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lon-ion collision dynamics in two-dimensional Cartesian space
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lon-ion collision dynamics are studied by direct solution of the time-dependent @obes and Dirac
equations on a two-dimensional Cartesian lattice. The time-dependent Dirac equation is solved in both its two-
and four-component forms using difference offsetting on the lattice to mitigate the fermion doubling pathol-
ogy. For P4 on Pd®", which energetically corresponds td0 on U’'" in a three-dimensional space, total
inelastic probabilities are calculated at a fixed ion velocity and several impact parameters. In this intermediate
energy range, the total inelastic probabilities from the Sdimger and two- and four-component Dirac equa-
tions are in reasonable agreement, although the detailed collision dynamics reveal interesting differences.

PACS numbd(s): 34.50—s

[. INTRODUCTION vored in studies of intense laser-atom dynanpik®,19. For
either form, we solve the time-dependent Dirac equation us-

Collisions between highly charged atomic ions provide anng difference offsetting on the lattice to mitigate the fermion
interesting test of relativistic scattering theory in the pres-doubling pathology{20-23. The ground-state binding en-
ence of strong electromagnetic fields. One of the most promergy in two-dimensional space is four times that found in
ising nonperturbative approaches is the direct solution of théhree-dimensional space. Thus, we carry out lattice calcula-
time_dependent Dirac equation on a numerical |atﬂt]_:'| tions for collisions of P#* on Pd5+, which energetically
With the continuing development of more powerful comput-corresponds to §* on U*** in full three dimensions. To
ing platforms, the numerical feasibility of making extensive check our relativistic calculations we choose an intermediate
scattering calculations using time-dependent lattice methodgnergy and solve the time-dependent Sdiger equation in
is now dawning. An early formulation solved the time- two dimensions for the same collision partners. As a final
dependent Dirac equation at zero impact parameter usi@eCk, we increase the radial spacing between lattice points
two-dimensional cylindrical coordinates on a finite differ- and solve the four-component time-dependent Dirac equa-
ence lattice for collisions of 8" on U°** [2] and U?" on tion on a three-dimensional lattice for one impact parameter.
U [3,4]. Subsequent work solved the time-dependenin Sec. Il we r_eview collision theory involving the time-
Dirac equation at nonzero impact parameters using threglependent Schdinger and Dirac equations in two- and
dimensional Cartesian coordinates on a basis spline lattice three-dimensional space, computational lattice results are
extract muon pair production cross sections for collisions ofresented in Sec. lll, and a brief summary is given in Sec.
AU ions [5,6] and U ions[?] and electron pair production IV. For Slmp|ICIty, conventional three-dimensional atomic
cross sections for collisions of%®" on Au’®* [8]. units are used throughout the papge., 1.0 hartree=

By domain decomposition over a distributed-memory par-27-212 eV.
allel computer, we have recently solved the time-dependent

Schralinger equation in three-dimensional Cartesian coordi- Il. THEORY
nates and extracted state-selective excitation and charge- ) o . .
transfer cross sections for proton-hydrogéd,10] and The time-dependent Schiimger equation in two spatial

proton-lithium[11] collisions. In this paper we extend those dimensions for a bare ionZf) projectile colliding with a
same lattice techniques to the solution of the time-dependef¥ydrogenic ion ;) target is given by
Dirac equation for ion-ion collisions. To reduce computa-

tional demands in our exploratory studies and yet retain the oW (x,y,t) 16> 10 Z b
concept of an impact parameter, we first consider ion-ion '™ 5 T| T2 52 22 1 o V(x,y.1),
collisions in two-dimensional Cartesian space. In previous 1)

