and scattering. Only the two noncondensate particle gro
process is shown@process~a! in the text#, and only noncondensate
condensate band scattering is shown@process~c!#.
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1. Transitions

There are six processes which are described by th
equations.

~i! N→N11, with no change inn. The transition prob-
ability for this process isW1(N)5R1

„jN ,mC(N)/\….
~ii ! N→N21, with no change inn. The transition prob-

ability for this process isW2(N)5R2(jN21 ,mN21 /\).
~iii ! N→N11, with nm→nm11. The transition probabil-

ity for this process isWm
11(N)5R1@ f m ,„eN

m1mC(N)…/\#.
~iv! N→N21, with nm→nm21. The transition probabil-

ity for this process is Wm
222(N)5R2

„f m ,(eN21
m

1mN21)/\….
~v! N→N11, with nm→nm21. The transition probabil-

ity for this process isWm
12(N)5R1

„gm ,(2eN
m1mN)/\….

~vi! N→N21, with nm→nm11. The transition probabil-
ity for this process is Wm

21(N)5R2
„gm ,(2eN21

m

1mN21)/\….
Here the functionsf m andgm are amplitudes for the cre

ation and destruction of atoms in quasiparticle states w
energieseN

m , which are defined in Refs.@17,12#, but whose
explicit form will not need to be used here;jN is the con-
densate wave function forN atoms. The functionsR6(y,v8)
are defined by

R1~y,v8!5
u2

~2p!5\2E d3rE d3K1 d3K2 d3K3 d3k

3d„Dv123~r !2v8…d~K11K22K32k!

3F1F2~11F3!Wy~r ,k!, ~26!

R2~y,v8!5
u2

~2p!5\2E d3rE d3K1 d3K2 d3K3 d3k

3d„Dv123~r !2v8…d~K11K22K32k!

3~11F1!~11F2!F3Wy~r ,k!. ~27!

In these equations the following notation is used:

\vK i
~r ![

\2K i
2

2m
1VT~r !, ~28!

Dv123[vK1
1vK2

2vK3
, ~29!

DK[K11K22K32k, ~30!

u5
4p\2a

m
. ~31!

The functionFi5F(K i ,r ) is the distribution function for
the noncondensate particles, and the Wigner function
given by

,
th
6-6
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Wy~r ,k!5
1

~2p!3E d3v y* S r1
v

2D yS r2
v

2Deik•v. ~32!

The R1 function is related to collisions between two no
condensate band particles with momentaK1 and K2, from
which the particles leave with momentaK3 andk. The par-
ticle with momentumk is now in the condensate band~i.e.,k
is small! so that the particle with momentumK3 remains in
the noncondensate band. The functionsR6(y,v8) therefore
represent the rates for collisions which result in a parti
entering (1) or leaving (2) the condensate band with a
energy\v8.
v

on
-

a
th

n
t

s
ti
t
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2. Approximate evaluation of transition rates

The rate factorsW6(N) contain integrals over all space o
terms containing the product ofF(K ,r ) terms times the
Wigner function corresponding to the ground-state wa
function WjN

(r ,K ). In practice the ground-state wave fun
tion is very sharply peaked in comparison to the spatial
pendence of theF(K ,r ) functions which describe the re
mainder of the cloud of atoms. This means that in the spa
integral for theW6(r ) terms @from Eqs. ~26!# the F(K ,r )
terms can be approximated by their values atr50. This
gives
W1~N!5
u2

~2p!5\2E d3K1E d3K2E d3K3E d3k d~DK !d@Dv123~0!2mC~N!/\#F~K1 ,0!F~K2 ,0!

3@11F~K3 ,0!#u j̃N~k!u2 ~33!

W2~N11!5
u2

~2p!5\2E d3K1E d3K2E d3K3E d3k d~DK !d@Dv123~0!2mC~N!/\#@11F~K1 ,0!#

3@11F~K2 ,0!#F~K3 ,0!u j̃N~k!u2, ~34!
c-
ua-

ilar

ted

is

he
f

in which j̃N(k) is the momentum-space ground-state wa
function, obtained from the spatial form by

j̃N~k!5
1

~2p!3/2E d3r eik•rjN~r !. ~35!

In Ref. @5#, progress was made by assuming that the n
condensate band distributionF(K ,r ) was given by the clas
sical Maxwell-Boltzmann distribution

F~K ,r !'expS 2
\2K2/2m1VT~r !2m

kT D , ~36!

with values ofT and m which ensure the formation of
condensate once the system reaches equilibrium. Fur
more, in calculating the integrals in Eqs.~33! and~34!, it was
assumed that the range of condensate band energies was
ligible compared to that of the noncondensate band. Thus
range ofk was negligible compared to the range ofK1,2,3,
and the integrals inK1,2,3 were calculated over all energie
rather than just over the noncondensate band. The func
F(K ,r ) was also assumed to be negligible compared
unity. The result obtained was@5#

W1~N!5
4m~akT!2

p\3 e2m/kTFmC~N!

kT
K1S mC~N!

kT D G .
~37!
e

-

er-

eg-
he

on
o

HereK1(x) is a modified Bessel function. In almost all pra
tical situations the term in square brackets in the above eq
tion is approximately equal to unity, and soW1 is essentially
independent ofN. The value ofW2(N), the rate of transi-
tions out of the condensate band, can be obtained in a sim
fashion to that forW1. The ratio of forward to backward
rates is found to be given by

W1~N!5e„m2mC(N)…/kTW2~N!, ~38!

which stems from the assumption of the thermal undeple
bath, and the definitions ofW1 andW2. From this equation
and the master equation it can be seen that equilibrium
achieved whenmC(N)5m to order 1/N.

3. Simple growth equation

A rate equation for the mean number of atoms in t
condensatêN& ~written asN for convenience for the rest o
this section! was obtained in@5,12#

Ṅ52W1~N!$~12e„mC(N)2m…/kBT!N11%. ~39!

This equation is thesimple growth equationused for the
simulations of condensate growth in Refs.@5,12#. If the sys-
6-7
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tem starts withN50, the growth begins slowly~but at a
finite rate!. Once a significant condensate occupation is
tained the term proportional toN becomes dominant, causin
a much faster growth rate. The growth eventually slows
mC(N) approachesm and the system settles into equilibrium
This gives the curve anSshape, as will be shown in the ne
section.

By using the Thomas-Fermi chemical potential@Eq. ~12!#
for mC(N), and the Maxwell-Boltzmann form forW6(N),
the first simulations for the growth of a realistic condens
were presented in Ref.@5#. The growth equation is simple t
solve numerically, for whatever number of particles is ne
essary~for example, the growth of a condensate contain
5 000 000 atoms was simulated in Ref.@5#!.

4. Beyond the simple growth equation

The derivation of the simple growth equation contains
number of approximations and simplifications. The ma
behavior onceN becomes large should be described qu
well by the simple growth equation, but terms which we
neglected may have significant effects during the ini
stages of growth. Possibly significant factors which sho
first be considered are the following.

~i! The effect of considering all quasiparticle levels~the
excited levels in the condensate band!.

~ii ! The effect of scattering processes~as defined in Sec
II D !.

~iii ! Corrections to theW6(N) terms to consider the mor
realistic Bose-Einstein distribution function.

~iv! The fluctuations around the mean number.
This paper aims to consider the effects of incorporat

the first three of these factors into the growth equation. D
ing the process of Bose-Einstein condensate formation,
spectrum of eigenvalues makes a transition from the un
turbed spectrum of trap levels to the case where the spec
is strongly affected by the condensate in the ground st
The Bogoliubov spectrum of a condensed gas is valid in
case where the number of particles in the condensate,n0, is
so large that it is valid to writen0'N. Thus, during the
initial stages of condensate formation, where this is not tr
one must use another formalism. In this paper we will co
sider the situation in which the interaction between the p
ticles is very weak, as is in practice the case. This means
we will be able to use the unperturbed spectrum for the
tial stages of condensation, and only use the Bogoliubov
scription once enough condensate has formed to make
effective interaction rather stronger.

The basic formalism of Ref.@12# can still be carried out in
this case, and the modification that is found is rather mino
03360
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essentially, we make the substitutionN→n0 in the chemical
potential and theW1(N),W11(N) functions, and setWm

21

→0, since this term comes from the mixing of creation a
annihilation operators which arises from the Bogoliub
method.

By making these adjustments, and now grouping the l
els into subbands of energyem @measured now from zero
rather than frommC(N) as was the case forem], with each
subband containinggm levels, the equations of motion fo
the growth processes are now

ṅmugrowth52Wm
11~n0!$@12e(em2m)/kT#nm1gm%, ~40!

ṅ0ugrowth52W1~n0!$@12e[mC(n0)2m]/kT] #n011%. ~41!

We will make the further—possibly rather drastic—
simplification, and entirely neglect the effect of phononli
quasiparticles, which are known to comprise only a ve
small fraction of the levels normally occupied at the te
peratures considered. Thus the excited states are now t
to be of a purely single-particle nature, and the condens
band is now described by the occupation number of the c
densate level~the lowest energy level! n0, and by the occu-
pation numbers of each of the excited statesnm . In this case,
Eqs.~40! and ~67! become the same as Eqs.~18!–~25!, and
may therefore be used to represent the full conden
growth process.

The complete neglect of phononlike quasiparticles can
justified by noting that the lower of these represent sh
oscillations of the condensate itself. Thus, although th
quasiparticle levels could become quite highly occupied, t
really amounts to growth into an oscillating condensate. E
perimentally this does happen, but large quasiparticle os
lations amount to a rather small fractional change in cond
sate shape, which is not expected to make much differenc
the overall growth.

