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Second-order Born collisional stopping of ions in a free-electron gas
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The energy loss of a heavy bare projectile with ch&genoving in a free-electron gas is studied within the
framework of the binary collisional formalism. The transition-matrix element is expanded in a perturbative
series, and terms up tz’;‘, (second Born approximatiorare conserved. The Mermin-Lindhard dielectric
response function is employed to describe the cylindric potential induced by the projectile. The formalism is
applied to the calculation of energy-loss distributions for fixed chafgestons, neutral hydrogen, and anti-
protonsg colliding with aluminum. We also investigate how tlié, collisional correction affects the total
stopping for antiprotons in aluminum and silicon, and for protons in aluminum. In this latest case, different
charge states of the projectile are considered. Results are in good agreement with experimental data in the
high-energy region.

PACS numbsd(s): 34.50.Bw, 34.50.Dy, 34.50.Fa, 79.20.Rf

I. PRELIMINARY ner shells. The stopping originated by inner-shell ionization
pping orig Yy
is evaluated with the continuum distorted wave—eikonal ini-
In a previous papefrl], we calculated the first perturba- tial state(CDW-EIS) approximatior{6,7], which includes all
tive order of the stopping power for a fast ion moving orders inZp, at least approximately. Our results are com-
through a free-electron ga&EG). We worked within the pared with experimental data for antiprotons in aluminum
framework of the binary collisional formalistBCF), also and silicon and for protons in aluminum. In the case of inci-
called kinetic theory[2]. This formalism is based on the dent protons, we take into account the projectile structure by
assumption thaindividual electrons(e) are scattered by the Weighting the stopping of the different exiting products with
projectile (P), with chargeZ, moving inside the solid. As the quilibrium charge state fractiof].
these two particles are within a FEG, the CouloPHe in- The WO”.‘ is organized as follows. !n Sec. Il we present
teraction is shielded by the presence of the other eIectrontge theory, in Sec._ lll the results, and in Sec. IV the COUCIU'
. . N . slons are summarized. We here employ the same notation as
which react to the presence of a moving projectile, creating & . ) .
. . ) ef.[1]. Atomic units are used except where indicated.
so-called wake potential. The first perturbative order of the
stopping power depends czﬁ being therefore insensitive
to the sign of projectile charge, i.e., protons and antiprotons
give the same results. Let us consider a heavy projectifemoving with velocity
In the present work, we go further and calculate the secp within a solid and losing energy by binary collisions with
ond perturbative order of the transition-matrix element. Byelectrons of the FEG. Schematically, we deal with the fol-
introducing this element in the BCF, tfﬂ% collisional cor- lowing two-particle P-e) process
rection to the stopping power is obtained. As in I, the
shieldedP-e potential is calculated in terms of the Mermin- pé’_’++e%_>pij++ek1, (1)
Linhard dielectric response function, which leads to a full ' ' f f
cylindric potential. TheZE’, collisional contribution to both L. o o
the differential energy-loss distribution and the stopping isWhere Ki,(Ky),ki(k) are the initial (final) projectile and
examined and discussed in terms of the sign of the projectil§'€Ctron momenta, respectively. The Fermi golden rule states
charge and the impact velocity. Present calculations diffefhat the sevenfold differential probability per unit Iengtrl and
from previous ones in the fact that a propgtindric-induced ~ per unit of lost energydw for the electronic transitiork;
potential is employed here instead ofphericallysymmet-  —k; is given by

Il. THEORY

ric one[3-5].
With the aim of studying how th&3 collisional correc- d’w 2m (k2 K? L
tion affects the total energy loss, we calculate the total stop- At o %27 74' w|sw=—v-qIT]%,
dwdkidkf v

ping power. It is obtained by adding to the first-order stop-
ping in the dielectric formalism, the second-order b - )
contributions due to binary collisions not only with the free- Where T=(yi [V W ) is the transition-matrix element,

electron gas but also with electrons belonging to atomic inv/,, is the P-e potential, yr; is the unperturbed final state,
and \If}i is the exact outgoing scattering state. In IEZ)G

