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Two-mode theory of vortex stability in multicomponent Bose-Einstein condensates

Vı́ctor M. Pérez-Garcı´a and Juan J. Garcı´a-Ripoll
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We study the stability and dynamics of vortices in two-species condensates using a two-mode model. The
recent experimental results obtained at JILA@M. R. Matthewset al., Phys. Rev. Lett.83, 2498 ~1999!# and
recent numerical simulations based on the Gross-Pitaevskii equations are explained using this simple model.
We also make an exhaustive analysis of the stability properties of the system when the relative populations of
the two species and/or their relative scattering lengths are changed and prove that stabilization of otherwise
unstable configurations can be attained by controlling the relative population of both species.

PACS number~s!: 03.75.Fi, 67.57.Fg, 67.90.1z
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I. INTRODUCTION

Vortices appear in many different physical contexts ra
ing from classical phenomena such as fluid mechanics@1#
and nonlinear optics@2# to purely quantum phenomena su
as superconductivity@3# and superfluidity@4#.

A vortex is the simplest topological defect one can co
struct @5#, and it is characterized by the fact that in a
closed path around a vortex, the phase of the involved fi
undergoes an integer multiple of 2p winding. When the
phase jump is62p, then it implies the stabilization of a zer
value of the field placed in what is called the vortex co
i.e., one extreme of the line that joins the discontinuities
the phase. This stabilization is due to topological constra
since removing the phase singularity implies an effect on
boundaries of the system that is difficult to achieve us
local perturbations.

The concept of a vortex is central to our understanding
superfluidity and quantized flow. This is the reason why
experimental realization of Bose-Einstein condensates~BEC!
with ultracold atomic gases@6# has triggered the analysis o
vortices. The main goals in this field have been the gen
tion @7,8#, detection@9#, and stability properties@10–14# of
vortices.

Although most of the theoretical effort has concentra
on single condensate systems, the first experimental rea
tion of BEC vortices@15# was attained following the pro
posal of Ref.@16# with a two-species87Rb condensate. The
two species correspond to two different hyperfine levels
87Rb, denoted byu1& andu2&. From Ref.@15#, we know that
while one may build two possible configurations with a u
charge vortex, only one of them is stable. The stable confi
ration corresponds to the vortex placed on theu1& state,
namely, the one with the largest scattering length. The c
figuration with the vortex placed in theu2& state, on the othe
hand, leads to some kind of instability. To simplify the rea
ing of this paper, we will use in what follows a shorthan
notation for these states:u1,0& will refer to the state in which
the vortex is hosted byu1&, and u0,1&, the state with the
vortex in u2&.

In a recent work@17#, we have used numerical simula
tions to show that the instability of stateu0,1& is purely dy-
namical and can be understood within the framework
1050-2947/2000/62~3!/033601~8!/$15.00 62 0336
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mean-field theories for the double condensate system. A c
sequence of the analysis is that, if dissipation is small,
instability mechanism does not lead to expulsion of the v
tex from condensate, but to the establishment of a comp
state in which the phase singularity periodically moves fro
one specie to the other.

The purpose of this paper is twofold. First we want
understand the mechanism of the instability. In this sen
our paper will confirm the results from@17# by proving for
this system that the instability arises even with the least nu
ber of degrees of freedom. The second target of the pap
to learn what happens with theu1,0& andu0,1& configurations
when we vary the relative populations of both species. T
results are also applicable to other multiple condensate
tems where the set of scattering lengths is different fr
those of rubidium.

To ease the analysis and get an intuitive physical interp
tation, we make most of the analysis using a simplified tw
mode model that is exact in the linear limit but provid
good qualitative predictions that are in agreement with
experiment of Ref.@15# and the numerics of Ref.@17#. These
results will be further confirmed by numerical simulations
the full three-dimensional mean field equations ruling t
phenomenon.

Our plan is as follows: In Sec. II we present our proble
in a suitable form and obtain the reduced set of equations
the two-mode model. In Sec. III we apply the two-mo
model to the system discussed in the previous anal
@15,17#. In Sec. IV we make a complete stability analysis
the relevant configurations and make some predictions
are experimentally testable. Finally, in Sec. V we summar
our conclusions.

