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Two-mode theory of vortex stability in multicomponent Bose-Einstein condensates
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We study the stability and dynamics of vortices in two-species condensates using a two-mode model. The
recent experimental results obtained at JIM. R. Matthewset al, Phys. Rev. Lett83, 2498(1999] and
recent numerical simulations based on the Gross-Pitaevskii equations are explained using this simple model.
We also make an exhaustive analysis of the stability properties of the system when the relative populations of
the two species and/or their relative scattering lengths are changed and prove that stabilization of otherwise
unstable configurations can be attained by controlling the relative population of both species.

PACS numbds): 03.75.Fi, 67.57.Fg, 67.90z

I. INTRODUCTION mean-field theories for the double condensate system. A con-
sequence of the analysis is that, if dissipation is small, the

Vortices appear in many different physical contexts rang+instability mechanism does not lead to expulsion of the vor-
ing from classical phenomena such as fluid mechafi¢s tex from condensate, but to the establishment of a complex
and nonlinear opticg2] to purely quantum phenomena such state in which the phase singularity periodically moves from
as superconductivity3] and superfluidity{4]. one specie to the other.

A vortex is the simplest topological defect one can con-  The purpose of this paper is twofold. First we want to
struct [5], and it is characterized by the fact that in any ynderstand the mechanism of the instability. In this sense,
closed path around a vortex, the phase of the involved fielgh, haper will confirm the results frofii7] by proving for
undergoes an integer multiple ofr2winding. When the  his system that the instability arises even with the least num-
phase jump ist 2, then it implies the stabilization of a zero o, ot gegrees of freedom. The second target of the paper is
value of the field placed in what is called the vortex core, o learn what happens with th&,0) and|0,1) configurations
i.e., one extreme of the line that joins the discontinuities Of\t/vhen we vary the relative pop’ulations é)f both species. The
the phase. This stabilization is due to topological constraints )

since removing the phase singularity implies an effect on thg?:esults are also applicable to other multiple condensate sys-

boundaries of the system that is difficult to achieve usin ems where. the set of scattering lengths is different from
local perturbations. hose of rubidium. . N —

The concept of a vortex is central to our understanding of |0 €ase the analysis and get an intuitive physical interpre-
superfluidity and quantized flow. This is the reason why the@tion, we make most of the analysis using a simplified two-
experimental realization of Bose-Einstein condens@@&g) ~ mode model that is exact in the linear limit but provides
with ultracold atomic gasef$] has triggered the analysis of 9ood qualitative predictions that are in agreement with the
vortices. The main goals in this field have been the genersg&xperiment of Refl15] and the numerics of Reff17]. These
tion [7,8], detection[9], and stability propertief10-14 of  results will be further confirmed by numerical simulations of
vortices. the full three-dimensional mean field equations ruling the

Although most of the theoretical effort has concentratedohenomenon.
on single condensate systems, the first experimental realiza- Our plan is as follows: In Sec. |l we present our problem
tion of BEC vortices[15] was attained following the pro- in a suitable form and obtain the reduced set of equations for
posal of Ref[16] with a two-specie€’Rb condensate. The the two-mode model. In Sec. Il we apply the two-mode
two species correspond to two different hyperfine levels ofmodel to the system discussed in the previous analysis
8'Rb, denoted by1) and|2). From Ref.[15], we know that  [15,17]. In Sec. IV we make a complete stability analysis of
while one may build two possible configurations with a unitthe relevant configurations and make some predictions that
charge vortex, only one of them is stable. The stable configuare experimentally testable. Finally, in Sec. V we summarize
ration corresponds to the vortex placed on {fi¢ state, our conclusions.
namely, the one with the largest scattering length. The con-
figuration with the vortex placed in tHe) state, on the other
hand, leads to some kind of instability. To simplify the read- Il. THE MODEL
ing of this paper, we will use in what follows a shorthand
notation for these stateft,0) will refer to the state in which
the vortex is hosted byl), and|0,1), the state with the In this work, we will use the zero-temperature approxima-
vortex in|2). tion, in which collisions between the condensed and noncon-