*Also at Universidad Nacional de La Matanza, Argentina. (p) is the electron(projectild momentum transferg=K;
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—_—

o
€(q,w,y)

—K;=k—k=—p, and with this definition the lost energy . ,

w=q-v is positive. The wake potentialp, describes the S1 z__fo q : q)J do o Im
CoulombP-e interaction shielded by the other electrons of

the solid, which react to the presence of a moving charge. XU (q,w,y)=FU,), (6)
This potential is here evaluated in terms of the Mermin-

Linhard dielectric response function of the FE£6q,w) [see  where

Eqg. (5)]. In the derivation of Eq(2), the projectile mass is

considered infinity. Ime (q,®,07) )

As usual in atomic collisions theory, tlematrix can be Udg,o,7)= WHUL(Q’“’):@WF_B ),
expanded in a perturbative series by using undistorted plane- (7)
wave statesfy  to describe the electronic continuum state,
thus it yields ‘the well-known Born serie§==;T;. Con- asy—0 with B=(w—q%2)/q.

Serv|ng up to third order in the project"e Charge we can The link between the BCF and the dielectric formalism
write (DF) can be detected straightforwardly from E§). In the
DF the stopping reads simply 88" = F(U.=1) [11], while

the BCF requires, as observed in Eq6), S}¢
=F(UJ(q,w,7)). The stopping power in the DF includes
not only the binary mechanism in the first Born approxima-
being the first and second term on the right-hand side protion but also the collective response.

portional toZ2 and Z,33, respectively. Replacing E@3) in

Eq. (2) the stopping power is obtained by integration, after B. The second Born approximation

multiplying by the energy loss, to give

ITI2=[T1+To>=|T,|>+ 2R T, T5 ]+ O(Z}), (3

In the Born approximation, the second order of the tran-
sition matrix reads

SBC=J dk, dk; do @ O (kg—k)O(k—kg)

d’'w 1
% | =sBCt BC' 4 _ f e s
(dwdkidkf) 1S @ 2m° dkVpe(K)Vpe(g—k)

To= (W, |Ved r)Gg Vpe(r)| 7y

-1
whereS2¢ and S5€ are proportional t&Z? andZ3, respec- , ®)
tively. Terms of orderZp were neglected in Eq4). The

superindex BC denotes that the stopping corresponds to the

. 71 . .
binary collisional mechanism. The two Heaviside step func whereGg = (E— R Ho+i7)"" is the retarded Green function
tions O in Eq. (4) refer to theT=0 K Fermi distribution (the limit »— 0" must be understoogE is the total energy,

and the Pauli exclusion principle is the Fermi momen- andHy, is the kinetic energy operator. Note that this second

tum). In Secs. Il A and II B we resume the first and secondorder corresponds to @/lindric potential. If asphericalpo-
Born approximation, respectively, within the BCF tential had been used instead, the exact transition amplitude

could have been obtained with the usual partial wave expan-
sion[3,4]. Since we are not interested here in electronic dis-
A. The first Born approximation tributions[12], we can transforndk dk;— dkdq in Eq. (2)
The first order of the transition-matrix element is simply making much easier the calculations to come. Replaing
the Fourier transform of the potentiaP-e, i.e.,, T, andT, in Eq. (3), and this one in Eqg2) and (4), we can

1. -,
X E_E(ki_k)z"'”?

