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Computational study of order-disorder transitions in alloy clusters
using the isothermal-isobaric ensemble
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The low-temperature order-disorder transition for a;MRg alloy cluster was considered using the
isothermal-isobari¢NPT) ensemble. The ordered structure consists of a completely segregated arrangement of
atoms and the disordered systems present a certain degree of mixing within the cluster. The transition was
characterized by monitoring anomalies in the average value of the constant pressure heat ¢@pacitg, a
function of temperature. The maximum temperature in{Bg) versusT graph, T pixing is used for estimating
the equilibrium temperature at which the transition occurs, at a given pressure. It is observed that as the
pressure increase$ing decreases up to a value of 25 K, where the mixing transition becomes temperature-
independent. The sampling difficulties presented in standard Monte Carlo simulations are circumvented by
implementing thel-walking procedure to th&lPT ensemble.

PACS numbgs): 36.40.Ei, 65.40tg, 05.10.Ln, 05.76-a

[. INTRODUCTION gated and mixed forms of the cluster have been identified.
Most theoretical studies that consider phase transitions
The properties of alloy clusters have been the subject ofiave been based on computer simulations in the canonical
considerable research over the past few years. In particulagnsemble. However, a more thorough thermodynamic de-
the structure, stability, and thermodynamics of clusters irfcription can be obtained using the isothermal-isobaric en-
vapor have been studied extensively. In the description of théemble. For example, Chereg al.[9] used this ensemble to
structure of alloy clusters, three possible spatial arrangedescribe the solid-liquid transition for 4y In that work, by
ments of atoms have been proposed for systems of Afpe identifying ano_malles in the constant pressure heat capacity,
[1,2]. The first one is called the cherry model and consists of-p+ @S @ function of temperature, the transition temperature
a core rich in componenA surrounded by a shell rich in was obtained at a given pressure. However, the most difficult

componenB. Another possible structure assumes that comProblem encountered in the construction of this diagram was

ponentsA and B are randomly distributed over the cluster. f[he problem of quasiergodicity. That problem was due to the

The third possible structure is thatandB separate into two improper exploration of the PES and _caused large uncertain-
droplets of pure components. Figure 1 depicts these stru ties in the average _value of prop_ertles t_hat were measure-

: i . UShents of the fluctuation of mechanical variables. An example
tures for a 13-atom alloy cluster. Various theoretical studie

h lored th o ‘ £ all f this is the computation oE, in the NPT ensemble, which
ave expiore .t e potential-energy sur "’(EE,ES oF alloy  measures the fluctuation in the enthalpy of the system. To
_clusters. In partlcularf our group has shown in previous studg;.c,mvent the problem, Ortiet al. [10] presented an exten-
ies [2,3] that for a NPd; alloy cluster, the lowest energy gjon of the J-walking formalism to the isothermal-isobaric
equilibrium structure consists of two separate droplets oknsemble. Specifically, the standard random walker at a de-

pure components. This structure, which is shown in Figl,1  sjred temperature and pressure is coupled with a walker at a
is known in this study as the completely segregated structure.

The randomly distributed structure for this system is higher (®) o
in energy and is called the mixed system.

Another active area of research involving finite systems, o g %o 00O
which is related to structural changes as a function of tem- (- ]
perature, is the determination of cluster phase transitions. OO0 o a o0 5 (- &
Various phase transitions have been identifide12] and ®) o
associated with cluster isomerization in a certain temperature (a) 0
range. For example, the solid-liquid cluster equilibrium oc- (b)
curs in a temperature regime where solidlike and liquidlike OO° o0
forms of the cluster coexig—6,9,1Q. In the case of alloy
clusters in vapor, a low-temperature phase transition has
been identified 3,11,13 that is associated with the order- OO O oo
disorder transition in bulkl13]. Specifically, at low tempera- O
tures a coexistence temperature regime exists where segre- (c)