In a recent workf17], we have used numerical simula- densed atomic clouds are neglected. In the two-species case,
tions to show that the instability of stat@,1) is purely dy- this leads to a pair of coupled Gross-Pitaevskii equations
namical and can be understood within the framework off GPE for the condensate wave functions of each species:

A. Mean-field equations for the two-condensate system

1050-2947/2000/63)/0336018)/$15.00 62 033601-1 ©2000 The American Physical Society



VICTOR M. PEREZ-GARCIA AND JUAN J. GARCIA-RIPOLL PHYSICAL REVIEW A 62 033601

9 [ p2y2 1 B. Derivation of a two-mode model

i - 2 2
ih— Wy =| = FVi+U g W2+ U Wol? |y, In our previous wor17], we worked on the basis of the
) ~ (1a  full GPE to prove the instability of thi0,1) stationary solu-
tion, as well as the stability of thel,0) state for typical
. d 5 2' experimental conditions. That stability analysis demonstrated
1= Wo=| ==+ Vot Up| W[+ U Wo|*| W, that the instability was mediated by the growth of a core
] "~ (1b mode that pushes the vortex out of the condensed cloud. This
fact makes plausible the description of the two-condensate
whereU;; =4i2a;; /m are constants controlling the nonlin- dynamics by the use of only two modes for each level: one
ear behavior, which are proportional to the theave scat- Ccorresponds to a centered vortex and the other to a nodeless
tering lengths of +1, (a;7), 2—2 (ay), and 1-2 (a;;)  ©OF coremode. This approach, which corresponds to retaining
binary collisions. the stationary plus active modes and has been used success-
To simplify the formalism, we assume that both trappingfully in the analysis of other nonlinear probleri], should
potentials are concentric and spherically symmetdg(r) work at least in the linear regime in which perturbations are

>, . L , ~ small.
=V,(r)=3imw?r?, just like in the experiment. The consid- Mathematically, the idea is to approximate:
eration of the differences betwe&f andV, does not add

2m

h2v2

new physics to the model as it will be discussed in detail P (X)=a(t) g1 (X) + b(t) Pre1(X), (5a
later.
Next we change to a new set of units based on the trap Pa(X) =C(1) Pga(X) + (1) Prea(X). (5h)

characteristic lengthy= VA/mw and periodr= 1/w defined

as x—xlag,t—tlr, uj=4mN;a;/a, and Wi(X)  Here,y,;(x) is the spatial wave function of the ground state
=N;¢#;(x). Equations(1) conserve the number of particles or core mode for each specig), andyj(x) corresponds to

on each hyperfine level and so we may choose a representation of the single vortex wave function. This ap-
proximation implies some loss of information about the dy-
> 2 > 2 namics but it is not essential for our results, as will be shown

[ 1or= [ pspre=1 @ [amess

We can also relate this idea and its representafti€m
This choice implies that the particle number of each speciet)] to a recent work on the dynamics of a single condensate
appears on the nonlinear coefficients. [8], with the difference that the modes from R] are fully
The experimental resulfd5] and our previous theoretical nonlinear and depend on their populatiofesb,c,d} (so
analysis[17] correspond to systems in which the number ofthere is no simple analytical expression for the@ur ap-
particles is the same for each componéht=N,=N, butin  proach is simpler but, as we will see, the two-mode ansatz
general one could allow any proportion between the populareflects the essentials of the dynamics with good accuracy.