= (27.,)—3/&%(5), \”/Pe(a) = —vae(ﬁ). where exchange the integrations Erandﬁ, and after much algebra
we find
V(@)= 1(@) = \F : (5)
= , _ 3
“Te(q,0 7)|
and €(q,w,y) is the dielectric function of the FEG. The X R e(q w,‘y)Al(a,U)] ©

function f(q) is included in Eq(5) to account for the distri-
bution of the electronic cloud in the case of dressed prolecwhere
tiles (see Sec. Il € For bare projectile$(q)=1. Along this
work the functione(q,w,y) is calculated by employing the 1
Mermin prescription, which extends the Lindhard’s dielectric AL (Q,v)= _f dk V_(K)P(q,K,0)V.(q—K) (10
function €, (q,w,0™) to the finite lifetime 14 [9,10. 272
As it was shown in Refl1], the first-order stopping in the
BCF reads and
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P(G.K)= [ 0K Oke—k)O(IG—K| ko) 5
1 H, H®, and p
5&-5—(&-ﬁi+§q2” . onAl,v=1a.u.
X . (11 ot \ b
—?—v~k+ki-k+l77 = \
Note thatA; has the same structure as the second Born g .l ‘\‘ ]
T-matrix elementT,, but now P(q,k,v), instead ofG , S~ AR
represents a propagator which takes account of the convolu- %
tion on the Fermi sphere. The integral in E41) can be N\
evaluated analytically, giving L H° N
- sgrRy) L7
P(q,k,l}) = 2—R2U L(q,w), (12) At \‘~::::~
qk?sirt g N A =
0 1 2 3 4
where o(a.u.)
k2 . .
Rlzsz_i_U'k, R2=\u(km)_\u(k|:), (13)

FIG. 1. Energy-loss distributions for 25 ke €1 a.u.) pro-

tons, antiprotons, and neutral hydrogen on aluminum solid targets
u(ky) ={(Ry+i7n)2—k*(k2—B?)sirt6}, (14)

considering fixed-charge projectile. Solid lines, the second-order
contributions d$*¢/dw=dS /dw+dSS/dw; dashed lines, the
first-order contributionsl S$¢/dw.
|B| if k2—2w=0
m= ko K i K2 200 (15 containing one or two electrons in the ground state, the bi-
maxXKmi ,Kmz) if ki—2w>0, nary collisions with the FEG can be described by approxi-
km=VKE—2w, kma=|B], (16)

mating in the potentiaVp, the functionf(q) by f(q)=1
—F(q)/Zp. F(q) is the well-known atomic form factor
- A A A e A o ] which can be approximated by
cos#=q-k, k,=k-q, g=qg/q, k=k/k, and B was defined
below Eq. (7). In Eq. (12) the functionU (q,w)=0 (kg oo (2z,)
—k.,) defines the binary region, as given by Eg). F(a)=2, — (18)
It is interesting to note that in the BC formalism the sec- n=1(4z,+0%)
ond Born approximation of stopping power writes in similar
fashion to the first order given by E¢), if a second-order n, is the number of electrons in thes hround state, and,
dielectric function, including only the collisional correction, the effective charges seen by each projectile electiic
is considered, i.e., (see Refs[13,14 for the case of incident H8. In the cal-
culations, for incidenH®(n,=1) we considez,=1.
ZZ% >dq qu
sBczs?CJrsEC:——zf —f(q)f do o
mv<Jo q 0

f(q)+iZpA]
X 1m

Ill. RESULTS
UL(Qlw)-

We study two different solid targets, aluminum and sili-
a7 con. The parameters used to describe them are the following.
Although this expression was derived only for the Lindhard

For aluminum, the electron density of the FEG &
=0.0268 a.u.(or equivalently, the plasmon frequenay,

. . . =058 a.u.,

dielectric constant, we have extended to other d'elecm%tomic densi

functions such as the Mermin-Lindhard dielectric function.

and Fermi momentuk-=0.927 a.u.), the
Equation(17) shows directly the correction up Kﬁ order to

tyN,=8.92x10"2 a.u., and y=0.037 a.u.