FIG. 1. Three possible spatial arrangements for a 13-atom alloy
* Author to whom correspondence should be addressed. Email adiuster: (a) cherry model,(b) completely mixed, andc) com-
dress: glopez@rumac.upr.clu.edu pletely segregated system.
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different temperature and pressure which samplestraining radiusR.. For all calculations in this work, the
configurational/volume space more efficiently. Jumps are ateonstraining radius is set at 3 A.

tempted to this walker periodically with a non-Boltzmann

Sampling distribution that satisfies detailed balance. Thep. Isothermal-isobaric ensemble andJ-walking Monte Carlo
method was successfully applied to the study of the solid-
liquid equilibrium for Arss,

In the present work, th&walking Monte Carlo method in
the isothermal-isobaric ensemble is applied in the characte
ization of the order-disorder phase transition ofk. This
method has been used because previous st{@ljig%,17 on p=min[19(r{,r)], (4)
alloy clusters have shown that the standard Metropolis tech-
nique fails to predict order-disorder transitions at low tem-whereq(r;,r;) is given by
perature. This study will provide a clear and complete ther-
modynamic description of this transition. Moreover, unlike S(rilre)p(ry)
previous studief3,11,13, the effect of pressure on this tran- q(re.ri)= S(relri)p(ri)”
sition is considered. By defining a spherical volume, the
variation in the low-temperature transition is considered as 4n this equationS(r,|rp) is the sampling distribution gener-
function of pressure and a fixed composition. ated from a uniform deviate angr) is the distribution func-

In Sec. Il of this paper the theoretical methods used aré&on, which in theNPT ensemble is given bj18]
described. In Sec. lll, the results are presented and discussed.

Finally, in Sec. IV, we summarize our findings and suggest p(r)= exd —B(U+PV)]
directions for future work. A(N,T,P)

In the standard Metropolis Monte Carlo algorithd®], a
random walker samples configuration space from an initial
F_onfigurationri to a final configurationm; with a probability

of acceptancep, which is given by{17]

®

(6)

Here, U is the configurational energys is 1kgT, P is the
l. THEORETICAL MODELS pressureV is the volume, and (N,P,T) is the isothermal-
A. Interparticle potential isobaric partition function. Hence, for this particular sam-

. . I . pling distribution and distribution function,
It is well known that simple pairwise potentials do not

provide an accurate description of the interparticle interac- q(rs,ri)=exg —B(AU—PAV)], (7)
tion in metallic systems. In particular, many-body effects
play a crucial role in the proper description of these systemavhereAU and AV are the difference in configurational en-
However, previous studieg3,14] have shown that when ergy and volume between the final and initial states, respec-
many-body empirical potentials are applied to the study otively.
structural changes as a function of temperature, no signifi- For the J-walking algorithm in theNPT ensembl€e10],
cant differences are observed when compared with théhe sampling distribution is taken as a distribution at a tem-
simple pairwise potential. Hence, as in our previous studieperatureB; and a pressur@;,
[3,5,7,10, Lennard-Jones potentials have been used to model
the interaction between atoms. In the Lennard-Jones poten- Sror)= exp— BylU(r) —PyV(ryJ} ®
tial, the interaction between any pair of atonandj is given o A(N,P,T)

to obtain

by
2"
il q(re,r)=exd(By— BYAU+(BsPy— BP)AV].  (9)

wherer; is the distance between atomandj, ande;; and  As in the canonical ensemble, thavalking method ensures
ojj define the energy and the length units, respectively. Fogetailed balance by jumping to a walker at a temperature
the bimetallic system considered herey;n=6030K,  and/or pressure that does not suffer from quasiergodicity

onini=2.282 A, epyp=4951K, andopg.pe2.520A. To  problems Details of the implementation are presented in the
calculate the interaction between unlike species, theext section.