5. Evaluation of transition probabilities

The value for the transition probabilityW1(N) found in
the simple growth equation~39! was derived by making
some rather sweeping assumptions, and as such Eq.~37! is
really just an order of magnitude estimate. To obtain a m
accurate value the full Bose-Einstein distribution must
used forF(K ,r ) and the ranges of integration of the nonco
densate functions must exclude the condensate ban
whichF(K ,r ) would become very large. We then have, fro
Eq. ~33!,
W1~n0!5
u2

~2p!5\2E d3rE
E.ER

d3K1E
E.ER

d3K2E
E.ER

d3K3E
E,ER

d3k d~DK !d„Dv123~r !2mC~n0!/\…F~K1 ,r !

3F~K2 ,r !„11F~K3 ,r !…Wjn0
~r ,k!, ~42!
6-8
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with

F~K ,r !5FexpS ~\2K2/2m1VT~r !2m

kT D 21G21

~43!

5(
s51

`

expS 2sF\2K2/2m1VT~r !2m

kT G D . ~44!

Again, we have to make the following approximations.
~i! That the spatial dependence can be neglected

F(K ,r )→F(K ,0) andWjN
(r ,k)→ujN(k)u2.

~ii ! That we can neglect thek dependence, except injN ,
so that the only k dependence left is removed b
*d3kujN(k)u251. The integrals overK1 , K2 , and K3 can
then be performed, to give a final form forW1(n0), found
by Davis @18#, of

W1~n0!5
1

2 S kBT

\v D 2H [ log(12z)] 2

1z2(
r 51

`

[z z(n0)] r [F(z,1,r 11)]2J , ~45!

where

z5e(m2ER /kBT), z~n0!5e$[mC(n0)2ER] %/kBT. ~46!

The functionF is theLerch transcendent@19#, defined by

F~x,s,a!5 (
k50

`

xk/~a1k!s. ~47!

This form of W1(n0) gives values of about a factor of
greater than the previous form in Eq.~37!, depending on the
exact parameters of the system, and this gives a corresp
ingly faster growth than that in Ref.@5#.

The values forWm
11(n0) are more difficult to obtain. The

Wm
11(n0) terms are the average of theW11 terms for all the

individual levels in the subband. TheW11 terms are given
by similar overlap integrals as used for theW1 terms, and
for the lower-energy levels in the condensate band, the o
lap of the wave function with the spatial distribution of
noncondensate band particle should be similar to that for
condensate level. Thus it is expected that theW11 terms
should be of the same order of magnitude asW1(n0).
Progress can therefore be made by approxima
Wm

11(n0)'W1(n0). The effect and validity of this approxi
mation will be investigated in Sec. II F.

F. Scattering processes

Scattering processes in this paper also need to be inclu
in the evolution ofnm . Scattering between two atoms in th
noncondensate band does not have to be explicitly con
ered, since it has been dealt with in making the assump
that the noncondensate band is an equilibrated ti
independent thermal bath. Furthermore, the scattering
tween two condensate band atoms will be neglected sinc
any time, the number of atoms in the condensate ban
03360
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small relative to the number in the noncondensate band.
dominant scattering processes, and the only ones which
be considered, are the scattering of atoms between leve
the condensate band, due to interactions with nonconden
band atoms~see Fig. 5!. These stem from terms in the fu
master equation which involve two condensate field ope
tors f. These terms give rise to a master equation of
form, as shown in QKIII, Eq.~50d!:

ṙuscatt5 (
mk

ek,em

gkmN̄km$2XkmrXkm
† 2@Xkm

† Xkm ,r#1%

1 (
mk

ek.em

gkm~N̄km11!$2XkmrXkm
† 2@Xkm

† Xkm ,r#1%

1 (
km

ek5em

gkmM̄km$2XkmrXkm
† 2@Xkm

† Xkm ,r#1%,

~48!

which is equivalent to the master equation governing
scattering of particles by a heat bath@20#.

Here the operators are defined by

Xkm[am
† ak , ~49!

whereak is the destruction operator for an atom in statek
with energyek . As in Sec. II E, we treat all excitations a
being particlelike. The rates of the processes are determ
by the factorsgkm , and the factorsN̄km are defined by

N̄km[
1

expS ek2em

kT D21

. ~50!

The last line in the master equation~48! represents scatterin
between degenerate energy levels, which will not have
contribution to the time dependence ofnm once the levels are
grouped into subbands, and so can be ignored.

The corresponding rate equation fornk5^ak
†ak&, the mean

occupation of thekth level, can easily be found from th
master equation. When levels are grouped into subba
with mean energyek , occupationnk , and with gk levels
contained in the subbands, it becomes

ṅkuscatt

5 (
m

ek.em

gkm$N̄kmnm~nk1gk!2~N̄km11!~nm1gm!nk%

1 (
l

ek,el

g lk$~N̄lk11!nl~nk1gk!2N̄lk~nl1gl !nk%.

~51!

The transition ratesgkm now represent averages over all th
individual level transition rates which transfer an atom fro
the k subband to them subband. The transition probabilitie
gkm can be found in a similar manner to theW1(n0) terms,
from terms of the form@12#
6-9
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Rkm~N!5
4u2

~2p!5\2E d3rE d3K1E d3K2E d3kE d3k8d~K12K22k1k8!F~K1 ,r !„11F~K2 ,r !…

3Wk~N,r ,k!Wm~N,r ,k8!d„Dv12~r !2Vm1Vk…, ~52!
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where

Vm~N!5
mC~N!1em~N!

\
~53!

5
em~N!

\
, ~54!

and the rest of the notation is as was used in Sec. II E.

1. Estimates forgkm

Explicit computation involved in calculating these facto
is impractical, and, it will turn out, unnecessary when t
scattering is sufficiently strong. We shall instead estim
thesegkm rates by using the quantum Boltzmann approach
Holland et al. @21#.

By treating the excitation spectrum as given by the eig
states of the trapping potential, without modification by t
presence of the condensate, and by using the ergodic
sumption, Hollandet al. obtained the kinetic equation@Eq.
~12! in Ref. @21##

gn

] f n

]t
5(

mqp
den1em ,ep1eq

g~em ,en ,ep ,eq!

3@ f qf p~11 f m!~11 f n!2~11 f q!~11 f p! f mf n#,

~55!

in which t5(8ma2v2/p\)t. The population of a level with
energyen is f n , and the degeneracy of levels at that ene
is gn . The collision kernelg(em ,en ,ep ,eq) is given from
the overlap integrals for the statesm, n, q, and p. How-
ever, when the energies of the levels considered are sp
quite far apart, Hollandet al. found from numerical calcula
tions that the collision kernelg(emin ,en ,ep ,eq) is well ap-
proximated by the degeneracygemin

. Hereemin is the smallest
of the energies in the collision. In our model the energ
will always be quite well spread, as~a! they must be in
different subbands, each subband being quite well separ
from the next in terms of mean energy; and~b! the scattering
processes we are attempting to describe must haveem andep
in the noncondensate band andeq andep in the condensate
band. Thus in our model we may safely u
g(emin ,en ,ep ,eq)'gemin

.
By summing overm andp terms~which are levels higher

thanER), the effect of all the noncondensate~‘‘bath’’ ! levels
on the condensate band atoms may be calculated. The ki
equation for the scattering now becomes
03360
e
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]nn

]t U
scatt

5(
q

F ~11 f n! f qS (
mp

d~n,m;p,q!gemin
f p~11 f m! D

2~11 f q! f nS (
mp

d~n,m;p,q!gemin
f m~11 f p! D G ,

~56!

where the following notation has been used:

nm5 f mgm , ~57!

d~n,m;p,q![den1em ,ep1eq
. ~58!

The terms of this equation can be simplified for the differe
possible cases.

First line, case en.eq : In this case,eq5emin , and energy
conservation is satisfied when

ep5em1\vnq , ~59!

where\vnq5en2eq . The summation term in the first line
of Eq. ~56! then becomes

gq (
em.ER

~11 f m! f m1vnq
'gqe(m2\vnq)/kTG~T! ~60!

where

G~T![ (
em.ER

e2em /kT. ~61!

The approximation which has been made is that (11 f m)
'1, which should be acceptable since statem is of high
energy~i.e., in the noncondensate band!. The calculation of
G(T) requires a knowledge of the spectrum of energies in
noncondensate band, which is complicated for an anisotro
trap. The form for anisotropic harmonic potentialḠ(T) is
easily calculated though, and gives

Ḡ~T!5
e2ER /kT

12e2\v/kT
, ~62!

wherev is the frequency of the potential. We will therefor
make the approximation thatG(T)'Ḡ(T) for the determina-
tion of gkm , using the geometrical mean frequency of t
real trap as the frequency of the isotropic potential. Thusv
5(vxvyvz)

1/3 in Eq. ~62!.
Remaining terms:Similar reasoning leads to the resul
6-10
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gn (
ep.ER

~11 f p1\vqn
! f p'gn (

ep.ER

e(m2ep)/kT ~63!

5gnem/kTG~T!, ~64!

gq (
em.ER

f m~11 f m1\vnq
!'gqem/kTG~T,R!, ~65!

gn (
ep.ER

f p1\vqn
~11 f p!'gne(m2\vqn)/kTG~T!. ~66!

2. Total scattering equation

The total kinetic equation governing the scattering p
cesses is now given by

ṅmuscatt5
8ma2v2

p\
em/kBTG~T!

3H (
k,m

1

gm
@nk~gm1nm!e2\vmk /kBT2nm~gk1nk!#

1 (
k.m

1

gk
@nk~gm1nm!2nm~gk1nk!e

2\vkm /kBT#J .

~67!

The notationk.m is now being used to meanek.em . This
is the rate equation governing scattering processes,
equivalent to Eq.~51! if the following transformations are
made:

N̄~vnq!→e2\vnq /kT, ~68!

11N̄~vnq!→1, ~69!

gnq→
8ma2v2

p\

em/kTG~T!

gn
when n.q,

~70!

gnq→
8ma2v2

p\

em/kTG~T!

gq
when n,q.

~71!

