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Practical calculations of quantum breakup cross sections
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The Schro¨dinger equation is solved numerically using the method of exterior complex scaling for several
models of the breakup of an atom by electron impact. Using the accurate wave functions thereby obtained for
these model problems, several well-known integral expressions for quantum-mechanical breakup amplitudes
are tested. It is shown that some formally correct integral expressions for the breakup amplitudes can yield
numerically unstable or poorly convergent results. Calculations are presented for a case with simple exponen-
tial potentials and a case in which a metastable state of the target, analogous to an autoionizing state, can decay
into the breakup channel. For cases involving only short-range~non-Coulomb! interactions, alternative expres-
sions can be found that are stable in calculations of practical scale.

PACS number~s!: 34.80.Dp
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I. INTRODUCTION

The collisional breakup problem in quantum mechan
poses both formal and practical difficulties that appear o
in quantum scattering problems involving the fragmentat
of the colliding partners. Given an accurate solution of
Schrödinger equation for the scattering wave function, t
extraction of the probabilities for breakup processes can
both computationally and formally challenging. The subje
of this paper is the exploration of various approaches to c
puting breakup cross sections and amplitudes, given the s
tering wave function as the starting point.

The question of how to extract the breakup amplitude
practice from the scattering wave function makes sense
in a context where the wave function can be computed
some method that is independent of the asymptotic matc
condition that defines the scattering amplitudes. We h
shown recently@1–4# that it is possible in breakup problem
without appealing to any explicit asymptotic form, to sol
directly for the scattered portionCsc of the wave function
C (1),

C~1 !5F01Csc, ~1!

whereF0 is the initial, unperturbed state. Since the init
state is defined so that the scattered waveCsc contains only
outgoing waves, exterior complex scaling@5# of the coordi-
nates of the particles can be used to construct it with
matching to asymptotic boundary conditions. As will be e
plained in the following section, in place of the scatteri
boundary conditions, exterior complex scaling allows one
solve for the same wave function using the asymptotic c
dition thatCsc→0 (r→`) as the coordinates of any partic
go to infinity.

Once the driven equation for the scattered wave,

@E2H#Csc5@H2E#F0 , ~2!
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has been solved, the cross section for any process th
energetically allowed can in principle be calculated from t
asymptotic behavior of the quantum-mechanical flux,

F5
\

2im
@Csc*“Csc2Csc“Csc* #. ~3!

Thus the calculation of cross sections in this approach
two-step process: first the calculation of the scattered w
via Eq. ~2! with exterior scaling of the coordinates, and se
ond the interrogation of the wave function to compute t
cross sections from the appropriate quantum-mechan
flux, using Eq.~3! with correctly specified directions for th
outgoing particles, or by projection onto final target sta
@1#. To compute the electron-impact ionization cross sect
in collisions of electrons with hydrogen, we resorted to th
fundamental definition of the cross section, because the C
lomb interactions between the three separating particles
vented matching to the asymptotic form in practice@4#.

For purely geometrical reasons, the calculation of
asymptotic flux can require calculations well beyond t
range of the interaction potentials, even in the case of sh
range interactions. That fact is sometimes discussed in in
ductions to scattering theory, but often forgotten because
irrelevant to the more common integral expressions for s
tering amplitudes. Dirac@6# touches on this point when de
riving the expression for the scattering amplitude~or ‘‘scat-
tering coefficient’’ as it was then called!. In part for this
reason, formal scattering theory makes use of expression
amplitudes that involve matrix elements of the appropri
interaction potential between the full scattering wave fun
tion and an unperturbed asymptotic state.

For example, in a simple case involving only short-ran
interactions and two particles departing from a third, in
nitely massive particle in the final state, the breakup am
tude can formally be written

f 5^p1 ,p2uVuC~1 !&, ~4!
©2000 The American Physical Society12-1
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whereV is the appropriate interaction potential, and the fin
state is just a product of plane waves

up1 ,p2&5
1

~2p!3/2exp@ i ~p1•r11p2•r2!#, ~5!

with two particles exiting with momentap1 andp2 . Equation
~4! is an example of an integral expression for a break
amplitude. One of the conclusions of this paper concerns
utility of Eq. ~4! in numerical calculations. Even given
numerically exact representation ofC (1), Eq. ~4! does not
provide a practical way to compute the breakup amplitu
because, for any finite-sized integration volume, the disc
inelastic channel components ofC (1) make large spurious
contributions. We will demonstrate that Eq.~4! has this prac-
tical limitation, even though it is formally correct and qui
useful for analytically deriving approximations to th
breakup amplitude from assumed forms ofC (1).

In this paper we test the formal definitions of break
amplitudes derived from the theory of rearrangement co
sions for several model problems by first computing the s
tered wave portion of the wave function and then using it
both flux and integral expressions for the cross section
amplitude. There are some considerable surprises in this
ercise, even~especially! for short-range interactions. Havin
access to accurate wave functions for breakup collisions
covers some unexpected numerical problems with comm
integral expressions for the amplitudes, while showing oth
to be entirely stable and practical. From this study we c
clude that expressions based on ‘‘two-potential’’ formula
which are known to be formally equivalent to Eq.~4!, can
avoid numerical problems associated with discrete inela
channels, as well as more insidious numerical problems
sociated with the presence of competing breakup proce
having different time scales.

