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The Schrdinger equation is solved numerically using the method of exterior complex scaling for several
models of the breakup of an atom by electron impact. Using the accurate wave functions thereby obtained for
these model problems, several well-known integral expressions for quantum-mechanical breakup amplitudes
are tested. It is shown that some formally correct integral expressions for the breakup amplitudes can vyield
numerically unstable or poorly convergent results. Calculations are presented for a case with simple exponen-
tial potentials and a case in which a metastable state of the target, analogous to an autoionizing state, can decay
into the breakup channel. For cases involving only short-rdnge-Coulomb interactions, alternative expres-
sions can be found that are stable in calculations of practical scale.

PACS numbes): 34.80.Dp

[. INTRODUCTION has been solved, the cross section for any process that is
energetically allowed can in principle be calculated from the
The collisional breakup problem in quantum mechanicsasymptotic behavior of the quantum-mechanical flux,
poses both formal and practical difficulties that appear only
in quantum scattering problems involving the fragmentation 5
gf th_g .collldmg partners. Given an accurate solut|o_n of the F= o [WiVW W V] 3)
chralinger equation for the scattering wave function, the 2ip
extraction of the probabilities for breakup processes can be
both computationally and formally challenging. The SubjeCLI'hus the calculation of cross sections in this approach is a
of this paper is the exploration of various approaches to comy o-step process: first the calculation of the scattered wave
quing breakup Cross sections an_d amplitudes, given the Scav¥iya Eq. (2) with ex.terior scaling of the coordinates, and sec-
tering wave fynctlon as the starting point. . . ond the interrogation of the wave function to compute the
The question of how to extract the breakup amplitude in

ractice from the scattering wave function makes sense onl§ °>> sections from the appropriate quantum-mechanical
P 9 . Mux, using Eq.(3) with correctly specified directions for the
in a context where the wave function can be computed b

some method that is independent of the asymptotic matchin%mgomg particles, or by pro!ect|on 9nt_o fmal target sta’ges
]. To compute the electron-impact ionization cross section

condition that defines the scattering amplitudes. We hav llisi f ol ith hvd d hi
shown recently1—4] that it is possible in breakup problems n collisions of electrons with hydrogen, we resorted to this
' fundamental definition of the cross section, because the Cou-

\évi'rtggttlj; ?(frp;?g%;ge?% E)é;:tlilgg,asg;nt%tgtﬁ;\?ér%;(;t%ﬂve lomb interactipns between the thr_ee separating particles pre-
o+ s¢ vented matching to the asymptotic form in practidé

’ For purely geometrical reasons, the calculation of the
asymptotic flux can require calculations well beyond the
range of the interaction potentials, even in the case of short-
range interactions. That fact is sometimes discussed in intro-
ductions to scattering theory, but often forgotten because it is
irrelevant to the more common integral expressions for scat-
tering amplitudes. Dira¢6] touches on this point when de-

T =g+ WP, (1)

where @ is the initial, unperturbed state. Since the initial
state is defined so that the sca;[tered vl\(ﬁ'\g@cforrn]tams ogl_y riving the expression for the scattering amplitude “scat-
outgomgf V\r/]aves, gxlterlor cort?p ex sdcalf@] of the coor 'I_h tering coefficient” as it was then callgdin part for this
natesh.o the particles cgn g use tdo' construct 'Iltl g‘“t OUfeason, formal scattering theory makes use of expressions for
matching to asymptotic boundary conditions. As will be ex-5 i des that involve matrix elements of the appropriate

plained in the following section, in place of the scatteringnteraction potential between the full scattering wave func-
boundary conditions, exterior complex scaling allows one t;, and an unperturbed asymptotic state

sp!ve for the same wave function using the asymptotic'con— For example, in a simple case involving only short-range
dition thatWs.—0 (r—) as the coordinates of any particle j,ieractions and two particles departing from a third, infi-

go to infinity. _ nitely massive particle in the final state, the breakup ampli-
Once the driven equation for the scattered wave, tude can formally be written

[E-H]¥s=[H—-E]Do, ) f=(p1,po V[T), (4)
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whereV is the appropriate interaction potential, and the final[10], a formulation that is both theoretically sound and com-
state is just a product of plane waves putationally practical has yet to emerge. Even in cases where
only short-range forces are involved, much of the relevant

1 i theory of rearrangement scattering has been tested primarily
P1.p2)= (Zw)g;zexp[l(pl‘r1+p2-r2)], (3 in the context of distorted-wave or other perturbative ap-
proximations.
with two particles exiting with momenta, andp,. Equation The problem of how to construct the breakup cross sec-