work on proton-hydrogefl2] and antiproton-hydrogei 3]
collisions using the time-dependent Sdfirmer equation,
we have found that the scattering dynamics in two-
dimensional space is in good qualitative agreement with that >
found in full three-dimensional calculations. r=\xty?,
We solve the time-dependent Dirac equation in both its
two- and four-component forms on a two-dimensional lat- r'(t)=(x=b)*+[y—(yo+vt)], ©)
tice. The two-component form has been used in field-
theoretical studies of quantum gravjti4], of particles obey- b is the impact parameter, andis the projectile velocity for
ing fractional statistic§15], and of spontaneously broken straight line motion parallel to thegaxis beginning atlg,y,)
gauge theorie$16]. The two-component form has recently with y,<O.
been used to study the planar hydrogen atom in a strong The time-dependent Dirac equation in two spatial dimen-
magnetic field[17]. The four-component form has been fa- sions is given by

where

)
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AP (X,y,t) 9 .9 Zy GZ, ) 9 [ Wraxy,t) 17 1[0 i |
i—————=| —icay——icqy — ————+4c¢C i— =l —s=—=—3|=+=
at X Yoy r o ) I\ W a(X,y,1) 29xc 2lay ¢V

X\I-;(Xayvt)v (4) _Zt_ Zp (’\PLl(vavt)> (11)

where ror)) \Yaxy,t
r(t)=(x=b)Z+ ¥y — (Yo +v1) ]2, (5) 1[0 VoA, [Py
ol o 0)ax WLyt
c is the speed of light, angl=1/\/1— (v?/c?). The factorG, L2lX.¥, 12)
in the projectile potential is given in the Lorentz gaugd by
v where (I;t;) is the “large” spinor component of thel
G.= 7( 1- E“y> : ©®  pispinor.

The exact analytic solution for the ground state of the
The two-component form of the Dirac equation is ob- Schralinger equation in two dimensions is given by
tained by choosing the Dirac matrices equal to the standard

Pauli matrices: § 8z? -
_ Prsxy) =\ ——e =, (13

0 1 0 —i 1 O
“X:<1 0)' “y:(i 0/ ﬁ:( ) "

0 -1
We find the two-component Dirac equation to be covariant
under Lorentz transformations in three-dimensional space-
time (one time, two spage The standard nonrelativistic re-
duction of Eq.(4) yields

with
Eq,g=—2Z7. (14

To provide a proper representation of the ground state on our
choice of two-dimensional lattice, we relax the exact analytic

T (X,Y,t) 12 1[9 i 2 solution by solving the time-dependent Satirmer equation
T — | —+-A in imaginary time ¢=it):
T ( 20x%2 2 L’!y c Y ginaty =1t

A _awls(x,y)_( 19 18 Z
____+__y)q,L(lelt)v (8) JT -

rr/(t) 2¢ ox (15)
where The exact analytic solution for the ground state of the
two-component Dirac equation in two dimensions is given
BZ, by
Ay=—", €)
r'(t) 5
- ex 77 (29r)° _
- B eni P15(X,y) = e’
and V¥ is the “large” component of thel' spinor. st ml(1+28)(m+72)  r
The four-component form of the Dirac equation is ob-
tained by choosing only three of the four Dirac matrices: 1
0001 0 0 1 0 | _ M2 i ] (16
0010 0 0 0 -1 7
ay= yay= , .
0 1 00 1 0 0 O with
1 0 0O 0 -1 0 O >
se 1 (Zt) a7
10 0 Va4 ¢
01 0 and
A=lo 0 -1 o (10
00 0 -1 Eis=—(1-28)c? (18)

The four-component Dirac equation is also found to be coln Eg. (16), 7,=(1+26)c, 75,=(1-26)c, and 7z
variant under Lorentz transformations in three-dimensionak \/ ; 77,. The exact analytic solution for the ground state of
spacetime. The standard nonrelativistic reduction of @g. the four-component Dirac equation in two dimensions is
now yields given by