Berthelot-Lorentz combining ruld®] have been used:

To satisfy detailed balance, E() is substituted into Eq.2)

V(r)=4 %)’ 1
ij)=4ej 0l | (1)

N C. Thermodynamic properties
s”:%, (2 Various thermodynamic properties are computed in the
isothermal-isobaric ensemble. As usual, standard mechanical
properties such as configurational energy and volume are
€ij= VEji&jj- (3)  computed as a function of temperature and pressure. Stan-
dard fluctuation expressioni49] are used for the character-
To define the cluster, a constraining potenfiab] has ization of the phase transitions. Namely, the variation in the
been used and is defined as a perfectly reflecting wall cerconstant pressure heat capaciy,, and the thermal com-
tered at the center of mass of the cluster, which has a comressibility, 81, is computed as a function of temperature
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and at a fixed pressure. The average valueCgfin the 80 @
isothermal-isobaric ensemble is given by 60
1 <Vol> | .
(Co)= 1z [{U+PVA—((U+PV))?] (10
B 20 s
and the average value @ is given by 0 . .
1 0 1000, (K)zooo 3000
_ 2\ _ 2
The averages in Eq$10) and (11) are calculated using the (b)
previously presented-walking method. 15
In order to implement the above method, a definition for
the volume of the system must be provided. As in previous <U> ;.
studieg[9,10], we have assumed that the volume of the clus- pas®”
ter is spherical and is given by = -
5 T T |
47R3 0 1000 2000 3000
V=T (12 ()

whereRis obtained by adding the distance from the center of FIG. 2. Variation in(a) average volume an) configurational
mass of the clusters to the outermost atom and the radius §P€rgy as a function of temperatureRat 0 atm for NgPd.

the atom. and configurational energy are stored. At temperatures where

the J-walking configurations are not generated, the simula-
tions are broken into 100 blocks with uncertainties calculated
To characterize the arrangement of atoms in a specifit0 one standard deviation. Each block consists of 10
cluster, the mixing numbeiM, is defined[2,3,20 as the Wwarm-up moves and Panoves where data are gathered. The
number of unlike species bonds in that particular cluster. Thétarting configuration is the lowest-energy icosahedral struc-
mixing number provides a measurement of the heterogeneitigre that defines an initial volume of approximately 2135 A
in the cluster. For example, in the bimetallic icosahedral
cluster, there are a total of 42 bonds; if the structure is com-
pletely segregated, thdy value is 16, whereas, for a com-

letely segregated cluster, tivy value is 26. . .
P y segreg N tional energy as a function of temperaturePat 0 atm. In

Another useful tool for analyzing the nature of the spatial o~ .
arrangement of the alloy clusters is the mixing number gisPoth cases, at temperatures below 1500 K, small variations in

tribution function. The distribution of mixing number thiSS%O ':?ermodynan‘.nc q:Jalr)tltles. are obsgrvetli For q
[F(M)] measures the region of configurational space acs N, an approximately linear mgrement N volume an
cessed by thé-walker for a cluster at a given mixing num- SNergy is observed due to the coexistence of solidlike and

ber. MoreoverF(My) provides information about isomers !;%mdllke s%ecr:es,_ I.€., dgrlng tr:je_ cIlFJ:_ster-mehItlng ttr:an_smon.
sampled at a given temperature. e same behavior is observed in Figa)3 where the iso-

thermal compressibilityBr, is presented as a function of
temperature. At very low temperatures, the magnitudg-of
is very small, which is typical of solidlike materials. In the
The J-walking Monte Carlo method has been imple- melting transition region, an increment in compressibility is
mented in the following manner. A very long run consisting observed due to the liquidlike form of the cluster. When the
of 1x 10" warm-up moves and8 10’ moves where data are variation in (Cp) with temperature is analyzeldrig. 3(b)],
gathered is used to generate the iniflabalking configura- two transition regions can be identified. At high tempera-
tion. The pressure is fixed to 0 atm and the temperature teures, the transition associated with cluster melting can be
3280 K. Under these thermodynamic conditions, where thédentified by a maximum temperature fing= 1800 K.
cluster is in a gaslike form, configurations are saved in exHowever, at lower temperatures, a transition with a maxi-
ternal arrays every 1000 steps. This distribution is used tenum atT =136 K (called here mixing temperatyrés
generate additional-walking distributions over a tempera- observed and, as previous studies in the canonical ensemble
ture range at a fixed pressure. Each additidnablking dis-  have shown3,11,13, is associated with an order-disorder
tribution is generated when the acceptance ratio of jumps igansition. When the behavior ¢f3) and(V) are analyzed
less than 30%. To generate other curves at higher pressurés,this low-temperature phase-transition regime, no signifi-
no additional distributions are needed because this same intant variation is observed. This implies that the fluctuation in
tial distribution is used, i.e., foP>0 atm, the value oP;  the enthalpy of the system, which causes the anomalies in
=0 atm. On each external array, the configuration, volumeC _, is basically due to the fluctuation in configurational en-