(4) is an example of an integral expression for a breakugions is a central one for electron-impact ionization of atoms,
amplitude. One of the conclusions of this paper concerns th@here it is compounded both by long-range Coulomb inter-
utility of Eq. (4) in numerical calculations. Even given a actions and by the presence of autoionizing states of the tar-
numerically exact representation #(*), Eq. (4) does not getatom. In the following sections we attempt to shed some
provide a practical way to compute the breakup amplitudel'ght on that question, although t_he results we present here
because, for any finite-sized integration volume, the discret@ddress only short-range interactions. For the Coulomb case,
inelastic channel components 8 ") make large spurious which is of course the most interesting physical problem, we
contributions. We will demonstrate that Eg) has this prac- Must currently resort to cutting off the Coulomb interactions,
tical limitation, even though it is formally correct and quite OF t0 the flux approach, which may be impractical when
useful for analytically deriving approximations to the long-lived autoionizing states are present. _
breakup amplitude from assumed formswf*). The outline of this paper is as follows. Section Il de-
In this paper we test the formal definitions of breakupScribes the explicit connection between the asymptotic
amplitudes derived from the theory of rearrangement colli-duantum-mechanical flux and breakup cross sections. Sec-
sions for several model problems by first computing the scation !ll poses two model problems for breakup, both of
tered wave portion of the wave function and then using it inWhich involve only exponentially bounded forces, and in one
both flux and integral expressions for the cross section off Which a metastable state of the target can be excited lead-
amplitude. There are some considerable surprises in this ed?9 t0 breakup. In Sec. IV we explore two different forms of
ercise, everfespecially for short-range interactions. Having Ntégral expressions for the breakup amplitudes and compare
access to accurate wave functions for breakup collisions un¥ith the flux approach. For these problems we are able to
covers some unexpected numerical problems with commolfléntify an accurate and efficient way to calculate the

integral expressions for the amplitudes, while showing other@r€akup cross sections. Finally, in Sec. V we offer some
to be entirely stable and practical. From this study we conSPeculations on how the work presented here might be ex-

clude that expressions based on “two-potential” formulas tended to Coulomb interactions to treat electron-impact ion-

which are known to be formally equivalent to E@), can ization, and point out a key difference between the integral

avoid numerical problems associated with discrete inelasti€XPressions used here and those of the formal theory of the

channels, as well as more insidious numerical problems adz0ulomb breakup problem.

sociated with the presence of competing breakup processes
having different time scales. Il. BREAKUP CROSS SECTIONS FROM DIRECT

For example, in a problem where a metastable state is CALCULATION OF QUANTUM-MECHANICAL FLUX
formed that can decay into the breakup channel, the lifetime

molecules, we will restrict the model systems we con-
. . S Rier here to involve particles of the mass of an electron.
can interfere quantum mechanically. Othef‘r_d'ff_'cumes_C"JmFurthermore we restrict our discussion to two-dimensional
arise when a short lifetime leads to postcollision interactions, | - ois in th'e spirit of the Temkin-Poet model for electron-
in whigh _the three(o_r morg fragments of the_ coIIisio.n Sys- hydrogen atom scatterind 1]. We will also specialize the
tem still interact while separating. If all the interactions are yiscussion of quantum-mechanical flux to these cases, but
short range in nature,. it would seem that an expression III('f')bviously all the formalism generalizes easily. We employ
Eqg. (4) should be entirely appropriate and practical. HOW'atomic units M=7%=e=1) throughout

ever, as we will s_how, nel_ther E¢) nor the flux_ approach Consider a system of two particles interacting with each
using the appropriate version of Eg) is an effective way to other and a center of force. All the model problems in this

calcglate the cross section in such cases. . aper are described by a Hamiltonian of the form
Since most aspects of the problem of collisional breaku;?

can be viewed in terms of the formalism for rearrangement 192 1 92
collisions[7] in quantum scattering theory, integral expres- H=—5 -2 5 2 Tv(r)To(ry) +Vin(ry.ra)
. ; . . : ) g 295
sions for scattering amplitudes like that in Ed) are gener
ally derived in that context. That approach requires funda- =T+v(r) +v(ry)+Viu(ri,ro), (6)

mental modifications in the case that the separating

fragments interact via Coulomb or other long-range forceswherer,; andr, are restricted to the intervdD, «). The
While those modifications have been the subject of a considnitial state in Eqs(1) and(2) is defined with permutational
erable literature, beginning with Rud§@] and Peterkop9]  symmetry that depends on whether singlet or triplet spin cou-
and most recently extended by Alt and Mukhamedzhanowyling is employed,
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1 To get the singly differential breakup cross section
®y=—=[sin(kgr 1) @o(ro) =sin(koro) oo(r1)],  (7)  o(ky,ky), which gives the dependence of breakup on the
\/k—o final values of the momenta of the two outgoing particles, we
) ) ) must project out all of the target bound-state contributions
where the uppeflower) sign corresponds to singlettip- using the projection operator
lets) and ¢y(r) is a bound state of the one-particle Hamil-
tonian with potentiab(r). These equations completely de- Npound
fine the problem of solving Eq2) for the scattered wave, Q=1- 2 P,. (14
subject to a boundary condition that it is purely outgoing. a
Assuming that only short-range potentials appear in Eq ion .
(6), the asymptotic form of the scattered wave function ap-The flux for bre.aku_pr)_O ), evaluated fat a particular Yalue
propriate to this case is of the hyperradius, is given by EGLO) with Q¥ . replacing
V. The flux is related to the breakup cross section for
particular values ok; andk, by its dot product with the

ik ik 112 . 19" .
Wedryry)  ~ 2 fo(e" 1, (r,) + e 2p,(r))/k; outward normal in the direction determined kyandk.,,
rq0rry—®

i / 1 47 .
+F(@)e™l(Kp)™™ ® o(ky k)= = T Fo” o+ O(1lpg), (15
kiky kg Po
The sum oven corresponds to elastic and inelastic scattering o
leaving the target in the discrete statg(r), andf, is the  Where the vectopy is given by
corresponding scattering amplitude. The second term corre-
sponds to breakup, expressed in terms of the hyperradius _ Ky /K 16
24 p2)112 : Po=| ., |PolK. (16)
=(r{+r3)~ and hyperanglex=arctan,/r,), with F(«)
denoting the breakup amplitude. The two outgoing momenta

satisfy the energy conservation relation The residual term of order 44 in Eq. (15) can easily be

derived from the asymptotic form in E@8) and is purely
k§+k§=K2=2(E—sb). (9) geome_trical; that i_s, it does not depend on the range of the
potential. As we will see below, terms of this type, as well as

