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The treatment of the dynamics of ultracold molecules requires new theoretical tools. Previous work of the
present authorgJ. Chem. Phys110, 9865 (1999] for calculation of vibrational levels by a Fourier grid
representation with use of adaptative coordinates is generalized here to the treatment of the bound-continuum
interaction in a two-channel problem. Two numerical methods are presented: a time-dependent method using
a Chebyshev propagator to compute the correlation function and a time-independent method with diagonal-
ization of a Hamiltonian that includes an absorbing optical potential. In both cases the adaptative coordinate is
defined by a numerical rather than an analytical procedure. Lifetimes are reported for the predissociated levels
of the R and Cg 0 (ns+np?Py,) spectra, where=5,6. The two numerical methods give similar results.

The lifetimes increase with the vibrational quantum number proportionally to the classical vibration period
estimated from the Le Roy—Bernstein law for an asymptBfic¢ potential, and the energy variation can be
fitted to an analytical formula. The results are shown to be very sensitive to the molecular parameters,
potentials, and couplings. The measured width of 8.5 GHz reported by &liae[Phys. Rev. Lett73, 632

(1994] for one predissociated level 8fRb, is reproduced. A strong isotopic effect is found for the rubidium
dimer, the lifetimes of°Rb, and 8’Rb, levels differing by a factor of 3. Finally, we present a third approach,

in the framework of a generalized two-channel quantum-defect theory, where lifetimes are determined by
extrapolation of parameters fitted to Lu-Fano plots of computed bound levels beld®y jltissociation limit.
Excellent agreement is obtained with the numerical results, suggesting the possibility of fitting to experimental
spectra.

PACS numbgs): 33.80.Gj, 33.80.Ps, 31.15p, 31.50+w

[. INTRODUCTION well as the occupation of phase space, were efficiently opti-
mized by use of an adaptative coordinate, mapped on the
The rapid development of photoassociation experimentfcal de Broglie wavelength and defined through analytical
[1,2] in a sample of cold alkali-metal atoms has supplied aor numerical transformation of the radial coordinate. Besides
wealth of information on the long-range excited moleculesapplications to vibrational motion in a single potential, gen-
formed during the process. Besides their intrinsic interest foeralization to a two-channel problem was considered, with
spectroscopic studies of asymptotic interactions, these shomhe study of the strong perturbations in the ,Rp(5s
lived molecules may decay by spontaneous emission into & 5p 2Py, 5) vibrational series. Then in a second paper
bound molecular triplet or singlet ground state, as demonf11], hereafter referred to as paper II, those calculations were
strated already for G3], K, [4,5], and RB [6]. The pho-  further developed for Rband Cs, and their results analyzed
toassociation scheme therefore offers an interesting intermee give a physical interpretation of the perturbations. For
diate state for the production of ultracold molecules. In theboth heavy dimer molecules, although there exists strong
near future, this scheme could even be efficient in transformspin-orbit coupling between the two Hund’s case\ 123
ing an atomic Bose-Einstein condensate into a moleculagndb 311, potential curves, the picture of two Hund’s case
condensaté?—g]. Study qf the dynamlc's.of photoassomatedOJ(nSJrnp2pl/2) and @ (ns+np2Py,) (Wheren=56 for
molecules is thus a priority for theoreficians. Rb, and Cs, respectively uncoupled adiabatic channels is
For that purpose, development of theoretical tools hagever fully valid. Perturbations are present all over the spec-
proved necessary since, in the case of long-raigépoten-  tral range(i.e., 5200 cm ® in the case of Gsand 5700 cm?
tials, the vibrational motion of the photoassociated moleculén the case of Rf): the channel mixing is manifested
extends up to very large interatomic distanéewhere the through the oscillations of the binding energies and rota-
local de Broglie wavelength becomes several orders of magional constants between two limiting curves corresponding
nitude larger than at short range. Standard methods should be the two unperturbed series for vibrational motion in the
adapted to this novel situation, or alternatively new methodsincoupled adiabatic potentials. We showed that in the vicin-
should be created. In a first pagéi0], hereafter referred to ity of the (ns+np?P,;,) dissociation limit, the spectra can
as paper |, we have proposed a mapped Fourier grid reprée interpreted as one vibrational series perturbed by a quasi-
sentation of the Hamiltonian to determine energies and waveontinuum, and that it is possible to generalize quantum-
functions for vibrational levels close to the dissociation limit. defect concept§l2—14 in order to visualize the results on
The size of the grid in position and in momentum space, agu-Fano plots.
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FIG. 1. Rl potential curves withouta) and with (b) spin-orbit 200 \\\\‘ ——————— ’/':/ Rb,
coupling. (8 Hund’s casea A3 (5s+5p) (broken ling and ST
b 3II,(5s+5p) (dash-dotted line curves from Ref.[16]; (b) 100 ‘
Hund's casec 07 (P, and Q(P3;,) potential curves correlated, 5 15 25
respectively, to the dissociation limits §%5p2Py;,) and (5 R (units of a)

