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Theoretical treatment of channel mixing in excited Rb2 and Cs2 ultracold molecules:
Determination of predissociation lifetimes with coordinate mapping
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The treatment of the dynamics of ultracold molecules requires new theoretical tools. Previous work of the
present authors@J. Chem. Phys.110, 9865 ~1999!# for calculation of vibrational levels by a Fourier grid
representation with use of adaptative coordinates is generalized here to the treatment of the bound-continuum
interaction in a two-channel problem. Two numerical methods are presented: a time-dependent method using
a Chebyshev propagator to compute the correlation function and a time-independent method with diagonal-
ization of a Hamiltonian that includes an absorbing optical potential. In both cases the adaptative coordinate is
defined by a numerical rather than an analytical procedure. Lifetimes are reported for the predissociated levels
of the Rb2 and Cs2 0u

1 (ns1np2P3/2) spectra, wheren55,6. The two numerical methods give similar results.
The lifetimes increase with the vibrational quantum number proportionally to the classical vibration period
estimated from the Le Roy–Bernstein law for an asymptoticR23 potential, and the energy variation can be
fitted to an analytical formula. The results are shown to be very sensitive to the molecular parameters,
potentials, and couplings. The measured width of 8.5 GHz reported by Clineet al. @Phys. Rev. Lett.73, 632
~1994!# for one predissociated level of87Rb2 is reproduced. A strong isotopic effect is found for the rubidium
dimer, the lifetimes of85Rb2 and 87Rb2 levels differing by a factor of 3. Finally, we present a third approach,
in the framework of a generalized two-channel quantum-defect theory, where lifetimes are determined by
extrapolation of parameters fitted to Lu-Fano plots of computed bound levels below theP1/2 dissociation limit.
Excellent agreement is obtained with the numerical results, suggesting the possibility of fitting to experimental
spectra.

PACS number~s!: 33.80.Gj, 33.80.Ps, 31.15.2p, 31.50.1w
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I. INTRODUCTION

The rapid development of photoassociation experime
@1,2# in a sample of cold alkali-metal atoms has supplied
wealth of information on the long-range excited molecu
formed during the process. Besides their intrinsic interest
spectroscopic studies of asymptotic interactions, these sh
lived molecules may decay by spontaneous emission in
bound molecular triplet or singlet ground state, as dem
strated already for Cs2 @3#, K2 @4,5#, and Rb2 @6#. The pho-
toassociation scheme therefore offers an interesting inter
diate state for the production of ultracold molecules. In
near future, this scheme could even be efficient in transfo
ing an atomic Bose-Einstein condensate into a molec
condensate@7–9#. Study of the dynamics of photoassociat
molecules is thus a priority for theoreticians.

For that purpose, development of theoretical tools
proved necessary since, in the case of long-rangeR23 poten-
tials, the vibrational motion of the photoassociated molec
extends up to very large interatomic distancesR where the
local de Broglie wavelength becomes several orders of m
nitude larger than at short range. Standard methods shou
adapted to this novel situation, or alternatively new meth
should be created. In a first paper@10#, hereafter referred to
as paper I, we have proposed a mapped Fourier grid re
sentation of the Hamiltonian to determine energies and w
functions for vibrational levels close to the dissociation lim
The size of the grid in position and in momentum space
1050-2947/2000/62~3!/032716~10!/$15.00 62 0327
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well as the occupation of phase space, were efficiently o
mized by use of an adaptative coordinate, mapped on
local de Broglie wavelength and defined through analyti
or numerical transformation of the radial coordinate. Besid
applications to vibrational motion in a single potential, ge
eralization to a two-channel problem was considered, w
the study of the strong perturbations in the Rb2 0u

1(5s
15p 2P1/2,3/2) vibrational series. Then in a second pap
@11#, hereafter referred to as paper II, those calculations w
further developed for Rb2 and Cs2, and their results analyze
to give a physical interpretation of the perturbations. F
both heavy dimer molecules, although there exists str
spin-orbit coupling between the two Hund’s casea A 1Su

1

andb 3Pu potential curves, the picture of two Hund’s casec
0u

1(ns1np2P1/2) and 0u
1(ns1np2P3/2) ~wheren55,6 for

Rb2 and Cs2, respectively! uncoupled adiabatic channels
never fully valid. Perturbations are present all over the sp
tral range~i.e., 5200 cm21 in the case of Cs2 and 5700 cm21

in the case of Rb2): the channel mixing is manifeste
through the oscillations of the binding energies and ro
tional constants between two limiting curves correspond
to the two unperturbed series for vibrational motion in t
uncoupled adiabatic potentials. We showed that in the vic
ity of the (ns1np2P1/2) dissociation limit, the spectra ca
be interpreted as one vibrational series perturbed by a qu
continuum, and that it is possible to generalize quantu
defect concepts@12–14# in order to visualize the results o
Lu-Fano plots.
©2000 The American Physical Society16-1
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The aim of the present work is to extend the methods
the two previous papers to the description of the bou
continuum interaction. Calculation of predissociation lif
times are reported, taking as the main example the 0u

1 spec-
tra of Rb2 in the energy range above the 5s15p 2P1/2 and
below the 5s15p 2P3/2 dissociation limits~simply denoted
P1/2 and P3/2 in the following!, where theP3/2 series of
bound vibrational levels is perturbed by the continuum of
P1/2 series. Results for the Cs2 predissociated spectrum wi
also be presented. Generalization to the description
continuum-continuum interaction and interpretation of e
perimental data on fine-structure cross sections@15# will be
treated in a forthcoming paper.