G. Rate equations including scattering and growth

The total rate equation governing the evolution of th
system is then given by adding Eq.~40! to Eq. ~67!,

ṅm5ṅmugrowth1ṅmuscatt, ~72!

and for the condensate level evolution~41! is used in place
of Eq. ~40!. It is useful here to review the major approxim
tions that have been made in order to derive these equat
It was assumed that:

~i! the noncondensate band is very large, so it is ess
tially undepleted, and it is in equilibrium;

~ii ! the influence of collective excitations is negligib
small, so that the states in the condensate band are a
single-particle nature;
03360
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~iii ! the density of states in the system is as described
Sec. II C;

~iv! the ergodic approximation is valid, and that states
the condensate band which have similar energies may
‘‘binned’’ together for the purpose of describing their evol
tion;

~v! the fluctuations of the occupation numbers around
mean numbers may be ignored;

~vi! the rate constantsW11 for the growth processe
which change the occupations of the excited states in
condensate band are equal to the rate constant for the gr
of the condensate level;

~vii ! the rate constant for the scattering processes in
anisotropic well of geometrical mean frequencyv is equal to
that in an isotropic well with frequencyv;

~viii ! three-body collisional processes may be ignored

III. NUMERICAL SOLUTIONS OF THE GROWTH

The rate equations derived to describe the growth o
condensate in Sec. II are quite straightforward to solve
merically, and the solutions can be obtained in a matter o
few seconds as opposed to other numerical solutions w
have been very time consuming. The nature of these s
tions will be discussed and comparisons will be made w
experimental data published in Ref.@4#. The parameters o
the system modeled were chosen to be the same as in
MIT growth experiments:

~i! Using a dilute gas of23Na atoms, characterized by a
s-wave scattering length ofa52.75 nm@22,4#.

~ii ! With an axially symmetric~‘‘cigar shaped’’! har-
monic trapping potential described by the frequenciesvx
5vy52p382.3 Hz andvz52p318 Hz, and giving a geo-
metrical mean frequency ofv52p350 Hz @4,23#.

~iii ! With a total number of atoms of the order of 107, the
numbers found in the condensate level once equilibrium
reached are in the range 53105 to 13107, giving a conden-
sate occupation of between 5 and 30% of the total numbe
atoms@4,23#. In the majority of cases the thermal bath w
therefore depleted by only a small amount, and the un
pleted model which is used here should be a good appr
mation.

~iv! With temperatures in the range 0.5–1.5mK @4,23#.

A. Results

1. Simple growth equation results

Numerical solutions of the simple growth equation

ṅ052W1~n0!$~12e„mC(n0)2m…/kBT!n011%, ~73!

are easily obtained@5#, and an example of the resultin
growth curve is shown in Fig. 6. This curve shows a char
teristic S shape, the slow initial growth occurs as a resul
spontaneous (11) terms in Eq.~73! and then, once the oc
cupation becomes large enough, the stimulated growth te
~those proportional ton0) dominate and the growth accele
ates. The condensate grows quickly, until it approaches e
librium where it slows again asmC(n0) approachesm, giving
the final part of the S-shape nature.
6-11



d
. I

o
d
o
pu
ll-
e
h

io
r o
h
u
e
th
s

a
ch

r-
th
rg
od

e
th
re
re
ev
th
r

te
e

d
en

Fur-
by

field
d in
the
4

te

els.
ion
he
e
lev-

ns
e

a-

me

els
eed
con-
heir
rio,
ex-
this

e
on

he
at

he
rs as

-
the
e the

M. D. LEE AND C. W. GARDINER PHYSICAL REVIEW A62 033606
The derivation of the simple growth equation containe
number of significant approximations and assumptions
effect it describes the situation in which the occupations
all levels higher in energy than the ground state are treate
time independent, giving an undepleted thermal bath in c
tact with only the condensate level. Furthermore, the po
lations of the levels in this bath are given by the Maxwe
Boltzmann distribution, rather than the correct Bose-Einst
distribution, and no mean-field effects are introduced. T
simple growth equation is therefore just a first approximat
for the growth, and was merely intended to give an orde
magnitude description of the growth process. Indeed, as s
be shown in a subsequent section, experimental meas
ments@4# have shown that, although it gives the correct ord
of magnitude for time scale of the growth, the simple grow
equation does not describe the rate of growth to any clo
than a factor of about 3.

2. New model of growth processes

In order to improve the description of the growth over th
of the simple growth equation, the first improvement whi
will be made is the more accurate calculation ofW1, using
the full Bose-Einstein distribution. However, for lowe
energy levels the equilibrium populations determined by
Bose-Einstein distribution are very large. Having such la
populations in these levels will obviously not be a go
model of a system rapidly cooled from a point wherem was
negative to a region wherem has become positive, since th
changes in populations of these levels required during
process are so substantial that a fairly long time will be
quired for the levels to come to equilibrium. It is therefo
unphysical to consider a situation where the low-energy l
els have reached their equilibrium populations before
condensate level has even started to evolve. For these
sons, it is not consistent to simply use the Bose-Eins
distribution to find W1 in the model considered by th
simple growth equation.

In order to develop a consistent description there nee
be a number of lower-energy levels with time-depend

FIG. 6. Typical results of the simple growth equation for t
growth of a Bose-Einstein condensate in the MIT apparatus
temperature of 900 nK withm543.3\v. The initial condensate
occupation was taken to be 100 atoms.
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populations considered, forming the condensate band.
thermore, the energies of these levels will be increased
the growth of the condensate, due to increased mean-
interactions. To describe this situation the model describe
Sec. II must be implemented. Considering at first only
‘‘growth’’ processes, the evolution was found in Sec. II E
to be given by

ṅmugrowth52Wm
11~n0!$@12e(em2m)/kT#nm1gm%, ~74!

ṅ0ugrowth52W1~n0!$@12e[mC(n0)2m]/kT#n011%, ~75!

where, for reasons given in Sec. II, we approxima
Wm

11(n0) by W1(n0). This form of evolution is essentially
the simple growth equation applied to several energy lev

It is now possible to perform a more accurate calculat
of W1, using the Bose-Einstein distribution to describe t
population of levels aboveER ~i.e., in the noncondensat
band!, and summing only over the noncondensate band
els. The new form ofW1 is given by Eq.~45!.

Sample solutions to the coupled differential equatio
~74! and~75! are shown in Fig. 7. The rate of growth of th
condensate has increased substantially~generally by at least
a factor of 3! over that predicted by the simple growth equ
tion, this is due to the more accurate calculation ofW1(n0).
However, the shape of the growth is still essentially the sa
as that given by the simple growth equation.

It can be seen from Fig. 7 that the lower-energy lev
also experience very substantial growth in this model. Ind
the occupations of some of these levels can exceed the
densate occupation substantially before relaxing back to t
equilibrium values. This is of course not a realistic scena
and is certainly not one that has been observed in any
periments. Note that the number of subbands used in
figure ~and most of the other figures presented! is substan-
tially fewer than would normally be used. Generally th
number of subbands required is about 20–50, depending

a
FIG. 7. Typical results of the new growth equations for t

growth of a Bose-Einstein condensate using the same paramete
in Fig. 6. The condensate level~bold! reaches the equilibrium popu
lation of 53106 atoms, the other lines represent the evolution of
populations of the other subbands in the condensate band. Not
much faster growth than in Fig. 6.
6-12
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QUANTUM KINETIC THEORY. VI. THE GROWTH OF . . . PHYSICAL REVIEW A 62 033606
the exact parameters; however, these cannot be well di
guished from each other in a graph. Therefore, through
this paper, most of the depictions of the growth of subba
will show only a few of them.

Once scattering processes are included~see below!, re-
ducing the number of subbands used causes the grow
become slower. It also causes the model to become les
alistic, since an individual level may then be described by
average energy quite different from its actual energy. If
number of subbands is increased, an asymptotic limit to
speed of the growth is reached, however this is also unr
istic since now some subbands contain only fractions of
dividual energy levels. The choice used in practice is s
that in their final equilibrium states the subbands have wid
of \v. This choice is close to the asymptotic limit, and e
sures at least three individual levels are contained in the
subband.

3. Inclusion of scattering processes

If we include scattering processes, as given by Eq.~67!,
the picture is dramatically changed. Solutions for the res
ing evolution equations~72! are shown in Fig. 8. This figure
shows that the scattering has two main effects. First,
initiation of the condensate level growth occurs much m
sharply, this gives a substantial change to the shape of
growth, which has now lost much of the S-shape nature
previous solutions had shown. The speed of the growth a
the initiation is changed little by the inclusion of the scatt
ing processes, since in this region growth is complet
dominated by the growth processes. The second effect is
the populations of the excited states no longer exceed p
sible levels.

The reasons behind these changes are interlinked. Wit
scattering, all of the levels in the condensate band star
grow, and at quite similar rates. The difference in the grow
rate between the very low energy states and that of the
densate level is particularly small. Because of the degene
of states in the lower subbands a large population can f
in them, which can become very much larger than the c
densate level population. Once any one subband acquir
sufficient population, the stimulated term in the growth p
cess begins to dominate, and the population increases
further. In the absence of scattering processes, the only
in which the excess population in these states can be tr
ferred to the condensate level, where it will be found in t
equilibrium situation, is by a transfer back to the noncond
sate band followed by another collision which transfers
directly to the condensate level.

If scattering processes are considered, atoms may no
transferred directly between different levels in the cond
sate band in a collision. Any excess population in the exc
states can then be quickly transferred out of the state be
the stimulated growth process becomes too dominant.

With the inclusion of the scattering processes, the effe
of two important approximations must be considered.
the derivation of the equations governing the scatter
processes it was assumed that the value ofG(T)
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[(em.ER
e2em /kT was equivalent to that for an isotropic ha

monic oscillatorḠ(T), which affects the scattering rates.
The second important approximation was made in the

lution of the equations governing the growth process
where theWm

11(n0) terms were assumed to be equal
W1(n0), which has a value given by Eq.~45!. This approxi-
mation has no effect on the growth rate of the condens
level if the scattering terms are not considered, since t
there are no interactions between different levels in the c
densate band. The effects of these two approximations
discussed below.