For example, in a problem where a metastable stat
formed that can decay into the breakup channel, the lifet
of the state can be long enough for the originally incide
particle to leave the interaction region before the tar
breaks up. The two processes of direct and resonant bre
can interfere quantum mechanically. Other difficulties c
arise when a short lifetime leads to postcollision interactio
in which the three~or more! fragments of the collision sys
tem still interact while separating. If all the interactions a
short range in nature, it would seem that an expression
Eq. ~4! should be entirely appropriate and practical. Ho
ever, as we will show, neither Eq.~4! nor the flux approach
using the appropriate version of Eq.~3! is an effective way to
calculate the cross section in such cases.

Since most aspects of the problem of collisional break
can be viewed in terms of the formalism for rearrangem
collisions @7# in quantum scattering theory, integral expre
sions for scattering amplitudes like that in Eq.~4! are gener-
ally derived in that context. That approach requires fun
mental modifications in the case that the separa
fragments interact via Coulomb or other long-range forc
While those modifications have been the subject of a con
erable literature, beginning with Rudge@8# and Peterkop@9#
and most recently extended by Alt and Mukhamedzha
03271
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@10#, a formulation that is both theoretically sound and co
putationally practical has yet to emerge. Even in cases wh
only short-range forces are involved, much of the relev
theory of rearrangement scattering has been tested prim
in the context of distorted-wave or other perturbative a
proximations.

The problem of how to construct the breakup cross s
tions is a central one for electron-impact ionization of atom
where it is compounded both by long-range Coulomb int
actions and by the presence of autoionizing states of the
get atom. In the following sections we attempt to shed so
light on that question, although the results we present h
address only short-range interactions. For the Coulomb c
which is of course the most interesting physical problem,
must currently resort to cutting off the Coulomb interaction
or to the flux approach, which may be impractical wh
long-lived autoionizing states are present.

The outline of this paper is as follows. Section II d
scribes the explicit connection between the asympto
quantum-mechanical flux and breakup cross sections. S
tion III poses two model problems for breakup, both
which involve only exponentially bounded forces, and in o
of which a metastable state of the target can be excited le
ing to breakup. In Sec. IV we explore two different forms
integral expressions for the breakup amplitudes and com
with the flux approach. For these problems we are able
identify an accurate and efficient way to calculate t
breakup cross sections. Finally, in Sec. V we offer so
speculations on how the work presented here might be
tended to Coulomb interactions to treat electron-impact i
ization, and point out a key difference between the integ
expressions used here and those of the formal theory of
Coulomb breakup problem.

II. BREAKUP CROSS SECTIONS FROM DIRECT
CALCULATION OF QUANTUM-MECHANICAL FLUX

Because our motivation is to develop practical metho
for treating electron- and positron-impact ionization of ato
and molecules, we will restrict the model systems we c
sider here to involve particles of the mass of an electr
Furthermore, we restrict our discussion to two-dimensio
models in the spirit of the Temkin-Poet model for electro
hydrogen atom scattering@11#. We will also specialize the
discussion of quantum-mechanical flux to these cases,
obviously all the formalism generalizes easily. We empl
atomic units (m5\5e51) throughout.

Consider a system of two particles interacting with ea
other and a center of force. All the model problems in th
paper are described by a Hamiltonian of the form

H52
1

2

]2

]r 1
22

1

2

]2

]r 2
2 1v~r 1!1v~r 2!1Vint~r 1 ,r 2!

[T1v~r 1!1v~r 2!1Vint~r 1 ,r 2!, ~6!

where r 1 and r 2 are restricted to the interval~0, `!. The
initial state in Eqs.~1! and~2! is defined with permutationa
symmetry that depends on whether singlet or triplet spin c
pling is employed,
2-2
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PRACTICAL CALCULATIONS OF QUANTUM BREAKUP . . . PHYSICAL REVIEW A 62 032712
F05
1

Ak0

@sin~k0r 1!w0~r 2!6sin~k0r 2!w0~r 1!#, ~7!

where the upper~lower! sign corresponds to singlets~trip-
lets! and w0(r ) is a bound state of the one-particle Ham
tonian with potentialv(r ). These equations completely d
fine the problem of solving Eq.~2! for the scattered wave
subject to a boundary condition that it is purely outgoing

Assuming that only short-range potentials appear in
~6!, the asymptotic form of the scattered wave function a
propriate to this case is

Csc~r 1 ,r 2! ;
r 1 or r 2→`

(
n

f n„e
iknr 1wn~r 2!1eiknr 2wn~r 1!…/kn

1/2

1F~a!eiKr/~Kr!1/2. ~8!