The potential curves and couplings are discussed in S
II. The two methods used for the numerical calculatio
time-dependent with calculation of the correlation functi
and time-independent with absorbing potential, are explai
in Sec. III. The results for the predissociation lifetimes a
given in Sec. IV, where the sensitivity to molecular data
discussed in connection with experiment. In the final sect
the computed lifetimes are compared with lifetimes extrac
from quantum-defect theory~QDT! parameters fitted to the
bound spectrum, showing how the problem of the unc
tainty on short-range potentials could be bypassed.

Effects due to rotation or to hyperfine structure interact
will be neglected. Atomic units will be used except wh
otherwise stated, the unit for distances being 1 a.u.5a0
55.291 77310211 m. The energies of the levels will b
given in cm21, the P1/2 asymptote being considered as t
origin, and the lifetimes will be given in picoseconds~ps!.

II. THE TWO-CHANNEL PROBLEM:
POTENTIALS AND COUPLINGS

In the calculations for Rb2, we use Hund’s casea poten-
tial curves A 1Su

1 and b 3Pu from accurate quantum
chemistry calculations @16#, matched at R'17a0 to
asymptotic calculations@17#. The corresponding curves
hereafter referred to as diabatic curves and labeledVA(R)
and VB(R), respectively, are displayed in Fig. 1~a! for the
Rb2 dimer. For the Cs2 dimer, the curves obtained by matc
ing theab initio curves of Meyer’s group@18# to asymptotic

FIG. 1. Rb2 potential curves without~a! and with~b! spin-orbit
coupling. ~a! Hund’s casea A 1Su

1(5s15p) ~broken line! and
b 3Pu(5s15p) ~dash-dotted line! curves from Ref. @16#; ~b!
Hund’s casec 0u

1(P1/2) and 0u
1(P3/2) potential curves correlated

respectively, to the dissociation limits (5s15p 2P1/2) and (5s
15p 2P3/2). A vibrational level close to theP1/2 limit, and its turn-
ing point in the 0u

1(P3/2) potential, are displayed for illustration.
03271
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calculations@17# have been presented in paper II and will n
be reproduced here. They are qualitatively similar to the R2
curves, the crossing point being located at a slightly lar
distance (9.6a0 for Rb2 and 10.4a0 for Cs2). Introducing the
spin-orbit coupling by an effective Hamiltonian and diag
nalizing the 232 electronic Hamiltonian, as already de
scribed in paper II, yields the Hund’s casec potential curves,
displayed in Fig. 1~b!. In the following, the two adiabatic
potential curves 0u

1(P1/2) and 0u
1(P3/2) will be calledV1(R)

andV2(R), respectively.
The dynamical coupling between the two channels

pends markedly upon the value of the nondiagonal spin-o
coupling W(R) in the vicinity of the crossing, atR5Rc
'10a0, of the VA(R) and VB(R) diabatic curves. At such
distances, due to configuration mixing,W(R) should be
lower than the asymptotic atomic valueWat5DESO(A2/3)
50.471DESO, where DESO is the splitting between the
np 2P1/2 andnp 2P3/2 fine-structure levels. The curveW(R)
has been computed only for Cs2 @18# ~see Fig. 2! andW(Rc)
is indeed reduced by 35% as compared toWat. For Rb2 we
have used two model curvesWm1(R) andWm2(R) scaled on
the computed Cs2 curve and represented in Fig. 2. F
Wm1(R), the scaling factor is the ratio 237.6/554.1 of th
atomic spin-orbit splittings, which gives at infinity the co
rect valueWat5237.6 cm21 for a rubidium atom. In the
crossing region,Wm1(Rc) is then reduced by 35% relative t
Wat. As the 4d-5p splitting for the rubidium atom is a facto
of 2 larger than the 5d-6p splitting for the cesium atom, it is
expected that due to a relatively weaker admixture of thed
configuration, the reduction of the coupling might be smal
in the Rb2 molecule: we have also considered the possibi
for a 20% reduction, yielding theWm2(R) curve.

We have computed the eigenstates of the HamiltonianH
written as a 232 matrix in the diabatic representation,

H5T1V, ~2.1!

FIG. 2. Variation of the spin-orbit coupling used in the calcu
tions as a function of internuclear distanceR. The quantity repre-
sented is (3/A2)W(R), which is asymptotically equal to the atomi
spin-orbit splittingDESO5554.1 cm21 for Cs2 and DESO5237.6
cm21 for Rb2. Solid line:ab initio calculations of Ref.@18# for Cs2.
Dashed line:Wm1(R) for Rb2, scaled on the preceding curve. Do
dashed line:Wm2(R) for Rb2 ~see text!. Dotted line: constant spin-
orbit couplingWat(R).
6-2
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TABLE I. Parameters used in the numerical calculations. For the time-dependent lifetime calculatio
absorbing zone starts atR580a0. For all calculations the grid starts at 5a0.

Bound calculations Time-ind. lifetimes calc. Time-dep. lifetimes calc.