[16]. For silicon, No=0.0296 a.u. ¢,=0.61 a.u., ke

the stopping power as far as a binary collision is concerned[.ﬂ] Calculations of thez?
- P

=0.957 a.u.), Nyi=7.4x10"2 a.u., and y=0.156 a.u.
C. Stopping of dressed projectiles

GL(q1w70+)

- collisional correctionS5© in-
volve a five-dimensional numerical integration: threekoms
The preceding equations are fulfilled for the case of bares shown in Eq(9).
projectiles consideringf(q)=1. This is not the case of

given in Eq.(10), and two additional integrations @pand w

In Fig. 1 we display the contribution of the binary colli-
trons do not suffer transitions, remaining unperturbed duringheutral and single-charged projectiles moving inside an alu-

dressed projectiles. We consider here that the projectile elesions with a FEG to energy-loss distributiahS®¢/dw, for
the collision. In this frozen approximation, for projectiles minum target. Three projectiles with fixed charges are con-
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[ . ] 0.3 F
10'F H™ on Al4
E h ] o2f

o (a.u.) FIG. 3. Stopping power for protons, antiprotons, and neutral
o hydrogen on aluminum solid targets as a function of the impact
FIG. 2. Energy-loss distributions for 100 ke¥£2 a.u.) pro-  velocity, considering the projectile charge as fixed. Solid lines,

tons, antiprotons, and neutral hydrogen on aluminum solid targetsecond-order collisional stoppir&f©= S5+ S5 ; the dashed lines
considering the projectile charge as fixed. Solid lines, the secondcorrespond to the first-ord&@5¢ .

order contributionsi S*¢/dw=dS}“/dw+dS3°/dw; dashed lines,
the first-order contributiond $/dw. _ o

gen[Fig. 2(c)] has the same qualitative shape as protons for
sidered, i.e.H™, a andHC. The incident velocity =1 a.u. w>€[. As was shown in | at high vel'ocit.ies. and for Iarge '
(25 keV) represents the lowest velocity that can be consigihe influence _of structure _of_ the projectile in the stopping is
ered with our perturbative model, which is valid for not _rel_evant since the collisions take place very close to the
>Kkg . Note that at this impact energy, both inner shell and™MPNging nuclgus. _— CBC
collective contributions are negligible, allowing us to scruti- 1€ total binary contribution to the stopping”*, as
nize in detail the behavior of the stopping due to binarygiven in Eq.(4), is plotted in Fig. 3 forH*, p, and H®
collisions with the FEG. We also show in Fig. 1 the first impinging on aluminum as a function of the projectile veloc-
Born collisional contributiodS*“/dw, which averages re- ity. In the three cases the projectile charge is considered
sults forH™* andE As is mentioned above, the collisional fixed. The stopping oH is substantially smaller than the

contributiond S/ dw is strictly proportional taz3 , showing ~ ONes corresponding td™ andp (note that different scales

the same absolute value for projectile charges with opposit@® usedl The first-order predictions for protons and antipro-

signs. For protons) S$%dw >0 in all the energy-loss range, NS are obviously the same because they d_ePe'ﬁEOf‘”

indicating that protons deposit more energy in the solid tharine Whole velocity range considered, tg collisional cor-

the first-order prediction. On the other hand, for antiprotong€ction S;° increases the binary stopping for protons, and

impactdS2€/dw<0. ForH® projectiles, the contribution of lowers it for antiprotons, in the sam@ymmetri¢ amount

the second orded $%/dw is positive, as in the case of With respect to the first-order contributio8’“. In both

protons. cases, when the velocity increases the contribuhn van-
Figure 2 shows collisional binary contribution to energy-ishes. For incidenH® the second-order contributio®© is

loss distributiond S°¢/dw, for 100 keV ¢ =2 a.u.) protons of the same order as that of protons, while stopping corre-

[Fig. 2(@)], antiprotons[Fig. 2(b)], and neutral hydrogen sponding to the first Born approximation is approximately a