tions of the different levels. 4, can be chosen as any approximation to the ground
With the previous rescaling, the GPE for the multicompo-and first excited states of the single-species equations, pro-
nent system read vided they are orthogonal, which automatically is guaranteed

if ¢ has a vortex angyy does not. Our choice will be to use

d 1, ) 5 the eigenfunctions of thd-dimensional harmonic oscillator
= T or Uyl ¢|*+udvol® |41, (38 that are the exact solutions in the linear case and allow
simple manipulation since their analytic form is known:
d 11
i o= — Z+ 24 24 2y 1) 4”2
=i ¥ 5>T5f Uzal 1| "+ Ungl 2| |4h2. (3D) lﬂg(X):(;) e T2, (63)
Since the realistic values &fRb scattering lengths are in a2
the proportionay;:a;,:a,,=1.00:0.97:0.9418], the coeffi- _ i 1212, 0
. . . O . Pe(X)= re "'’ (6b)
cients of the matrix of nonlinear coefficients satisfy the rela- dm

tiOI’IS U11/U12: allNl /alzNZ ,U21/UZ2: a12N1 /azzNz, Wh|Ch

means that except for the particular case in wHitlh=N,  Other choices are feasible with the only change of several
=N, this matrix is nonsymmetric. In terms of the population coefficients related to integrals involving, and ., as will
imbalanceB=N,/N;, and for a fixed total number of par- be discussed later.

ticles the matrix can be written as In our treatment, we will consider simultaneously the
two- (2D) and three-dimensional configurations. It was
1.00 0.978 shown in a previous work concerning single condensates
(Un u12) AmagN 1+8 1+8 [12] that the transition from a spherical trap to a pancake
= . (4) preserves the shape and number of unstable modes. Our
U1 Uz Qo ﬁ 0.948 present analysis applies equally to the simplified 2D situation
1+8 1+p used in Ref.[17] as well as to the full 3D problem and
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proves that there are no essential differences between the
two- and three-dimensional models for the type of phenom-
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ena described here.
Inserting the ansatz from E¢p) into the GP equatio(3)

and projecting on/g; and ¢ one obtains the following set

of coupled nonlinear ordinary differential equations:

ia= —aEg+uga( y1la|?+2y,|b|?) +usalys|c|?+ y,|d|?)

+U12’)/2bcd*, (7a)

ib=—bEe+uyib(ya|b|?+2y,|al?) + ugb(y,|c|?+ ys|d|?)

+up,yacd, (7b)

ic= —CEg+UpsC(y1|C|2+ 25| d|?) + UpiC(y4[c|?+ v,/ d]?)

+ U21’)/2d ab* , (70)

id=—dEg+ Upsd(y3|d|2+ 2y,|c|?) + uyd( yo|a|+ y3|b]?)
(7d)

Here, ;= (|¢g|21|‘//g|2)1 Y2= (|’pg|2a|¢e|2)v V3= (|¢e|21
|'7[fe|2)v and Eg:('/’gxHO'r/fg)aEe:((r/feaHOlr/fe) being Ho=
—1A+%r2 For our particular choice ofy, and i, the
values of these coefficients ang"=1/27,y5°=1/4m, 3°
=1U4m EZP=1EP=2, 13%=1/(2m)*? y3"=1/2(2m)%",

y3'=5/12(2m)%?, EP=3/2, andE" = 5/2.

+ U21’)/2ca* b

Pb=U12Y2PapcPaSIN dat dg— ba— o), (90
bo=Ee—Ur1(y3pa+272p2) = Uss Yop2+ ¥3p3)
PaPcPd
— U127, ap; coS byt da— de—bp),  (90)
Pe=U21Y2ppPapaSIN o+ de— dpa—da), (99

$he=Eg— U Y1pe+27203) — Uns( Y1p5+ V2pp)

PbPaPd
—Up1Yy———COS P+ e ba— ba), (9f)
C
Pa=Uz1Y2papuPcSIN Ga+ da— da— o), (99
bg=Ee—Up 73P§+ 2?’205) — U 7’2P§+ Yspg)
PaPcPb
—Upyyy———C08 g+ pa— be— dp).  (9h)

Pd

Despite the apparent complexity of this system, it is easy to
prove that the four phase variables can be reduced to a single
one given byd = ¢+ ¢.— ¢~ ¢4. The dynamics on these
new variables is ruled by

If the trapping potential¥/; andV, are not considered to
be equal, then the shapes of the modgsaind i in |1) and
|2) are different. However, the only difference with respect
to our present treatment is on the precise numerical value of
the coefficients, which is not essential for what follows. The
same happens when other functions are considered to repre-
sent the ground and first excited state instead of harmonic-

Pa=U12Y2PpPcPaSIND, (109
Pp=—U12¥2PapcpasSin®, (10b
= —Up1Y2ppPapasSin®, (109

Pa=Uz1¥2PappPcSIND, (100

oscillator basis functions.