The sum overn corresponds to elastic and inelastic scatter
leaving the target in the discrete statewn(r ), and f n is the
corresponding scattering amplitude. The second term co
sponds to breakup, expressed in terms of the hyperradir
5(r 1

21r 2
2)1/2 and hyperanglea5arctan(r2 /r1), with F(a)

denoting the breakup amplitude. The two outgoing mome
satisfy the energy conservation relation

k1
21k2

25K252~E2«b!. ~9!

In the asymptotic region they also correspond to the hyp
angle inF(a), with a5arctan(k2 /k1), so we will sometimes
use the notationF(k1 ,k2) for the breakup amplitude.

Conceptually, the simplest way to extract the break
cross section is via the direct evaluation of the flux. Fo
two-dimensional problem the flux vectorFr evaluated at a
particular value of the hyperradius is given by

Fr5
1

2i FCsc* S ]/]r 1

]/]r 2
DCsc2CscS ]/]r 1

]/]r 2
DCsc* G

r

. ~10!

This is the total outgoing flux associated with the scatte
wave and contains contributions for all channels, both d
crete and breakup. To get the flux associated with a part
lar discrete channela, we can apply a projection operator fo
that state,

Pa5Pa~r 1!1Pa~r 2!2Pa~r 1!Pa~r 2!, ~11!

where the individual projection operators are defined as

Pa~r 1!5wa~r 1!E dr18wa* ~r 18!. ~12!

InsertingPaCsc into the flux expression in Eq.~10! yields the
flux into channela evaluated at a particular~large! value of
r. The cross section for any discrete two-body channe
then given by

sa5 lim
r→`

4p

k0
2 E

0

p/2

Fr
~a!
•S cosa

sina Dda. ~13!
03271
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To get the singly differential breakup cross secti
s(k1 ,k2), which gives the dependence of breakup on
final values of the momenta of the two outgoing particles,
must project out all of the target bound-state contributio
using the projection operator

Q512 (
a

Npound

Pa . ~14!

The flux for breakup,Fr0

(ion) , evaluated at a particular valu

of the hyperradius, is given by Eq.~10! with QCsc replacing
Csc. The flux is related to the breakup cross section
particular values ofk1 and k2 by its dot product with the
outward normal in the direction determined byk1 andk2 ,

s~k1 ,k2!5
1

k1k2

4p

k0
2 Fr0

~ ion!
•r01O~1/r0!, ~15!

where the vectorr0 is given by

r05S k1

k2
D r0 /K. ~16!

The residual term of order 1/r0 in Eq. ~15! can easily be
derived from the asymptotic form in Eq.~8! and is purely
geometrical; that is, it does not depend on the range of
potential. As we will see below, terms of this type, as well
other slowly decaying terms having to do with how the wa
function reaches the asymptotic form in Eq.~8!, can be
avoided by using integral expressions for the amplitude.

We next explore some simple examples, for which
demonstrate the complex exterior scaling approach,
asymptotic form of the wave function, and the asympto
behavior of the scattered flux.

III. TWO BREAKUP PROBLEMS INVOLVING ONLY
SHORT-RANGE POTENTIALS

To solve the Schro¨dinger equation for the scattered wav
we apply the exterior complex scaling transformation, a
then use either ordinary polynomial finite elements, as
have for other breakup problems@1#, or the discrete-variable
representation/finite-element method we developed rece
@12#.

Under the exterior scaling transformation, a real sca
distancer is transformed as

R~r !5H r , r ,R0

R01~r 2R0!eih, r>R0 ,
~17!

whereR0 is a large real number andh is a positive number
between 0 andp. This transformation is applied to the radi
coordinates of both electrons. Exterior complex scaling
coordinates was invented by Simon@5# in 1979 to extend the
formal mathematical theorems in scattering theory associ
with complex scaling of coordinates@13#. The crucial fact is
that under this transformation the scattered wave tend
zero exponentially at large distances because it is purely
going.
2-3
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Thus we can formulate the driven Schro¨dinger equation

b2 1

2

]2

]r 1
22

1

2

]2

]r 2
2 1v~r 2!1v~r 1!1Vint~r 1 ,r 2!

2EcCsc~r 1 ,r 2!

5
1

Ak0

$@v~r 1!1Vint~r 1 ,r 2!#sin~k0r 1!w0~r 2!

6@v~r 2!1Vint~r 1 ,r 2!#sin~k0r 2!w0~r 1!% ~18!

as a set of linear equations with the boundary conditions
the scattered waveCsc(r 1 ,r 2) vanish at the edges of th
finite-element grid. For values ofr 1 and r 2 both less than
R0 , the scattered wave is the physical wave function. T
we can apply the flux expressions above in that region
extract the cross sections.

A. Simple exponential interactions

The first and simplest of our examples is one we ha
considered before@12,14#. The one-body potentials are a
tractive exponentials that bind only one state at«b5
20.411 45 hartree,

v~r !523 exp~2r !, ~19!

and the total interaction potential is of the form

V~r 1 ,r 2!5v~r 1!1v~r 2!110 exp~2r 12r 2!. ~20!