4. Effect of the scattering rate approximation

The magnitude of the scattering rate was assumed to
equal to that for an isotropic harmonic oscillator in the de
vation of Eq.~67!. In Fig. 9, the growth of the condensa

FIG. 8. Typical results of the total growth equation~including
scattering processes! for the growth of a Bose-Einstein condensa
using the same parameters as in Fig. 6.~a! The growth of the con-
densate~ground state! occupation. The inset shows the same grow
predicted by the total new model~solid line! compared to the
growth predicted without considering scattering processes~dashed
line!, and that of the simple growth equation with an initial pop
lation of 100 atoms~dotted line!. ~b! The growth of the explicitly
considered subbands. The condensate level itself is the bold c
The top five subbands are those in the noncondensate band w
were explicitly considered. Note the different time scales on
graphs.
6-13
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level is shown for several different scattering rates. T
growth slows slightly if the rate is decreased. If the rate
increased, the growth becomes faster until it reaches
asymptotic limit at which point it is the rate of the grow
processes which determines the speed of growth. The re
show that the overall growth changes by only a relativ
small amount~and certainly smaller than present experime
tal uncertainties in growth experiments!, provided that the
rate is within two orders of magnitude of that for the isotr
pic trap. Since it seems unlikely that the corrections due
the anisotropy would change the rate by much more than
order of magnitude, the approximation of using the isotro
rate factor seems to be valid. It is interesting to note tha
scattering rate of only about 1% of the isotropic case is u
ally sufficient to prevent the occupations of the subba
becoming very large as they do in the absence of any s
tering.

5. Effect of Wm
¿¿ factors

The effect of the approximationWm
11(n0)'W1(n0) is

shown in Fig. 10 which shows the behavior of the growth
different values of the Wm

11(n0) terms. Changing
Wm

11(n0) changes the rate of growth of the excited stat
and thus changes the probability of atoms being scatte
from the excited states into the condensate level, givin
corresponding change in the overall growth of the cond
sate. The results show that providedWm

11(n0) lies in the
range 2W1(n0).Wm

11(n0).W1(n0)/2 then the growth
rate does not change significantly~compared to experimenta
uncertainties and the change caused by using an acc
scattering rate!. However, outside of this range the growth
altered considerably. The expectation is thatWm

11(n0) will
lie in the desired range, since it is an average over quant
similar to W1(n0), and as such should be of the same m
nitude. The ‘‘standard’’ approximations for the rate co
stants that will be used in the following results will b
Wm

11(n0)5W1(n0) andG(T)5Ḡ(T).

FIG. 9. The dependence on the rate for scattering process
the condensate level growth. Growth curves from left to right h
factorsG(T) of 100Ḡ(T), Ḡ(T), Ḡ(T)/2, Ḡ(T)/10, Ḡ(T)/100, and
zero, respectively, whereḠ(T) is the factor for the isotropic har
monic potential given by equation~62!. These results were obtaine
using the same parameters as used in Fig. 8.
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6. Initial conditions

A problem which has to be considered in solving the to
rate equations~72! is the determination of the correct initia
conditions. Because the noncondensate band is assum
be a thermal bath of atoms at equilibrium, the initial pop
lations for the explicitly considered levels in this band a
found from@exp„(E2m)/kT…21#21. Obviously this cannot
be used to give the initial populations in the condensate b
when the model is attempting to describe growth of the c
densate. It is not immediately obvious what the appropri
initial conditions should be for the condensate band. In F
11, four different initial conditions are shown:

~a! No initial population in the condensate band. This
the most artificial of the four possibilities presented.

~b! Initial population of zero in the condensate level a
excited-state occupations given by a linear dependence
energy rising to match that of the noncondensate band atER .

of
d FIG. 10. The effect on the rate of growth of the condens
when the values ofWm

11(n0) were changed. From left to right th
curves correspond to values forWm

11(n0) of 10W1(n0), 2W1(n0),
W1(n0), W1(n0)/2, and W1(n0)/10. Conditions correspond to
those in Fig. 8.

FIG. 11. Depiction of the four different initial populations tr
aled, as described in the text.
6-14
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QUANTUM KINETIC THEORY. VI. THE GROWTH OF . . . PHYSICAL REVIEW A 62 033606
~c! Initial populations of condensate band states all eq
to the value of@exp„(ER2m)/kT…21#21.

~d! Initial populations given by a linear extrapolation
the noncondensate populations, meeting@exp„(E2m)/kT…
21#21 tangentially atER .

In Fig. 12 the growth curves corresponding to each of
differing initial conditions are shown. The different initia
conditions can be seen to have little effect on the shape o
growth; the main effect is really just a small shift in th
initiation time. This effect is generally quite small compar
to the effects of changingG(T) andWm

11(n0), as seen in the
preceding sections. The fact that the initial conditions can
changed by so much and yet have little effect on the gro
curve is due mainly to the inclusion of the scattering term
The scattering terms very quickly cause the levels in
condensate band to come to a kind of quasiequilibrium fr
whatever initial state they are put in. Thus we conclude t
an exact knowledge of the initial conditions is not importa

Since the exact initial conditions do not seem to be i
portant, in all further calculations initial condition~c! will be
used, as it is about midway between the extremes of case~a!
and ~d!.

7. Modifications of the energies of the subbands

The previous results were all obtained by taking t
mean-field effects due to the condensate into account in
manner described in Sec. III A 6. That is to evenly distribu
the energies of the subbands between the fixed upper lim
ED and then0-dependent lower limitmC(n0). Thus all levels
below ED @fixed at 2mC(n0,f), wheren0,f is the final occu-
pation of the condensate level# are modified at all times. This
artificial model can be improved on, since the number
levels affected by the condensate depends upon its occ
tion. In other words, when there is only a small condens
present it has a significant effect on only the lower subban
while the upper subbands are essentially unmodified. An
proved~although still a little artificial! method is the follow-
ing: all levels belowgmC(n0) ~whereg is an arbitrary pa-
rameter! will be compressed to fit between this upper lim

FIG. 12. Growth curves determined using the initial conditio
described in the text. The curves, from slowest to fastest grow
were given by initial conditions~a!–~d! respectively. Conditions are
the same as for Fig. 8.
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and the lower limit ofmC(n0); the energies of all levels
higher thangmC(n0) will not be altered. This is similar to
the previous model, with the alteration that the upper limit
the levels whose energies are changed is no longer fixed
instead rises with increasingn0. The energy of a levelem is
then given by

em5H em
0 for em

0 .gmC~n0!

mC~n0!1em
0 S 12

1

g D for em
0 ,gmC~n0!,

~76!

whereem
0 are the unchanged energy levels, as given by

eigenstates for a noninteracting gas in a harmonic poten
The energy spectrum of the subbands given by this n
model is shown in Fig. 13, and compared to the previo
energy spectrum. In the older model used so far in this pa
all energy levels in the condensate band are changed by
growth of the condensate. However, the extent of the c
densate band is determined by the final occupation num
of the condensate@i.e., by the final value ofmC(n0)]. In the
new model, the levels are modified in a more consistent fa
ion, the energy levels for any given condensate popula
are determined by the condensate population at that ti
which appears to be a more logical approach.

In Sec. II C 2 it was shown that a fair estimate forER was
a value of 2mC(n0,f). The value forg will normally be taken
to be 2, so that at equilibrium all energy levels belowER will
be modified.

The effect of this new model, compared to the earl
approach, on the overall growth is very small, smaller in f
than any of the other effects discussed in this section, an
is barely discernible. This would seem to indicate that it
the mean-field effects on the energies of the lower few s
bands which are important when considering the growth
the condensate, since in both the old and new models

h,

FIG. 13. The energy spectrum of the subbands as a functio
n0, modified to account for the mean-field interactions with t
growing condensate. In~a! the levels are modified by changing a
levels in the condensate band, as has been used to obtain the
vious results. In~b! these effects are accounted for by the ne
model, explained in the text. The lowest-energy level is the cond
sate level, whose energy ismC(n0). The dotted line represent
2mC(n0), the maximum energy at which mean-field corrections
assumed to be significant. This figure shows the evolution of
energies for a temperature of 900 nK, and with a final~equilibrium!
condensate occupation of 53105. The few levels whose energie
never change are those levels in the noncondensate band~above
ER) which are explicitly considered.
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lower levels experience quite similar changes. Since
mean-field effects of the condensate on the higher le
seems to have only a very small effect, the precise valu
ER would appear to have little effect so long as it is reas
ably high. The value of 2mC(n0,f) seems to be a good value
since it is high enough that the energy perturbations
higher energies do not have a large effect on the growth,
it is low enough that the majority of atoms are found
higher energies, giving an undepleted thermal bath.

B. Comparison of results with experiment

At the present point in time there has only been one p
lished experiment which has investigated in any detail
growth of a Bose-Einstein condensate. The experiment
performed at MIT using a trapped gas of23Na atoms, and the
results were published in 1998 in Ref.@4#.

1. MIT experimental method

The MIT experiments were performed in the followin
way: The gas of atoms was confined in an approxima
harmonic magnetic trap. It was then cooled using laser c
ing and evaporative cooling techniques to a tempera
slightly higher than the critical temperature necessary for
formation of a Bose-Einstein condensate. At this point
system is essentially in thermodynamic equilibrium, and th
it is suddenly put into a nonequilibrium configuration
lower energy, by means of a rapid evaporative cooling ‘‘cu
which removes all atoms in states above a certain energy
time of about 10 ms. The system is then left to relax
equilibrium with no further cooling. The cut will have
brought the temperature of the gas below the critical te
perature and so, to reach equilibrium, a condensate
form. The formation of the condensate is observed at sev
stages during the evolution by the means of phase-con
microscopy.