Species L b Nm h L b Nm h L b Nm h
85Rb2 795 0.7 633 40 80 0.7 787 4.2 95 0.6 1024 4.2
87Rb2 795 0.7 639 40 80 0.7 797 4.2 95 0.61 1024 4.2
Cs2 795 0.7 839 38 80 0.7 1279 2.6
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whereT is the diagonal two-channel kinetic energy opera
while V is written as

V„R…5S VA~R! W~R!

W~R! VB~R!2W~R!/A2
D . ~2.2!

Adiabatic energies and wave functions are then dedu
by rotation, the 232 transformation matrixM being ob-
tained by diagonalization ofH. A discussion of diabatic and
adiabatic approaches for calculation of predissociation l
times has been given recently by Monnerville and Rob
@19# in the case of the CO molecule.

III. NUMERICAL CALCULATIONS OF THE LIFETIMES

A. Fourier grid representation and mapping procedure

We have used two approaches for the calculations: a ti
dependent propagation with calculation of the correlat
function and a time-independent method with an absorb
potential. Both approaches are based on a grid represent
and take advantage of the mapping procedure.

The Fourier grid representation uses a basis set of p
wavese2 ipR. The coefficients of the expansion of a give
wave functionc(R) are a set of values of this wave functio
in momentum space. On a grid ofN points, the Hamiltonian
H is represented by a 2N32N matrix, the matrix elements
being given in paper I. The energies and wave functions
the bound levels are obtained by diagonalization of this m
trix. The mapping procedure is expected to reduce the n
ber of pointsN in the working grid. The mapped Fourier gri
representation ~MFGR! uses a basis sete2 ipR with
R-dependent frequenciesp scaled on the inverse of the loc
de Broglie wavelengthl(R). In a two-adiabatic-channe
problem, a lower limit forl(R) is estimated from the uppe
limit of the local classical kinetic energyEmax

c 5V1(`)1D
2V1(R). In the present work,V1(`)50 is the energy of the
P1/2 asymptote whileD has been chosen to beDESO, i.e.,
the difference between theP3/2 andP1/2 asymptotes. This is
achieved by use of a working grid with a variable st
senv(R) defined as

senv~R!5b
p

A2m@D2V1~R!1V1~`!#
. ~3.1!

The parameterb,1 is meant to increase the phase space
order to represent correctly the vanishing part of the w
functions in the classically forbidden region.
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The originality of the present mapping procedure is t
use of a numerical change of variable in Eq.~3.1! so that the
real potential can be included. This choice minimizes
energy range of the Hamiltonian operator compared to
analytical mapping using, for instance, an asymptoticR23

potential @10,20#. This has a direct consequence for tim
dependent propagation methods which scale linearly w
this energy range.

The efficiency of the mapping procedure is related to
reduction of the number of grid points. If the range of d
tances considered isL5Rmax2Rmin , the number of points on
an equidistant grid will be

Neq5
L

DR
5

Lpmax

p
5

LA2mEmax

p
, ~3.2!

whereEmax is the maximum kinetic energy for a given po
tential. The number of points on the mapped grid can
calculated from~assumingb51)

Nm5E
L

A2mE~R!dR

p
, ~3.3!

whereE(R) is the local kinetic energy. Defining the ratioh
between the two numbers,

h5
Neq

Nm
, ~3.4!

the efficiency of the MFGR calculations for bound states w
be enhanced by a factorh3 since the computing time fo
diagonalization scales asO(N3). For time-dependent calcu
lations the enhancement factor is approximately~h/2!ln~h/2!,
since the bottleneck in the calculation is the FFT procedu
Table I summarizes the grid parameters and efficiency
hancement factors for the different calculations.

B. Time-propagation method for lifetime calculations

The principle of the method@21# relies upon direct deter
mination of the lifetime of a given state from analysis of t
correlation function

C~ t !5^c0ue2 iHtuc0&5^c0uc~ t !&, ~3.5!

which is the projection of the wave functionc(t) at a given
time t on the initial wave functionc0, giving that part of the
wave function of the initial state still ‘‘surviving’’ after the
delay t. In case of an exponential decay of the population
6-3
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uc~ t !u25e2t/tuc0u2, ~3.6!

the lifetimet is extracted from the correlation function as

t52
lnuC~ t1!u2 lnuC~ t2!u

2~ t12t2!
. ~3.7!

In the present work, we are considering a two-chan
wave function in the mapped Fourier grid representation.
in paper II, for vibrational motion in the two coupled adi
batic potentialsV1 and V2, corresponding, respectively, t
the P1/2 and P3/2 dissociation limits, we write the two
channel wave function for a levelv as

Fv~ t !5C1/2
v ~R,t !u1&1C3/2

v ~R,t !u2&. ~3.8!

In Eq. ~3.8!, C1/2
v (R,t) and C3/2

v (R,t) correspond to the
nuclear wave functions for vibrational motion in channels
and 2, whileu1& andu2& are the electronic states correspon
ing to the adiabatic potentialsV1 andV2.

We define the relative population of the two chann
through

a3/2
v ~ t !512a1/2

v ~ t !5E uC3/2
v ~R,t !u2dR. ~3.9!