+5p 2P,,). A vibrational level close to th@,, limit, and its turn-

ing point in the q(PS/Z) potential, are displayed for illustration. FIG. 2. Variation of the spin-orbit coupling used in the calcula-

tions as a function of internuclear distanRe The quantity repre-

The aim of the present work is to extend the methods ofented is (ﬁ)W(R)' which is asy[nlptotically equal to the atomic
the two previous papers to the description of the boundSPin-orbit splitingAEsq=554.1 cm = for Cs, and AEso=237.6

- . : : . - . ~ for Rb,. Solid line:ab initio calculations of Ref[18] for Cs,.
continuum interaction. Calculation of predissociation life- €™ . ;
P Dashed lineW™(R) for Rb,, scaled on the preceding curve. Dot-

times are reported, taking as the main examplez thSl@eC' dashed lineW™(R) for Rb, (see text Dotted line: constant spin-
tra of Rly in the energy range above the65p“Py, and i couplingWai(R).
below the 5+ 5p 2Py, dissociation limits(simply denoted
Pi, and Py, in the following), where thePg, series of calculationd17] have been presented in paper Il and will not
bound vibrational levels is perturbed by the continuum of thebe reproduced here. They are qualitatively similar to the Rb
P,/ series. Results for the gpredissociated spectrum will curves, the crossing point being located at a slightly larger
also be presented. Generalization to the description aflistance (9.8, for Rb, and 10.4, for Cs,). Introducing the
continuum-continuum interaction and interpretation of ex-spin-orbit coupling by an effective Hamiltonian and diago-
perimental data on fine-structure cross sectidig will be nalizing the 2X2 electronic Hamiltonian, as already de-
treated in a forthcoming paper. scribed in paper Il, yields the Hund'’s caseotential curves,
The potential curves and couplings are discussed in Sedisplayed in Fig. (b). In the following, the two adiabatic
Il. The two methods used for the numerical calculations potential curves H(P/,) and Q; (P3,) will be calledV,(R)
time-dependent with calculation of the correlation functionandV,(R), respectively.
and time-independent with absorbing potential, are explained The dynamical coupling between the two channels de-
in Sec. Ill. The results for the predissociation lifetimes arepends markedly upon the value of the nondiagonal spin-orbit
given in Sec. IV, where the sensitivity to molecular data iscoupling W(R) in the vicinity of the crossing, aR=R,
discussed in connection with experiment. In the final section~10a,, of the Vo(R) and Vg(R) diabatic curves. At such
the computed lifetimes are compared with lifetimes extractedistances, due to configuration mixingy(R) should be
from quantum-defect theorfQDT) parameters fitted to the |ower than the asymptotic atomic vali?'=AEg+2/3)
bound spectrum, showing how the problem of the uncer—0 471AEg,, where AEg, is the splitting between the
tainty on short-range potentials could be bypassed. np2Py, andnp 2P, fine-structure levels. The curw/(R)
Effects due to rotation or to hyperfine structure interactionnas heen computed only for CK18] (see Fig. 2andW(R,)
will be neglected. Atomic units will be used except whenis indeed reduced by 35% as compared\d. For Rb, we
otherwise stated, the unit for distances being 1=aay.  have used two model curv&¥™(R) andW™(R) scaled on
=5.29177%10"* m. The energies of the levels will be the computed Gscurve and represented in Fig. 2. For
given in cm *, the Py, asymptote being considered as theyymi(R), ‘the scaling factor is the ratio 237.6/554.1 of the

origin, and the lifetimes will be given in picosecongs). atomic spin-orbit splittings, which gives at infinity the cor-
rect valueW?3=237.6 cm® for a rubidium atom. In the

[l. THE TWO-CHANNEL PROBLEM: crossing regionW™(R,) is then reduced by 35% relative to
POTENTIALS AND COUPLINGS W2 As the 41-5p splitting for the rubidium atom is a factor

In the calculations for Rl we use Hund’s casa poten- of 2 larger than the &-6p splitting for the cesium atom, it is

. T+ 3 expected that due to a relatively weaker admixture of ttie 4
tial curves A3, .and b”II, from accurate gquantum- configuration, the reduction of the coupling might be smaller
chemistry calculations[16], matched atR~17a, 10 i, the Rh molecule: we have also considered the possibility
asymptotic calculationd17]. The corresponding curves, ¢, - 200 reduction yielding th&V™(R) curve.

hereafter referred to as diabatic curves and lab&lg(R) We have comput’ed the eigenstates of the Hamiltoklan

and Vg(R), respectively, are displayed in Fig(al for the \iten as a 2 2 matrix in the diabatic representation,
Rb, dimer. For the Csdimer, the curves obtained by match-

ing theab initio curves of Meyer’s groupl8] to asymptotic H=T+V, (2.9
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TABLE |. Parameters used in the numerical calculations. For the time-dependent lifetime calculations, the
absorbing zone starts B=80a,. For all calculations the grid starts aa§&

Bound calculations Time-ind. lifetimes calc. Time-dep. lifetimes calc.