In the asymptotic region they also correspond to the hyper@ther slowly decaying terms having to do with how the wave
angle inF(a), with a=arctank,/k;), so we will sometimes ~function reaches the asymptotic form in E@), can be
use the notatiot (k, ,k,) for the breakup amplitude. avoided by using integral expressions for the amphtqde.
Conceptually, the simplest way to extract the breakup W€ next explore some simple examples, for which we
cross section is via the direct evaluation of the flux. For gdemonstrate the complex exterior scaling approach, the
two-dimensional problem the flux vects, evaluated at a asymptotic form of the wave function, and the asymptotic

particular value of the hyperradius is given by behavior of the scattered flux.

qf*t(a/an)qf v D(a/arl
sd glagry) ~SC 789 9far,

To solve the Schidinger equation for the scattered wave,
This is the total outgoing flux associated with the scatteredye apply the exterior complex scaling transformation, and
wave and contains contributions for all channels, both disthen use either ordinary polynomial finite elements, as we
crete and breakup. To get the flux associated with a particthave for other breakup problerfis], or the discrete-variable
lar discrete channel, we can apply a projection operator for representation/finite-element method we developed recently

Ill. TWO BREAKUP PROBLEMS INVOLVING ONLY
(10 SHORT-RANGE POTENTIALS

- w
Po2i s

C
p

that state, [12].
Under the exterior scaling transformation, a real scalar
Pa=Pa(ry) + Pa(r2) —Pa(r1)Pa(ra), (1D gistancer is transformed as
where the individual projection operators are defined as r, r<R,
R(r)= - 1
(r) Ro+(r—Rp)e'?, r=Ry, (1
F’a(rl):qoa(rl)J driez(ry). (12

whereR, is a large real number anglis a positive number

. . L : between 0 andr. This transformation is applied to the radial
InsertingPa ' s into the flux expression in EG10) yields the coordinates of both electrons. Exterior complex scaling of

flu>fr|hnto channela gval;Jated a‘d? partlculdtaLde valﬁe of | . coordinates was invented by Simf@#] in 1979 to extend the
fﬁen eivcerr?sbs section for any discrete two-body channe 'formal mathematical theorems in scattering theory associated
9 y with complex scaling of coordinat¢43]. The crucial fact is
that under this transformation the scattered wave tends to
)da. (13) zero exponentially at large distances because it is purely out-

going.

COS«
sina

- Aq (72
O3= IImFJo F;Ja)-
p—x 0
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FIG. 1. Scattered wave for the model of Sec. Il A for 35 eV
incident energy. FIG. 2. Singly differential cross sectiorai/hartree) VS energy
(hartreey of electron 1 from projected flux evaluation for model of

Thus we can formulate the driven ScHioger equation ~ Sec. IlIA at 35 eV incident energy; long-dashed line, fluxpat
=40a,, short-dashed line, flux gi=56a,, solid line, extrapola-

{ 162 1 o2 tion of projected flux tgp— .
— 572 5 2Tu(r)Tv(ry)+Vi(ry,rp) _ _ _
2.9r7 205 (r2)+vra)+ Vindra.r2 to the elastic flux from the first term in E(B), and the wave

fronts in the shape of arcs correspond to breakup from the
second term.

In Fig. 2 we show the singly differential cross section for
breakup evaluated at several valuespgf To obtain the

1 ] physical cross section we extrapolate @gg—cc, which is
= \/T{[v(rl)+Vim(r1,r2)]3|n(kor1)<po(r2) easily done because the dependencegnf the cross sec-

0 tion evaluated at finite hyperradii is known via E@5). The
+[u(ry)+Vin(r1,F2)Isin(kor2)eo(ry)} (18 total breakup cross section as a function of incident energy is
shown in Ref[14].

as a set of linear equations with the boundary conditions th% F?(r this probler_n thebflur? appfoafh (tjo gomputing the_
the scattered wavel . (r,,r,) vanish at the edges of the breakup cross section is both practical and adequate. Surpris-

finite-element grid. For values of, andr, both less than ingly, that is not the case for all short-range potentials.
Ry, the scattered wave is the physical wave function. Thus ) ) )
we can apply the flux expressions above in that region toB- Resonance problem with exponentially bounded potentials

_EJ‘Psc(rlarz)

extract the cross sections. This example is constructed to illustrate some of the dy-
namics involved when the breakup process proceeds through
A. Simple exponential interactions autoionization. The potential also involves only exponen-

. . . tially bounded interactions,
The first and simplest of our examples is one we have

considered befor¢l2,14. The one-body potentials are at- V(re,ra)=v(ry)+uv(ro)+dexg—ri—ry), (21

tractive exponentials that bind only one state @f=

—0.411 45 hartree, with a one-body potential chosen to bind a shape resonance,
v(r)=—3expg—r), (19 v(r)=—3exg—r)+0.4exp—0.5r—5)?]. (22