[Fig. 2(c)] moving in aluminum. Figure @) shows that for factor 2 smaller than the first order for protons, at the lowest

incident protons the second Born contribution reinforces avelocities considered.

significant portion of the binary contribution to the stopping  To investigate in detail to what extent tIZé, collisional

at high values ofw (w>1 a.u.). Conversely, as shown in correction affects the total stopping power, we need to take

Fig. 2(b) for antiprotons it is canceled by the second-orderinto account other contributions, such as inner-shell colli-

term forwo>1 a.u. In other words, antiprotons seem to par-sions and capture and loss processes, while for the case of

tially avoid head-on collisions with the FEG, which involve antiprotons, these latest processes do not exist; for incident

high energy transferred, while they are strengthened for thprotons its contribution is estimated as less than 10%, being

proton impact. The contributiodS*“/dw for neutral hydro-  then neglected in the present work. The inner-shell contribu-
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tion remains in both cases, protons and antiprotons, and it is ' ' ' ' '
originated by ionization of the target atoms as consequence
of binary collisions with the projectile. It is calculated by
using the CDW-EIS theory6,7], which includes all orders

on Zp, at least approximately. This approximation has
proved to successfully explain atomic ionization processes
in a large variety of collisional systems, see for example
[18]. In this work the initial bound states are described
by Hartree-Fock Clementi-Roetti doukfefunctions[19],
while a Coulomb wave function with a charge satisfying the
binding energy is employed to describe the final continuum
state.

We studied in detail the ionization of tHe shell for the
case H on Al. Several uncertainties were found in relation
to the parameters to be used, as it is resumed nextv For
=3, the energy loss due to ionization of theshell of a
neutral atom(namely AP) calculated with the CDW-EIS
yields 7.03 a.u., i.e., 55% above the value 4.55 a.u. obtained
by Oddershede and Salig0]. A first correction to be con- | P oowes _______
sidered is that not all the final electron states in the con- 0.0 ; — '
tinuum are possible. Due to the Pauli principle the range of
final electron states witk; e {0 kg} is forbidden, since such v (a.u.)
final states are already occupied by the FEG. By dropping . . .
the contribution of these banned states the energy loss re- FIG. 4. Total stopping power for antiprotons @ alumlnum_
duces slightly from 7.03 to 6.54 a.u. Then, an uncertaint);ind (b) silicon solid targets as a function of the impact velocity.

arises: to what extent should we consider the initial atomicSOIIOI lines, total second-order stoppigyas given by Eq(19);

. . - double-dot—dashed lines, the total first-order stopiBp@s given
2
orbital as_dgscr_lbed by Aland not by AF*2 The latter is by Eq. (20); the dot-dashed lines, stopping due to the ionization of
more realistic since the three outer electrons were ceded t ... shells 2 and 2 calculated with the CDW-EIS approxima-

. . 3
the FEG. For the case of protons colliding on Althe  tion. The symbols represent the experiments for antiprot&es.
CDW-EIS considerably reduces its value, from 6.54 to 4.85,3))
a.u., which now is very near the value 4.55 a.u. obtained by

Oddershede and Sahji0]. Therefore, to describe the target 1o stoppingSS .. is calculated with the atomic first Born

bound states we employ Table 17 of Réf9] corresponding S C . 2 oIS
to ions AB* and St*. In both cases only ionization from the approximation, which is proportional @ . Sgor, does not