II. THE MODEL

A. Mean-field equations for the two-condensate system

In this work, we will use the zero-temperature approxim
tion, in which collisions between the condensed and nonc
densed atomic clouds are neglected. In the two-species c
this leads to a pair of coupled Gross-Pitaevskii equati
~GPE! for the condensate wave functions of each specie
©2000 The American Physical Society01-1
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i\
]

]t
C15F2

\2¹2

2m
1V11U11uC1u21U12uC2u2GC1 ,

~1a!

i\
]

]t
C25F2

\2¹2

2m
1V21U21uC1u21U22uC2u2GC2 ,

~1b!

whereUi j 54p\2ai j /m are constants controlling the nonlin
ear behavior, which are proportional to the thes-wave scat-
tering lengths of 121, (a11), 222 (a22), and 122 (a12)
binary collisions.

To simplify the formalism, we assume that both trappi
potentials are concentric and spherically symmetric,V1(rW)
5V2(rW)5 1

2 mv2r 2, just like in the experiment. The consid
eration of the differences betweenV1 and V2 does not add
new physics to the model as it will be discussed in de
later.

Next we change to a new set of units based on the
characteristic lengtha05A\/mv and periodt51/v defined
as x→x/a0 ,t→t/t, ui j 54pNjai j /a0, and C j (x)
5Njc j (x). Equations~1! conserve the number of particle
on each hyperfine level and so we may choose

E uc1~rW !u25E uc2~rW !u2[1. ~2!

This choice implies that the particle number of each spe
appears on the nonlinear coefficientsui j .

The experimental results@15# and our previous theoretica
analysis@17# correspond to systems in which the number
particles is the same for each component,N15N25N, but in
general one could allow any proportion between the pop
tions of the different levels.

With the previous rescaling, the GPE for the multicomp
nent system read

i
]

]t
c15F2

1

2
1

1

2
r 21u11uc1u21u12uc2u2Gc1 , ~3a!

i
]

]t
c25F2

1

2
1

1

2
r 21u21uc1u21u22uc2u2Gc2 . ~3b!

Since the realistic values of87Rb scattering lengths are i
the proportiona11:a12:a2251.00:0.97:0.94@18#, the coeffi-
cients of the matrix of nonlinear coefficients satisfy the re
tions u11/u125a11N1 /a12N2 ,u21/u225a12N1 /a22N2, which
means that except for the particular case in whichN15N2
5N, this matrix is nonsymmetric. In terms of the populati
imbalanceb5N2 /N1 , and for a fixed total number of par
ticles the matrix can be written as

S u11 u12

u21 u22
D 5

4pa11N

a0 S 1.00

11b

0.97b

11b

0.97

11b

0.94b

11b

D . ~4!
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B. Derivation of a two-mode model

In our previous work@17#, we worked on the basis of th
full GPE to prove the instability of theu0,1& stationary solu-
tion, as well as the stability of theu1,0& state for typical
experimental conditions. That stability analysis demonstra
that the instability was mediated by the growth of a co
mode that pushes the vortex out of the condensed cloud.
fact makes plausible the description of the two-condens
dynamics by the use of only two modes for each level: o
corresponds to a centered vortex and the other to a node
or coremode. This approach, which corresponds to retain
the stationary plus active modes and has been used suc
fully in the analysis of other nonlinear problems@19#, should
work at least in the linear regime in which perturbations a
small.

Mathematically, the idea is to approximate:

c1~x!.a~ t !cg1~x!1b~ t !ce1~x!, ~5a!

c2~x!.c~ t !cg2~x!1d~ t !ce2~x!. ~5b!

Here,cg j(x) is the spatial wave function of the ground sta
or core mode for each specie,u j &, andce j(x) corresponds to
a representation of the single vortex wave function. This
proximation implies some loss of information about the d
namics but it is not essential for our results, as will be sho
later @20#.