The one-body potential again binds only one stategat
=—0.403 26 hartree, but it also has a shape resonance cor-
responding to the complex resonance enesgy=0.3114
V(ry,rp)=v(ry)+u(rp)+10exg—ri—rz). (200  —0.0277 hartree. The potential is shown Fig. 3, where the
barrier through which the resonance tunnels is visible, sepa-
This example allows only two processes, elastic scatteringating the entrance and exit wells from the breakup region.
and breakup. It is useful to understand from the outset that a resonance
The scattered wave functioW(r,,r,) for an incident such as the one in this example, like a physical autoionizing
energy of 35 eV where both channels are open is shown istate of an atom, does not correspond to an isolated pole of
Fig. 1. Its features correspond to the two processes that atbe full Hamiltonian, even though it does correspond to an
allowed in this example. The peaks near the axes corresporgblated pole of théarget Hamiltonian. Instead, since a free

and the total interaction potential is of the form

032712-4



PRACTICAL CALCULATIONS OF QUANTUM BREAKUP . ..

I,
7
ssctt ansy L1E0Ny

r;

FIG. 3. Potential for the model problem of Sec. Ill B, which
supports an autodetaching resonance.

electron of any momentum can be associated asymptotically
with the discrete, complex pole of the target Hamiltonian, the
resonance corresponds to a branch cut of the Green’s func
tion for the full Hamiltonian. That branch cut has its origin at
the complex resonance energy of the autoionizing or autode
taching state.

In Fig. 4 we show the eigenvalue spectrum of the full
Hamiltonian, but for a case with a somewhat broader reso-
nance so that the origin of the resonance branch cut is mor:
apparent in the graph, namelyp(r)=—3exp(r)
+0.4expp—0.5(r —4)?] [a Gaussian barrier moved inward
slightly from that in Eq{(22)]. This graph shows the discrete
eigenvalues from an ordinary complex scaling calculafion
Ry=0 in Eg. (17)] using finite elements. The branch cuts
correspond to rows of poles in this discrete representation. Ir

this figure, the bound state, the elastic scattering cut, and th1rz

ionization cut are clearly visible. Also, above the ionization
threshold, the resonance branch cut appears with its origin a
the complex autodetaching resonance energy. Incidentally
also visible in this figure are two discrete poles correspond-
ing to discrete states of the full Hamiltonian in whibloth

electrons, in the simplest interpretation, are in the autode-
taching resonances. Those states correspond to a discre
state of the anion that can decay emittitygo electrons.

PHYSICAL REVIEW A 62 032712

FIG. 5. Scattered wave function for the model problem of Sec.

111 B (a) below the resonance threshdlth eV incident energyand

above the resonance thresh@/d eV incident energy

Those states have no analogy in a two-electron Coulomb
system.

In Fig. 5 we show two wave functions for the example in

0.25
0+ ﬁ++
+++ *}"4
+ + +
-0.25 | + ‘%ﬁ# ty A (b)
- + +
= . L .
£ + 5, +
= g, +
—05 | + %‘\ .
* 4
+ ﬁ%
| + oy
—0.75 R
+ %
]
T-05  -025 0 035 05 075 1
Re(E)

Egs.(21) and(22). The first, below the resonance energy, is
similar in appearance to the nonresonant case in Fig. 1, and
its features can be interpreted in exactly the same way. The
second is for an energy above the resonance threshold. This
wave function is strikingly different. Even though it arises
from the same short-range potentials, it shows no indication

FIG. 4. Eigenvalue spectrum in the complex plane of theat similar radial distances of the arcs corresponding to out-
complex-scaled Hamiltonian for the two-electron model problem ofgoing flux in the breakup channel. Instead it appears, out to
Sec. Il B withv(r)=—3 exp(r)+0.4 ex—0.5( — 4)?].

quite large distances, to be the superposition of products of
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1.50 stricts the interaction between the two electrons to the region
whereboth electrons are at short distances from the origin.
So the behavior of the scattered flux might seem to be at
odds with the usual expectation of collision theory that only
calculations within the range of the interaction potential
should be required to extract the cross sectionafoy ener-
getically allowed process. Using the appropriate integral ex-
pression for the breakup amplitude, as we will see below,
resolves this apparent contradiction.

IV. INTEGRAL EXPRESSIONS FOR BREAKUP
70 7 ) SIS RS MRS MU AMPLITUDES
0.00 0.20 0.40 0.60 0.80 1.00

Ei/E Starting with the formal definition of the breakup ampli-
tude, we can derive both a working expression in terms of
V¥4 and an equivalent two-potential formula involving dis-
torted waves for the final state. Afterward we will apply
those working expressions to the two examples of the previ-
ous section.