. . . . N 2 2 2 2
Equations(3) satisfy discrete conservation laws corre- ®=Yapa® Yopbt Yepc T Yapat 72
sponding to the number of particles of each species and an-

gular momentum,

la|?+]|b|?2=1, (83
[c|?+|d|?=1, (8b)
|b|2+|d|?=L,, (80

L, being the angular momentum of the initial data. There is
another conservation law for the energy that is not reIevani

to our purposes.

It is convenient to change to a modulus-phase represent

tion given by a=p.e'%a,b=ppe'?,c=p.e'%c,d=pse'td.
Equations(7) then become

Pa=U12Y2PpPcPaSINPp+ e bg— ba), (93
ba=Eq—Uss(71p2+272pE) —UsA Y1p2+ ¥2p3)
PbPcPd
—Uppy,———COd pp+ po— dg— ba),  (9D)

Pa

PoPcPd PaPcPd
Ul I
Pa Po

(109

PoPcPa Papbpd) }

+ Uy P
Cc

We have now five ordinary differential equations in Et0)

plus four conservation laws, which means that the system
can be(at least formally integrated. This fact excludes the
possibility of chaotic behavior in the system.

Equations(10) can be further simplified by defining den-
ity variables related tp? and X= p,pppcpq and using the
onservation laws. We will not follow this route since all the
implified models such as the one presented in E&S.
ave singularities when any of the densities is zero. This fact
makes the new equations useless for a stability analysis,
since the stationary states are singular solutions of these sys-
tems.

Ill. DYNAMICS IN THE PHYSICALLY RELEVANT CASE

The experimental configurations first described[ D]
and later numerically studied ihl7] correspond to unit
charge vortices in eithddl) or |2), with the constraint that
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FIG. 1. Stability of the configurationl,0). Snapshots of the
spatial density ofa) [1) and (b) |2). Evolution the amplitudes of
the modes with timéc) |a| (solid line) and|b| (dashed ling (d) |c]|
(solid line) and|d| (dashed ling

the populations of both hyperfine levels are equal, .,
=1 andu,;=uy,. It is interesting to study the dynamics
under small perturbations of the initial dagg0)=0,b(0)
=1,c(0)=1,d(0)=0, which physically corresponds to the
stationary statg1,0), and a(0)=1,b(0)=0,c(0)=0,d(0)
=1, which corresponds td,0). Both initial data correspond
to two different periodic solutions of the amplitude equations
(7), which are

FIG. 2. Snapshots of the evolution of an unstable vofttate
0,1)). Evolution of the spatial density ¢&) |1) and(b) |2).

a(t)=0,b(t)= gl (Ee~U1173~U1272)t,

c(t)=¢'(BgmU22ri=tar2)t - (1) =0; (11a

a(t)=e'(Eemtri—u2r2t p(t)=0, vortex is placed in2), an instability develops and the re-
sponse to small perturbations is to transfer the vortejd jo

c(t)=0, d(t)=e(FgUz2r3~Ua1r2)t, (11b) and start a periodic transfer dynamics. The snapshots of the

density during the destabilization process are shown in Fig.

To have a clear picture of what is going on, we have first2. In Fig. 3, we show how the phase singularity2) spirals
simulated the dynamics of these states when small perturbaut of the system while a phase singularity appearklin
tions are added to the initial data. The results are summarizeahd occupies the center of the atomic cld@d]. This dy-

in Figs. 1-4. It is clear from Fig. 1 that the configuration thatnamics is recurrent as can be seen from the evolution of the

has a vortex irl1) is dynamically stable. However, when a relevant variablegFig. 4).
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030 4'0t' 60 80

FIG. 4. Evolution of the amplitudes of the mod@s |a| (dashed
line) and|b| (solid line); (b) |c| (dashed lingand|d| (solid line).