In order to define an initial functionc0 for the determi-
nation of the correlation function, we consider a wave fun
tion in the stationary MFGR computed as described in S
III A by diagonalization of the 2N32N Hamiltonian matrix.
In contrast to bound level calculations, predissociated lev

FIG. 3. ~a! Adiabatic components of a two-channel predisso
ated vibrational wave function for87Rb2 (0u

1) (5s15p 2P3/2), ob-
tained by MFGR calculations at energyE525.37 cm21 above the
P1/2 dissociation limit. The upper panel showsuC1/2

v (R)u2, which is
the modulus of a continuum wave function represented here o
grid limited to a distanceR580a0. The middle panel shows
uC3/2

v (R)u2, corresponding to bound motion in the potentialV2(R).
The lower panel shows the probability density as a function
internuclear distance for the total wave function.~b! Same as~a!
after propagation during a time delay of 35 ps. The population
the P3/2 channel is now decaying exponentially. The total popu
tion, a t

v , on the two channels has been reduced from 1 toa t
v

50.151.
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with an energy above theP1/2 limit have a continuum com-
ponentC1/2

v (R). The computed energies and wave functio
will therefore depend upon the size of the grid. As an illu
tration, we show in Fig. 3~a! the probability density for one
predissociated wave function of Rb2 computed by MFGR
calculations for a grid described in Table I. One can see
the C3/2

v component~middle panel! is looking like a typical
bound level in a long-rangeR23 potential, with a very strong
probability density at the outer turning point. In contrast, t
C1/2

v component is qualitatively very different, being a co
tinuum function. In order to save computer space, the g
step in Eq.~3.1! is computed choosingD50 and optimized
for bound level calculation only, so that the continuum p
of the total wave function is not well represented at lar
distances, which has no consequence for the results.

We then solve the time-dependent Schro¨dinger equation
in order to determine the time-variation of the two-chann
wave functionFv(t) with two componentsC1/2

v (R,t) and
C3/2

v (R,t).
For the definition of the correlation function, it is possib

to considerFv(0) as the initial statec0 or alternatively to
extract theC3/2

v (R,0) component and to propagate it in tim
~i! In the first case, the correlation function is the sum

two components:

C~ t !5C1/2~ t !1C3/2~ t !

5E C1/2
v ~R,t50!C1/2

v ~R,t !dR

1E C3/2
v ~R,t50!C3/2

v ~R,t !dR. ~3.10!

WhereasC3/2
v (R,t) is decaying exponentially with time, th

time decay of the continuum component is not exponent
The exponential behavior ofC(t) is reached only after the
time delay necessary to filter out theC1/2

v (R,t) component so
that C1/2(t) becomes negligible.

~ii ! In the second case, the componentC3/2(t) is computed
directly.

As the initial wave function is computed with a workin
grid different from the one used in the time-dependent c
culation~see Table I!, an interpolation procedure@10,22# has
been implemented to transfer from one grid to the other. T
propagation method consists of the expansion of the pro
gatore2 iHt in Chebyshev polynomials@22,23#. The order of
the polynomial to be used depends on the energy range o
Hamiltonian matrix representation. The use of the pres
mapping procedure, where the change of coordinate is
fined numerically with the real potentialV1(R) instead of an
analytical formula that uses the asymptoticR23 potential, is
efficient since it minimizes the energy range. In order
avoid reflection at the end of the grid, the outgoing flux
smoothly absorbed by an absorbing potential, starting a
distance of 80a0, as described below.

We have represented in Fig. 3~b! the wave functions ob-
tained by propagating, for a time of 35 ps, the tw
component wave function represented in Fig. 3~a! at time t
50. The total normav(t) of the wave function represente

-

a

f

n
-
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THEORETICAL TREATMENT OF CHANNEL MIXING IN . . . PHYSICAL REVIEW A62 032716
on the grid is no longer 1, but 0.151: indeed, 85% of t
probability has now escaped, the wave packet in chann
having reached distances larger than the grid lengthL
580a0. Figure 4 gives examples of the correlation functio
C(t) andC3/2(t) for the same predissociated level. While t
second one clearly has an exponentially decreasing beha
the first one corresponds to two characteristic times, a s
one for the elimination of theP1/2 component, and a long
one which is the lifetime of theP3/2 component. Therefore
in logarithmic scale the two curves become parallel fot
'30 ps. The propagation during the timetP(0 ps,30 ps) is
thus working as a time filter for the predissociated wa
function @21# selecting from the initial wave function onl
that part belonging to the bound spectrum. Fort.30 ps, the
population of the predissociated state is decaying expon
tially, with the same time constant asa3/2

v . Small oscillations
appear in the two curves of Fig. 4 when time is increasi
They are relatively small in amplitude, as the figure is dra
in logarithmic scale, and can be interpreted as a beating
nomenon, due to coupling via the continuum between
resonance atEv

res525.37 cm21 and a neighboring one.