This example allows only two processes, elastic scatte
and breakup.

The scattered wave functionCsc(r 1 ,r 2) for an incident
energy of 35 eV where both channels are open is show
Fig. 1. Its features correspond to the two processes tha
allowed in this example. The peaks near the axes corresp

FIG. 1. Scattered wave for the model of Sec. III A for 35 e
incident energy.
03271
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to the elastic flux from the first term in Eq.~8!, and the wave
fronts in the shape of arcs correspond to breakup from
second term.

In Fig. 2 we show the singly differential cross section f
breakup evaluated at several values ofr0 . To obtain the
physical cross section we extrapolate tor0→`, which is
easily done because the dependence onr0 of the cross sec-
tion evaluated at finite hyperradii is known via Eq.~15!. The
total breakup cross section as a function of incident energ
shown in Ref.@14#.

For this problem the flux approach to computing t
breakup cross section is both practical and adequate. Sur
ingly, that is not the case for all short-range potentials.

B. Resonance problem with exponentially bounded potentials

This example is constructed to illustrate some of the
namics involved when the breakup process proceeds thro
autoionization. The potential also involves only expone
tially bounded interactions,

V~r 1 ,r 2!5v~r 1!1v~r 2!14 exp~2r 12r 2!, ~21!

with a one-body potential chosen to bind a shape resona

v~r !523 exp~2r !10.4 exp@20.5~r 25!2#. ~22!

The one-body potential again binds only one state, at«b
520.403 26 hartree, but it also has a shape resonance
responding to the complex resonance energy« res50.3114
20.0277i hartree. The potential is shown Fig. 3, where t
barrier through which the resonance tunnels is visible, se
rating the entrance and exit wells from the breakup regio

It is useful to understand from the outset that a resona
such as the one in this example, like a physical autoioniz
state of an atom, does not correspond to an isolated pol
the full Hamiltonian, even though it does correspond to
isolated pole of thetarget Hamiltonian. Instead, since a fre

FIG. 2. Singly differential cross section (a0
2/hartree! vs energy

~hartrees! of electron 1 from projected flux evaluation for model
Sec. III A at 35 eV incident energy; long-dashed line, flux atr
540a0 , short-dashed line, flux atr556a0 , solid line, extrapola-
tion of projected flux tor→`.
2-4
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PRACTICAL CALCULATIONS OF QUANTUM BREAKUP . . . PHYSICAL REVIEW A 62 032712
electron of any momentum can be associated asymptotic
with the discrete, complex pole of the target Hamiltonian,
resonance corresponds to a branch cut of the Green’s f
tion for the full Hamiltonian. That branch cut has its origin
the complex resonance energy of the autoionizing or auto
taching state.

In Fig. 4 we show the eigenvalue spectrum of the f
Hamiltonian, but for a case with a somewhat broader re
nance so that the origin of the resonance branch cut is m
apparent in the graph, namely,v(r )523 exp(2r)
10.4 exp@20.5(r 24)2# @a Gaussian barrier moved inwar
slightly from that in Eq.~22!#. This graph shows the discret
eigenvalues from an ordinary complex scaling calculatio@
R050 in Eq. ~17!# using finite elements. The branch cu
correspond to rows of poles in this discrete representation
this figure, the bound state, the elastic scattering cut, and
ionization cut are clearly visible. Also, above the ionizati
threshold, the resonance branch cut appears with its orig
the complex autodetaching resonance energy. Incident
also visible in this figure are two discrete poles correspo
ing to discrete states of the full Hamiltonian in whichboth
electrons, in the simplest interpretation, are in the auto
taching resonances. Those states correspond to a dis
state of the anion that can decay emittingtwo electrons.

FIG. 3. Potential for the model problem of Sec. III B, whic
supports an autodetaching resonance.

FIG. 4. Eigenvalue spectrum in the complex plane of
complex-scaled Hamiltonian for the two-electron model problem
Sec. III B with v(r )523 exp(2r)10.4 exp@20.5(r 24)2#.
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Those states have no analogy in a two-electron Coulo
system.

In Fig. 5 we show two wave functions for the example
Eqs.~21! and~22!. The first, below the resonance energy,
similar in appearance to the nonresonant case in Fig. 1,
its features can be interpreted in exactly the same way.
second is for an energy above the resonance threshold.
wave function is strikingly different. Even though it arise
from the same short-range potentials, it shows no indica
at similar radial distances of the arcs corresponding to o
going flux in the breakup channel. Instead it appears, ou
quite large distances, to be the superposition of product
f

FIG. 5. Scattered wave function for the model problem of S
III B ~a! below the resonance threshold~15 eV incident energy! and
~b! above the resonance threshold~40 eV incident energy!.
2-5
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two terms corresponding to an outgoing electron with a r
momentum and one with a complex momentum. If« res5« r
2 iG/2 is the resonance energy, the two momenta that ap
to be determining the form of the wave function in this r
gion are

kres5A« res, ~23!

kfree5A2~E2« r !. ~24!