This method attempts to achieve, probably as closely a
realistically possible, an almost thermalized bath in cont
with a condensate band, as has been assumed in our the
ical treatment. The cut which removes the higher-energy
oms causes the wings of the energy distribution to be tr
cated. Experience with solutions of the quantum Boltzma
equation and related methods@24,21,11# shows that the ef-
fect of this will first be ‘‘felt’’ by the higher-energy atoms
remaining. The higher levels will therefore be expected
thermalize more quickly, with thermalization gradually mo
ing through to the lower energies. Thus at some point a
the cut the majority of the atoms will be approximately
equilibrium, with the lower-energy atoms still in very non
equilibrium states.

2. MIT Experimental results and theoretical comparisons

Phase-contrast microscopy produces two dimensional
ages of the system with an intensity proportional to the c
umn density of the system. From data of this type tempe
tures, total numbers of atoms, and condensate le
occupations were extracted by the MIT group, and were p
sented in Ref.@4#.
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The results found in Ref.@4# were that condensate growt
took on the order of 100–200 ms depending on the ex
conditions. It was found that the growth could be well fitte
by a solution of the simple growth equation~73!, which can
be put in the approximate~but in practice very accurate!
form

ṅ05k1n0@12~n0 /n0,f !
2/5#, ~77!

where, again,n0,f is the equilibrium condensate populatio
The solutions to this equation exhibit the S-shaped gro
profile of Fig. 6.

The conclusion drawn in Ref.@4# was that a curve of this
shape was evidence for the importance of bosonic stim
tion in the growth processes, since a purely relaxational p
cess would be described by solutions of

ṅ05k2~n0,f2n0!. ~78!

However, the rate constantsk1 found by the MIT group by
fitting to the data obtained did not agree to better than
order of magnitude with the predictions of the simple grow
equation of

k152W1~n0!
m

kT
. ~79!

The simple growth equation did well to give the correct o
der of magnitude rates; however, most of the predicted ra
for higher temperatures seemed to be too small by ab
factor of 3. As the temperature decreased the discrepa
increased, the predicted rates became slower, while the
perimentally fitted rate constants became larger.

In contrast, the solutions to the growth model presente
this paper no longer show the S shape, but are in fact clo
in shape to the solutions of Eq.~78!. These curves were
found by MIT to describe the data quite poorly if the grow
started at timet50 ~the time at which the cut finished!.
However, if an initiation time was allowed before the grow
began, such solutions became quite close fits, although
still did not describe the initially slow growth giving the
shape to the growth. The results obtained in this paper s
that, while the general shape is that of solutions to Eq.~78!,
there is also an initiation time present before the growth
gins.

As a specific comparison with experiment, Fig. 14 sho
the comparison between the growth curve predicted here
the experimental data. The data are similar to those in R
@4#, but were not actually published. They were provided
MIT as being the growth of a condensate with an equilibriu
population of about 13106 atoms, at a temperature of 120
nK @23#.

In the growth experiments statistical uncertainties are
timated @25# to be 10% for relative number measuremen
15% for temperatures. Systematic uncertainties are estim
as 20% in absolute number measurements, and 8% for
perature measurements. Condensate occupations of less
105 atoms could not be discerned against the backgroun
the thermal vapor cloud@4#.
6-16
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QUANTUM KINETIC THEORY. VI. THE GROWTH OF . . . PHYSICAL REVIEW A 62 033606
As Fig. 14 shows, the growth predicted by our model
quite a good fit to the data, and the order of magnitude
certainly predicted well. This is a substantial improveme
over the growth predicted by the simple growth equation
the same conditions which gives growth over about 1.5 s
opposed to the experimental results of about 0.15 s. At
stated parameters the theoretical fit could still be improv
The dashed line in Fig. 14 indicates that by adjusting
scattering rate and values ofWm

11 ~as was discussed in pre
vious sections! a better fit may be obtained.

The temperature plays a sensitive role in these comp
sons, since the rate of growth is quite sensitive to temp
ture. Furthermore, as will be seen in Sec. IV, the fitti
method may play a significant role. In Fig. 15 the theoreti
curve is plotted~using the standard values of the scatter
rate andWm

11) for two lower temperatures. It can be se
that the fit is very good for the 850-nK results, and not qu
so good, but still quite close, in the case of the 1000-
curve.

This highlights a difficulty in comparing theoretical pre
dictions with experimental measurements of condens
growth. The spatial density distribution of the thermal clo
~from which the temperature is measured! changes only
slightly with temperature, whereas the growth rate is qu
strongly dependent on the temperature. There are other p
lems as well, the most prominent of these being the difficu
of experimentally determining the condensate occupat
The spatial distributions of particles in the first few excit
states are quite narrow functions, and they can overlap
condensate level distribution significantly. It then becom

FIG. 14. Comparison of theoretical growth curves with da
experimentally obtained at MIT~dots!. The measured temperatur
for the experimental data was 1200 nK. In the main part of
figure the solid line shows the theoretical fits with standard r
constant approximations at 1200 nK, the dashed line shows
theoretical curve obtained by usingḠG(T)5G(T)/10 and
Wm

11(n0)5W1(n0)/2. The dotted line shows the growth predicte
by the simple growth equation of Ref.@5# @Eq. ~39!#, which is
shown on a larger scale in the inset. The initial condensate pop
tions for each curve were set to 53104, the experimental value a
t50. The origin in the time axis represents the time at which
quick cooling ‘‘cut’’ in the experiment was finished.
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extremely difficult to distinguish condensate level atom
from low-energy excited state atoms in experimental m
surement. If the measured ‘‘condensate occupation’’ was
fact the occupation of the lowest five levels~for example!,
this would alter the growth curve in some important regio
The main effect would be that the growth would appear m
gradual during the early times, and would not seem to h
such a sharp initiation. This is a possible explanation for
S shape that was found in the MIT data. Clearly what
needed are theoretical predictions for the overall spatial d
sity distributions during the growth, rather than merely o
cupation numbers for the various states. This will be a
dressed in Sec. IV.

The majority of the data contained in Ref.@4# were pre-
sented in the form of rate constants for fits to experimen
data of the type described by Eq.~77!. Figure 16 shows a
comparison of our theoretical growth curves as compare

e
e
he

la-

e

FIG. 15. Comparison of theoretical growth with MIT exper
mental data. The experimental data is the same as that used in
14. The theoretical curves were determined by using temperat
of 1000 nK~solid line! and 850 nK~dashed line!. The rate constants
were taken to be their standard values ofḠ(T)5G(T) and
Wm

11(n0)5W1(n0). Again, the initial condensate populations fo
each curve were set to 53104.

FIG. 16. Comparison of theoretical growth~thin lines! with
curves fitted at MIT to experimental data in Ref.@4# ~broad lines!.
The MIT curve fits are represented as broad lines, to indicate
they are fitted curves with unknown~but probably substantial! un-
certainties.~a! Theory,T5830 nK, n0,f57.63106; experiment,T
5810–890 nK,n0,f5(7.5–7.85)3106. ~b! Theory, T5590 nK,
n0,f52.33106; experiment, T5580–610 nK, n0,f5(2.1–2.5)
3106. The initial populations were treated as free parameters
best match the initiation of the growth with the MIT curves.
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solutions of Eq.~77! using a selection of the MIT fitted con
stantsk1. The figure shows good overall agreement with t
experimental data. The agreement is better at higher t
peratures. At the lower temperatures reached in the exp
ment the agreement is less good.

However, the results of this paper still show an over
decrease in the the rate of growth with decreasing temp
ture. This is the opposite trend to that experimentally o
served. This could partly be due to uncertainties in extrac
numbers from the experimental data. Another possible ex
nation is that in order to cool to such low temperatures fr
just above the critical temperature in 10 ms a large prop
tion of the atoms must be removed. This will give rise to
system in a highly nonequilibrium state, the relaxation fro
which may be inadequately described by our model.

IV. SPATIAL DENSITY DISTRIBUTION
OF A CONDENSATE SYSTEM

In the MIT experiments into condensate growth@4# the
data were collected by phase-contrast microscopy@26,27#,
the measurement of change in the phase of light after it
passed through the vapor cloud. The result is a tw
dimensional plot of the column density integrated along
third dimension. As discussed in Sec. III, the extraction
the population per energy level from this experimental d
is complicated. Therefore, in order to more easily ena
comparison with experiment, it is desirable to obtain fro
our theoretical results predictions of the spatial distribut
of the condensate as it grows. When the system is in e
librium this distribution is well known, but this is not th
case during the condensate growth that we are intereste

A. Semiclassical phase-space description

In order to convert the results of the model into spa
distributions, the spatial probability distributions for each e
ergy band need to be found. The distribution for the grou
statergs(r ) is well described by the Thomas-Fermi appro
mation for the wave function:

rgs~r !5ucTF~r !u2

5
m

4p\2a
@mC~n0!2VT~r !#u„mC~n0!2VT~r !…,

~80!

whereVT(r ) is the trapping potential, andu(x) is the step
function. This is a very good approximation to the shape
the condensate whenn0 is large, failing only at the very edg
of the condensate where the numerical solution to the Gr
Pitaevskii equation vanishes smoothly.

A description of the spatial distributions for each of t
higher-energy subbands can be found by using a semicl
cal phase-space approach. The cumulative number of s
below an energyE is given by

N~E!5
1

h3E d3r E d3P uS E2
P2

2m
2VNC

eff ~r ! D , ~81!
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where VNC
eff (r ) is the effective potential experienced by a

atom. This gives a density of states

g~E!5
dN~E!

dE

5
1

h3E d3r E d3P dS E2
P2

2m
2VNC

eff ~r ! D . ~82!

Using the local-density approximation, for an energy su
band with energyem and width Dem , the average spatia
distribution atoms in the band~averaged over all the wav
functions of all the states in the band! may be obtained by
removing thed3r integral and integrating overd3P. This
gives

rm~r !5
1

h3E d3PdS em2
P2

2m
2VNC

eff ~r ! D Dem ~83!