C. The mapped FGR method with an absorbing potential
for lifetime calculations

As a second tool for the calculation of lifetimes and a
test for the previous results, we also solved the station
Schrödinger equation~using MFGR! with an absorbing~op-
tical! potential at the end of the grid. The Hamiltonian no
has both real and imaginary components: diagonalizatio
its matrix in the mapped Fourier grid representation th
yields complex eigenvaluesEv

res1 iGv/2, whereEv
res is the

energy andGv is the width of the vibrational levelv.
The potentialVopt should be zero in the region where th

molecular potentials are not negligible, and purely imagin
in the asymptotic region, where the two atoms no lon
interact. The best possible choices were discussed by V´k
et al. @24# and Monnervilleet al. @19# and we use one of the
potentials proposed in Ref.@24#,

FIG. 4. The correlation functionsC(t) ~dotted line! and C2(t)
~solid line! for a predissociated level of 87Rb2 (0u

1) (5s
15p 2P3/2), at energyE525.37 cm21 above theP1/2 asymptote.
After a time delay (t0'30 ps! the slope of the two curves become
identical due to the disappearance of theP1/2 component present in
the initial wave function.
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Vopt52 iA5FNoptexpS 2
2Lopt

R2R0
D G , ~3.11!

with parametersA5 , Nopt, andLopt calculated according to
the quoted reference. For Rb2 : A550.000 29 a.u.,Nopt
513.22,Lopt54.8a0; and for Cs2 : A550.000 355 a.u.,Nopt
513.22 a.u.,Lopt52.5a0 . R0 is the starting point of the op
tical potential and was chosen as 80a0. ~See Fig. 5.! This
potential should be added to the physical potentialV1 on the
P1/2 channel in order to absorb the outgoing flux. Howev
the bound vibrational wave functions in theV2 potential
were shown to remain unchanged when the optical poten
was added toV2. Therefore, in calculations performed in th
diabatic representation, we considered the potentialsVA
1Vopt andVB1Vopt in the matrix of Eq.~2.2!.

The precision of the method was controlled in differe
ways.

~i! First, we verified the stability of results with respect
a change of the parameters of the absorbing potential. M
ing the starting pointR0 from 80a0 to 160a0 resulted in a
531025 relative change in the calculated lifetimes. In th
Rb2 case, increasing the lengthLopt of the absorbing region
from 4.8a0 to 20a0 modifies the lifetimes by less tha
0.01%. Finally, a modification of the strengthA5 of the ab-
sorbing potential was introduced under the conditions
fined by Ref.@24# to ensure that the outgoing flux is no
reflected from the absorbing potential: such modification
not affect the calculated lifetimes.

~ii ! Second, we compared with the time-depend
method as discussed below in Sec. III D.

D. Comparison of the two methods

In the case of85Rb2, the lifetimes computed as describe
above, with the choiceW(R)5Wat for the coupling, are dis-
played in Fig. 6 as a function of the level energyEv

res, taking
theP1/2 dissociation limit as the energy origin. For the low
levels Ev<100 cm21, the lifetimes are small and the tw
methods yield results that are almost identical. When

FIG. 5. The optical potential used for calculations of lifetimes
defined in Eq.~3.11! in text, with parametersA550.000 29,Nopt

513.22,Lopt54.8a0 , R0580a0.
6-5
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KOKOOULINE, DULIEU, KOSLOFF, AND MASNOU-SEEUWS PHYSICAL REVIEW A62 032716
level energy is increasing, the lifetimes also increase and
relatively large values (t.20 ps! there is a divergence of
few % between the results obtained by two methods,
results of the time-dependent method being systematic
larger. This discrepancy may be attributed to some un
tainty in the determination of the slope of theC(t) curve:

dt5S tD ln C

2~ ln C!2D 5t
D ln C

ln C
52~D ln C!

t2

t
, ~3.12!

where D lnC is the uncertainty in the determination of th
slope of the correlation function. The relative error is

dt

t
52~D ln C!

t

t
. ~3.13!

Thus, for a fixed propagation time the relative error in t
determination oft is larger for levels with a longer lifetime
In order to obtain the same accuracy, the wave function
levels with larget should be propagated for a longer time

In general, in calculating resonance eigenvalues the
part of the eigenvalue, the energy, converges much fa
than the lifetime@25#. The convergence rate of lifetimes fo
the time-dependent method isO(1/t). For the time-
independent diagonalization method the convergence
pends on the properties of the optical potential. The lifetim
were checked to be stationary with respect to variation in
parameters of the optical potential indicating an exponen
convergence. Hybrid methods which are a combination
direct propagation and diagonalization known as filter dia
nalization seem to be the best suited for most proble
@25,26#. However, we may conclude here that for the partic
lar case of cold atoms the direct diagonalization meth
seem to be both more accurate and more convenient.

FIG. 6. Lifetimes for the predissociated levels of85Rb2 (0u
1)

(5s15p 2P3/2) as a function of the energy above theP1/2 asymp-
tote: comparison of the results from the time-dependent met
~diamonds! and the time-independent method~circles!. For the sake
of clarity, as the results are very close, only some levels are
sented for the time-dependent calculations. The inset shows de
of the comparison in the 40–60 cm21 energy range.
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IV. LIFETIMES OF PREDISSOCIATED LEVELS

We have computed the energiesEv
res ~hereafter given rela-

tive to the P1/2 asymptote! and lifetimestv51/Gv for the
predissociated vibrational levels in the 0u

1 spectrum of the
two isotopes85Rb2 and 87Rb2, as well as for237Cs2, consid-
ering both constant couplingWat andR-dependent coupling
The first important result is the strong isotopic effect o
served in the lifetimes, which are smaller by a factor of 3
the case of85Rb2, as can be seen in Fig. 7.

The strong increase of the lifetime near theP3/2 asymp-
tote can be qualitatively explained by an increase of the
riod of the classical oscillations at higher energy. Half t
classical period for the motion in a potentialU(R)5D
2(C3 /R3) at energyEv

res is given by

T

2
5Am

2ERmin

Rmax(Ev) dR

AEv2U~R!