We can also relate this idea and its representation@Eq.
~5!# to a recent work on the dynamics of a single condens
@8#, with the difference that the modes from Ref.@8# are fully
nonlinear and depend on their populations$a,b,c,d% ~so
there is no simple analytical expression for them!. Our ap-
proach is simpler but, as we will see, the two-mode ans
reflects the essentials of the dynamics with good accura

cg ,ce can be chosen as any approximation to the grou
and first excited states of the single-species equations,
vided they are orthogonal, which automatically is guarante
if ce has a vortex andcg does not. Our choice will be to us
the eigenfunctions of thed-dimensional harmonic oscillato
that are the exact solutions in the linear case and al
simple manipulation since their analytic form is known:

cg~x!5S 1

p D d/2

e2r 2/2, ~6a!

ce~x!5S 2

dp D d/2

re2r 2/2eiu. ~6b!

Other choices are feasible with the only change of sev
coefficients related to integrals involvingcg andce , as will
be discussed later.

In our treatment, we will consider simultaneously th
two- ~2D! and three-dimensional configurations. It w
shown in a previous work concerning single condensa
@12# that the transition from a spherical trap to a panca
preserves the shape and number of unstable modes.
present analysis applies equally to the simplified 2D situat
used in Ref.@17# as well as to the full 3D problem an
1-2
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proves that there are no essential differences between
two- and three-dimensional models for the type of pheno
ena described here.

Inserting the ansatz from Eq.~5! into the GP equation~3!
and projecting oncg j andce j one obtains the following se
of coupled nonlinear ordinary differential equations:

i ȧ52aEg1u11a~g1uau212g2ubu2!1u12a~g1ucu21g2udu2!

1u12g2bcd* , ~7a!

i ḃ52bEe1u11b~g3ubu212g2uau2!1u12b~g2ucu21g3udu2!

1u12g2ac* d, ~7b!

i ċ52cEg1u22c~g1ucu212g2udu2!1u21c~g1ucu21g2udu2!

1u21g2dab* , ~7c!

i ḋ52dEe1u22d~g3udu212g2ucu2!1u21d~g2uau21g3ubu2!

1u21g2ca* b. ~7d!

Here, g1 5 (ucgu2,ucgu2), g2 5 (ucgu2,uceu2), g3 5 (uceu2,
uceu2), and Eg5(cg ,H0cg),Ee5(ce ,H0ce) being H05
2 1

2 n1 1
2 r 2. For our particular choice ofcg and ce , the

values of these coefficients areg1
2d51/2p,g2

2d51/4p, g3
2d

51/4p,Eg
2D51,Ee

2D52, g1
3d51/(2p)3/2,g2

3d51/2(2p)3/2,
g3

3d55/12(2p)3/2, Eg
3D53/2, andEe

3D55/2.
If the trapping potentialsV1 andV2 are not considered to

be equal, then the shapes of the modescg andce in u1& and
u2& are different. However, the only difference with respe
to our present treatment is on the precise numerical valu
the coefficients, which is not essential for what follows. T
same happens when other functions are considered to re
sent the ground and first excited state instead of harmo
oscillator basis functions.

Equations~3! satisfy discrete conservation laws corr
sponding to the number of particles of each species and
gular momentum,

uau21ubu251, ~8a!

ucu21udu251, ~8b!

ubu21udu25L0 , ~8c!

L0 being the angular momentum of the initial data. There
another conservation law for the energy that is not relev
to our purposes.

It is convenient to change to a modulus-phase represe
tion given by a5raeifa,b5rbeifb,c5rce

ifc,d5rdeifd.
Equations~7! then become

ṙa5u12g2rbrcrdsin~fb1fc2fd2fa!, ~9a!

ḟa5Eg2u11~g1ra
212g2rb

2!2u12~g1rc
21g2rd

2!

2u12g2

rbrcrd

ra
cos~fb1fc2fd2fa!, ~9b!
03360
he
-

t
of

re-
c-

n-

s
nt

ta-

ṙb5u12g2rarcrdsin~fa1fd2fa2fc!, ~9c!

