
PHYSICAL REVIEW A, VOLUME 62, 032901
Second-order Born collisional stopping of ions in a free-electron gas
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The energy loss of a heavy bare projectile with chargeZP moving in a free-electron gas is studied within the
framework of the binary collisional formalism. The transition-matrix element is expanded in a perturbative
series, and terms up toZP

3 ~second Born approximation! are conserved. The Mermin-Lindhard dielectric
response function is employed to describe the cylindric potential induced by the projectile. The formalism is
applied to the calculation of energy-loss distributions for fixed charges~protons, neutral hydrogen, and anti-
protons! colliding with aluminum. We also investigate how theZP

3 collisional correction affects the total
stopping for antiprotons in aluminum and silicon, and for protons in aluminum. In this latest case, different
charge states of the projectile are considered. Results are in good agreement with experimental data in the
high-energy region.

PACS number~s!: 34.50.Bw, 34.50.Dy, 34.50.Fa, 79.20.Rf
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I. PRELIMINARY

In a previous paper@1#, we calculated the first perturba
tive order of the stopping power for a fast ion movin
through a free-electron gas~FEG!. We worked within the
framework of the binary collisional formalism~BCF!, also
called kinetic theory@2#. This formalism is based on th
assumption thatindividual electrons~e! are scattered by the
projectile (P), with chargeZP , moving inside the solid. As
these two particles are within a FEG, the CoulombP-e in-
teraction is shielded by the presence of the other elect
which react to the presence of a moving projectile, creatin
so-called wake potential. The first perturbative order of
stopping power depends onZP

2 , being therefore insensitive
to the sign of projectile charge, i.e., protons and antiprot
give the same results.

In the present work, we go further and calculate the s
ond perturbative order of the transition-matrix element.
introducing this element in the BCF, theZP

3 collisional cor-
rection to the stopping power is obtained. As in I, t
shieldedP-e potential is calculated in terms of the Mermin
Linhard dielectric response function, which leads to a f
cylindric potential. TheZP

3 collisional contribution to both
the differential energy-loss distribution and the stopping
examined and discussed in terms of the sign of the proje
charge and the impact velocity. Present calculations di
from previous ones in the fact that a propercylindric-induced
potential is employed here instead of asphericallysymmet-
ric one @3–5#.

With the aim of studying how theZP
3 collisional correc-

tion affects the total energy loss, we calculate the total st
ping power. It is obtained by adding to the first-order sto
ping in the dielectric formalism, the second-ord
contributions due to binary collisions not only with the fre
electron gas but also with electrons belonging to atomic

*Also at Universidad Nacional de La Matanza, Argentina.
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ner shells. The stopping originated by inner-shell ionizat
is evaluated with the continuum distorted wave–eikonal in
tial state~CDW-EIS! approximation@6,7#, which includes all
orders inZP , at least approximately. Our results are co
pared with experimental data for antiprotons in aluminu
and silicon and for protons in aluminum. In the case of in
dent protons, we take into account the projectile structure
weighting the stopping of the different exiting products wi
the equilibrium charge state fractions@8#.

The work is organized as follows. In Sec. II we prese
the theory, in Sec. III the results, and in Sec. IV the conc
sions are summarized. We here employ the same notatio
Ref. @1#. Atomic units are used except where indicated.

II. THEORY

Let us consider a heavy projectileP moving with velocity
v within a solid and losing energy by binary collisions wi
electrons of the FEG. Schematically, we deal with the f
lowing two-particle (P-e) process

P
Ki
W
ZP1

1eki
W
2→P

K f
W
ZP1

1ekf
W
2 , ~1!

where Ki
W ,(KW f),kW i(kW f ) are the initial ~final! projectile and

electron momenta, respectively. The Fermi golden rule st
that the sevenfold differential probability per unit length a
per unit of lost energydv for the electronic transitionkW i

→kW f is given by

d7W

dvdkW idkW f

5
2p

v
dS ki

2

2
2

kf
2

2
1v D d~v2vW •qW !uTu2, ~2!

where T5^ckW f
uVPeuCkW i

1
& is the transition-matrix element

VPe is the P-e potential,ckf
W is the unperturbed final state

and Cki
W
1 is the exact outgoing scattering state. In Eq.~2! qW

(pW ) is the electron~projectile! momentum transfer;qW 5Ki
W
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2Kf
W5kf

W2ki
W52pW, and with this definition the lost energy

v5qW •vW is positive. The wake potentialVPe describes the
CoulombP-e interaction shielded by the other electrons
the solid, which react to the presence of a moving cha
This potential is here evaluated in terms of the Merm
Linhard dielectric response function of the FEG,e(q,v) @see
Eq. ~5!#. In the derivation of Eq.~2!, the projectile mass is
considered infinity.