'
1

3
Amp

2
C3

1/3
G~ 5

6 !

G~ 4
3 !

~D2Ev
res!25/6, ~4.1!

where the integral is calculated as in Ref.@27# assuming that
the contribution of the asymptotic region is dominating.
Eq. ~4.1!, D is the energy of the dissociation limit equal
the splitting between theP1/2 and P3/2 asymptotes,D
5DESO. Assuming that the coupling between the two p
tentials is effective only at relatively short distances, whe
the motion can be considered as independent of the energ
the level, we can expect an analytical energy dependenc
the lifetimes,

t~Ev
res!5a~D2Ev

res!25/6, ~4.2!

where the parametera depends upon the physical paramete
~transition probability and time delay! in the short-range re-
gion and is proportional toAm. This interpretation will be
developed in further work.

The predissociation width should then decrease to
value 0 at the asymptote varying as

d

e-
ils

FIG. 7. Predissociation widthsGv51/tv computed for two iso-
topes, 85Rb2 ~circles! and 87Rb2 ~triangles!, as a function of the
level energy above theP1/2 asymptote. The lines represent a fi
according to Eq.~4.3! in text. The widths are proportional to th
classical frequency of the vibrational motion.
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G5
~D2Ev

res!5/6

a
. ~4.3!

It can be verified in Fig. 7 that the variation of the comput
widths as a function of the level energy is indeed well fitt
by an analytical curve~4.3! with parametersa5189.5
ps (cm21)5/6 for 85Rb2 anda5628.3 ps (cm21)5/6 for 87Rb2.
Thus, for all predissociated levels, the lifetime decreases
factor of 3 when the reduced mass decreases by less tha
~from m579 212.88 a.u. tom577 392.38 a.u.!. The classical
period decreases only by 0.5%. This means that due
phase effect the short-range transition probability from o
channel to the other is very sensitive to the reduced mas
order to get more insight into this strong isotopic effect,
have calculated lifetimes for fictitious isotopes of Rb2 with a
reduced mass differing from that of the two physical is
topes. For example, the lifetime increases by one orde
magnitude (a56366) when the reduced mass is decrea
down to m575 000 a.u. However, for an ever smaller r
duced mass,m570 000, the calculations yielda5455, so
that the lifetime is even shorter than for87Rb2. As in paper
II, we can link this behavior to a phase effect, where,
highly excited levels with high vibrational number, th
phases are very large compared top so that a small relative
change becomes non-negligible when considering the p
modulop.

The large difference in lifetimes for the two isotopes
Rb2 is likely to explain the difference of a factor of about
in the trap loss signal observed by Wallaceet al. @15# for
85Rb2 and 87Rb2. It was interpreted in the quoted referen
as a possible consequence of the difference of the hype
structure splitting. The present results suggest that it co
also be explained as due to a difference in coupling eff
due to a phase variation when the mass is modified.

FIG. 8. Predissociation widths for the vibrational levels
85Rb2 0u

1 (5s15p 2P3/2) computed for three choices of the mo
lecular spin-orbit couplingW(R) ~see Fig. 2! between theb 3Pu

andA 1Su diabatic potential curves:Wat ~dark circles!, Wm1 ~white
squares!, and Wm2 ~dark squares!. The experimental value from
@28# ~corresponding to a lifetimet'20 ps! is represented by a big
star. The inset shows details of the results in this energy regio
03271
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As in paper I, we find that the channel mixing, and hen
the isotopic effect, is highly sensitive to molecular data. T
is demonstrated in Fig. 8, where the width for the levels
the P3/2 series for85Rb2 is shown to be reduced by a facto
of 4 when a variable spin-orbit couplingWm1(R) scaled on
the cesium curve is introduced. Excellent agreement with
experimental width of Ref.@28# is obtained whenWm2(R) is
chosen for the spin-orbit coupling. However, this choice
fully arbitrary, as a slight modification in the potential curv
would lead to another optimal value for the coupling fact
We shall therefore discuss in the following section how lif
times can be extracted from parameters fitted to the bo
spectra, taking advantage of the accuracy of spectrosc
information and of the asymptotic character of the potent
during most of the period of the vibrational motion.

The results for Cs2 are displayed in Fig. 9. One shoul
note the reduction of the widths by more than one order
magnitude when turning from Rb2 to this heavier molecule
with larger spin-orbit splitting, for which the picture of un
perturbed motion in the singleV2 adiabatic potential is more
valid. We find an important difference in the lifetimes com
puted with constant and variable spin-orbit coupling: t
adiabatic character of the problem is reduced when the
lecular spin-orbit coupling is considered, yielding larg
widths or smaller lifetimes. The asymptotic analytical mod
of Eqs. ~4.2! and ~4.3! for the energy variation of the life-
times and widths is valid only for the most excited levels,
a 100 cm21 energy range below the dissociation limit. F
lower levels, the time spent in the inner region and the tr
sition probability can no longer be considered as ener
independent.