3 T T T ; T The simulation is done adding a random perturbation to the con-
(b) figuration with vortex in |2), i.e., a(0)=e"2\/1— €2, b(0)
921 . =€,€"3, ¢(0)=€e,e"4 d(0)=/1— €2. €, ande, are random num-

bers uniformly distributed between 0 and 0.62are random num-
bers uniformly distributed between 0 and 1.

1t |
ing Floquet's theory. A way to partially circumvent this situ-
Ot ] ation is to change to the rotating frame of reference defined
by
-1t . - _
a=ae (Eg~Uzvi—uart (123
21 1 =~ (B —
b=be 1(Eem U113~ U1272)t, (12b
-3 . . . . . ~ E ey
3 9 1 0 1 9 3 c=ce (Eg-uzvi—Uar2)t (120
FIG. 3. Evolution of the position of the phase singularity corre- d=de 1(Ee~U11ya—upmo)t. (124)
sponding to the simulation shown in Fig.(@) Phase singularity in
|1). (b) Phase singularity ifi2). Using these new variables, the equations are
IV. STABILITY THEORY a=i(yUpyt yoUp)a—iuga(ys|al?+2y,|bl?)
A. Problem statement —iuga( )/1|C|2+ y2|d|2)— iU;,y,0C0* (139
Our numerical simulations of the reduced systém B 5 o _
show that in the equal population cadg,=N,=N, and for b=i(y3U11+ yoUr)b—iuqb(y5|b|2+27y,[al?)
arbitrary nonlinearities only one of the possible stationary - - —
states of the system is stable. It is our purpose in this section —iu1b(ylc[?+ y5[d|?) —iuyy,ac*d, (13b
to make a complete analysis of the stability of the system for ]
any proportion of the population8=N; /N, and any value C=1(y1Upot YoUa1)C—iUpC(y1[Cl2+27,/d|?)
of the nonlinear coefficient®.qg., total number of particlds o _ o
and scattering lengtha;;). These results could be specially —iupC(y1]C|?+ y,[d]?) —iuy,dab*, (130
relevant to predict the existence of stable vortex states for a
specific multiple-condensate system. For the casé’Bb, H=i(73u11+ 72u21)<~j—iuzza(y3|a|2+2y2|5|2)
the results can be applied to study the possibility of stabiliz-
ing different configurations. —iUyd(y,al?+ y3/b|?) —iumyy,ca*b. (130

The stationary solution is an equilibrium point of Egs.
(13): 2p=0by=1.co=1.d,=0. To study its stability, we lin-
When a vortex is placed ifl), the resulting stationary earize Eqs(13) around the equilibrium point and define the
state is a periodic orbit described by Ed.19. Its direct perturbations through
stability analysis using Eqs(7) would lead to time-
dependent perturbation equations that should be analyzed us- a=ag+ d,(1), (148

B. Stability of the state |1,0)
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b=Dbg+ 8,(1), (14b)
CT=Co+ 8,(1), (140
d=dg+ 84(1). (140
The new evolution laws are
8a=1828,—1U1,7,6 , (159
5,=0, (15b)
6.=0, (1509
84=10g8g—iUp1y,5% , (150
where  Ag=Uzy1+Uxny2—2yoU11— y1U2,  Ag=U11y3

+Uy0y,— 2Us0y,—Uyyys. The perturbations fob and ¢

PHYSICAL REVIEW A 62 033601

ki B8>28. (20)
a2

For rubidium, inequality(20) is always satisfied, which
proves that the configuration with a vortex |ib) is always
linearly stable regardless of the relative population of each
specie, 8. This is consistent with the results from Refs.
[15,17 that show the stability of the experimental configu-
ration with a vortex in|1).