Since the wave function is symmetric under interchange
the electronic coordinates, the scattered wave has the ap
ance of a superposition of two ‘‘plane waves’’

Csc}expi S kres

kfree
D •S r 1

r 2
D1expi S kfree

kres
D •S r 1

r 2
D . ~25!

This is the form one would deduce from the assumption t
the incident electron excites an autodetaching state, wh
once excited, emits an outgoing wave at the resonance
ergy as it decays. Near the axes, for smallr 1 , for example,
the distance~in a0) over which this behavior is evident i
roughlyDr 2'kfree/G. The range over which the interferenc
pattern from Eq.~25! qualitatively describes the dynamics
considerably larger, however. In this region we see w
fronts perpendicular to the wave vectors (kfree

kres ) and (kres

kfree).

The distance over which this nonasymptotic behavior p
sists is determined by the dynamics of autodetachment
not by the range of the interaction potential, which in th
case is obviously of much shorter range.

Figure 6 shows the singly differential cross section co
puted from the flux at an incident energy above the re
nance energy. The flux has obviously not reached
asymptotic behavior, and does not extrapolate to reason
values. Here, then, is a practical dilemma: although the
approach works in principle, it will require unrealistical
large grids in the case that breakup can proceed through
cay of an autoionizing target state. This model problem

FIG. 6. Singly differential cross section (a0
2/hartree! vs energy

fraction for electron 1 from projected flux evaluation for the mod
problem of Sec. III B at 40 eV incident energy. Cross section
shown atr5100a0 , 125a0 , 150a0 , and 175a0 , along with the
extrapolated result forr→`.
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stricts the interaction between the two electrons to the reg
whereboth electrons are at short distances from the orig
So the behavior of the scattered flux might seem to be
odds with the usual expectation of collision theory that on
calculations within the range of the interaction potent
should be required to extract the cross section forany ener-
getically allowed process. Using the appropriate integral
pression for the breakup amplitude, as we will see belo
resolves this apparent contradiction.

IV. INTEGRAL EXPRESSIONS FOR BREAKUP
AMPLITUDES

Starting with the formal definition of the breakup amp
tude, we can derive both a working expression in terms
Csc and an equivalent two-potential formula involving di
torted waves for the final state. Afterward we will app
those working expressions to the two examples of the pr
ous section.

A. Derivation of various matrix elements for breakup
amplitudes

The standard theory of rearrangement scattering,
cussed by Newton@7#, can be applied to the case of breaku
at least so long as the potentials contain only short-ra
interactions. Such a formulation was specialized to the c
of electron scattering by McCartor and Nuttall@15#, who
took as their starting point the expression for what th
called the ‘‘Faddeev amplitude,’’

f 5^k1 ,k2uV1V~E2H1 i«!21V1uk0a&. ~26!

The final state is simply a product of plane waves, and
initial state is a product of a plane wave and the initial tar
state,

uk0a&5
eik0•r1

~2p!3/2wa~r2!. ~27!

For the discussion that follows we will callf the ‘‘breakup
amplitude’’ to avoid confusion with Faddeev theory in whic
three-body breakup is treated in terms of two-bodyT opera-
tors. The potentialV in Eq. ~26! is the full potential, i.e.,H
5T1V, while the potentialV1 is the interaction appropriate
to the initial channel. Its operation on the initial state can
replaced by

V1uk0a&5~H2E!uk0a& ~28!

so that

f 5^k1 ,k2uV1V~E2H1 i«!21~H2E!uk0a&

5^k1 ,k2uVuC~1 !&

5^k1 ,k2uE2TuC~1 !&, ~29!

whereT is the kinetic-energy operator andC (1) is the full
scattering wave function in Eq.~1!.

We can further specialize Eq.~29! to our two-dimensional
examples as

l
s

2-6



d
s
in

ill

o
n

x-
o
e
re
or
a
ta

t

l
a

q.
t
m

e’’
he

k-
ral
ral

ro-

ny
b-
s we
el

the

s of

-
in

o

and

q.

PRACTICAL CALCULATIONS OF QUANTUM BREAKUP . . . PHYSICAL REVIEW A 62 032712
f 5^k1 ,k2uE2TuC~1 !&

5S 2

p D E
0

`

dr1E
0

`

dr2 sin~k1r 1!sin~k2r 2!~E2T!

3C~1 !~r 1 ,r 2!, ~30!

and we can divideC (1) into an incident and a scattere
wave as in Eq.~2! with the incident wave function defined a
in Eq. ~7! to have permutational symmetry reflecting the sp
coupling. Doing so simplifies Eq.~30! further and yields the
first of our working expressions for the calculations we w
describe below:

f 5S 2

p D E
0

`

dr1E
0

`

dr2 sin~k1r 1!

3sin~k2r 2!~E2T!Csc~r 1 ,r 2!. ~31!

The contribution fromF0 vanishes since it is proportional t
d functions between the final and incident momenta, a
they cannot be the same.