Species L B N 7 L B [\ 7 L B Nm n
55Rb, 795 0.7 633 40 80 07 787 42 95 0.6 1024 4.2
8"Rb, 795 0.7 639 40 80 07 797 42 95 0.61 1024 4.2
Cs, 795 0.7 839 38 80 0.7 1279 26

whereT is the diagonal two-channel kinetic energy operator The originality of the present mapping procedure is the

while V is written as use of a numerical change of variable in E8.1) so that the
real potential can be included. This choice minimizes the
Va(R) W(R) energy range of the Hamiltonian operator compared to an

V(R)= (2.2 analytical mapping using, for instance, an asympt&ic®

W(R) VB(R)_W(R)/‘/E potential [10,20. This has a direct consequence for time-

. . . ) dependent propagation methods which scale linearly with
Adiabatic energies and wave functions are then deduceg, s energy range.

by rotation, the 2 transformation matrixVl being ob- The efficiency of the mapping procedure is related to the

tained by diagonalization dfi. A discussion of diabatic and eqyction of the number of grid points. If the range of dis-

adiabatic approaches for calculation of predissociation life;gnces considered is= R —R...,, the number of points on
times has been given recently by Monnerville and Robbey, equidistant grid wil bo

[19] in the case of the CO molecule.
L . meax: LV2uEmax

Neq:ﬁ_ T T ’

IIl. NUMERICAL CALCULATIONS OF THE LIFETIMES 32

A. Fourier grid representation and mapping procedure . . L .
whereE 5 IS the maximum kinetic energy for a given po-
We have used two approaches for the calculations: a timeential. The number of points on the mapped grid can be
dependent propagation with calculation of the correlatiorcalculated fromassuming8=1)
function and a time-independent method with an absorbing
potential. Both approaches are based on a grid representation V2u0E(R)dR
and take advantage of the mapping procedure. Np= ILT, (3.3
The Fourier grid representation uses a basis set of plane
wavese PR, The coefficients of the expansion of a given whereE(R) is the local kinetic energy. Defining the ratip
wave function)(R) are a set of values of this wave function patveen the two numbers,
in momentum space. On a grid Nfpoints, the Hamiltonian
H is represented by aNx 2N matrix, the matrix elements
being given in paper I. The energies and wave functions of
the bound levels are obtained by diagonalization of this ma-
trix. The mapping procedure is expected to reduce the nu
ber of pointsN in the working grid. The mapped Fourier grid
representation (MFGR) uses a basis see PR with
R-dependent frequencigsscaled on the inverse of the local
de Broglie wavelengtin(R). In a two-adiabatic-channel
problem, a lower limit forA (R) is estimated from the upper
limit of the local classical kinetic energ;, ,,=Vi(®)+A
—V;(R). In the present worky,() =0 is the energy of the
P, asymptote whileA has been chosen to keEgq, i.e.,
the difference between the;, and P, asymptotes. This is
achieved by use of a working grid with a variable step The principle of the methof21] relies upon direct deter-

zZ
a

el

=N, (3.9

Mhe efficiency of the MFGR calculations for bound states will
be enhanced by a factay® since the computing time for
diagonalization scales a3(N®). For time-dependent calcu-
lations the enhancement factor is approximate#2)In(/2),
since the bottleneck in the calculation is the FFT procedure.
Table | summarizes the grid parameters and efficiency en-
hancement factors for the different calculations.

B. Time-propagation method for lifetime calculations

Send R) defined as mination of the lifetime of a given state from analysis of the
correlation function
T »
Sendk R) =2 (3.1 C(t)=(ole” "™ o) = (ol (1)), (3.9

V2u[A=Vi(R)+Vy()]
which is the projection of the wave functigi(t) at a given
The parametef<1 is meant to increase the phase space irtimet on the initial wave function/, giving that part of the
order to represent correctly the vanishing part of the wavavave function of the initial state still “surviving” after the
functions in the classically forbidden region. delayt. In case of an exponential decay of the population,
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FIG. 3. (a) Adiabatic components of a two-channel predissoci-

ated vibrational wave function fo¥Rb, (0,}) (5s+5p2Pg,,), ob-
tained by MFGR calculations at ener@y=25.37 cm ! above the
P4/, dissociation limit. The upper panel shoyk! (R)|?, which is
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with an energy above the,,, limit have a continuum com-
ponent¥! (R). The computed energies and wave functions
will therefore depend upon the size of the grid. As an illus-
tration, we show in Fig. @) the probability density for one
predissociated wave function of Rlzomputed by MFGR
calculations for a grid described in Table I. One can see that
the W3, componentmiddle panel is looking like a typical
bound level in a long-rang® 2 potential, with a very strong
probability density at the outer turning point. In contrast, the
V!, component is qualitatively very different, being a con-
tinuum function. In order to save computer space, the grid
step in Eq.(3.1) is computed choosing =0 and optimized
for bound level calculation only, so that the continuum part
of the total wave function is not well represented at large
distances, which has no consequence for the results.

We then solve the time-dependent Salinger equation
in order to determine the time-variation of the two-channel
wave function®,(t) with two componentst!,(R,t) and

the modulus of a continuum wave function represented here on ¥R 1Y).

grid limited to a distanceR=80a,. The middle panel shows
|¥3,(R)|2, corresponding to bound motion in the potentiglR).