FIG. 6. Singly differential cross sectiomﬁ/hartree VS energy
fraction for electron 1 from projected flux evaluation for the model
problem of Sec. IlIB at 40 eV incident energy. Cross section is
shown atp=100a,, 125, 150,, and 17%,, along with the
extrapolated result fop— .

two terms corresponding to an outgoing electron with a real A Derivation of various matrix elements for breakup
momentum and one with a complex momentume f= ¢, amplitudes

—iI'/2 is the resonance energy, the two momenta that appear The standard theory of rearrangement scattering, dis-
to be determining the form of the wave function in this re- cussed by Newtofi7], can be applied to the case of breakup,

gion are at least so long as the potentials contain only short-range
interactions. Such a formulation was specialized to the case
Kres= VEres (23)  of electron scattering by McCartor and Nutt&ll5], who
took as their starting point the expression for what they
Kiree= V2(E—&,). (24)  called the “Faddeev amplitude,”
Since the wave function is symmetric under interchange of f=(ky,ko| V+V(E=H+ie) *Vqlkoa). (26)

the electronic coordinates, the scattered wave has the appe

. " . Fre final state is simply a product of plane waves, and the
ance of a superposition of two “plane waves

initial state is a product of a plane wave and the initial target

[ Kres "1) [ Kiree| [T1 state,
W expi Kied |1 + expi Keo) | 1)" (25) aiko T
|k0a>: (277_)372 @a(rZ)- (27)

This is the form one would deduce from the assumption that
the incident electron excites an autodetaching state, whiclkor the discussion that follows we will cdllthe “breakup

once excited, emits an outgoing wave at the resonance egmpjitude” to avoid confusion with Faddeev theory in which
ergy as it decays. Near the axes, for small for example,  three-body breakup is treated in terms of two-bddgpera-
the distance(in ay) over which this behavior is evident is ors. The potentiaV in Eq. (26) is the full potential, i.e.H
roughly Aro~Kiree/I'. The range over which the interference — 1 v/ while the potentiaV; is the interaction appropriate
pattern from Eq/(25) qualitatively describes the dynamics is {o the initial channel. Its operation on the initial state can be
considerably larger, however. In this region we see wavggplaced by

fronts perpendicular to the wave vecton{%fes() and C”ee).
ree res

The distance over which this nonasymptotic behavior per-

sists is determined by the dynamics of autodetachment angl that

not by the range of the interaction potential, which in this

case is obviously of much shorter range. f=(ky,ko|V+V(E—H+ig) {(H—E)|koa)
Figure 6 shows the singly differential cross section com- _ (+)

puted from the flux at an incident energy above the reso- = (ky, kol VW)

nance energy. T_he flux has obviously not reached its =<kl,k2|E—T|‘I'(*)>, (29)

asymptotic behavior, and does not extrapolate to reasonable

values. Here, then, is a practical dilemma: although the fluxvhereT is the kinetic-energy operator anbl(*) is the full

approach works in principle, it will require unrealistically scattering wave function in Eq1).

large grids in the case that breakup can proceed through de- We can further specialize E€R9) to our two-dimensional

cay of an autoionizing target state. This model problem reexamples as

Vylkoa)=(H—E)[koa) (29)
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f=(kq,ko|E—T|¥()) and we find the relation between the “Faddeev amplitude”
and the breakup amplitude in the asymptotic form of the
wave function to be

2 o 0

;) fo drlfo dr, sin(kyrq)sin(kor,) (E—T)
f=—e374F (K, ky)/ 2. (35)

XW ) (ry,ry), (30)

The contribution of the discrete channel terms in B).
and we can divideV(*) into an incident and a scattered to Eq.(32) is a more subtle issue, and it is somewhat awk-
wave as in Eq(2) with the incident wave function defined as ward to see how it limits to zero using the surface integral
in Eq. (7) to have permutational symmetry reflecting the spinrepresentation. Returning to the equivalent volume integral
coupling. Doing so simplifies Eq30) further and yields the in Eq. (31), we can see that their contribution becomes pro-
first of our working expressions for the calculations we will portional, for infinite volumes, taS functions between the

describe below: final and initial momenta and therefore must vanish. For any
finite-sized region of integration, however, they still contrib-
2\ (= ® , ute, and that fact has serious practical consequences, as we
f=1= fo drlfo drasin(kary) will see. It turns out that the contribution of discrete channel

terms at any finite value g can render Eq9.31) and(32)
X SIN(Kor o) (E=T)Wgdrq,r,). (31)  computationally unstable.
We can get other forms of the integral expression for the
The contribution fromd, vanishes since it is proportional to breakup amplitude in E¢(31) in which the final states are
S functions between the final and incident momenta, andcattering states of some distorting potential. Expressions of
they cannot be the same. this type have recently been explored extensiy&Bj in the
Equation(31) has a property that the other working ex- context of formulating “ansatz” approximations for ioniza-
pressions below will have, and that is that it depends only oriion amplitudes. Here, we will investigate their properties in
the asymptotic form of the scattering wave function. To seeaccurate numerical calculations. To begin, write B1) as
that this is the case, we can use Green'’s theorem to express
the amplitude in terms of a matrix element with the operators , [ 2
operating to the left. The product of free waves in the final f= P
state is an eigenfunction of the kinetic energy at the total

J:drljowdrz Sin(kll’l)sin(kzrz)(E—T)G(+)(E)

energy of the system, so only a surface term is left, X(H=E)P(rq,rp), (36)
1 _ _ where G(*)(E) is the full Green's function E—H
f:;fs[5|r(k1rl)5|mk2r2)vq’sc +iz)~L. We then write the potential as the sum of two
terms,
=WV sin(kyry)sin(karz)]-nds, (32
V=V1+V2, (37)
where it is understood that the surface is to be limited to
enclose an infinite volume, arfilis the outward unit vector Where
normal to the surface. The gradient in this equation is
V1=Via(r1) +Vip(ra) (38)
1
V =(dl9r,3l9r )= pdl dp+ a—dl da. (33  is the sum of two one-body potentials. Note thgtcan be
p

constructed from any short-ranged one-body potentials, and
this derivation does not assume th4t is the same as the