As usual in atomic collisions theory, theT matrix can be
expanded in a perturbative series by using undistorted pl
wave statesckW i , f

to describe the electronic continuum sta

thus it yields the well-known Born series,T5( jTj . Con-
serving up to third order in the projectile charge, we c
write

uTu25uT11T2u25uT1u212Re@T1T2* #1O~ZP
4 !, ~3!

being the first and second term on the right-hand side p
portional toZP

2 and ZP
3 , respectively. Replacing Eq.~3! in

Eq. ~2! the stopping power is obtained by integration, af
multiplying by the energy lossv, to give

SBC5E dkW i dkW f dv v Q~kF2ki !Q~kf2kF!

3S d7W

dvdki
Wdkf

W D 5S1
BC1S2

BC, ~4!

whereS1
BC andS2

BC are proportional toZP
2 andZP

3 , respec-
tively. Terms of orderZP

4 were neglected in Eq.~4!. The
superindex BC denotes that the stopping corresponds to
binary collisional mechanism. The two Heaviside step fu
tions Q in Eq. ~4! refer to theT50 K Fermi distribution
and the Pauli exclusion principle (kF is the Fermi momen-
tum!. In Secs. II A and II B we resume the first and seco
Born approximation, respectively, within the BCF.

A. The first Born approximation

The first order of the transition-matrix element is simp
the Fourier transform of the potentialP-e, i.e., T1

5(2p)23/2ṼPe(qW ), ṼPe(qW )52ZPṼe(qW ), where

Ṽe~qW !5 f ~q!
1

e~q,v,g!
A2

p

1

q2
, ~5!

and e(q,v,g) is the dielectric function of the FEG. Th
function f (q) is included in Eq.~5! to account for the distri-
bution of the electronic cloud in the case of dressed pro
tiles ~see Sec. II C!. For bare projectilesf (q)51. Along this
work the functione(q,v,g) is calculated by employing the
Mermin prescription, which extends the Lindhard’s dielect
function eL(q,v,01) to the finite lifetime 1/g @9,10#.

As it was shown in Ref.@1#, the first-order stopping in the
BCF reads
03290
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S1
BC52

2ZP
2

pv2E0

`dq

q
f 2~q!E

0

qv
dv v ImF 1

e~q,v,g!G
3Ue~q,v,g!5F~Ue!, ~6!

where

Ue~q,v,g!5
ImeL~q,v,01!

Ime~q,v,g!
→UL~q,v!5Q~kF

22B2!,

~7!

asg→0 with B5(v2q2/2)/q.
The link between the BCF and the dielectric formalis

~DF! can be detected straightforwardly from Eq.~6!. In the
DF the stopping reads simply asS1

DF5F(Ue51) @11#, while
the BCF requires, as observed in Eq.~6!, S1

BC

5F„Ue(q,v,g)…. The stopping power in the DF include
not only the binary mechanism in the first Born approxim
tion but also the collective response.

B. The second Born approximation

In the Born approximation, the second order of the tra
sition matrix reads

T25^ckW f
uVPe~rW !G0

1VPe~rW !uckW i
&

5
1

~2p!6E dkW ṼPe~kW !ṼPe~qW 2kW !