Equation~31! has a property that the other working e
pressions below will have, and that is that it depends only
the asymptotic form of the scattering wave function. To s
that this is the case, we can use Green’s theorem to exp
the amplitude in terms of a matrix element with the operat
operating to the left. The product of free waves in the fin
state is an eigenfunction of the kinetic energy at the to
energy of the system, so only a surface term is left,

f 5
1

p E
S
@sin~k1r 1!sin~k2r 2!“Csc

2Csc“ sin~k1r 1!sin~k2r 2!#•n̂ dS, ~32!

where it is understood that the surface is to be limited
enclose an infinite volume, andn̂ is the outward unit vector
normal to the surface. The gradient in this equation is

“5~]/]r 1 ,]/]r 2!5r̂]/]r1â
1

r
]/]a. ~33!

If we insert just the breakup term in Eq.~8! into Eq.~32!,
it gives the connection with the breakup amplitude in Eq.~8!.
First the surface integral Eq.~32! is converted to an integra
over a, which is done with the stationary-phase approxim
tion using the identity

lim
r→`

E
0

p/2

F~a!sin~k1r cosa!sin~k2r sina!da

52 1
2 F~a0!A2p/Kr cosS Kr2

p

4 D , ~34!

where tana5k2 /k1 is the stationary-phase point. Both E
~34! and its derivatives with respect tor are used. This sor
of manipulation is by now standard in the breakup proble
03271
d

n
e
ss
s
l
l

o

-

,

and we find the relation between the ‘‘Faddeev amplitud
and the breakup amplitude in the asymptotic form of t
wave function to be

f 52ei3p/4F~k1 ,k2!/A2p. ~35!

The contribution of the discrete channel terms in Eq.~8!
to Eq. ~32! is a more subtle issue, and it is somewhat aw
ward to see how it limits to zero using the surface integ
representation. Returning to the equivalent volume integ
in Eq. ~31!, we can see that their contribution becomes p
portional, for infinite volumes, tod functions between the
final and initial momenta and therefore must vanish. For a
finite-sized region of integration, however, they still contri
ute, and that fact has serious practical consequences, a
will see. It turns out that the contribution of discrete chann
terms at any finite value ofr can render Eqs.~31! and ~32!
computationally unstable.

We can get other forms of the integral expression for
breakup amplitude in Eq.~31! in which the final states are
scattering states of some distorting potential. Expression
this type have recently been explored extensively@16# in the
context of formulating ‘‘ansatz’’ approximations for ioniza
tion amplitudes. Here, we will investigate their properties
accurate numerical calculations. To begin, write Eq.~31! as

f 5S 2

p D E
0

`

dr1E
0

`

dr2 sin~k1r 1!sin~k2r 2!~E2T!G~1 !~E!

3~H2E!F0~r 1 ,r 2!, ~36!

where G(1)(E) is the full Green’s function (E2H
1 ih)21. We then write the potential as the sum of tw
terms,

V5V11V2 , ~37!

where

V15V1a~r 1!1V1b~r 2! ~38!

is the sum of two one-body potentials. Note thatV1 can be
constructed from any short-ranged one-body potentials,
this derivation does not assume thatV1 is the same as the
one-body part of the true interaction potential given in E
~6!.

The full Green’s function satisfies the identity

G~1 !~E!5g1
~1 !~E!1g1

~1 !~E!V2G~1 !~E!, ~39!

where

g1
~1 !~E!5~E2T2V11 ih!21. ~40!

With only these relationships and the identity

~E2T!G~1 !~E!511VG~1 !~E!, ~41!

we can rearrange Eq.~36! into the form
2-7
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f 5^k1 ,k2u~E2T!G~1 !~E!u~H2E!F0&

5^k1 ,k2u@11V1g1
~1 !~E!#@11V2G~1 !~E!#~H2E!F0&.

~42!

In this equation we can operate to the left with the Hermit
conjugate of the factor@11V1g1

(1)(E)#, which is the wave
operator for the potentialV1 . Because this potential is th
sum of two one-body operators, the wave operator conv
the free waves of the final state into distorted waves. T
result is a ‘‘two-potential’’ form of the breakup amplitud
expression,

f 5^wk1

~2 !wk2

~2 !u~T1V12E!uF0&1wk1

~2 !wk2

~2 !uV2uC1&
~43a!

5^wk1

~2 !wk2

~2 !u~H2E!uF0&1^wk1

~2 !wk2

~2 !uV2uCsc&.
~43b!

The distorted waves in Eq.~43! satisfy one-body Schro¨-
dinger equations. For example,

@T11V1a~r 1!#uwk1

~1 !&5
k1

2

2
uwk1

~1 !& ~44!

with the normalization that the incoming wave
(2/p)1/2sin(k1r1).

Equation~43! can be simplified further if we use the orig
nal driven Schro¨dinger equation forCsc,

f 5^wk1

~2 !wk2

~2 !uE2T2V1uCsc&. ~45!