5~4p21/2m3/2/h3! Dem Aem2VNC
eff ~r !. ~84!

1. Resulting spatial density distribution

We will use the semiclassical distributions for the excit
states, and the Thomas-Fermi wave function for the cond
sate. The total radial probability distribution may be calc
lated by normalizing each level, and then summing over
the levels. The distributions are normalized so as to give
appropriate population in each level. For the bands belowER
these populations are given by the numerical results of
model. For those aboveER the population is determined b
the Bose-Einstein distribution functionF(E)5@exp„(E
2m)/kT…21#21. This gives the spatial density distributio
for the whole condensate system in three dimensions.

An example of the resulting spatial density distributio
for a system at equilibrium is shown as Fig. 17. In the fi
part of this figure the total density is plotted as a function
radius, as well as the density due to the excited states o
The density due to the excited states can be seen to be
nificantly decreased in the region of the condensate. In
17~b! the density multiplied by the radius squared is plotte
this is proportional to the total number of atoms found at a

FIG. 17. Sample radial spatial density distribution for conde
sate having reached thermal equilibrium.~a! Solid line—total den-
sity distribution; dashed line—density distribution due to excit
states only.~b! Density times radius squared. These results are
the trap parameters used in the MIT growth experiments@4,23#
6-18
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radius ~due to the three-dimensional nature of the distrib
tion!. From this it can be seen that, even though the den
in the center due to the condensate is much larger than
where, the majority of the atoms are still found in the s
rounding vapor cloud~as was assumed in the derivation
the model!.

When the system is in equilibrium these results can
checked. At equilibrium the noncondensate spatial distri
tion can be obtained directly from Eq.~82!. The total number
of noncondensed atoms,M, is

M5E
0

`

g~«!
1

e(«2m)/kT21
d«, ~85!

which corresponds to the local density form ofr(r ):

r~r !5
1

h3E d«E d3P
d„E2P2/2m2VNC

eff ~r !…

e(«2m)/kT21
~86!

5
1

h3E d3P H expF P2

2m
1VNC

eff ~r !2m

kT
G21J 21

.

~87!

Carrying out the integral over momentum space gives

r~r !5S mkT

2p\2D 3/2

G3/2S VNC
eff ~r !2m

kT D , ~88!

where

Gs~z![ (
n51

`

n2se2nz. ~89!

A comparison of the noncondensate density obtained
ing Eq. ~88! and that calculated by summing Eq.~84! over
1200 levels is shown in Fig. 18. It can be seen that
agreement between the two methods, for thisequilibrium
situation, is good. The agreement improves if more ene
levels are included in the sum over Eq.~84!, and using about
2000 levels gives very good agreement. Our semiclass
method therefore shows good agreement with the expe
distribution at equilibrium, and this is the only case in whi
we can be certain of the theoretically correct result.

In obtaining the results in this section we have only co
sidered effects of the mean-field repulsion due to the cond
sate atoms, both on the thermal vapor cloud and on the
densate itself. In order to be truly consistent the mo
should also include the effects of the mean-field repuls
due to the thermal cloud on the system. This is quite ea
achieved mathematically, but it does increase the comp
tional time by a very substantial amount. However, recen
Naraschewski and Stamper-Kurn@28# compared the density
distributions obtained both with and without considering t
mean-field repulsions of the thermal cloud, for an equil
rium condensate system. They found that the overall den
distributions for the two cases were practically indistinguis
able except for a very small deviation at the edge of
condensate. Furthermore, Holzmann, Krauth, and N
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schewski@29# found that the semiclassical density distrib
tion ~including the mean-field repulsions by the therm
cloud! gives excellent agreement with exact quantum Mo
Carlo simulations for dilute gas condensates in equilibriu
Thus we expect that the density given by our semiclass
method is a very good description of the realistic system

2. Description of a realistic experimental system

The next step that must be performed, in order to comp
with experimental results, is to perform a column integ
along one dimension, yielding a function of two spatial d
mensions only. This is relatively straightforward to achie
numerically.

Finally the asymmetry of the real traps must be taken i
account. The previous arguments for the exact noninterac
wave functions assumed the use of a spherically symme
trap, whereas the realistic traps used are strongly anisotr
in the z dimension. However, in all the previous semiclas
cal arguments the only effect is to changeVT from mv2r 2/2
to mvxy

2 (x21y2)/21mvz
2z2/2 where now

vxy5Alv, ~90!

vz5v/l, ~91!

FIG. 18. Comparison of the noncondensate density distribu
at equilibrium calculated~a! from the sum of 1200 individual en
ergy level distributions~dashed!, and using theG3/2(z) function
~solid!; ~b! as for ~a!, but using the sum of 2000 energy levels.
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v5~vxvyvz!
1/3, ~92!

l5~vx /vz!
2/3. ~93!

Due to the harmonic nature of the trap, one can reco
the original form of the potential by scaling the dimensio
used. Defining

z̄5z/l, ~94!

x̄5xAl, ~95!

ȳ5yAl, ~96!

the potential now returns to the formVT( r̄ )5mv2r̄ 2/2,

where the scaled radius is given byr̄ 5Ax̄21 ȳ21 z̄2. Equa-
tion ~84! can now still be used, and the column density in
gration performed as for an isotropic potential, and the
sulting function of x̄ and z̄ needs only to be rescaled t
recover the answer in terms ofx and z. This scaling also
affects the numerical column integration, with the effect th
the result needs to be scaled overall by a factor ofl21/2

@assuming the integration is in one of the two shorter dim
sions and that the result is in the asymmetric~longer! dimen-
sion, as is the case for the ‘‘cigar’’ geometry traps of MIT#.

B. MIT fitting method

In the MIT experiments, the data for the numbers of co
densate atoms and temperatures are obtained from fittin
the density profile obtained. The raw data obtained are in
form of two-dimensional images and, although these can
fitted, in order to save time and computational resources
fit was mostly performed only to a one-dimensional sl
through the center of the condensate@23#. This density pro-
file is fitted from a function formed by the combination of
condensate density profile and noncondensate profile.
MIT fitting procedure is a phenomenological procedu
which neglects interactions between the condensate and
vapor. It is based on two observations:

~i! The behavior of the thermal cloud in the wings of t
profile is almost independent of the chemical potential—
behavior in the wings can thus be used to determine
temperature of the vapor.

~ii ! The center of the profile is dominated by the conde
sate, and this—after subtracting the contribution of
vapor—can be fitted to the parabolic Thomas-Fermi profi
to determine the condensate chemical potential and thus
number in the condensate.

The explicit procedure actually used was not clearly
scribed in Ref.@4#, but was described in full in Ref.@7#. In
this particular experiment a linear combination of a Thom
Fermi function and am50 Bose-Einstein distribution wa
fitted to the observed profile using a procedure which, us
our notation, takes the following form. For that part of t
density due to the vapor~or noncondensate!, one sets the
chemical potential to zero and integrating along one dim
sion gives a contribution to the column density~for a slice
wherex50) of the form
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r int,V~z,x50!5E
2`

`

rV~z,y,x50!dy ~97!

5
m~kT!2

2p\3vy
G2S mvz

2

2kT
z2D .

~98!

The column density function due to the condensa
r int,C , is obtained by integrating the Thomas-Fermi wa
function given by Eq.~80! over one dimension,

r int,C~z,x50!5E
2y1(z)

y1(z) FmC~n0!

u
2

m

2u
~vz

2z21vy
2y2!Gdy,

~99!

where

y1~z!5A2mC~n0!

mvy
2 2

vz
2

vy
2 z2, ~100!

and whereu54p\2a/m, giving

r int,C~z,x50!5
2mvy

2

3u S 2mC~n0!

mvy
2 2

vz
2

vy
2 z2D 3/2

. ~101!

In the measurement procedure used, the phase-shift
were not calibrated independently. The phase-shift d
which we shall call Ph(z), were fitted to alinear combina-
tion of the form

Ph~z!5SVr int,V1SCr int,C . ~102!

There are thustwo independent scale factors SV and SC
which relate the observed profile to the fit functions. T
number of condensate atoms was obtained from the sp
width z0 of the Thomas-Fermi functionr int,C . These are
related by

r int,C~z0 ,x50!50 ~103!

when

z0
25

2mC~n0!

mvz
2

5S 15u~m/2!3/2v̄3

8p
D 2/5

2n0
2/5

mvz
2

; ~104!

thusn0}z0
5 .

This fitting method was found to give very good fits to th
phase-shift data obtained. However, it has no fundame
basis, and in particular the identification of the fitte
Thomas-Fermi shape with the condensate itself is not eas
justify when independent scale factors as in Eq.~102! are
used.

C. Comparison of fitting methods

In Fig. 19 we show a least-squares fit of a linear com
nation of a zero chemical potential and a Thomas-Fermi c
6-20
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densate profile—that is, of the form Eq.~102!—for an equi-
librium distribution. The data used was obtained from Fig
of Ref. @4#, for which the MIT group obtained values ofT
5800 nK with 9 000 000 condensate atoms present in e
librium after 160 ms@23#. Also shown is the contribution to
the distribution due to the noncondensate atoms only. N
that thez axis has been scaled by a factor of 3.2 over tha
Ref. @4#, correcting a typographical error@23#.

In this fit, as for all the following cases, the density sca
factors ~necessary to convert from the arbitrary unit sc
resulting from the experimental measurements! were deter-
mined by the least-squares fitting procedure. Since we
the T andn0 determined by the MIT group using their pro
cedure, these two scale factors are the only free param

FIG. 19. Equilibrium data obtained from MIT@4# fitted using
the MIT procedure as described in the text~solid smooth curve!,
and showing the component due to the noncondensate~dashed line!.
Parameters used wereT5800 nK, 9 000 000 condensate atoms. T
density scale factors were 1.08310214 for the condensate, an
2.85310214 for the vapor.