3FE2
1

2
~kW i2kW !21 ih G21

, ~8!

whereG0
15(E2H01 ih)21 is the retarded Green functio

~the limit h→01 must be understood!, E is the total energy,
andH0 is the kinetic energy operator. Note that this seco
order corresponds to acylindric potential. If asphericalpo-
tential had been used instead, the exact transition ampli
could have been obtained with the usual partial wave exp
sion @3,4#. Since we are not interested here in electronic d
tributions@12#, we can transformdki

Wdkf
W→ dki

WdqW in Eq. ~2!
making much easier the calculations to come. ReplacingT1
and T2 in Eq. ~3!, and this one in Eqs.~2! and ~4!, we can
exchange the integrations onkW andqW , and after much algebra
we find

S2
BC5

22ZP
3

pv2 E
0

`dq

q
f ~q!E

0

`

dv
v

ue~q,v,g!u2

3Re@e~q,v,g!A1~qW ,v !#, ~9!

where

A1~qW ,v !5
1

2p2E dkW Ṽe~kW !P~qW ,kW ,v !Ṽe~qW 2kW ! ~10!

and
1-2
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SECOND-ORDER BORN COLLISIONAL STOPPING OF . . . PHYSICAL REVIEW A 62 032901
P~qW ,kW ,v !5E dkW i Q~kF2ki !Q~ uqW 2kW i u2kF!

3

dFqW •vW 2S qW •kW i1
1

2
q2D G

S 2
k2

2
2vW •kW1kW i•kW1 ih D . ~11!

Note that A1 has the same structure as the second B
T-matrix elementT2, but now P(qW ,kW ,v), instead ofG0

1 ,
represents a propagator which takes account of the conv
tion on the Fermi sphere. The integral in Eq.~11! can be
evaluated analytically, giving

P~qW ,kW ,v !5
sgn~R1!

qk2sin2u
R2UL~q,v!, ~12!

where

R15kzB2
k2

2
2vW •kW , R25Au~km!2Au~kF!, ~13!

u~kx!5$~R11 ih!22k2~kx
22B2!sin2u%, ~14!

km5H uBu if kF
222v<0

max~km1 ,km2! if kF
222v.0,

~15!

km15AkF
222v, km25uBu, ~16!

cosu5q̂•k̂, kz5kW•q̂, q̂5qW /q, k̂5kW /k, and B was defined
below Eq. ~7!. In Eq. ~12! the function UL(q,v)5Q(kF
2km) defines the binary region, as given by Eq.~7!.

It is interesting to note that in the BC formalism the se
ond Born approximation of stopping power writes in simil
fashion to the first order given by Eq.~6!, if a second-order
dielectric function, including only the collisional correctio
is considered, i.e.,

SBC5S1
BC1S2

BC52
2ZP

2

pv2E0

`dq

q
f ~q!E

0

qv
dv v

3ImF f ~q!1 iZPA1*

eL~q,v,01!
GUL~q,v!. ~17!

Although this expression was derived only for the Lindha
dielectric constant, we have extended to other dielec
functions such as the Mermin-Lindhard dielectric functio
Equation~17! shows directly the correction up toZP

3 order to
the stopping power as far as a binary collision is concern

C. Stopping of dressed projectiles

The preceding equations are fulfilled for the case of b
projectiles consideringf (q)51. This is not the case o
dressed projectiles. We consider here that the projectile e
trons do not suffer transitions, remaining unperturbed dur
the collision. In this frozen approximation, for projectile
03290
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containing one or two electrons in the ground state, the
nary collisions with the FEG can be described by appro
mating in the potentialVPe the function f (q) by f (q)51
2F(q)/ZP . F(q) is the well-known atomic form factor
which can be approximated by

F~q!5 (
n51

np ~2zn!4

~4zn
21q2!2

, ~18!

np is the number of electrons in the 1s ground state, andzn
the effective charges seen by each projectile electron@15#
~see Refs.@13,14# for the case of incident He1). In the cal-
culations, for incidentH0(np51) we considerzn51.

III. RESULTS

We study two different solid targets, aluminum and si
con. The parameters used to describe them are the follow
For aluminum, the electron density of the FEG isNe
50.0268 a.u.~or equivalently, the plasmon frequencyvp
50.58 a.u., and Fermi momentumkF50.927 a.u.), the
atomic densityNat58.9231023 a.u., and g50.037 a.u.
@16#. For silicon, Ne50.0296 a.u. (vp50.61 a.u., kF
50.957 a.u.), Nat57.431023 a.u., and g50.156 a.u.
@17#. Calculations of theZP

3 - collisional correctionS2
BC in-

volve a five-dimensional numerical integration: three onkW as
given in Eq.~10!, and two additional integrations onq andv
as shown in Eq.~9!.