For the definition of the correlation function, it is possible
to consider®,(0) as the initial state), or alternatively to

The lower panel shows the probability density as a function ofextract the¥,(R,0) component and to propagate it in time.

internuclear distance for the total wave functigh) Same aga)

(i) In the first case, the correlation function is the sum of

after propagation during a time delay of 35 ps. The population intwo components:
the P3, channel is now decaying exponentially. The total popula-

tion, a{, on the two channels has been reduced from Ilafo
=0.151.

[p(0)]2=e" " yol?,

the lifetime 7 is extracted from the correlation function as

(3.6

_In[C(ty)[—In[C(t,)]
2(t,—ty)

T=

3.7

C(t)=Cy(t) + Cyp(1)

= f WY (R,t=0)WYR,t)dR

+J\P§,2(R,t=0) v RDAR (3.10

Whereas¥3(R,t) is decaying exponentially with time, the
time decay of the continuum component is not exponential.

In the present work, we are considering a two-channellhe exponential behavior dk(t) is reached only after the
wave function in the mapped Fourier grid representation. Adime delay necessary to filter out thg; ,(R,t) component so
in paper Il, for vibrational motion in the two coupled adia- thatCy/,(t) becomes negligible.

batic potentialsvV, and V,, corresponding, respectively, to
the P, and Pg, dissociation limits, we write the two-
channel wave function for a level as

D, (1) =W4,(R,1)[1) + F4,(R,1)[2). (3.8

In Eq. (3.8, ¥],(R,t) and ¥5,(R,t) correspond to the

nuclear wave functions for vibrational motion in channels 1gatore™

(i) In the second case, the compon€gjy(t) is computed
directly.

As the initial wave function is computed with a working
grid different from the one used in the time-dependent cal-
culation(see Table)l, an interpolation procedufd0,22 has
been implemented to transfer from one grid to the other. The
propagation method consists of the expansion of the propa-
Mt in Chebyshev polynomialg2,23. The order of

and 2, while|1) and|2) are the electronic states correspond-the polynomial to be used depends on the energy range of the

ing to the adiabatic potential; andV,.

Hamiltonian matrix representation. The use of the present

We define the relative population of the two channelsmapping procedure, where the change of coordinate is de-

through

ag,z(t)=1—ag,2(t)=J |W(R,1)[2dR. (3.9

In order to define an initial functiow, for the determi-

nation of the correlation function, we consider a wave func-

fined numerically with the real potenti®l; (R) instead of an
analytical formula that uses the asymptd®c? potential, is
efficient since it minimizes the energy range. In order to
avoid reflection at the end of the grid, the outgoing flux is
smoothly absorbed by an absorbing potential, starting at a
distance of 88, as described below.

We have represented in Fig(d3 the wave functions ob-

tion in the stationary MFGR computed as described in Sectained by propagating, for a time of 35 ps, the two-

[ll A by diagonalization of the & X 2N Hamiltonian matrix.

component wave function represented in Fi(p) &t timet

In contrast to bound level calculations, predissociated levels-0. The total norme,(t) of the wave function represented
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FIG. 4. The correlation function€(t) (dotted ling and C,(t) 0 : : :
(solid line) for a predissociated level of%’Rb,(0,) (5s 80 81 82 83 84 85
+5p 2Py,), at energyE=25.37 cm ! above theP,,, asymptote. R (units of ay)
After a time delay {,~30 p9 the slope of the two curves becomes ) ] ) o
identical due to the disappearance of g, component present in FIG. 5. The optical potential used for calculations of lifetimes as
the initial wave function. defined in Eq.(3.1D) in text, with parameterg\s=0.000 29, Ny,

= 1322, LopI: 4.&0, R(): 80&0

on the grid is no longer 1, but 0.151: indeed, 85% of the oL
probability has now escaped, the wave packet in channel 1 Vopt= _iAS[NopteXI{ i
having reached distances larger than the grid length R=Ro
=80a,. Figure 4 gives examples of the correlation functions ,
C(t) andCa(t) for the same predissociated level. While the With parametersis, Noy, andL gy calculated according to
second one clearly has an exponentially decreasing behavidh€ duoted reference. For Rb As=0.00029 a.u.,Nop

the first one corresponds to two characteristic times, a shoft +3-22; Lopt=4-80; and for Cs: As=0.000 355 a.uU.Ngp

one for the elimination of thé,,, component, and a long = 13:22 &.U.Lox=2.589. Ry is the starting point of the op-
one which is the lifetime of th®;, component. Therefore, tical potential and was chosen asag0(See Fig. 3. This

in logarithmic scale the two curves become parallel for Potential should be added to the physical potenfiabn the
~30 ps. The propagation during the tirhe (0 ps,30 ps) is P4/ channel in or'der to absorb thg outgomg flux. Hovyever,
thus working as a time filter for the predissociated wavelN® bound vibrational wave functions in thé, potential
function [21] selecting from the initial wave function only Were shown to remain unchanged when the optical potential
that part belonging to the bound spectrum. Eor30 ps, the  Was added to/,. Ther_efore, in calcu_latlons performed in the
population of the predissociated state is decaying exponerfliabatic representation, we considered the potentig(s
tially, with the same time constant a&,,. Small oscillations ~ + Vopt andVe+Vop in the matrix of Eq2.2.
appear in the two curves of Fig. 4 when time is increasing. The precision of the method was controlled in different
They are relatively small in amplitude, as the figure is drawnV&YS:_ o . .