FIG. 20. Equilibrium data as for the previous figure, fitted
using the semiclassical method proposed in this paper. Temper
and number of condensate atoms were taken to be the same a
used previously (T5800 nK andn0593106); however, the den-
sity scale factor was changed to 1.71310214.
03360
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in this fit. The fit is very good, but it should be noted that t
scale factors differ by a factor of more than 2.

The same data can be fitted using the distributions fr
Eq. ~84!. Figure 20 shows the same equilibrium data, fitt
by using the same parameters but by using the semiclas
distribution—as before, we use theT andn0 determined by
the MIT group using their procedure, so that the only fr
parameter is asingle scale factor. This spatial distributio
does not fit the experimental data so well. However, if
allow T andn0 to be determined byour fitting procedure, we
obtain a very good fit. The best fit was found with para
eters ofT5900 nK with 4 000 000 condensate atoms and
density scale factor of 1.96310214, and is shown in Fig. 21.
The temperature determined by our method at 900 K is

ure
was

FIG. 21. The best fit to the same data used in the previous
figures. The parameters used wereT5900 K, n0543106 and the
density scale factor was 1.96310214.

FIG. 22. Comparison of the two fit functions:~a! Dashed line:
the MIT zero chemical potential vapor fit as in Fig. 19.~b! Gray
solid line: our best fit as in Fig. 21. The horizontal dotted lin
represent the widths of the Thomas-Fermi condensate function
the two cases.~c! Gray dot-dashed line: this represents the MIT fi
but plotted using the same scale factor for the thermal cloud~and an
appropriately adjusted factor for the condensate! as for our fit, in
order to demonstrate that although the shapes of the two fits ar
same, they do represent different physics.
6-21
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FIG. 23. Comparison betwee
experimental data from Ref.@4#
and theoretical spatial density dis
tributions, calculated using the
semiclassical density distribution
and the growth model described i
this paper. The scale factor i
1.96310214. The first frame
shows the distribution before th
cooling ‘‘cut’’ below the critical
temperature was performed. Th
parameters used wereT5900 nK
and n0,f543106. The ~lower!
solid curves show the theoretica
curves using initial condition~c!
described in Sec. III A 6. In the
second and third frames the~up-
per! dashed curves depict the re
sults obtained using initial condi
tion ~d! which become essentially
indistinguishable from the condi
tion ~c! curves for the final three
profiles.
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very different from the 800 K determined by the MIT proc
dure, but the condensate number by our method is, a
3106, less than half of the MIT value of 93106.

In order to compare the MIT fit and our best fit, we ha
plotted the two fit functions on the same graph in Fig. 22.
can be seen, the two are almost indistinguishable. Howe
the fact that the condensate numbers differ by a factor o
shows that the assumption that the width of the ‘‘cond
sate’’ peak in the MIT fit determines the condensate num
is not justified here.

The MIT fit manages to produce almost exactly the c
rect profile as follows. Our profile has rather distinct ‘‘shou
ders’’ adjacent to the condensate peak, which merge ra
smoothly into the condensate peak. This behavior is m
icked in the MIT fit by lowering the temperature of the vap
by about 10%, which tends to make the vapor cloud r
more rapidly as one approaches the center of the trap, an
broadening slightly and flattening considerably the cond
sate peak. At the same time, the ‘‘shoulders’’ in our fit a
continued further into the system, until the true narrower a
smaller condensate peak occurs. The actual peak widths
fer by about 18%, which then produces the change in c
03360
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densate number of 220% because of the fifth power relat
ship between the peak width and the condensate numbe

D. Analysis of spatial distributions of the growing condensate

With the aid of the spatial distributions calculated usi
Eq. ~84!, comparisons with the MIT growth data are po
sible. In Fig. 2 of Ref.@4# the density profiles of the system
are given for a single condensate growth run, and these
reproduced here in Fig. 23. The profiles are one-dimensio
slices through the center of the system, in thez ~long! axis.
In addition to this graphical information, we also have t
knowledge that after the final profile, att5160 ms, no fur-
ther growth was observed to occur@23#. ~The first profile, at
t5240 ms, is taken before the rf cut, is thus not part of t
growth sequence, and is not included in our fits!.

The final profile can therefore be taken to correspond
thermodynamic equilibrium, and the fits to the equilibriu
profile were compared in Sec. IV C. From this data, M
extracted values ofT5800 nK andn0,f593106. If these
values are used to compute the corresponding growth cu
it is found that the predicted growth does not cease at
5160 ms, but instead continues until at leastt5250 ms.
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Nevertheless, using a single scale factor, a fit can
found to the five growth profiles by using the procedure
scribed in Sec. IV A, with the condensate number of the fi
profile, at t5160 ms, given byn057.53106. However, the
predicted profiles for subsequent times up to about 250
show significant further development~corresponding to the
fact that the condensate numbern0 must continue to grow to
reach its ultimate value of 93106), in contradiction to the
observation that no further growth occurs.

If instead we use parameters corresponding to our bes
to the equilibrium data, namelyn0,f543106 and T5900
nK, the predicted growth is faster, and growth is in fact co
plete at t5160 ms, as can be seen in condensate gro
curve given in Fig. 24. Using a single scale factor for all fi
profiles a very good fit is found for the last five profiles b
using the procedure described in Sec. IV A—the theoret
spatial distribution curves are compared to the experime
data in Fig. 23. Taking the variance of the data points to
about 20, we findx251300 for this fit, which is to be com
pared to an expectedx251272650, whereas the fit assum
ing that the growth curve and profiles are characterized
n0,f593106 andT5800 nK hasx252575—that is, thex2

is 24 standard deviations from the expected value. This
responds to a speedup by a factor of about 1.5, which i
the order of magnitude of some of those found in our fits
the previous section, and has two basic causes:

~i! The higher temperature increases the intrinsic gro
rate which is roughly proportional toT2.

~ii ! Although the lower final number,n0,f—reduced by a
factor of about 2—reduces the gain slightly, this is far o
weighed by the need for the growth curve to rise less t
half the height.

The frame at 40ms shows the least good agreement; h
ever, the agreement can be improved by the choice of dif
ent initial conditions, as is shown in Fig. 23. Using initi

FIG. 24. Condensate growth curves corresponding to the fit
the growth data of Fig. 23.~a! ~Solid line! and~b! ~dashed line!: fits
with T5900 nK andn0,f543106 with initial conditions~c! and~d!
of Fig. 11.~c! ~Dot-dashed line!: fit using the MIT valueT5800 nK
andn0,f583106. Gray vertical lines indicate the times at which th
profiles were taken.
03360
e
-
l

s

fit

-
th

al
al
e

y

r-
of

h

-
n

w-
r-

condition ~d!, described in Sec. III A 6, the agreement wi
experiment again becomes very impressive. It is interes
to note that the spatial density distribution in this frame d
pends significantly on the initial conditions, which we
found to have only a very small effect on the growth curve
Sec. III A 6. This is because the 40-ms frame is taken a
time very close to the initiation of the fast growth of th
condensate population, and the spatial distribution at
time is quite strongly dependent on exactly when the grow
does start, since any difference in the initiation time create
relatively large change in the occupation numbers which
still quite low at this time.

E. Conclusions

The conclusions of this section depend on the use of
single set of growth profiles which has been published,
are consistent and convincing.

~i! The phenomenological MIT fitting procedure appea
to overestimate the condensate number by a factor of 2,
to give a temperature about 10% too small.

~ii ! Quite independently, the time of growth predicted u
ing the parameters extracted by MIT fitting procedure is
slow by a factor of about 1.5.

~iii ! However, fitting the same data using the theoretica
correct profiles gives values of temperature and final cond
sate number which lead to a growth curve in agreement w
the experimental data for the growing condensate profile

It is possible that this is the source of the appar
speedup found in many of the growth curves, for which s
tial profiles are not available. However, it is emphasized
the experimenters@25# that the phase contrast data used
these fits probably requires additional correction to take
count of finite optical resolution and scattering effects, a
that these corrections—although probably quite mino
could well be different for the condensate and vapor profil
which have very different shapes, sizes, and densities.

It is clear that the lack of any independent calibration
the phase contrast determination of column density is
major source of uncertainty in the interpretation of the da
The wide range of scale factors found would be elimina
by such a calibration.

V. COMPARISON WITH OTHER
THEORETICAL TREATMENTS

Most of the other theoretical treatments have attempte
describe the formation of a condensate in a homogene
untrapped situation. No real quantitative predictions have
emerged from any of the work that has been performed
trapped dilute atomic gas Bose-Einstein condensation, an
comparisons unfortunately will have to be qualitative at be

A. Quantum Boltzmann equation approach

One of the techniques used to describe condensate gr
has been the quantum Boltzmann equation, which has b
used by Snoke and Wolfe@30#, Semikoz and Tkachev@31#,
and Holland, Williams, and Cooper@21#, as well as forming
the basis of the theory of the kinetic stages in the work

to
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Kagan, Svistunov and Shlyapnikov@32,33#. Although the
theory described in this paper was developed from the qu
tum Kinetic theory@10–12#, it turns out that essentially th
same equations may be obtained by modifying the quan
Boltzmann equation approach as follows:

~i! The quantum Boltzmann equation in an ergodic fo
is used, a form similar to that used in Ref.@21#,

] f ~en!

]t
5

8ma2v2

p\ (
em ,ep ,eq

d~DE!g~emin!

3@ f ~ep! f ~eq!„11 f ~em!…„11 f ~en!…

2 f ~em! f ~en!„11 f ~ep!…„11 f ~eq!…#, ~105!

where nk5gkf (ek) is the number of particles with energ
ek , emin5min(em,en ,ep ,eq) andDE5em1en2ep2eq .

~ii ! The energy levels in the condensate band are mod
as discussed in Sec. III A 7, in order to account for the me
field interactions due to the presence of the condensate.

~iii ! The levels in the noncondensate band are summ
over and assumed to be time independent. This allows m
larger, and realistic sized, systems to be modeled as opp
to the 100–1000 atom systems typically simulated in pre
ous attempts.