| shell is considered. largely differ from Scpw.gs for the velocities of interest
For a fixed charge of the projectile, we calculate the totaponadergd here. Furthermqre, precisely in the region where
stoppingS by adding to the first-order stopping by collisions the contrlbl_Jtlons are very d|fferen_t; € {1'4’2}. a.u.), inner-
with the FEGS?™, the Z2 collisional correctionS5¢, and shell stopping can be neglected in comparison "ﬁﬁ' In
. 1 TS O 3 this way, S, is a pureZ2 contribution and the difference
the inner-shell contributiorSspy.g,s. Which includesZp betweerS andS. di tially the inf i bout th
and higher corrections, at least approximately, i.e., cweerands, gives essen Iagy € Information about the
collisional contribution to ordeZp due to binary encounters
with both the FEG and the atomic electrons. Note that the
S=SF+ S5+ SSHwers: (19 full Z& correction to the stopping power should be obtained
by including the second-order dielectric function in our cal-
As mentioned above, the first-order stopping in the D,:,culation, employing the second-ordere interaction devel-
SPF | corresponds to the sum of binary and collective con0Ped by Pitarkeet al. [21,22). _
tributions, being proportional t&3. Therefore, the total [N Fig. 4 we plot the total stopping powegsands, for p-
stoppingS contains second-order corrections originated fromiMPinging on aluminum and silicon as a function of the im-
binary collisions with both free-electron gas and core elecPact velocity. As we are dealing with antiprotons, no struc-
trons, while collective effects are only considered in firstture effects are preserfs values show a quite good agree-
perturbative order. Higher orders of the collective contribu-ment with experimental daf&3] in the high-energy region.
tion are expected to be important at the lower velocitiedBy comparing the results & and S, we found that thezy
studied. collisional correction is important even at the highest veloci-
As a reference we also calculate the first-order total stopties studied. On the other hand, as any perturbative calcula-
ping S;, which is obtained as a sum & and the first- t@on, _ourtheoretical results begin to fail for the lower veloci-
order inner-shell stoppinGgy,n, i€, ties, i.e.,v=2k. . . . _
For incident hydrogen at intermediate energies, the differ-
OF . wiS ent equilibrium state of charge of the exiting products must
$1=S1" + Sgom- (200 pe included in the calculation of the stopping power. We

0.0 } + } + }

S(a.u.)
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T " T " T " high and medium velocities and start to depart in the low
velocity regime.

To investigate the effect of the structure of the moving
ion, S(H*) is also plotted in Fig. 5. The difference between
S(H) and S(H*) gives a measure of the influence of the
structure. This difference is of the order of thp corrections
at medium velocities and tends to zero at high impact veloci-
ties (v>2kg), whereZ% corrections are dominant.

IV. CONCLUSIONS

We calculate the second Born approximation of the stop-
ping power within the BC formalism, conserving terms up to
second order in the projectile charge. An induced wake po-
tential expressed in terms of the Mermin-Linhard dielectric
CDW-EIS function is employed to describe tiffee interaction. Present
T calculations differ from the previoy$,4] in the fact that the
T potential considered here is reckoned as the dylindric-

0.0 b—1 a7 . L , induced potentialZ% collisional corrections to energy-loss
1 2 3 distributions and stopping power are calculated for protons,
v (a.u.) neutral hydrogen, and antiprotons, considering the projectile
charge as fixed. Up to second order, the BCF is found to

FIG. 5. Total stopping power for hydrogen on an aluminum properly describe the difference between protons and anti-
solid target as a function of the impact velocity. Solid lines, total protons stopping; protons deposit more energy in the high-
second-order stoppin§(H) as given by Eq(21); dashed line, total  energy tail, while, on the contrary, antiprotons diminish its
first-order stoppingS,(H); dot-dashed lines, partial second-order contribution on such an energy region.
stopping power foH ", S(H™). The symbols represent the experi-  jsing thez3 collisional term, the stopping of antiprotons
ments for hydrogeriRefs.[24-26). in aluminum and silicon is calculated and compared with
the first-order term, which depends @8 . Inner-shell stop-

ing contributions are added using the CDW-EIS and first

orn approximation, respectively. The agreement with the
experiments is very good far=2kg. We also inspect the
ase of protons moving in aluminum, taking into account the
ifferent equilibrium charge states of the projectile. Again
'for v=2kg the theory predicts quite well a set of experi-

ments.