D. Characterization of atomic spatial arrangement

IIl. RESULTS

Figure 2 shows the variation in volume and configura-

E. Computational details

p l
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(b) v, FIG. 5. Variation in the average constant pressure heat capacity,
60 - ¥ ® (Cp), as a function of temperature at six different pressures for
<Cp> . Toog o NigPd.
30 ~ . . . . e .
msse s ooe®’ previous computer simulations of the solid-liquid equilib-
o rium for one-component clustef9,10]. In the case of the
5 10'00 20'00 . order-disorder transition, a quite different behavior is ob-

T(K) served. Figure 6 shows the variation(i@,) as a function of
temperature at various pressures but in the low-temperature
FIG. 3. Variation in(a) isothermal compressibility angh) con-  regime. It can be seen that fB<25 atm, as the pressure is
stant pressure heat capacity as a function of temperatuf® at increased, the value Gfixing is shifted towards lower tem-
=0 atm for NgPd,. peratures and, hence, becomes smaller. A possible explana-
tion for this phenomenon, based on thermodynamic argu-
ergy as the cluster jumps between segregated and mixeflents, is the following. The Gibbs free energy for any
structures. isolated system varies with temperature in the form shown in

Figure 4 shows the distribution of the mixing number, Fig. 7. This variation is established by the fundamental ther-
F(M,), as a function of the mixing number at three tempera-modynamic equation

tures andP =0 atm. At temperatures beloWing=136 K,

the random walker only explores configurations with a seg- dG=—-SdT+VdP (13
regated structure that has a valueMf=16. As the tem- )

perature increases, structures with higher mixing number arg"d its Maxwell forms

sampled and &f ,;,ing= 136 K a coexistence of clusters with JG JG

M,=16, 18, 20, 22, and 24 can be identified. The coexist- (_> =-S5, _> =V. (14)

ence of isomers with different spatial arrangements is what T/ P/

has been callefi3,11,17 the order-disorder transition. Fig- _ _ _

ure 4 also shows the valuesB{M ) as a function oM , at For a solid phas&,, a negative slope for the-T plot is
T=176K and no significant change is observed when Compbserved due to the increment in entropy as Fhe temperature
pared to the distribution &g increases. A second solid pha$g, is also depicted in Fig.

Figure 5 shows the variation in the constant-pressure hedt With a steeper slope because the entropy of this phase is
capacity as a function of temperature at different values ofarger. In our case$, andS, correspond to the segregated
pressures. It can be observed that the valug,Qfng Slightly and mixed phases, respectively. The point where the two

increases as the pressure increases. This result is similar @rves intersects, =G,, defines the transition temperature
(in this studyTmixing)- The increase in the value @ with

pressure at a given temperature is given by the volume of the

M45K 01136 K (1176 K|

1 22 + 0atm
“ esw 1 atm
0.8 L F— :1gen
20 - 4QA" - A, | ©50atm ‘
0.6 | 3 &5 2 Seop R > 100 atm
F(Mn) <cp> L T s . A ;.
04 ‘ 18 ° :.: 2
0.2 EEB E@
0 & - - @ Poand 16 . ;
16 48 -~ - 0 100 200 300
20 oo
24 5g
M, T(K)
FIG. 4. Distribution of mixing numbef:(M,), as a function of FIG. 6. Variation in the average constant pressure heat capacity,
mixing number for NiPd; at three temperatured5, 136, and 176 (C,), as a function of temperature at six different pressures in a
K) andP=0 atm. low-temperature regime for jrd,.
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FIG. 9. Distribution of mixing numbei:(M,)), as a function of
mixing number for N§Pd; at three temperaturéd5, 136, and 176

temperature for an isolated system. The lines show schematically) andP=25atm.