in logarithmic scale, and can be interpreted as a beating phe- (1) First, we verified the stability of results with respect to
nomenon, due to coupling via the continuum between thé change of the parameters of the absorbing potential. Mov-

resonance &, **=25.37 cm ! and a neighboring one. Ing th?sstartir)g poinR, from 8(a, to 16, resulted in a
5X107° relative change in the calculated lifetimes. In the

Rb, case, increasing the length,, of the absorbing region
C. The mapped FGR method with an absorbing potential fromo 4.8, to 20, modifies the lifetimes by less than
for lifetime calculations 0.01_/0. Flnally,_ a mod|f_|cat|on of the streng#ty of th_e_ ab-
) o sorbing potential was introduced under the conditions de-
As a second tool for the calculation of lifetimes and as ajpeqg by Ref.[24] to ensure that the outgoing flux is not

test for the previous results, we also solved the stationaryefiected from the absorbing potential: such modification did
Schralinger equatiorfusing MFGR with an absorbindop- ot affect the calculated lifetimes.

tical) potential at the end of the grid. The Hamiltonian now i) Second, we compared with the time-dependent
has both real and imaginary components: diagonalization of,ethod as discussed below in Sec. Il D.
its matrix in the mapped Fourier grid representation then
yields complex eigenvalueE°+iT",/2, whereE;* is the
energy and’, is the width of the vibrational level.

The potential/,,, should be zero in the region where the ~ In the case of*Rby, the lifetimes computed as described
molecular potentials are not negligible, and purely imaginaryabove, with the choick/(R) =W for the coupling, are dis-
in the asymptotic region, where the two atoms no longeiplayed in Fig. 6 as a function of the level eneifgy®, taking
interact. The best possible choices were discussed bykVibathe P4, dissociation limit as the energy origin. For the lower
et al.[24] and Monnervilleet al.[19] and we use one of the levels E,<100 cm !, the lifetimes are small and the two
potentials proposed in Ref24], methods yield results that are almost identical. When the

: (3.11

D. Comparison of the two methods
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01\) 00 200 P/ FIG. 7. Predissociation widthg,= 1/, computed for two iso-
2 E, (em) an topes, 8Rb, (circles and 8’Rb, (triangles, as a function of the

o . . N level energy above th@,, asymptote. The lines represent a fit,
FIG. 6. Lifetimes for the predissociated levels BRb, (0,) according to Eq(4.3) in text. The widths are proportional to the
(55+5p ?Pyp) as a function of the energy above tRg, asymp-  (jassical frequency of the vibrational motion.
tote: comparison of the results from the time-dependent metho
(diamonds$ and the time-independent meth@mircles. For the sake IV. LIFETIMES OF PREDISSOCIATED LEVELS
of clarity, as the results are very close, only some levels are pre-
sented for the time-dependent calculations. The inset shows details We have computed the energie$® (hereafter given rela-
of the comparison in the 40-60 crhenergy range. tive to the Py, asymptote and lifetimes+,= 1/, for the
predissociated vibrational levels in the¢ Gpectrum of the
level energy is increasing, the lifetimes also increase and fawo isotopes®®Rb, and 8'Rb,, as well as for>*’Cs,, consid-
relatively large values#>20 p3 there is a divergence of a ering both constant coupling/*' and R-dependent coupling.
few % between the results obtained by two methods, th&he first important result is the strong isotopic effect ob-
results of the time-dependent method being systematicallgerved in the lifetimes, which are smaller by a factor of 3 in
larger. This discrepancy may be attributed to some uncerthe case of°Rb,, as can be seen in Fig. 7.

tainty in the determination of the slope of tk¥t) curve: The strong increase of the lifetime near tAg, asymp-
tote can be qualitatively explained by an increase of the pe-
_ [ tAInC | AInC 72 riod of the classical oscillations at higher energy. Half the
n 2(InC)2 ~"Inc =2(Aln C)T' (3.12 classical period for the motion in a potentibl(R)=D
—(C3/R®) at energyE!**is given by
where AInC is the uncertainty in the determination of the T \ﬁ Rl Ey) drR
slope of the correlation function. The relative error is == —f _—
P 2" N2)s,, VE-UR
dr T 1 P INED!
—=2(AInC)~. (3.13 TP s N8 o res —5i6
7_ t 3 5 C; F(%)(D ES ", 4.1

Thus, for a fixed propagation time the relative error in thewhere the integral is calculated as in R&7] assuming that
determination ofr is larger for levels with a longer lifetime. the contribution of the asymptotic region is dominating. In
In order to obtain the same accuracy, the wave functions oEq. (4.1, D is the energy of the dissociation limit equal to
levels with larger should be propagated for a longer time. the splitting between theP,, and P3, asymptotes,D