It is also remarkable that the stability properties of this
model do not depend on the total number of particles but
only on the relation between the populations. The stability
properties also depend essentially on the scattering lengths,
which in our case are fixed since we are dealing with specific
hyperfine levels of Rb atoms.

C. Stability of state |0,1)
The stability analysis of configuratid,1), which corre-

have a neutral behavior because their evolution is ruled b§ponds to initial dataag=10,=0,C,=0do=1, is com-
quadratic terms. If we write the equations for the perturbaPletely equivalent to the previous one. In fact, arguments of
tions and their complex conjugates to obtain the full stabilitySymmetry imply that the result should be formally equivalent

spectrum, we have

a A, 0 0 —U2y2 a
d{&| | O —Ay Uy 0 b
dt| | | 0 umre As 0 || 4

5 Uy, O S YRAE

(16)

with only an exchange of indices<12, i.e., the stability
condition now reads

82 115218, 21)
az;

This inequality is not verified for a certain range®#alues.
Solving the algebraic equation fg#, one finds the critical

The eigenvalues of this matrix can be obtained analyti-

cally, the result being

TA—Ay 1

AN o=1 a2 +oV(Aa+Ag)2—4y5unuy,|, (173
JA+Ay 1

Naa=i| =5 — £5\(Aa+ Ag)* = 473Ulis,|. (17D

There is only one stability condition, which ja ,+ A4|
>21v,\UpUs,. Since the parameters; are functions ofy;,

values

1 <N1> az az

— =] =2——*\/1-—= (22

Be \Na/, ap ag
For the case off’Rb, this formula says that the unstable
range is a finite one8e[0.73,1.49. This result is interest-
ing since it means that there are choices of the population
imbalanceg that allow the stabilization of the vortex |&).
We have analyzed the ratio of angular momentum transfer
from component2) to|1) as a function of3 from numerical
simulations of Egs(7). The results are presented in Fig. 5.

which depend on the dimensionality and on the shape of th&his is one of the main results of the paper and a prediction
trial states, we must separate now the results for the 2D anithat can be experimentally tested and has already been nu-

3D cases. In the two-dimensional case, we obtain

Ug1F Ugp™>24UpiUyy,

while for the three-dimensional setup the condition is

(18)

7 1

sYun" 5 Upqt Ugp™> 2 UpqUpp.

6 (19

Taking into account the fact that the numerical valuea gf
and a,, are very close, we find that Eq&l8) and (19) are

merically proved(see below.

D. Nonlinear stability analysis

Even though the linear stability analysis presents some
evidences in favor of stability, it is not completely conclu-
sive. To give a full answer to the question, a fully nonlinear
stability analysis should be desirable, and this subject, which
is quite technical and difficult, will be the subject of a future
work.

Nevertheless there are indications that the stable configu-

indeed very similar. This is why we will use one of them, Eq.ration |1,0) should be sensitive to appropriate small finite
(18), for the subsequent analysis. If we write the inequalitiesamplitude perturbations. The argument is very simple. Ac-

in terms of 8 and use the scattering length values®Rb,
we obtain the following stability condition:

cording to Fig. 4b), when the vortex is almost completely
transferred to statel) (for a time of about 20 time unitswe
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FIG. 5. Angular momentum transfer as a function®fAll the

ngular momentum i initiall mponegay. We simu- .

anguiar momer tum is put initially a.lt compo ém. @ € simu FIG. 6. Angular momentum transfer as a function of the number
late the dynamics and plot the maximum over a time which captures

the essentials of the dynamics of the fraction of angular momenturr?f particles in the second componeNt, for a fixed sumN =N,

transferred to componeft), f, which is a measure of the instabil- N NZ:ZXlOS'.A” _the _angular_ momentum IS put |_n|t|ally at com-
ity, as a function of3. The vertical lines mark the points where the ponent|2), which is slightly displaced and then simulated accord-
- . . . . . ing to Eq. (1). For N, of about 3—4 timesN; the instability is
stability analysis predicts instability of the configuratio(is. Value
. . ) . suppressed.
of the real part of the eigenvalues leading to instability