V. ASYMPTOTIC METHOD FOR ESTIMATION
OF THE LIFETIMES FROM PARAMETERS FITTED

ON BOUND SPECTRUM

In paper II, we have proposed an interpretation of t
perturbations in the vibrational series below theP1/2 limit in

FIG. 9. Predissociation widths for the levels of Cs2 0u
1 (6s

16p 2P3/2) as a function of the energy above theP1/2 asymptote,
computed for two choices of the spin-orbit couplingW(R) between
the diabaticb 3Pu and A 1Su curves. ~a! W(R) is constant and
equal toWat5(A2/3)3554.1 cm21. ~b! W(R) is R-dependent and
varying as displayed at the top of Fig. 2.
6-7
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the framework of a two-channel generalized quantum-de
theory. First, we have checked that due to the asympt
R23 character of both the adiabatic potentialsV1(R) and
V2(R), calculations neglecting the coupling term will yie
two series of bound vibrational levelsv1 andv2 verifying a
Le Roy–Bernstein law@27# close to the dissociation limit,

E~v i !5Di2@H3
i ~vD

i 2v i !#
6. ~5.1!

This law is relating the energy of a given vibrational level
its quantum numberv i by use of two constants whereD is
the energy of the dissociation limit whileH3 is linked to the
reduced massm and to the asymptotic potential2C3 /R3

throughH350.991 485/@m1/2(C3)1/3#. The law does not de
pend upon the absolute numbering, and an effective quan
numberni* 5vD

i 2v i or a quantum defectm i can easily be
related to the quantity (vD

i 2v i), which by definition is zero
at the dissociation limit. Generalization to a wider ener
range could be performed by means of a numerical law
lating the energy of the level to the effective quantum nu
ber. Once the coupling between the two channels is in
duced, we have shown that for a wide~'1000 cm21) energy
range, the computed vibrational energies can be fitted
three parameters equivalent to two generalized quantum
fects and one coupling parameter. This requires genera
tion of the Lu-Fano law,

tan@p~2n1* 1m1!#5
R1,2

2

tan@p~2n2* 1m2!#
. ~5.2!

As such parameters have a very weak dependence upo
energy, it is valuable, in the spirit of quantum-defect theo
@14#, to extrapolate them above theP1/2 dissociation limit in
order to extract predissociation lifetimes from the formula

t215G~v2!5
2

p
R1,2

2 ~Ev2112Ev2
!. ~5.3!

In Eq. ~5.3!, v2 is the vibrational numbering of a level of th
P3/2 series. Once the coupling is introduced, this level ha
new effective quantum number so that it is shifted by
quantity

dE~v2!5m2~Ev2112Ev2
!. ~5.4!

We give in the following a comparison of lifetimes com
puted by the various methods for87Rb2. For one predissoci-
ated level just above theP1/2 limit, the energy and the width
calculated directly areEv

res513.037 cm21 and Gv524.2
GHz. Using the two parametersR1,250.47 andm2520.36
derived from the bound spectrum, the asymptotic form
above predicts for the levelsEv2

res513.052 cm21 and Gv2

526.4 GHz. For a level situated far from the region of d
termination of parametersR1,2 andm2, the direct calculations
give Ev

res5201.216 cm21 andGv54.97 GHz. The prediction
with the same parametersR1,2 and m2 give Ev2

res5201.208
cm21 andGv255.62 GHz.
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Alternatively, from the computed lifetimes and vibra
tional energy splitting, an interaction parameter can be
tained from

R1,25
p

2t~Ev11
res 2Ev2

res!
, ~5.5!

while a quantum defect can be estimated from the level s
by inverting Eq.~5.4!,

m2~v2!5
dE~v res!

~Ev11
res 2Ev

res!
. ~5.6!

We have verified that in the case of85Rb2 there are'200
predissociated levels above theP3/2 limit for which m2 is
nearly constant, varying by less than 0.1, while the coupl
parameter varies by a few percent.

The parametersm2 andR1,2 can also be extracted from th
relative populationa3/2

v of theC3/2
v (R) component forbound

levels just below theP1/2 dissociation limit@11#. In this re-
gion the total bound spectrum can be considered as a s
quasiresonances of theV2 state ‘‘predissociated’’ in the qua
sicontinuum created by the high density ofP1/2 vibrational
levels.

The results are reported in Table II, where the parame
m1 , m2, andR1,2 are extracted from three different source
the relative population of theP3/2 component, the Lu-Fano
plot, and the lifetime calculations~time-independent and
time-dependent!. For the energy domain between the tw
dissociation limits, the relative accuracy of the prediction
the widths and positions of resonances of Rb2 using the Lu-
Fano plot is estimated as 1024 for positions and 10% for
widths.

TABLE II. Comparison of the generalized quantum defectsm1 ,
m2, and coupling parameterR1,2 extracted from various calculation
in the case of85Rb2. The first column represents a fit to the qu
siresonances present in theP3/2 bound spectrum below theP1/2

dissociation limit.