In general, in calculating resonance eigenvalues the reat AEgo. Assuming that the coupling between the two po-
part of the eigenvalue, the energy, converges much fastdentials is effective only at relatively short distances, where
than the lifetimg[25]. The convergence rate of lifetimes for the motion can be considered as independent of the energy of
the time-dependent method i©(1/). For the time- the level, we can expect an analytical energy dependence of
independent diagonalization method the convergence déhe lifetimes,
pends on the properties of the optical potential. The lifetimes
were checked to be stationary with respect to variation in the m(Efy=a(D—-E;9 %5 4.2
parameters of the optical potential indicating an exponential
convergence. Hybrid methods which are a combination ofvhere the parameter depends upon the physical parameters
direct propagation and diagonalization known as filter diago{transition probability and time delayn the short-range re-
nalization seem to be the best suited for most problemgion and is proportional ta/u. This interpretation will be
[25,26]. However, we may conclude here that for the particu-developed in further work.
lar case of cold atoms the direct diagonalization methods The predissociation width should then decrease to the
seem to be both more accurate and more convenient. value 0 at the asymptote varying as
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FIG. 8. Predissociation widths for the vibrational levels of computed for two choices of the spin-orbit couplM4R) between

®*Rb, 0, (55+5p *Py;) computed for three choices of the mo- e diabatich %11, and A3, curves.(a) W(R) is constant and

lecular spin-orbit couplingV(R) (see Fig. 2 between theb 311, equal toWA= (y2/3)x554.1 cmi L. (b) W(R) is R-dependent and
andA '3, diabatic potential curvesh® (dark circles, W™ (white varying as displayed at the top of Fig. 2

squarey and W™ (dark squares The experimental value from o

[28] (corresponding to a lifetime~20 p9 is represented by a big

star. The inset shows details of the results in this energy region. As in paper |, we find that the channel mixing, and hence

the isotopic effect, is highly sensitive to molecular data. This
is demonstrated in Fig. 8, where the width for the levels in
the Py, series for®Rb, is shown to be reduced by a factor
(4.3 of 4 when a variable spin-orbit coupliny™(R) scaled on

the cesium curve is introduced. Excellent agreement with the
experimental width of Ref.28] is obtained wheW™(R) is

It can be verified in Fig. 7 that the variation of the computedchosen for the spin-orbit coupling. However, this choice is
widths as a function of the level energy is indeed well fittedfully arbitrary, as a slight modification in the potential curves
by an analytical curve(4.3) with parametersa=189.5 Would lead to another optimal value for the coupling factor.
ps (cn 1% for 8Rb, anda=628.3 ps (cmi')*® for 8Rb,. ~ We shall therefore discuss in the following section how life-
Thus, for all predissociated levels, the lifetime decreases by Bmes can be extracted from parameters fitted to the bound
factor of 3 when the reduced mass decreases by less than 33Rectra, taking advantage of the accuracy of spectroscopic
(from u=79212.88 a.u. ta.=77 392.38 a.).. The classical information and of the asymptotic character of the potentials
period decreases only by 0.5%. This means that due to @uring most of the period of the vibrational motion.
phase effect the short-range transition probability from one The results for Csare displayed in Fig. 9. One should
channel to the other is very sensitive to the reduced mass. Iiote the reduction of the widths by more than one order of
order to get more insight into this strong isotopic effect, wemagnitude when turning from Rko this heavier molecule
have calculated lifetimes for fictitious isotopes of,Rtith a  With larger spin-orbit splitting, for which the picture of un-
reduced mass differing from that of the two physical iso-Perturbed motion in the singlé, adiabatic potential is more
topes. For examp|e, the lifetime increases by one order O\fa“d We find an important difference in the lifetimes com-
magnitude ¢=6366) when the reduced mass is decrease@uted with constant and variable spin-orbit coupling: the
down to u=75000 a.u. However, for an ever smaller re- adiabatic character of the problem is reduced when the mo-
duced massp=70000, the calculations yield=455, so lecular spin-orbit coupling is considered, yielding larger
that the lifetime is even shorter than f8fRb,. As in paper widths or smaller lifetimes. The asymptotic _analytlcal n_10de|
Il, we can link this behavior to a phase effect, where, forof EGs.(4.2) and (4.3 for the energy variation of the life-
highly excited levels with high vibrational number, the times and widths is valid only for the most excited levels, in
phases are very large comparedrico that a small relative @ 100 cm* energy range below the dissociation limit. For
change becomes non-negligible when considering the phaggwer levels, the time spent in the inner region and the tran-
modulo 7. sition probability can no longer be considered as energy-
The large difference in lifetimes for the two isotopes of independent.
Rb, is likely to explain the difference of a factor of about 3
in the trap loss signal observed by Wallageal. [15] for
®Rb, and 8'Rby,. It was interpreted in the quoted reference
as a possible consequence of the difference of the hyperfine
structure splitting. The present results suggest that it could
also be explained as due to a difference in coupling effect, In paper Il, we have proposed an interpretation of the
due to a phase variation when the mass is modified. perturbations in the vibrational series below #g, limit in

(D—Elr)eS)SIG
r=——,

o

V. ASYMPTOTIC METHOD FOR ESTIMATION
OF THE LIFETIMES FROM PARAMETERS FITTED
ON BOUND SPECTRUM
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the framework of a two-channel generalized quantum-defect TABLE Il. Comparison of the generalized quantum defects
theory. First, we have checked that due to the asymptotig.2. and coupling paramet@®, , extracted from various calculations
R~2 character of both the adiabatic potentialg(R) and in the case of**Rb,. The first column represents a fit to the qua-
V,(R), calculations neglecting the coupling term will yield Siresonances present in thiy, bound spectrum below the,,
two series of bound vibrational levels andv, verifying a  dissociation limit.