This two-potential form for the breakup amplitude also h
an equivalent surface integral representation, analogou
Eq. ~32!, that reveals it to depend only on the asympto
form of Csc,

f 5 1
2 E

S
~wk1

~1 !wk2

~1 !
“Csc2Csc“wk1

~1 !wk2

~1 !!•n̂ dS, ~46!

where the gradient is defined as in Eq.~33!. The volume
necessary to converge a numerical evaluation of Eq.~45! or
~46! can be deduced by going back to Eq.~43!. As we will
see below, if the distorting potentialV1 is chosen correctly,
the potentialV2 can control the numerical properties of the
expressions.

B. Application to example breakup problems

Armed with Eqs.~31! and ~32! from the original defini-
tion of the breakup amplitude, and with Eqs.~45! and ~46!
expressing the ‘‘two-potential’’ form, we can explore the
application to the examples of Sec. III. In general the n
merical calculations shown here made use of the surface
tegral forms of these expressions~which are precisely
equivalent to the volume integral forms!.

First we turn to the exponential potential problem of S
III A. Figure 7 shows the singly differential cross section th
results from applying Eq.~32! to calculating the breakup
amplitude for this case with the radiusr0 of the surface
03271
n
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integral equal to 56a0 . In this classic case of short-rang
potentials, it is at first surprising to see that the results
wildly oscillatory. These oscillations evidently arise from th
contributions of the discrete channels of the problem~in this
case only the elastic channel!. To show that this is the cas
we projected out the elastic channel fromCsc using the pro-
jection operator 12P0 constructed using Eq.~11! and re-
computed the amplitude from Eq.~32!, replacingCsc with
(12P0)Csc. The resulting cross section oscillates wi
much decreased amplitude and now oscillates around
correct result. Although it is not shown in Fig. 7, it can b
verified that, if the integration volume is increased, the p
jected form of Eq.~32! eventually converges to the corre
result with increasingr0 , albeit very slowly.

In contrast, the two-potential formula Eq.~46!, using the
one-body potentialsv(r j ) as the distorting potentials, pro
duces the correct cross section without any oscillations, a
also shown in Fig. 7. The distorted waves in the tw
potential formula are, of course, orthogonal to the bou
states of the same potential, and their use in Eq.~45! or ~46!
eliminates the contributions of the discrete channels.

These results lead us to our first assertion regarding
utility of the integral forms of the breakup amplitudes. Equ
tions ~26!, ~29!, ~31!, and~32!, while formally correct, are of
limited practical utility in calculations that begin with th
physical scattering wave function, containing all final cha
nels. Only if the discrete inelastic channel contributions
projected out can these equations give correct results w
applied on a finite volume, as they must be in a numeri
calculation. They are therefore of limited practical utilit
except to formulate distorted-wave-style approximations
the breakup amplitudes.

The two-potential form of the breakup amplitude in Eq
~45! and ~46!, on the other hand, suffers from no such lim
tation, and can be used in practical calculations, provided

FIG. 7. Singly differential cross section (a0
2/hartree! vs energy

~hartrees! of electron 1 from projected flux evaluation for model
Sec. III A at 35 eV incident energy. Dot-dashed line, results fro
Eq. ~32!; dashed line, results from Eq.~32! with projected function
QCsc; solid line, results from Eq.~46!; dotted line, the nearly in-
distinguishable results of the projected flux approach after extra
lation.
2-8



ic
E
th
th
l
pl
a
h
t o
m

s
a
to
rm
n
g
c

Eq
o

du

y

c
m

he
tw

to
c
nce

en-
as

rgy
n in

here
y
is
ing
nse

so-
lso
in
b-
unt

the

oss
ed

ving
ns.

ase.
ng
e to
is-

ed-
l
res-

e

PRACTICAL CALCULATIONS OF QUANTUM BREAKUP . . . PHYSICAL REVIEW A 62 032712
distorting potential is chosen to be the same as that wh
supports the discrete states of the target. The first term in
~43a! then vanishes and the two-potential form produces
correct result when applied on a volume that encloses
residual potentialV2 . That property of the two-potentia
form is more dramatically demonstrated in the next exam

Projecting discrete channel contributions from the sc
tered wave function does not alter the rate at which it reac
its asymptotic form. In the second numerical example, tha
Sec. III B, which has an autodetaching resonance that do
nates the dynamics, projecting the discrete channel~s! out of
Csc does not redeem the utility of Eqs.~31! and~32!. In such
a case the dynamics of the decay of the resonance cause
wave function to approach its asymptotic form so slowly th
Eq. ~31! must be applied over impractically large volumes
produce the correct result. However, the two-potential fo
works perfectly, as shown in Fig. 8 for a range of incide
energies, both above and below the resonance energy. A
using the one-body potentials, which support the autodeta
ing resonance, as the distorting potential, we see that
~45! and~46! produce the correct breakup amplitude as so
as the volume of the integration region encloses the resi
potential. In this case the residual potential is justV2(r 1r 2)
54 exp(2r12r2), and so a very small integration volume, b
comparison to the volumes shown in Fig. 5, will suffice.