ḟb5Ee2u11~g3rb
212g2ra

2!2u12~g2rc
21g3rd

2!

2u12g2

rarcrd

rb
cos~fd1fa2fc2fb!, ~9d!

ṙc5u21g2rbrardsin~fb1fc2fd2fa!, ~9e!

ḟc5Eg2u22~g1rc
212g2rd

2!2u21~g1ra
21g2rb

2!

2u21g2

rbrard

rc
cos~fb1fc2fd2fa!, ~9f!

ṙd5u21g2rarbrcsin~fd1fa2fa2fc!, ~9g!

ḟd5Ee2u22~g3rd
212g2rc

2!2u21~g2ra
21g3rb

2!

2u21g2

rarcrb

rd
cos~fd1fa2fc2fb!. ~9h!

Despite the apparent complexity of this system, it is easy
prove that the four phase variables can be reduced to a s
one given byF5fb1fc2fa2fd . The dynamics on these
new variables is ruled by

ṙa5u12g2rbrcrdsinF, ~10a!

ṙb52u12g2rarcrdsinF, ~10b!

ṙc52u21g2rbrardsinF, ~10c!

ṙd5u21g2rarbrcsinF, ~10d!

Ḟ5gara
21gbrb

21gcrc
21gdrd

21g2Fu12S rbrcrd

ra
2

rarcrd

rb
D

1u21S rbrcra

rd
2

rarbrd

rc
D G . ~10e!

We have now five ordinary differential equations in Eq.~10!
plus four conservation laws, which means that the sys
can be~at least formally! integrated. This fact excludes th
possibility of chaotic behavior in the system.

Equations~10! can be further simplified by defining den
sity variables related tor j

2 and X5rarbrcrd and using the
conservation laws. We will not follow this route since all th
simplified models such as the one presented in Eqs.~10!
have singularities when any of the densities is zero. This
makes the new equations useless for a stability analy
since the stationary states are singular solutions of these
tems.

III. DYNAMICS IN THE PHYSICALLY RELEVANT CASE

The experimental configurations first described in@15#
and later numerically studied in@17# correspond to unit
charge vortices in eitheru1& or u2&, with the constraint that
1-3
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the populations of both hyperfine levels are equal, i.e.b
51 and u215u12. It is interesting to study the dynamic
under small perturbations of the initial dataa(0)50,b(0)
51,c(0)51,d(0)50, which physically corresponds to th
stationary stateu1,0&, and a(0)51,b(0)50,c(0)50,d(0)
51, which corresponds tou1,0&. Both initial data correspond
to two different periodic solutions of the amplitude equatio
~7!, which are

a~ t !50,b~ t !5ei (Ee2u11g32u12g2)t,

c~ t !5ei (Eg2u22g12u21g2)t, d~ t !50; ~11a!

a~ t !5ei (Ee2u11g12u12g2)t, b~ t !50,

c~ t !50, d~ t !5ei (Eg2u22g32u21g2)t. ~11b!

To have a clear picture of what is going on, we have fi
simulated the dynamics of these states when small pertu
tions are added to the initial data. The results are summar
in Figs. 1–4. It is clear from Fig. 1 that the configuration th
has a vortex inu1& is dynamically stable. However, when

FIG. 1. Stability of the configurationu1,0&. Snapshots of the
spatial density of~a! u1& and ~b! u2&. Evolution the amplitudes of
the modes with time~c! uau ~solid line! andubu ~dashed line!; ~d! ucu
~solid line! and udu ~dashed line!.
03360
s
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vortex is placed inu2&, an instability develops and the re
sponse to small perturbations is to transfer the vortex tou1&
and start a periodic transfer dynamics. The snapshots of
density during the destabilization process are shown in F
2. In Fig. 3, we show how the phase singularity inu2& spirals
out of the system while a phase singularity appears inu1&
and occupies the center of the atomic cloud@21#. This dy-
namics is recurrent as can be seen from the evolution of
relevant variables~Fig. 4!.