=47Nay,0/a,. . . .
T8 The largeg region cannot be described using a two-mode

model. The reason is that fg8=2 then we fall into the
are in a configuration that is close to the stable sfat®),  spatiotemporally chaotic regime described 17]. Thus the
but which is actually unstable. In fact, we have added finitepredictions of the inhibition of the instability can only be
amplitude perturbations to the configuratidn0) and found  trusted whend<1 and have no sense for large In any
that a periodic transfer dynamics is also induced that is vergase, it is striking that such a simple model is able to capture,
similar to the dynamics of2,0). The main difference is that at least for3<1, the essentials of the dynamical behavior
[1,0) is linearly stable, which makes this configuration moreand to predict the existence of the inhibition of the transfer of
robust but yet not completely stable. the vortex from|2) to |1).

E. Comparison of the predictions with simulations V. CONCLUSIONS AND DISCUSSION

of the full GPE To summarize the work presented in this paper, we have

The main results of this paper are the stability propertiecompleted the task of analyzing stability properties of vorti-
of the |1,0) and |0,1) states and the prediction of how to ces in doublé®’Rb condensates, although our theory is much
stabilize the second one by varying the relative population ofmore general and can be applied to any twaltiple) con-
the|1) and|2) components. densate system. Our treatment is based on a simplified two-

The first result was already obtained &v] using numeri- mode model that captures many of the relevant dynamical
cal simulations and a linear stability analysis of the full features of the problem.

Gross-Pitaevskii equations. Regarding the second prediction, We have attained several goals in this work. First, the
we have verified the possibility of stabilizing the stéel)  stability results of Refs[15,17] are reproduced for thal,
using numerical simulations of E¢l). In our simulations, a =N, case. Second, the instability mechanism consisting in
|0,2) configuration is subject téinite perturbations that in- vortex exchange between the two species is supported and
volve the displacement of the vortex and sometimes a chang#escribed in detail here. Third, we raise a new prediction that
of the dimensions of the cloud. By performing the same ex-<consists of the fact that population imbalances can stabilize
periments over a suitable range of populations of each comvortices in|2) states and also prove that vortices I can
ponent while keeping the suid;+N, constant, we have be destabilized by adding finite amplitude perturbations to
obtained pictures similar to the one in Fig. 6. There we se¢he initial data. These predictions can be tested with current
that up from a certain population of the unstable componentxperimental setups and might be other tests of the existence
the transfer of the vortex is inhibited. Although it is remark- of purely dynamical instabilities in the two-condensate sys-
able that the range of stabilization is smaller, the order otem of Ref.[15].

magnitude is similar to the one from the two-mode model. A Of course the two-mode theory used here cannot be used
better quantitative agreement can probably be obtained bip explain all the possible dynamical regimes of a real mul-
using as radial basis functions the stationary solutions of thécondensate system. In fact it is shown in REE7] that
nonlinear GPE that resemble better the actual shape of thdepending on the perturbations applied to the system, spa-
clouds, or even by moving to a four-mode model in whichtiotemporally chaotic regimes may develop. These regimes
|1) and|2) are represented by different pairs of functions. cannot be handled with two modes. However, for many situ-
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ations ranging from two-dimensional condensates to threestable or unstable by controlling the population ratio is inter-
dimensional ones with small perturbations, the two-modeesting from the viewpoint of condensate engineering. We
theory is a simple way tanderstandhe complex dynamics hope that this work helps in the task of understanding the
of vortices in multicondensate systems. Indeed, the fact thatomplex dynamics of vortices in Bose-Einstein condensates.
such a simple model already provides the most interesting
properties of the system is another proof of our statement
that the instability of thgl0,1) configuration is something

essential to the dynamics of these condensates. This work has been partially supported by the DGICYT

The proposed possibility of making the condensat@2jn  under Grant No. PB96-0534.
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