Le Roy—Bernstein layj27] close to the dissociation limit,

Relative population Lu-Fano plot Lifetime calculation

E(vi)=D;—[Hi(vp—v;)]°. (O N, not defined 0.82 not defined
o 0.19 0.185 0.18
This law is relating the energy of a given vibrational level tor, , 0.76 0.74 0.80

its quantum numbew; by use of two constants whei® is
the energy of the dissociation limit whild is linked to the
reduced masg:. and to the asymptotic potentiat C3/R3 Alternatively, from the computed lifetimes and vibra-
throughH;=0.991 485/ Y% C5)¥3]. The law does not de- tional energy splitting, an interaction parameter can be ob-
pend upon the absolute numbering, and an effective quantutained from
numbern =vp—v; or a quantum defeg; can easily be
related to the quantityu; —v;), which by definition is zero _ 77

o e AT o : R1.= : (5.9
at the dissociation limit. Generalization to a wider energy ' ZT(ELefl—EZezS)
range could be performed by means of a numerical law re-
lating the energy of the level to the effective quantum num-while a quantum defect can be estimated from the level shift
ber. Once the coupling between the two channels is introby inverting Eq.(5.4),
duced, we have shown that for a witle1000 cm 1) energy
range, the computed vibrational energies can be fitted by SE(v™9
three parameters equivalent to two generalized quantum de- ma(v2)= (res—_Eres)
fects and one coupling parameter. This requires generaliza- vl v

tion of the Lu-Fano law, We have verified that in the case ¥Rb, there are~200
predissociated levels above ti,, limit for which w, is
Riz nearly constant, varying by less than 0.1, while the coupling
tar m(—n% + up)] : (5.2 parameter varies by a few percent.
The parameterg, andR; , can also be extracted from the

As such parameters have a very weak dependence upon t ativg populationys, of the\lfg{z(R) cc_)m_ponent fonb.ound
energy, it is valuable, in the spirit of quantum-defect theory €VE!S just below theP,, dissociation limit[11]. In this re-
[14], to extrapolate them above tiRy, dissociation limit in  9i°N the total bound spectrum can be considered as a set of

order to extract predissociation lifetimes from the formula duasiresonances of thg state “predissociated” in the qua-
sicontinuum created by the high density Bf,, vibrational

levels.
7 1=T(v,)= %Riz( E,,«1—E,). (5.3 The results are reported in Table I, where the parameters
n1, Mo, andRy , are extracted from three different sources:
, N , the relative population of th®;, component, the Lu-Fano
In Eq. (5.3), v, is the vibrational numbering of a level of the lot, and the lifeime calculationgtime-independent and
P30 series._ Once the coupling is introduc_eql, this_ level has ime-dependeft For the energy domain between the two
new effective quantum number so that it is shifted by theyissociation limits, the relative accuracy of the prediction of
quantity the widths and positions of resonances of, Ring the Lu-
Fano plot is estimated as 1 for positions and 10% for
OE(v)=ma(E, +1—E,). 54  \idths.

(5.6

tar{7(—n]+uy)]=

We give in the following a comparison of lifetimes com-  TABLE Ill. Comparison of generalized Lu-Fano parameters
puted by the various methods f8fRb,. For one predissoci- 1, 12, Ry for different species and different choices of molecu-
ated level just above the,, limit, the energy and the width lar spin-orbit couplingw.
calculated directly areE!**=13.037 cm?® and I',=24.2

GHz. Using the two parameteR, ,=0.47 andu,=—0.36 K1 K2 Riz

derived from the bound spectrum, the asymptotic formulasstzl weat 0.82 ~081 0.74
above predicts for the levelg!$=13.052 cm* and T, 85Rb,, WM 0.77 ~0.76 0.47
=26.4 GHz. For a level situated far from the region of de- 8Rb,, WM 0.67 —0.66 0.62
termination of parameteiR; , andu,, the direct calculations §7Rb,, WAt 0.37 ~0.36 0.47
give E[**=201.216 cm* andI",=4.97 GHz. The prediction Cs,, WA 0.048 —0.046 0.03
with the same parameteR, , and u, give E;5=201.208 cg,, w" 0.097 —0.096 0.1

cm ! andl’,,=5.62 GHz.
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Positions ofperturbed bound levelselow P, limit can  effort with the numbeiN of grid points isN® for diagonal-
be predicted using three Lu-Fano parameters downt000 ization and onlyN In N for time propagation. However, the
cm™* with accuracy varying from 10° for E=—200 cmi!  mapping reduce® such that it makes the diagonalization
to 5% 10 * for E=—1000 cn ®. feasible and the method more efficient.