FIG. 2. Snapshots of the evolution of an unstable vortex~state
u0,1&). Evolution of the spatial density of~a! u1& and ~b! u2&.
1-4
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IV. STABILITY THEORY

A. Problem statement

Our numerical simulations of the reduced system~7!
show that in the equal population case,N15N25N, and for
arbitrary nonlinearities only one of the possible station
states of the system is stable. It is our purpose in this sec
to make a complete analysis of the stability of the system
any proportion of the populationsb5N1 /N2 and any value
of the nonlinear coefficients~e.g., total number of particlesN
and scattering lengthsai j ). These results could be special
relevant to predict the existence of stable vortex states f
specific multiple-condensate system. For the case of87Rb,
the results can be applied to study the possibility of stabi
ing different configurations.

B. Stability of the state z1,0‹

When a vortex is placed inu1&, the resulting stationary
state is a periodic orbit described by Eq.~11a!. Its direct
stability analysis using Eqs.~7! would lead to time-
dependent perturbation equations that should be analyze

FIG. 3. Evolution of the position of the phase singularity cor
sponding to the simulation shown in Fig. 2.~a! Phase singularity in
u1&. ~b! Phase singularity inu2&.
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ing Floquet’s theory. A way to partially circumvent this situ
ation is to change to the rotating frame of reference defi
by

ã5ae2 i (Eg2u22g12u21g2)t, ~12a!

b̃5be2 i (Ee2u11g32u12g2)t, ~12b!

c̃5ce2 i (Eg2u22g12u21g2)t, ~12c!

d̃5de2 i (Ee2u11g32u12g2)t. ~12d!

Using these new variables, the equations are

ȧ̃5 i ~g1u221g2u21!ã2 iu11ã~g1uãu212g2ub̃u2!

2 iu12ã~g1uc̃u21g2ud̃u2!2 iu12g2b̃c̃d̃* , ~13a!

ḃ̃5 i ~g3u111g2u12!b̃2 iu11b̃~g3ub̃u212g2uãu2!

2 iu12b̃~g2uc̃u21g3ud̃u2!2 iu12g2ãc̃* d̃, ~13b!

ċ̃5 i ~g1u221g2u21!c̃2 iu22c̃~g1uc̃u212g2ud̃u2!

2 iu21c̃~g1uc̃u21g2ud̃u2!2 iu21g2d̃ãb̃* , ~13c!

ḋ̃5 i ~g3u111g2u21!d̃2 iu22d̃~g3ud̃u212g2uc̃u2!

2 iu21d̃~g2uãu21g3ub̃u2!2 iu21g2c̃ã* b̃. ~13d!

The stationary solution is an equilibrium point of Eq
~13!: ã050,b̃051,c̃051,d̃050. To study its stability, we lin-
earize Eqs.~13! around the equilibrium point and define th
perturbations through

ã5ã01da~ t !, ~14a!

-

FIG. 4. Evolution of the amplitudes of the modes~a! uau ~dashed
line! and ubu ~solid line!; ~b! ucu ~dashed line! and udu ~solid line!.
The simulation is done adding a random perturbation to the c
figuration with vortex in u2&, i.e., a(0)5eir 2A12e1

2, b(0)
5e1eir 3, c(0)5e2eir 4; d(0)5A12e2

2. e1 ande2 are random num-
bers uniformly distributed between 0 and 0.02.r j are random num-
bers uniformly distributed between 0 and 1.
1-5
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b̃5b̃01db~ t !, ~14b!

c̃5 c̃01dc~ t !, ~14c!

d̃5d̃01dd~ t !. ~14d!

The new evolution laws are

ḋa5 iDada2 iu12g2dd* , ~15a!

ḋb50, ~15b!

ḋc50, ~15c!

ḋd5 iDddd2 iu21g2da* , ~15d!

where Da5u22g11u21g222g2u112g1u12, Dd5u11g3

1u12g222u22g22u21g3. The perturbations forb̃ and c̃
have a neutral behavior because their evolution is ruled
quadratic terms. If we write the equations for the pertur
tions and their complex conjugates to obtain the full stabi
spectrum, we have

d

dt S da

db*

dd

dd*
D 5 i S Da 0 0 2u12g2

0 2Da u12g2 0

0 2u21g2 Dd 0

u21g2 0 0 2Dd

D S da

db*

dd

dd*
D .