The singly differential cross sections for the resonan
case are interesting in themselves. The cross section
satisfy the symmetry condition

s~k1 ,k2!5s~k2 ,k1!. ~47!

We display this symmetry in an obvious way by plotting t
cross section as a function of the energy of one of the
outgoing electrons,

sSDCS~«![s~A2«,AK222«!, ~48!

FIG. 8. Singly differential cross section (a0
2/hartree! vs energy

fraction for electron 1 from the two-potential formula for the mod
problem of Sec. III B; long-dashed line, 15 eV cross section3
5000; dashed line, 25 eV35; solid line, 27.91 eV~twice resonance
energy!; and dot-dashed line, 50 eV35.
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as a function of the fraction of the total energy available
the exiting electrons,«/(K2/2). These plots are symmetri
about the midpoint for any incident energy. The resona
feature corresponding to electron 1 having the resonance
ergy «5« res must also appear when the other electron h
that energy, or at«5K2/22« res. The singly differential
cross section therefore has two ‘‘teeth’’ at any total ene
above the resonance energy, and those are clearly see
Fig. 8.

There is one energy above the resonance energy w
there is only one ‘‘tooth’’ and that is at the total energ
where the energy available to the two exiting electrons
exactly twice the resonance energy of the autodetach
state. In that case the two peaks merge into a more inte
peak at«5K2/4 because, in the singlet case, the two re
nance features interfere constructively. That case is a
shown in Fig. 8. Not shown in Fig. 8 is the triplet case,
which the two features interfere destructively. All these o
servations must, of course, be modified to take into acco
the finite width of the autodetaching~or autoionizing! reso-
nance. The peaks can overlap, and in the triplet case
destructive interference is only at exactly the point«
5K2/4.

In the singlet case, one might expect that the total cr
section for breakup, which with our normalizations is defin
by

s tot
ion5E

0

k2/2
sSDCS~«!d«, ~49!

might have its peak at the energy that corresponds to ha
twice the resonance energy available to the exiting electro
Figure 9 shows that, at least in this example, that is the c

In the case of electron-impact ionization via autoionizi
states, there have already been some experiments don
begin to explore the interference effects in the angular d
tributions that these calculations hint at@17–19#. Some the-
oretical efforts have been made along the lines of distort
wave approximations@20# and exploration of the forma
energy dependence of the breakup amplitudes in the p

l

FIG. 9. Total cross sections (a0
2/4p) for the model problem of

Sec. III B; solid line, breakup; dashed line, elastic scattering.
2-9
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C. W. McCURDY AND T. N. RESCIGNO PHYSICAL REVIEW A62 032712
ence of autoionizing states@21,22#. Accurate theoretical pre
dictions of the interference effects associated with this p
cess will almost certainly have to be done using an appro
similar to the two-potential formula described here for e
tracting the breakup amplitudes.

V. CONCLUSION

We have explored various methods for calculating
breakup cross section when presented with an effectively
act numerical representation of the scattered wave func
on a finite region of space. We have found that the sim
prescription of extrapolating the quantum-mechanical fl
becomes impractical when breakup can proceed through
citation of resonance states of the target. In such cases
component of the scattered wave that describes breakup
proaches its asymptotic form very slowly, and indeed w
beyond the range of the interaction potentials, even in
case of short-range interactions. In such cases integra
pressions for the breakup amplitude offer a more pract
method for evaluating the required scattering informati
but can yield numerically unstable results unless proper s
are taken to eliminate spurious contributions arising fr
discrete two-body channels. We have shown that formal
arrangement theory allows one to express the breakup am
tude as an integral involving target continuum states as
torted waves. We have demonstrated that such an expre
has the desirable properties of being numerically stable
not requiring the wave function beyond the range of the
teraction potentials, even when resonance states are invo
in the scattering dynamics.

While the numerical examples we have studied reveal
tures that we feel are likely to be present in real ionizat
problems, it is important to bear in mind that the results
have obtained apply only to collisions involving short-rang
A

c

c
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interactions. In the formal theory of ionization in which th
Coulomb potentials are treated exactly to infinity, the in
gral expression for the breakup amplitude involves a prod
of distorted waves for the scattered and ejected electron
the final state which are Coulomb functions with effecti
chargesZ1 andZ2 . These effective charges are not entire
arbitrary since they must be chosen to satisfy the Peter
relation @8,9#

Z1

k1
1

Z2

k2
5

1

k1
1

1

k2
2

1

uk12k1u
. ~50!

Thus, in the formal theory, the distorted waves are not
continuum states of the target atom and thus cannot be
sen so as to eliminate the one-body operators from the i
gral expression for the breakup amplitude. The form
theory, however, has not provided a path to practical ca
lations and has, to date, never been implemented in anab
initio calculation. If the true Coulomb interactions can
truncated at large distances and the cross sections then
trapolated to infinity~and our recent work on electron-H ion
ization @4# argues that they can!, then the two-potential for-
malism discussed here for short-ranged potentials shoul
applicable. This subject will be pursued in future studies.
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