The Lu-Fano representation therefore yields a very com- The computed lifetimes for the bound levels in the
pact way of representing both bound and predissociategj(zpm) potential predissociated by the (*P,,) con-
spectrum. We give in Table 1l the values of the parametersin,ym are found to be increasing as a function of the energy
that we obtain from calculations with the present set of POE above the2P,,, limit, being proportional to the classical

tentials anq_ various Cho'c?s for the coupling, showing th ibrational period. In accordance with the Le Roy—Bernstein
huge sensitivity to the choice of molecular data. We shoul . . —5/6
note in particular the very small value of the couplin a_model [27], the latter varies asymptotically abE) >,

P Y PING P& here D is the dissociation limit. We have shown that the

rameterR,, for Cs, when constant spin-orbit coupling is . o o ,
considerehz and thsé picture of two ungoupled Hung’é c?alse computed predissociation lifetimes can be fitted by such a
w in the entire energy range for Rlbut only in a 100

channels is nearly valid. We should also note the L~:pectaculél‘?1 ) _ _
variation of the same parameter in the,Rlase, when either €M ~ €nergy range for Gs This can be understood within a

the coupling or the reduced mass are changed. This confirnfimple model where the coupling beween the two channels is
the necessity of fitting parameters directly to the photoassdimited to the short-range region where the motion is energy
ciation spectra once they are available. independent. As for bound state calculations, the results de-
If a part of the discrete spectrum close to the dissociatiofPend markedly upon the choice of potentials and coupling,
limit is known (for example, from a photoassociation spec-and we have discussed the effect of Bidependence of the
troscopy experiment the widths and positions of predisso- spin-orbit coupling. With a reasonable choice, it is possible
ciated resonances can be predicted. The asymptotic shift reproduce the only published experimental value of 19 ps
8(v,) of the continuum wave function of the resonances cammeasured for a level of’Rb, [28]. For all levels, a strong
be defined also from the paramejer by isotopic effect is found in the lifetimes, which for one choice
of the coupling are found to be three times larger ¥Rb,
than for 8Rb,. This effect could be the correct interpretation

o(vy)=mpy. (5.7 for the isotopic difference in the fine-structure changing
cross sections observed experimentflly] in 1992 and then
VI. CONCLUSION AND PERSPECTIVES attributed to the isotopic variation of the hyperfine structure.

. The numerical methods presented in the present paper
In the present paper we have presented calculations of thgyide results with spectroscopic accuracy once the poten-
predissociation lifetimes for vibrational levels of an excitedyi51s and couplings are known. However, for heavy dimers
ultracold molecule, when the vibrational motion extends OUL,ch as Rpand Cs, the most accurateb in’itio calculations
. . . . .73 b
FO large _dlst_ances n a_p"tef‘“?" with asyr_nptcmc behav- determine short-range potential curves with an uncertainty of
ior. Application to predissociation efzfects in thzé' @;pegtrum a few cm I only the asymptotic part of the curves can be
(c)'fatRcl))r21 ?&dtfa e?semiinr:ehe;rst; dn pniﬁé ?rn;mgggrﬁlsoiot- known with the required accuracy. Nevertheless, for the lev-
cloulpledl—crllannel caIcuIatiopns ! w WO g|s that we are studying, the vibrational motion is governed
Two numerical grid methods making use of a Fouriergridby the asymptotic region, and this is the reason why the

: S . numerical results could be fitted by a formula corresponding
representation have been described: a mapped time- ) .
P bp li%‘Le Roy—Bernstein model. The effect of the ill-known

dependent method using a Chebyshev propagator to comp ,
the correlation function and a mapped time-independenglO't-range region may be represented by energy-
method with diagonalization of a Hamiltonian including an independent parameters, and this should allow us to bypass
absorbing optical potential. The mapping procedure introthe unce_rtam_ty on potentials at small distances. In order to
duced in previous work10] for bound level calculations has check this point, we have used a generalized quantum-defect
been generalized to problems involving a continuum. Theheory and Lu-Fano plots to extract parameters from the
size of the calculations is reduced by adapting the grid stepound spectrum and extrapolate them through the dissocia-
to the variation of the local de Broglie wavelength throughtion limit. For a given set of potentials and couplings, the
definition of a new radial coordinate. The originality of the lifetimes calculated by this asymptotic procedure are in ex-
mapping procedure lies in the definition of this adaptativecellent agreement with the results of numerical calculations.
coordinate through a numerical formula making use of the We may therefore conclude that once experimental pho-
real potentiaM,(R) rather than an analytical formula for an toassociation spectra are available, the spectroscopic accu-
asymptoticR ™2 potential[20]. For time-dependent propaga- racy of the energies of bound levels below g, asymp-

tion we have shown that this procedure is efficient since itote can be exploited to determine the relevant parameters,
minimizes the energy range. The predissociation lifetimesand we extrapolate them above the first dissociation thresh-
computed by the two numerical methods agree within a fewld to deduce accurate lifetimes. Possible further extrapola-
percent. The time-independent method with an optical potention above theP, threshold should also be considered in
tial is both more accurate and more convenient. This conclufuture work as a way to compute accurate fine-structure tran-
sion may seem paradoxical, as the scaling of the computatiogition cross sections relevant to trap loss experimgt$
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