~16!

The eigenvalues of this matrix can be obtained anal
cally, the result being

l1,25 i FDa2Dd

2
6

1

2
A~Da1Dd!224g2

2u21u12G , ~17a!

l3,45 i FDa1Dd

2
6

1

2
A~Da1Dd!224g2

2u21u12G . ~17b!

There is only one stability condition, which isuDa1Ddu
.2g2Au21u12. Since the parametersD j are functions ofg j ,
which depend on the dimensionality and on the shape of
trial states, we must separate now the results for the 2D
3D cases. In the two-dimensional case, we obtain

u111u12.2Au21u12, ~18!

while for the three-dimensional setup the condition is

7

6
u112

1

6
u211u12.2Au21u12. ~19!

Taking into account the fact that the numerical values ofa11
and a12 are very close, we find that Eqs.~18! and ~19! are
indeed very similar. This is why we will use one of them, E
~18!, for the subsequent analysis. If we write the inequalit
in terms ofb and use the scattering length values of87Rb,
we obtain the following stability condition:
03360
y
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a11

a12
1b.2Ab. ~20!

For rubidium, inequality~20! is always satisfied, which
proves that the configuration with a vortex inu1& is always
linearly stable regardless of the relative population of ea
specie,b. This is consistent with the results from Ref
@15,17# that show the stability of the experimental config
ration with a vortex inu1&.

It is also remarkable that the stability properties of th
model do not depend on the total number of particles
only on the relation between the populations. The stabi
properties also depend essentially on the scattering leng
which in our case are fixed since we are dealing with spec
hyperfine levels of Rb atoms.

C. Stability of state z0,1‹

The stability analysis of configurationu0,1&, which corre-
sponds to initial dataa051,b050,c050,d051, is com-
pletely equivalent to the previous one. In fact, arguments
symmetry imply that the result should be formally equivale
with only an exchange of indices 1↔2, i.e., the stability
condition now reads

a22

a21
b11.2Ab. ~21!

This inequality is not verified for a certain range ofb values.
Solving the algebraic equation forb, one finds the critical
values

1

bc
5S N1

N2
D

c

522
a22

a12
6A12

a22

a21
. ~22!

For the case of87Rb, this formula says that the unstab
range is a finite one:bP@0.73,1.49#. This result is interest-
ing since it means that there are choices of the popula
imbalanceb that allow the stabilization of the vortex inu2&.
We have analyzed the ratio of angular momentum tran
from componentu2& to u1& as a function ofb from numerical
simulations of Eqs.~7!. The results are presented in Fig.
This is one of the main results of the paper and a predic
that can be experimentally tested and has already been
merically proved~see below!.

D. Nonlinear stability analysis

Even though the linear stability analysis presents so
evidences in favor of stability, it is not completely concl
sive. To give a full answer to the question, a fully nonline
stability analysis should be desirable, and this subject, wh
is quite technical and difficult, will be the subject of a futu
work.

Nevertheless there are indications that the stable confi
ration u1,0& should be sensitive to appropriate small fin
amplitude perturbations. The argument is very simple. A
cording to Fig. 4~b!, when the vortex is almost completel
transferred to stateu1& ~for a time of about 20 time units!, we
1-6
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are in a configuration that is close to the stable stateu1,0&,
but which is actually unstable. In fact, we have added fin
amplitude perturbations to the configurationu1,0& and found
that a periodic transfer dynamics is also induced that is v
similar to the dynamics ofu2,0&. The main difference is tha
u1,0& is linearly stable, which makes this configuration mo
robust but yet not completely stable.

E. Comparison of the predictions with simulations
of the full GPE

The main results of this paper are the stability proper
of the u1,0& and u0,1& states and the prediction of how t
stabilize the second one by varying the relative population
the u1& and u2& components.