the effect of increasing pressure on the Gibbs free energy.

phase. From Fig. 8 it can be seen that the volume of pBase
is larger than the volume d§, at all temperatures and the
two pressures presented. Therefore, the increase iGiie
curves forS, is larger than the increase in ti$g curve and
the intersecting of the two curves occurs at a lower temper

ture. Hence, a decrease Ti,ing iS €xpected as the pressure

of the system increases.

Another important feature shown in Fig. 6 is that as the
pressure is increased, the width of the peak becomes small
Also, for pressure larger than 25 atm, the shape and the |
cation of the peak do not vary much. In order to fully under-
stand the behavior of this order-disorder transition, the dis
tribution of mixing numbers is computed at various

[mT=20K OT=136 K OT=176 K|

(@)

<V>

FIG. 8. (a) Average volume for different mixing numbers at
three different temperaturé45, 136, and 176 KandP=0 atm. (b)
Same aga) but at 20, 45, and 106 K foP =25 atm.

temperatures and at a pressure different from zero. Figure 9
shows this distribution foP =25 atm. It can be seen that at
very low temperatures only thiel,,= 16 isomer is sampled,
similar to what was discussed fé&¥=0 atm. However, af
=45K (Tixing at this pressune isomers withM,= 16, 18,

and 20, which are responsible for the anomaly in the heat
capacity, are explored. AE>Tmiing, NO significant change

is observed in the distribution of mixing numbers. The above
arguments, associated with the isomeric sampling as a func-
tion of pressure, are the reasons for the broadening of the

gfansition peak as the pressure is decreased. Namely, because

a larger number of isomers with different mixing numbers
are sampled aP=0 atm, the peak becomes wider when

compared to the distribution &= 25 atm.

IV. CONCLUSIONS

In the present study, the order-disorder and melting phase
transition for a Lennard-Jones bimetallic cluster have been
considered using the newly developed isothermal-isobaric
ensemblel-walking Monte Carlo method. The behavior of
the melting transition is similar to what is observed for one-
component clusters, namely, as the pressure is increased,
small increments in the value 8%,¢ing are observed. On the
other hand, a low-temperature transition is observed and is
associated with an order-disorder transition. The variation of
this transition with pressure is very different from what is
observed for the melting transition. In a low-pressure range
(0<P<25atm), the mixing temperature decreases as the
pressure of the system increases. However, for valud3 of
>25atm, no variation in the mixing temperature is ob-
served. Computation of the mixing number as a function of
temperature and pressure clearly explains the nature of the
order-disorder transition. Also, simple thermodynamic argu-
ments are used to validate the obtained results.

As stated previously, simple pairwise interparticle poten-
tials were used to model this metallic system. The nature of
these interactions for real physical systems is far more com-
plex than the ones used here. However, it can be expected
that various real bimetalli cluster systems exhibit this low-
temperature phase transition.

Previous studiefl1,12 have shown that the physical be-
havior of 13-atom LJ alloy clusters is independent of the
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composition of the cluster. Only small variations in the mag-pared with previous resulf®,21] for pure systems. It will be
nitude of the constant volume heat capacity at the transitioexpected that as the size of the cluster increases, the transi-
temperature are observed. At present, the variation in th8on temperatures will tend to the values of the same system
low-temperature phase transition as a function of composin bulk. Quantum effects are being incorporated using a
tion and pressure is being considered using the newly devehewly developed isothermal-isobaric ensemble.

oped method presented here. Such a study will provide in-

formation for the construction of phase_ d|.a_grams fqr pmary ACKNOWLEDGMENTS

systems. Also, larger clusters, where significant variations in
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