Relative population Lu-Fano plot Lifetime calculation

m1 not defined 0.82 not defined
m2 0.19 0.185 0.18
R1,2 0.76 0.74 0.80

TABLE III. Comparison of generalized Lu-Fano paramete
m1 , m2 , R1,2 for different species and different choices of molec
lar spin-orbit couplingW.

m1 m2 R1,2

85Rb2 , Wat 0.82 20.81 0.74
85Rb2 , Wm1 0.77 20.76 0.47
85Rb2 , Wm2 0.67 20.66 0.62
87Rb2 , Wat 0.37 20.36 0.47
Cs2 , Wat 0.048 20.046 0.03
Cs2 , Wm 0.097 20.096 0.1
6-8
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Positions ofperturbed bound levelsbelow P1/2 limit can
be predicted using three Lu-Fano parameters down to21000
cm21 with accuracy varying from 1025 for E52200 cm21

to 531024 for E521000 cm21.
The Lu-Fano representation therefore yields a very co

pact way of representing both bound and predissocia
spectrum. We give in Table III the values of the paramet
that we obtain from calculations with the present set of
tentials and various choices for the coupling, showing
huge sensitivity to the choice of molecular data. We sho
note in particular the very small value of the coupling p
rameterR12 for Cs2 when constant spin-orbit coupling i
considered and the picture of two uncoupled Hund’s casc
channels is nearly valid. We should also note the spectac
variation of the same parameter in the Rb2 case, when eithe
the coupling or the reduced mass are changed. This confi
the necessity of fitting parameters directly to the photoas
ciation spectra once they are available.

If a part of the discrete spectrum close to the dissocia
limit is known ~for example, from a photoassociation spe
troscopy experiment!, the widths and positions of predisso
ciated resonances can be predicted. The asymptotic
d(v2) of the continuum wave function of the resonances c
be defined also from the parameterm1 by

d~v2!5pm1 . ~5.7!

VI. CONCLUSION AND PERSPECTIVES

In the present paper we have presented calculations o
predissociation lifetimes for vibrational levels of an excit
ultracold molecule, when the vibrational motion extends
to large distances in a potential with asymptoticR23 behav-
ior. Application to predissociation effects in the 0u

1 spectrum
of Rb2 and Cs2 between thens1np2P1/2 and 2P3/2 disso-
ciation limits has been reported, in the framework of tw
coupled-channel calculations.

Two numerical grid methods making use of a Fourier g
representation have been described: a mapped t
dependent method using a Chebyshev propagator to com
the correlation function and a mapped time-independ
method with diagonalization of a Hamiltonian including a
absorbing optical potential. The mapping procedure int
duced in previous work@10# for bound level calculations ha
been generalized to problems involving a continuum. T
size of the calculations is reduced by adapting the grid s
to the variation of the local de Broglie wavelength throu
definition of a new radial coordinate. The originality of th
mapping procedure lies in the definition of this adaptat
coordinate through a numerical formula making use of
real potentialV1(R) rather than an analytical formula for a
asymptoticR23 potential@20#. For time-dependent propaga
tion we have shown that this procedure is efficient sinc
minimizes the energy range. The predissociation lifetim
computed by the two numerical methods agree within a
percent. The time-independent method with an optical po
tial is both more accurate and more convenient. This con
sion may seem paradoxical, as the scaling of the computa
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effort with the numberN of grid points isN3 for diagonal-
ization and onlyN ln N for time propagation. However, th
mapping reducesN such that it makes the diagonalizatio
feasible and the method more efficient.

The computed lifetimes for the bound levels in th
0u

1(2P3/2) potential predissociated by the 0u
1(2P1/2) con-

tinuum are found to be increasing as a function of the ene
E above the2P1/2 limit, being proportional to the classica
vibrational period. In accordance with the Le Roy–Bernst
model @27#, the latter varies asymptotically as (D2E)25/6,
whereD is the dissociation limit. We have shown that th
computed predissociation lifetimes can be fitted by suc
law in the entire energy range for Rb2 but only in a 100
cm21 energy range for Cs2. This can be understood within
simple model where the coupling beween the two channe
limited to the short-range region where the motion is ene
independent. As for bound state calculations, the results
pend markedly upon the choice of potentials and coupli
and we have discussed the effect of theR dependence of the
spin-orbit coupling. With a reasonable choice, it is possi
to reproduce the only published experimental value of 19
measured for a level of87Rb2 @28#. For all levels, a strong
isotopic effect is found in the lifetimes, which for one choic
of the coupling are found to be three times larger for87Rb2

than for 85Rb2. This effect could be the correct interpretatio
for the isotopic difference in the fine-structure changi
cross sections observed experimentally@15# in 1992 and then
attributed to the isotopic variation of the hyperfine structu

The numerical methods presented in the present pa
provide results with spectroscopic accuracy once the po
tials and couplings are known. However, for heavy dim
such as Rb2 and Cs2, the most accurateab initio calculations
determine short-range potential curves with an uncertaint
a few cm21: only the asymptotic part of the curves can
known with the required accuracy. Nevertheless, for the l
els that we are studying, the vibrational motion is govern
by the asymptotic region, and this is the reason why
numerical results could be fitted by a formula correspond
to Le Roy–Bernstein model. The effect of the ill-know
short-range region may be represented by ener
independent parameters, and this should allow us to byp
the uncertainty on potentials at small distances. In orde
check this point, we have used a generalized quantum-de
theory and Lu-Fano plots to extract parameters from
bound spectrum and extrapolate them through the disso
tion limit. For a given set of potentials and couplings, t
lifetimes calculated by this asymptotic procedure are in
cellent agreement with the results of numerical calculatio

We may therefore conclude that once experimental p
toassociation spectra are available, the spectroscopic a
racy of the energies of bound levels below theP1/2 asymp-
tote can be exploited to determine the relevant parame
and we extrapolate them above the first dissociation thre
old to deduce accurate lifetimes. Possible further extrap
tion above theP3/2 threshold should also be considered
future work as a way to compute accurate fine-structure tr
sition cross sections relevant to trap loss experiments@15#.
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