_ Ifwe insert just the breakup term in E@) into Eq.(32),  gne-pody part of the true interaction potential given in Eq.
it gives the connection with the breakup amplitude in 9. 6

First the surface integral E§32) is converted to an integral :I'he full Green’s function satisfies the identity
over «, which is done with the stationary-phase approxima-

tion using the identity G(”(E)=g<l+)(E)+g(1+)(E)VzG(+)(E), (39)

/2
lim f F(a)sin(kyp cosa)sin(k,p sina)da where
p—® 0

9t (E)=(E-T—Vy+inp L (40)

—_1 f _r
=~ 2 F(ag)V2m/Kp COS( Kp 4)’ (34) With only these relationships and the identity

where taru=k,/k; is the stationary-phase point. Both Eq. (E-T)G'(E)=1+VG)(E), (42)
(34) and its derivatives with respect pare used. This sort
of manipulation is by now standard in the breakup problemwe can rearrange E@36) into the form
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f=(ky, ko[ (E-T)G(E)|(H—E)®y) W
i i o,

=Ky, kol[ 1+ V19§ (E) [ 1+ V,G 7 (E)J(H—-E)do). Pt R o
s oo el i

(42 asLibE ! AERII N

In this equation we can operate to the left with the Hermitian ji

Y |
| 1 | , A | poob
conjugate of the factorl+V,g{™(E)], which is the wave s 2 i A | NNy
; ; Al T N A A R A AT EE I
operator for the potentiaV/;. Because this potential is the s B AR 5’! '.‘,' RN AR |
sum of two one-body operators, the wave operator converts A [ SN AN /\t, Vo N i,\: i N
the free waves of the final state into distorted waves. The Ll et K T ey
result is a “two-potential” form of the breakup amplitude r, "‘,'"-".' - L —\‘
expression, 05 | .} “d y7 n
f=(el el [(T+Vi=E)|[@o) + ¢ "ol )| Vo ¥ ") N
(4339 0 0.2 0.4 0.6 0.8

&

=(¢l, el I(H=E)| o) +(oi e, Vol Vo).
ki Tk ) ki Tk o (43b) FIG. 7. Singly differential cross sectiord/hartre¢ vs energy
(hartreey of electron 1 from projected flux evaluation for model of
The distorted waves in Eq43) satisfy one-body Schro Sec. lllA at 35 eV incident energy. Dot-dashed line, results from

dinger equations. For example, Eq. (32); dashed line, results from EB2) with projected function
QV.; solid line, results from Eq(46); dotted line, the nearly in-
k% distinguishable results of the projected flux approach after extrapo-
[T1+V1a(r1)]|<Pf<1r)> =5 | @ﬂ?) (44  Iation.

integral equal to 58;. In this classic case of short-range
potentials, it is at first surprising to see that the results are
wildly oscillatory. These oscillations evidently arise from the
contributions of the discrete channels of the probl@amthis
case only the elastic chanheTo show that this is the case
we projected out the elastic channel froim, using the pro-
jection operator * P, constructed using Eq.11) and re-

This two-potential form for the breakup amplitude also hascomputed the amplitude from E32), replacingV' s with

an equivalent surface integral representation, analogous %J_CEOL\Z;%&!QS ;fnsﬂ:::?(?e ggﬁsns\?thézgillgfggli(rfurmltrt]he
Eqg. (32), that reveals it to depend only on the asymptotic P

form of ¥ correct result_. Althc_>ugh it i_s not show_n i_n Fig. 7, it can be
e verified that, if the integration volume is increased, the pro-
jected form of Eq.(32) eventually converges to the correct

f=3 f (sﬂf;)@g)v‘l'sc_‘I’scvﬁofg)@g))-ﬁdS (46)  result with increasing,, albeit very slowly.

s In contrast, the two-potential formula E@6), using the
where the gradient is defined as in E§3). The volume ©ne-body potentials(r;) as the distorting potentials, pro-
necessary to converge a numerical evaluation of (&, or duces the correct cross sectlon_W|thout any osc[llatlons, asis
(46) can be deduced by going back to 54’43) As we will also S.hOWI’] in Fig. 7. The distorted waves in the two-
see below, if the distorting potenti®l, is chosen correctly, Potential formula are, of course, orthogonal to the bound

the potential/, can control the numerical properties of these States of the same potential, and their use in(Ef) or (46)
expressions. eliminates the contributions of the discrete channels.

These results lead us to our first assertion regarding the
utility of the integral forms of the breakup amplitudes. Equa-
tions(26), (29), (31), and(32), while formally correct, are of

Armed with Egs.(31) and (32) from the original defini- limited practical utility in calculations that begin with the
tion of the breakup amplitude, and with Eqd5) and (46)  physical scattering wave function, containing all final chan-
expressing the “two-potential” form, we can explore their nels. Only if the discrete inelastic channel contributions are
application to the examples of Sec. lll. In general the nuprojected out can these equations give correct results when
merical calculations shown here made use of the surface irapplied on a finite volume, as they must be in a numerical
tegral forms of these expressiorisvhich are precisely calculation. They are therefore of limited practical utility,
equivalent to the volume integral forms except to formulate distorted-wave-style approximations to

First we turn to the exponential potential problem of Sec.the breakup amplitudes.