In Fig. 1 we display the contribution of the binary coll
sions with a FEG to energy-loss distribution,dSBC/dv, for
neutral and single-charged projectiles moving inside an a
minum target. Three projectiles with fixed charges are c

FIG. 1. Energy-loss distributions for 25 keV (v51 a.u.) pro-
tons, antiprotons, and neutral hydrogen on aluminum solid tar
considering fixed-charge projectile. Solid lines, the second-or
contributions dSBC/dv5dS1

BC/dv1dS2
BC/dv; dashed lines, the

first-order contributionsdS1
BC/dv.
1-3
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D. G. ARBÓ, M. S. GRAVIELLE, AND J. E. MIRAGLIA PHYSICAL REVIEW A 62 032901
sidered, i.e.,H1, p̄, andH0. The incident velocityv51 a.u.
~25 keV! represents the lowest velocity that can be cons
ered with our perturbative model, which is valid forv
.kF . Note that at this impact energy, both inner shell a
collective contributions are negligible, allowing us to scru
nize in detail the behavior of the stopping due to bina
collisions with the FEG. We also show in Fig. 1 the fir
Born collisional contributiondS1

BC/dv, which averages re

sults for H1 and p̄. As is mentioned above, the collision
contributiondS2

BC/dv is strictly proportional toZP
3 , showing

the same absolute value for projectile charges with oppo
signs. For protons,dS2

BC/dv.0 in all the energy-loss range
indicating that protons deposit more energy in the solid th
the first-order prediction. On the other hand, for antiproto
impactdS2

BC/dv,0. ForH0 projectiles, the contribution o
the second orderdS2

BC/dv is positive, as in the case o
protons.

Figure 2 shows collisional binary contribution to energ
loss distribution,dSBC/dv, for 100 keV (v52 a.u.) protons
@Fig. 2~a!#, antiprotons@Fig. 2~b!#, and neutral hydrogen
@Fig. 2~c!# moving in aluminum. Figure 2~a! shows that for
incident protons the second Born contribution reinforce
significant portion of the binary contribution to the stoppi
at high values ofv (v.1 a.u.). Conversely, as shown
Fig. 2~b! for antiprotons it is canceled by the second-ord
term for v.1 a.u. In other words, antiprotons seem to p
tially avoid head-on collisions with the FEG, which involv
high energy transferred, while they are strengthened for
proton impact. The contributiondSBC/dv for neutral hydro-

FIG. 2. Energy-loss distributions for 100 keV (v52 a.u.) pro-
tons, antiprotons, and neutral hydrogen on aluminum solid tar
considering the projectile charge as fixed. Solid lines, the seco
order contributionsdSBC/dv5dS1

BC/dv1dS2
BC/dv; dashed lines,

the first-order contributionsdS1
BC/dv.
03290
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gen@Fig. 2~c!# has the same qualitative shape as protons
v.1. As was shown in I at high velocities and for largev,
the influence of structure of the projectile in the stopping
not relevant since the collisions take place very close to
impinging nucleus.

The total binary contribution to the stopping,SBC, as
given in Eq. ~4!, is plotted in Fig. 3 forH1, p̄, and H0

impinging on aluminum as a function of the projectile velo
ity. In the three cases the projectile charge is conside
fixed. The stopping ofH0 is substantially smaller than th
ones corresponding toH1 and p̄ ~note that different scales
are used!. The first-order predictions for protons and antipr
tons are obviously the same because they depend onZP

2 . In
the whole velocity range considered, theZP

3 collisional cor-
rection S2

BC increases the binary stopping for protons, a
lowers it for antiprotons, in the same~symmetric! amount
with respect to the first-order contributionS1

BC . In both
cases, when the velocity increases the contributionS2

BC van-
ishes. For incidentH0 the second-order contributionS2

BC is
of the same order as that of protons, while stopping co
sponding to the first Born approximation is approximately
factor 2 smaller than the first order for protons, at the low
velocities considered.