~iv! Collisions between two particles which were both in
tially in the condensate band were neglected, this is a v
approximation if the vast majority of particles are found
the noncondensate band.

Using these modifications, and the rates for the scatte
and growth processes found from quantum kinetic the
~see Sec. II F!, the quantum Boltzmann equation will giv
rise to the set of differential equations~72! whose solutions
provided the results in this paper.

Of the above references, only the work of Holland, Wi
iams, and Cooper conducted any simulations for the gro
of a trapped condensate. They found that their simulation
condensate occupation number evolution behaved asn0
5n0,f(12e2t/t), wheret was a fitted parameter. A functio
of this form can be made to fit the results obtained by
model reasonably well, provided that an initiation time
allowed for, as was anticipated might be necessary in R
@21#. The same functional form was obtained using the qu
tum Boltzmann master equation approach in Ref.@11# by
Jakschet al.

It should be noted that, although the quantum kinetic
scription for the growth of themean occupation numbers
also turns out to be described by a modified quantum Bo
mann equation approach, the full quantum kinetic the
treats aspects of condensate dynamics which are not a
sible via the quantum Boltzmann equation. Such aspects
clude the treatment of fluctuations, phase and phase deco
ence, and the inclusion of Bogoliubov-like quasipartic
states.

B. Comparison with work of Kagan et al.

Major theoretical work into the growth of condensate
recent years has been performed by Kagan, Svistunov,
Shlyapnikov. They divided the growth into three stages,
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first of which was a kinetic stage described by Svistunov
Ref. @32#. Svistunov predicted the formation of a particl
flux wave in energy space during the initial stages, wh
transports particles toward lower-energy states. The arr
of this wave at the lowest-energy state at thecritical time
would give rise to an energy distribution function of the for
f (E)}E27/6. After the critical time this behavior would be
lost due to a particle-flux wave propagating to higher en
gies. The simulations of Semikoz and Tkachev@31# showed
this behavior to some extent, although they found that
behavior at the critical time wasf (E)}E21.24.

The work by Svistunov in Ref.@32# related to the case o
homogeneous systems; however, he recently reworked
methodology to consider a gas confined by a harmonic tr
ping potential. In this case he found@34# that the dependenc
at the critical time now tended towardf (E)}E25/3.

In Fig. 25 the results our model of condensate growth
shown in a somewhat different form. The occupation nu
bers for both the condensate level and excited states are
ted as a function of their energy and the time~note the loga-
rithmic scales!. From this graph several points can be note
First, the front corner shows quite how rapidly the initi
conditions, however arbitrary, are smoothed out by scatte
processes, and the discontinuous initial conditions rap
approach a realistic distribution. The growth of the conde
sate is rather small up to the point labeled as the critical tim
after which the condensate grows enormously. The pop
tions of the excited states approach equilibrium very rapi
after the critical time, much more rapidly than the conde
sate level does.

As the critical time is approached, the distribution a
proaches a straight line as shown in Fig. 25. At the criti
time, when this distribution is linear with the logarithm o

FIG. 25. The growth of a condensate of 9 000 000 atoms,
predicted by the model in this paper. Plotted isf (em), the popula-
tion per individual level with energyem , and the energies of the
levels as functions of time. The values off (em) andem are plotted
on log scales. The lines almost parallel to the time axis are not l
of constant energy, but rather lines of constant level number, wh
energies change with time. Not all levels are shown in order
make the behavior legible. The solid black curve represents
energy of the condensate level log10@mN(n0)# as a function of time.
The bold line labeledC-C represents the critical time, at which th
energy distribution has the formf (E)}E21.61. The temperature of
the system was 800 nK.
6-24
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the energy, the energy dependence was found to be o
form f (E)}E21.61, which is in good agreement with the pre
diction of Svistunov ofE25/3.

As far as estimates of time scales are concerned, Ka
Svistunov, and Shlyapnikov predicted that the evolution
the system up until initiation would occur on the time sca
of the classical collision timet0, that the initiation of the
condensate growth would occur on a much faster time sc
and that the final growth would occur on the time scale n
essary for the annihilation of vortices in homogeneous ga
and the decay of fluctuations in the phase of the condens

In the treatment of Kagan, Svistunov, and Shlyapnik
the time scale for the first kinetic stage was postulated fo
homogeneous gas; however, a comparison can still be m
A first estimate oft05(sn̄vT)21 can be obtained by usin
the classical value forvT , the mean thermal velocity in a
gas, of vT5A2kT/m, and the cross section defined bys

58pa2. The value forn̄, the mean density, will be taken a
the density of the noncondensate particles in the center o
trap given by

n̄5F mkT

2p\2G3/2

G3/2S VT~0!

kT D ~106!

@see Eq. 88#, where Ga(z)5(q51
` e2qz/qa. Taking VT(0)

50, and using a temperature of 900 nK, the collision time
t0527 ms. This temperature corresponds to that of
growth in Fig. 8, which shows that the time until initiation
of the order of 2t0. Thus our treatment does agree with t
picture of Kaganet al. in that this stage occurs over the ord
of a few t0.

A note about the collision times is needed here. In exa
ining the validity of the ergodic approximation, Jakschet al.
found that it was valid only for quantities averaged ov
about ten collision times@11#. The above time scalet0 is not
the time scale over which collisions occur in the condens
system in reality. It is rather the classical collision time fo
classical gas in equilibrium below the critical temperatu
but with no condensate present, and is obviously artific
Once the condensate begins to form, the density incre
significantly, and the actual mean collision time was found
Ref. @11# to be more than two orders of magnitude smal
thant0. Thus the ergodic assumption should still be valid
our treatment, even given the large value oft0.

The time scales found by Kaganet al. for the second and
third stages of evolution have only been determined for
case of a homogeneous gas, and so accurate compar
with our model for these stages are not able to be perform
Our model does agree that the initiation stage occurs o
much faster time scale than the first kinetic stage. The p
ence of vortices has not been considered in our treatm
nor has any consideration been given to the phase fluc
tions, and so comparisons cannot be made with the t
stage of evolution in the description of Kaganet al.

VI. CONCLUSIONS

In this paper a model of the growth of a condensate,
rived from quantum kinetic theory@10–12#, is presented.
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The main improvements over the simpler description in R
@5# are the more accurate calculation of the growth rate fac
W1(n0), the consideration of the time dependence of
lower-energy levels, and the inclusion of the scattering
particles between these levels. The modifiedW1 factors
have the greatest effect, generally increasing the rate
growth by a factor of about 3, dependent on the exact par
eters. The inclusion of the other levels and their scatter
also leads to an increase in the rate of growth, mainly
reducing the amount of time taken for the initiation of th
growth; that is, the time before the stimulated growth p
cesses, due to the Bose statistics of the system, bec
dominant.

The model describes the evolution of time-dependent
ergy levels in the lowest states, coupled with a time indep
dent thermal bath of atoms occupying the higher-energy
els. The results give growth curves whose shapes
approximately those given by

n05H 0 for t,t i

n0,f~12e2(t2t i )/t! for t.t i ,
~107!

where t i is some initiation time. This form agrees with th
general form of the results of Hollandet al. @21# and Jaksch
et al. @11# once an initiation time is allowed. The results al
seem to be in qualitative agreement with features of the
scription proposed by Kagan, Svistunov and Shylapnikov

The results are not very sensitive to the exact nature
which the mean-field effects on the lower levels were
counted for, so long as the energies of the very lowest lev
were altered in a consistent fashion. The initial conditio
used did not have a large effect on the growth curves, h
ever they can be important when the spatial density profi
of the system are calculated for comparison with experime

The evolution of the model depends upon approximatio
made for the rate factorsG(T) and Wm

11(n0). The results
obtained show that the growth is not very different as long
the actual value ofG(T) falls within about a factor of 10 of
the approximation, and as long as the actual values
Wm

11(n0) lies within a factor of 2 ofW1(n0).
Overall the rates of growth predicted now agree rat

well with the growth rates measured from experimental d
@4#. However, at lower temperatures the trend in growth ra
shows some divergence, with the experimental rates bec
ing quicker while the predicted rates become slower. T
may be a result of the substantial cooling necessary
achieve these temperatures, giving rise to a highly none
librium system which is inadequately described by o
model.

However, it could also be related to the use of the M
phenomenogical fitting procedure by which condensate n
bers and temperatures have been extracted from the con
sate profiles in the experiment, since our method of extra
ing these data, as given in Sec. IV, has a reasonably so
theoretical basis, and gives considerably different values
the condensate number, and somewhat different value
temperature, from the method used in the experiment. In
one set of experimental profile data which we have been a
6-25
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to check, only the values given by our method give a grow
curve which fits the profile data. The values given by t
MIT method give a theoretical growth rate which is too slo
by a factor of about 1.5—in other words, an appar
speedup of the experimental condensate growth by a fa
of 1.5, caused by the underestimate of condensate num
and vapor temperature which result from the phenome
logical fitting procedure used.

Further work which could be undertaken within th
framework of this model includes the following.

~i! An accurate determination of the rate factorsG(T) and
Wm

11(n0) analytically, or at least finding constraints on the
values by comparison with more experimental data.

~ii ! An inclusion of some Bogoliubov phononlike quas
particle nature in the description of the lower-energy leve
since all excited levels in this paper were treated as Hart
Fock particlelike quasiparticles, which will be valid for mo
of the higher levels but not for the lower-energy excitatio

~iii ! A consideration of the fluctuations in occupatio
n

n,
tt.

ys

S.

ys

P

co
d

ys

v.

.
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numbers. These may be significant in determining the ini
tion time, which is when the occupation of the condens
level becomes large enough for the stimulated growth p
cesses to take over.

~iv! As the model stands, the noncondensate band ‘‘ba
of atoms is treated as being time independent. A major
tension of the model would be to include the dynamics of
noncondensate band in the evolution. Extension to includ
time-dependent bath will be treated elsewhere@35#.
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