[Il A. Figure 7 shows the singly differential cross section that  The two-potential form of the breakup amplitude in Egs.
results from applying Eq(32) to calculating the breakup (45) and(46), on the other hand, suffers from no such limi-
amplitude for this case with the radiys of the surface tation, and can be used in practical calculations, provided the

with the normalization that the incoming wave is
(217) Y2 sin(kyry).

Equation(43) can be simplified further if we use the origi-
nal driven Schrdinger equation fol .,

f=(el, o, [E-T—Va|¥s). (45)

B. Application to example breakup problems
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FIG. 9. Total cross sectiona§/4w) for the model problem of

FIG. 8. Singly differential cross sectiorai/hartree VS energy Sec. llI B; solid line, breakup; dashed line, elastic scattering.

fraction for electron 1 from the two-potential formula for the model
problem of Sec. IlI B; long-dashed line, 15 eV cross section
5000; dashed line, 25 e¥/5; solid line, 27.91 e\(twice resonance
energy; and dot-dashed line, 50 e¥5.

as a function of the fraction of the total energy available to
the exiting electronsg/(K?/2). These plots are symmetric
about the midpoint for any incident energy. The resonance

eature corresponding to electron 1 having the resonance en-

distorting potential is chosen to be the same as that Whicélrgy8=8 must also appear when the other electron has
supports the discrete states of the target. The first term in that energ)sl or at=K,/2—¢ The singly differential
[} res-

(433 then vanishes and the two-potential form produces th ross section therefore has two “teeth” at any total energy

correct result when applied on a volume that encloses thgbove the resonance energy, and those are clearly seen in
residual potentialV,. That property of the two-potential Fig. 8 '

form is more dramatically demonstrated in the next example. There is one energy above the resonance energy where
Projecting discrete channel contributions from the SCatihare is only one “tooth” and that is at the total energy
tered wave function does not alter the rate at which it reach here the energy available to the two exiting electrons is
Its asymptoﬂqform. In the second ngmencal example, that o xactly twice the resonance energy of the autodetaching
Sec. [l B, which _has an _autpdetachw_lg resonance that domEtate. In that case the two peaks merge into a more intense
nates the dynamics, prOJec_tllng the discrete chaganelit of peak ats =K?/4 because, in the singlet case, the two reso-
W'scdoes not redegem the utility of Eq@1) and(32). In such ance features interfere constructively. That case is also
a case the dynamics of the decay of the resonance causes wn in Fig. 8. Not shown in Fig. 8 is the triplet case, in
wave function to approach its asymptotic form so slowly that .. Do . '

Eq. (31 b lied . dcally | | ‘ ch the two features interfere destructively. All these ob-
9.(31) must be applied over impractically large volumes Oservations must, of course, be modified to take into account

produce the correct result. However, the two-potential formthe finite width of the autodetachin@r autoionizing reso-

works. perfectly, as shown in Fig. 8 for a range of ir‘Cider"[nance. The peaks can overlap, and in the triplet case the
energies, both above and below the resonance energy. Aga&féstructive interference is only at exactly the point
using the one-body potentials, which support the autodetach- 214

ing resonance, as the distorting potential, we see that Egs.

(45) and(46) produce the correct breakup amplitude as soo

as the volume of the integration region encloses the residu

potential. In this case the residual potential is justrr,)

=4 exp(-r,;—r,), and so a very small integration volume, by _ 21

comparison to the volumes shown in Fig. 5, will suffice. a;g{'zf osped €)de, (49
The singly differential cross sections for the resonance 0

case are interesting in themselves. The cross section must ) .
satisfy the symmetry condition might have its peak at the energy that corresponds to having

twice the resonance energy available to the exiting electrons.

o(ky ko) =o(Ky,Kyq). (47 Figure 9 shows that, at least in this example, that is the case.
In the case of electron-impact ionization via autoionizing

states, there have already been some experiments done to
begin to explore the interference effects in the angular dis-
Fibutions that these calculations hint[df7—19. Some the-
oretical efforts have been made along the lines of distorted-
wave approximationg20] and exploration of the formal
osped €)=0o( V2e,KZ=2¢), (48 energy dependence of the breakup amplitudes in the pres-

In the singlet case, one might expect that the total cross
ection for breakup, which with our normalizations is defined

By

We display this symmetry in an obvious way by plotting the
cross section as a function of the energy of one of the tw
outgoing electrons,
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ence of autoionizing stat¢21,22. Accurate theoretical pre- interactions. In the formal theory of ionization in which the
dictions of the interference effects associated with this proCoulomb potentials are treated exactly to infinity, the inte-
cess will almost certainly have to be done using an approac@ral expression for the breakup amplitude involves a product
similar to the two-potential formula described here for ex-of distorted waves for the scattered and ejected electrons in

tracting the breakup amplitudes. the final state which are Coulqmb functions with effeqtive
chargesZ; andZ,. These effective charges are not entirely
V. CONCLUSION arbitrary since they must be chosen to satisfy the Peterkop

relation[8,9]
We have explored various methods for calculating the
breakup cross section when presented with an effectively ex- é é 1.1 1 (50)