To investigate in detail to what extent theZP
3 collisional

correction affects the total stopping power, we need to t
into account other contributions, such as inner-shell co
sions and capture and loss processes, while for the cas
antiprotons, these latest processes do not exist; for incid
protons its contribution is estimated as less than 10%, be
then neglected in the present work. The inner-shell contri

ts
d-

FIG. 3. Stopping power for protons, antiprotons, and neu
hydrogen on aluminum solid targets as a function of the imp
velocity, considering the projectile charge as fixed. Solid lin
second-order collisional stoppingSBC5S1

BC1S2
BC ; the dashed lines

correspond to the first-orderS1
BC .
1-4
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SECOND-ORDER BORN COLLISIONAL STOPPING OF . . . PHYSICAL REVIEW A 62 032901
tion remains in both cases, protons and antiprotons, and
originated by ionization of the target atoms as conseque
of binary collisions with the projectile. It is calculated b
using the CDW-EIS theory@6,7#, which includes all orders
on ZP , at least approximately. This approximation h
proved to successfully explain atomic ionization proces
in a large variety of collisional systems, see for exam
@18#. In this work the initial bound states are describ
by Hartree-Fock Clementi-Roetti double-Z functions @19#,
while a Coulomb wave function with a charge satisfying t
binding energy is employed to describe the final continu
state.

We studied in detail the ionization of theL shell for the
case H1 on Al. Several uncertainties were found in relatio
to the parameters to be used, as it is resumed next. Fv
53, the energy loss due to ionization of theL shell of a
neutral atom~namely Al0) calculated with the CDW-EIS
yields 7.03 a.u., i.e., 55% above the value 4.55 a.u. obta
by Oddershede and Sabin@20#. A first correction to be con-
sidered is that not all the final electron states in the c
tinuum are possible. Due to the Pauli principle the range
final electron states withkfP$0,kF% is forbidden, since such
final states are already occupied by the FEG. By dropp
the contribution of these banned states the energy loss
duces slightly from 7.03 to 6.54 a.u. Then, an uncertai
arises: to what extent should we consider the initial atom
orbital as described by Al0 and not by Al31? The latter is
more realistic since the three outer electrons were cede
the FEG. For the case of protons colliding on Al31, the
CDW-EIS considerably reduces its value, from 6.54 to 4
a.u., which now is very near the value 4.55 a.u. obtained
Oddershede and Sabin@20#. Therefore, to describe the targ
bound states we employ Table 17 of Ref.@19# corresponding
to ions Al31 and Si41. In both cases only ionization from th
L shell is considered.

For a fixed charge of the projectile, we calculate the to
stoppingSby adding to the first-order stopping by collision
with the FEGS1

DF , the ZP
3 collisional correctionS2

BC , and
the inner-shell contributionSCDW-EIS

IS , which includesZP
3

and higher corrections, at least approximately, i.e.,

S5S1
DF1S2

BC1SCDW-EIS
IS . ~19!

As mentioned above, the first-order stopping in the D
S1

DF , corresponds to the sum of binary and collective co
tributions, being proportional toZP

2 . Therefore, the tota
stoppingScontains second-order corrections originated fr
binary collisions with both free-electron gas and core el
trons, while collective effects are only considered in fi
perturbative order. Higher orders of the collective contrib
tion are expected to be important at the lower velocit
studied.

As a reference we also calculate the first-order total st
ping S1, which is obtained as a sum ofS1

DF and the first-
order inner-shell stoppingSBorn

IS , i.e.,

S15S1
DF1SBorn

IS . ~20!
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The stoppingSBorn
IS is calculated with the atomic first Born

approximation, which is proportional toZP
2 . SBorn

IS does not
largely differ from SCDW-EIS

IS for the velocities of interest
considered here. Furthermore, precisely in the region wh
the contributions are very different (vP$1.4,2% a.u.), inner-
shell stopping can be neglected in comparison withSBC. In
this way, S1 is a pureZP

2 contribution and the difference
betweenSandS1 gives essentially the information about th
collisional contribution to orderZP

3 due to binary encounter
with both the FEG and the atomic electrons. Note that
full ZP

3 correction to the stopping power should be obtain
by including the second-order dielectric function in our c
culation, employing the second-orderP-e interaction devel-
oped by Pitarkeet al. @21,22#.