The first result was already obtained in@17# using numeri-
cal simulations and a linear stability analysis of the f
Gross-Pitaevskii equations. Regarding the second predic
we have verified the possibility of stabilizing the stateu0,1&
using numerical simulations of Eq.~1!. In our simulations, a
u0,1& configuration is subject tofinite perturbations that in-
volve the displacement of the vortex and sometimes a cha
of the dimensions of the cloud. By performing the same
periments over a suitable range of populations of each c
ponent while keeping the sumN11N2 constant, we have
obtained pictures similar to the one in Fig. 6. There we
that up from a certain population of the unstable compon
the transfer of the vortex is inhibited. Although it is remar
able that the range of stabilization is smaller, the order
magnitude is similar to the one from the two-mode model
better quantitative agreement can probably be obtained
using as radial basis functions the stationary solutions of
nonlinear GPE that resemble better the actual shape o
clouds, or even by moving to a four-mode model in whi
u1& and u2& are represented by different pairs of functions

FIG. 5. Angular momentum transfer as a function ofb. All the
angular momentum is put initially at componentu2&. ~a! We simu-
late the dynamics and plot the maximum over a time which captu
the essentials of the dynamics of the fraction of angular momen
transferred to componentu1&, f, which is a measure of the instabi
ity, as a function ofb. The vertical lines mark the points where th
stability analysis predicts instability of the configurations.~b! Value
of the real part of the eigenvalues leading to instabilityl
54pNa11q/a0.
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The largeb region cannot be described using a two-mo
model. The reason is that forb>2 then we fall into the
spatiotemporally chaotic regime described in@17#. Thus the
predictions of the inhibition of the instability can only b
trusted whenb,1 and have no sense for largeb. In any
case, it is striking that such a simple model is able to capt
at least forb,1, the essentials of the dynamical behav
and to predict the existence of the inhibition of the transfer
the vortex fromu2& to u1&.

V. CONCLUSIONS AND DISCUSSION

To summarize the work presented in this paper, we h
completed the task of analyzing stability properties of vo
ces in double87Rb condensates, although our theory is mu
more general and can be applied to any two~multiple! con-
densate system. Our treatment is based on a simplified
mode model that captures many of the relevant dynam
features of the problem.

We have attained several goals in this work. First,
stability results of Refs.@15,17# are reproduced for theN1
5N2 case. Second, the instability mechanism consisting
vortex exchange between the two species is supported
described in detail here. Third, we raise a new prediction t
consists of the fact that population imbalances can stab
vortices inu2& states and also prove that vortices inu1& can
be destabilized by adding finite amplitude perturbations
the initial data. These predictions can be tested with curr
experimental setups and might be other tests of the existe
of purely dynamical instabilities in the two-condensate s
tem of Ref.@15#.

Of course the two-mode theory used here cannot be u
to explain all the possible dynamical regimes of a real m
ticondensate system. In fact it is shown in Ref.@17# that
depending on the perturbations applied to the system,
tiotemporally chaotic regimes may develop. These regim
cannot be handled with two modes. However, for many s

s
m

FIG. 6. Angular momentum transfer as a function of the num
of particles in the second component,N2, for a fixed sumN5N1

1N2523105. All the angular momentum is put initially at com
ponentu2&, which is slightly displaced and then simulated acco
ing to Eq. ~1!. For N2 of about 3–4 timesN1 the instability is
suppressed.
1-7
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ations ranging from two-dimensional condensates to th
dimensional ones with small perturbations, the two-mo
theory is a simple way tounderstandthe complex dynamics
of vortices in multicondensate systems. Indeed, the fact
such a simple model already provides the most interes
properties of the system is another proof of our statem
that the instability of theu0,1& configuration is something
essential to the dynamics of these condensates.

The proposed possibility of making the condensate inu2&
,

ev

.
74
e

ev

s

03360
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stable or unstable by controlling the population ratio is int
esting from the viewpoint of condensate engineering. W
hope that this work helps in the task of understanding
complex dynamics of vortices in Bose-Einstein condensa
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