: ; . =—+— .
act numerical representation of the scattered wave function ki ko kg ky |ki—k4

n a finite region of space. We have found that the simpl . .
© 9 b P eI'hus, in the formal theory, the distorted waves are not the

prescription of extrapolating the quantum-mechanical flux_ "™~
becomes impractical when breakup can proceed through egontinuum statgs_of the target atom and thus cannot be _cho—
n so as to eliminate the one-body operators from the inte-

citation of resonance states of the target. In such cases, th& . .
component of the scattered wave that describes breakup a fal expression for the brea_ikup amplitude. Th_e formal
proaches its asymptotic form very slowly, and indeed well eory, however, has not provided a p_ath to practlca}l calcu-
beyond the range of the interaction potentials, even in thé"".t'.OnS and h{:\s, to date, never been |mpleme_nted iaban

case of short-range interactions. In such cases integral einitio calculation. If the true Coulomb interactions can be

pressions for the breakup amplitude offer a more practica‘iruncated at I_ar_ge_ distances and the cross sections then ex
trapolated to infinityand our recent work on electron-H ion-

method for evaluating the required scattering information, “" .
but can yield numerically unstable results unless proper stedéatl'_on [‘(;] argues that thfey cﬁnt?en the dtwot-pott_e?tlalhforl-d b
are taken to eliminate spurious contributions arising fromMa!ISM discussed here for short-ranged potentials should be

discrete two-body channels. We have shown that formal re:;\pplicable. This subject will be pursued in future studies.

arrangement theory allows one to express the breakup ampli-
tude as an integral involving target continuum states as dis-
torted waves. We have demonstrated that such an expression This work was performed under the auspices of the U.S.
has the desirable properties of being numerically stable anDepartment of Energy by University of California Lawrence
not requiring the wave function beyond the range of the in-Berkeley National Laboratory and University of California
teraction potentials, even when resonance states are involvé@wrence Livermore National Laboratory under Contract
in the scattering dynamics. Nos. DE-AC03-76SF00098 and W-7405-Eng-48, respec-

While the numerical examples we have studied reveal featively. The authors wish to acknowledge the use of compu-
tures that we feel are likely to be present in real ionizationtational resources of the National Energy Research Scientific
problems, it is important to bear in mind that the results weComputing Center. C.W.M. gratefully acknowledges
have obtained apply only to collisions involving short-rangedstimulating conversations with William H. Miller.

ACKNOWLEDGMENTS

[1] C. W. McCurdy, T. N. Rescigno, and D. Byrum, Phys. Rev. A [12] T. N. Rescigno and C. W. McCurdy, Phys. Rev62 032706

56, 1958(1997. (2000.
[2] C. W. McCurdy and T. N. Rescigno, Phys. Rev58, R4369  [13] E. Balshev and J. M. Combes, Commun. Math. P2y5.280
(1997. (1971); B. Simon, ibid. 27, 1 (1972.

[3] M. Baertschy, T. N. Rescigno, W. A. Isaacs, and C. W. Mc-[14] T- N. Rescigno, C. W. McCurdy, W. A. Isaacs, and M.
Curdy, Phys. Rev. 40, R13(1999. Baertschy, Phys. Rev. A0, 3740(1999.
[4]T. N I’?esci no. M Be;ertsch W. A Isaacs. and C. W. M- [15] G. D. McCartor and J. Nuttall, Phys. Rev.4 625 (1971).
o gno, M. Y, W A. ’ o [16] S. P. Lucey, J. Rasch, and C. T. Whelan, Proc. R. Soc. Lon-

Curdy, Science286, 2474(1999. don, Ser. A455 349 (1999.
[5] B. Simon, Phys. Lett. A’1, 211(1979. [17] J. P. van den Brink, J. van Eck, and H. G. M. Heideman, Phys.
[6] P. A. M. Dirac, The Principles of Quantum Mechanjeth ed. Rev. Lett.61, 2106(1988.
(Clarendon, Oxford, 1958p. 191. [18] J. P. van den Brink, J. van Eck, and H. G. M. Heideman, J.
[7] R. G. Newton, Scattering Theory of Waves and Partigl@ésd Phys. B22, 939(1989.
ed. (Springer-Verlag, New York, 1982p. 486. [19] O. Samardzic, L. Campbell, M. J. Brunger, A. S. Kheifets, and
[8] M. Rudge, Rev. Mod. Phy<0, 564 (1968. E. Weigold, J. Phys. B0, 4383(1997.
[9] R. K. Peterkop, Opt. Spectrost3, 87 (1962; Bull. Acad. Sci.  [20] D. H. Madison, V. D. Kravtsov, J. B. Dent, and M. Wilson,
USSR, Phys. Sel7, 987 (1963. Phys. Rev. A56, 1983(1997.
[10] E. O. Alt and A. M. Mukhamedzhanov, Phys. Rev4& 2004  [21] V. V. Balashav, S. E. Martin, and A. Crowe, J. Phys28
(1993. L337 (1996.
[11] A. Temkin, Phys. Revi26, 130(1962; R. Poet, J. Phys. B4, [22] Kh. Balt-Erdene, L. Henmedekh, O. Lhagva, and J. N. Mad-
91 (1982. sen, J. Phys. B2, L35 (1999.

032712-10