In Fig. 4 we plot the total stopping powersSandS1 for p̄
impinging on aluminum and silicon as a function of the im
pact velocity. As we are dealing with antiprotons, no stru
ture effects are present.S values show a quite good agre
ment with experimental data@23# in the high-energy region
By comparing the results ofS andS1 we found that theZP

3

collisional correction is important even at the highest velo
ties studied. On the other hand, as any perturbative calc
tion, our theoretical results begin to fail for the lower veloc
ties, i.e.,v&2kF .

For incident hydrogen at intermediate energies, the diff
ent equilibrium state of charge of the exiting products m
be included in the calculation of the stopping power. W

FIG. 4. Total stopping power for antiprotons on~a! aluminum
and ~b! silicon solid targets as a function of the impact velocit
Solid lines, total second-order stoppingS as given by Eq.~19!;
double-dot–dashed lines, the total first-order stoppingS1 as given
by Eq. ~20!; the dot-dashed lines, stopping due to the ionization
inner shells 2s and 2p calculated with the CDW-EIS approxima
tion. The symbols represent the experiments for antiprotons~Ref.
@23#!.
1-5
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D. G. ARBÓ, M. S. GRAVIELLE, AND J. E. MIRAGLIA PHYSICAL REVIEW A 62 032901
consider the outgoing projectilesH1 and H0 by weighting
the corresponding fixed-charge stopping with the equilibri
fractions given by Pen˜alba et al. @8#. In the results of total
stopping, we neglected the contributions ofH2 and capture
and loss processes, which have been estimated to be l
than 10%@8# for the velocities here considered. Therefo
the stopping of hydrogen is estimated as

S~H !5 f 1S~H1!1 f 0S~H0!, ~21!

where thef 1,0 are the equilibrium charge state fractions
H1 andH0, respectively, andS(H1,2) are the fixed charge
partial stopping powers ofH1 and H0, respectively@14#.
Figure 5 shows the results that agree with experiments

FIG. 5. Total stopping power for hydrogen on an aluminu
solid target as a function of the impact velocity. Solid lines, to
second-order stoppingS(H) as given by Eq.~21!; dashed line, total
first-order stoppingS1(H); dot-dashed lines, partial second-ord
stopping power forH1, S(H1). The symbols represent the expe
ments for hydrogen~Refs.@24–26#!.
H

03290
er
,

or

high and medium velocities and start to depart in the l
velocity regime.

To investigate the effect of the structure of the movi
ion, S(H1) is also plotted in Fig. 5. The difference betwee
S(H) and S(H1) gives a measure of the influence of th
structure. This difference is of the order of theZP

3 corrections
at medium velocities and tends to zero at high impact velo
ties (v.2kF), whereZP

3 corrections are dominant.

IV. CONCLUSIONS

We calculate the second Born approximation of the st
ping power within the BC formalism, conserving terms up
second order in the projectile charge. An induced wake
tential expressed in terms of the Mermin-Linhard dielect
function is employed to describe theP-e interaction. Presen
calculations differ from the previous@3,4# in the fact that the
potential considered here is reckoned as the fullcylindric-
induced potential.ZP

3 collisional corrections to energy-los
distributions and stopping power are calculated for proto
neutral hydrogen, and antiprotons, considering the projec
charge as fixed. Up to second order, the BCF is found
properly describe the difference between protons and a
protons stopping; protons deposit more energy in the hi
energy tail, while, on the contrary, antiprotons diminish
contribution on such an energy region.

Using theZP
3 collisional term, the stopping of antiproton

in aluminum and silicon is calculated and compared w
the first-order term, which depends onZP

2 . Inner-shell stop-
ping contributions are added using the CDW-EIS and fi
Born approximation, respectively. The agreement with
experiments is very good forv>2kF . We also inspect the
case of protons moving in aluminum, taking into account
different equilibrium charge states of the projectile. Aga
for v>2kF the theory predicts quite well a set of expe
ments.
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