IS

w

consider the outgoing projectilds™ and H® by weighting
the corresponding fixed-charge stopping with the equilibriu
fractions given by Pealbaet al. [8]. In the results of total
stopping, we neglected the contributionstbf and capture
and loss processes, which have been estimated to be low
than 10%]8] for the velocities here considered. Therefore
the stopping of hydrogen is estimated as

S(H)=f"S(H*)+fOS(H?), (21)

A . ACKNOWLEDGMENTS
where thef *© are the equilibrium charge state fractions of
H* andHO, respectively, an®&(H" ") are the fixed charge We would like to thank P. Echenique, J. Pitarke, and N.
partial stopping powers oH* and H®, respectively[14].  Arista for illuminating comments on the subject. This work
Figure 5 shows the results that agree with experiments fowas supported by CONICET and ANPCyT.

[1] D.G. Arboand J.E. Miraglia, Phys. Rev. B8, 2970(1998. [10] N.D. Mermin, Phys. Rev. B, 2362(1970.

[2] P. Sigmund, Phys. Rev. &6, 2497 (1982. [11] P.M. Echenique, F. Flores, and R.H. Ritchie, Solid State Phys.

[3] I. Nagy and P.M. Echenique, Phys. Rev4& 3050(1993. 43, 229(1990, and references therein.

[4] I. Nagy and B. Apagyi, Phys. Rev. B8, R1653(1998. [12] For electron production calculations on surfaces see: F. &arcl

[5] H.H. Mikkelsen and P. Sigmund, Phys. Rev48, 101(1989. de Abajo, Nucl. Instrum. Methods Phys. Res. 98, 442

[6] D.S.F. Crothers and J.F. McCann, J. Phys.1B 3229 (1995; C.O. Reinhold and J. Burgder, Phys. Rev. A5, 450
(1983. (1997.

[7] N. Gulyas, P.D. Fainstein, and A. Salin, J. Phys28& 245 [13] N.P. Wang and I. Nagy, Phys. Rev. 35, 2083(1997).
(1995. [14] T. Kaneko, Phys. Rev. 83, 1602(1986.

[8] M. Péralba, A. Arnau, P.M. Echenique, F. Flores, and R.H.[15] R.A. Bonham and D.A. Kohl, J. Chem. Phyd5 2471
Ritchie, Europhys. Lettl9, 45 (1992. (1976.

[9] J. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Med®8, 8 [16] N.R. Arista and A.F. Lifschitz, Phys. Rev. A9, 2719
(1954). (1999.

032901-6



SECOND-ORDER BORN COLLISIONAL STOPPINGH. . . PHYSICAL REVIEW A 62 032901

[17] I. Abril, R. Garcia-Molina, C.D. Denton, F.J. Rez-Peez, and  [22] J.M. Pitarke, R.H. Ritchie, and P. Echenique, Phys. Re52B

N.R. Arista, Phys. Rev. A8, 357 (1998. 13 883(1995.
[18] P.D. Fainstein, V.H. Ponce, and R.D. Rivarola, J. Phy84B  [23] S.P. Mdler et al, Phys. Rev. A, 2930(1997.
3091(199). [24] J.H. Ormrod and H.E. Duckworth, Can. J. Phyd, 1424
[19] E. Clementi and C. Roetti, At. Data Nucl. Data Tablb$ (1963; J.H. Ormrod, J.R. MacDonald, and H.E. Duckworth,
(1974. ibid. 43, 275 (1965.
[20] J. Oddershede and J. Sabin, At. Data Nucl. Data TabBles [25] W. White, J. Appl. Phys38, 2660(1967).
275(1984. [26] S. Kreussler, C. Varelas, and R. Sizman, Phys. Re26B

[21] J.M. Pitarke, R.H. Ritchie, P. Echenique, and E. Zaremba, Eu- 6099 (1982).
rophys. Lett.24, 613 (1993.

032901-7