032707-2



ION-ION COLLISION DYNAMICS IN TWO-. .. PHYSICAL REVIEW A 62 032707

J(x0y) = \/ 717 (277r)'se,,7r ﬂzlﬂ(XaY)_) —iy2j T 16 1;— 30 ;+ 164 1~ i o
15 L (1+28)(m+m)  r X 1oA2 ’
L (22
0 whereAx is the lattice spacing. To avoid the fermion dou-
bling pathology, the spatial derivatives in the Dirac equation
« iﬂcosa (19) may be given by standard backward-forward difference for-
' mulas[24]:
i sing &‘/’u(xvy)_)3‘//i,j_4wifl,j+‘/’i72,j
K ax 2AX ’
and the energyE, is the same as found in E@18). We (23
relax the sxact an?Iyt_lc solutlo_n by .soIV|.ng th(_a tlme- I(GY) oyt Ay~ 3
dependent “squared” Dirac equation in imaginary time: — ,
X 2AX
L dhy) (0 or
ar Dgx Y gy
. ) (wu(X,Y)_)3'ﬂi+1,j+10¢i,j—18¢i—1,j+6¢i—2,j_lﬂi—s,j
- —‘+Bc2) dasxy). (20 o 12Ax '
' (24)
Wg solve. the ti_me—depe_ndent S'(:ti'm)ger ar_ld Dirac  gy(x,y) Yitaj— 6 o)+ 1801, — 100 j—3ihi_q
equations using lattice techniques to obtain a discrete repre- x 1oAX '

sentation of the wave functidii(x,y) — #; ;] and all opera-

tors on a two-dimensional Cartesian mesh. Local operatorsyhere the subscripts,| refer to the upper positive and lower
such as the potential energy, become diagonal matrices comegative energy components iz(x,y).

posed of their values at the lattice poirité(x,y)—V; ;]. Following Bottcher and Strayd21], central differences
Derivative operators, such as the kinetic energy, have latticeyr the spatial derivatives in the one-dimensional free-
representations in terms of banded matrices. The spatial d@article Dirac equation lead to bivalued energy dispersion
rivatives in the Schidinger equation may be given by stan- relations. The three- and five-point central difference disper-

dard central difference formuld4]: sion relations are given by
PY(KY) i =24+ i, 1—cos DAX
axz . i+1) AX',ZJ i 1,J’ (21) E2: TX?) C2+C4 (25)
or and
|

130—32 cogpAx—128 cos DAX+ 32 cos HAX— 2 cos HpAX

E’= ® P L4 i c2+ ¢, (26)
144A%?

where p is the linear momentum angy=m/AX is the maximum momentum on the lattice. The three- and five-point
backward-forward differences found in Eq83) and(24) lead to the following energy dispersion relations:

£ ( 13— 16 cogpAx+ 3 cos DpAx

c?+c? 2
2A%? ) @9

and

c?+ct. (29

E2 470—528 copAx+48 cos DAX+ 16 cos PAX—6 cos HpAX
144A %2
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In Fig. 1 we compare the four approximate energy dispersior
relations with the exact resultE?=p?c?+c* for Ax 0.30 w T ' x T '
=0.001. The symmetric three- and five-point central differ-
ence dispersion relations associate a single energy to tw - 1
different momenta. The offset three- and five-point back-
ward-forward difference dispersion relations are single val- 0.15 - -
ued, and thus not subject to the fermion doubling pathology.
For implementation on distributed-memory parallel com- L _
puters, the two-dimensional lattice is partitioned over proces:
sors along thg axis. Message passing between processors iy .00
restricted to lattice points at the partition boundaries needet
to evaluate first or second derivatives yn Relaxation in
imaginary time uses a power series expansion of the expa
nential operator in the expression

I
*

-0.15
Y(r+An)=e 2My(7), (29

while propagation in real time uses a second-order differenc
ing scheme: -0.30 s | s ! ) | ,

W (t+ A=W (1— A)— 20 AtHW (1), (30) -0.30 -0.15 0.00 0.15 0.30
y

In either case, the matrix-vector multiplications needed are
performed in parallel.

The total inelastic probability at a specific incident veloc-
ity and impact parameter is given by

FIG. 2. Time-equal 0.00-a.u. Scliiager equation solution on a
600X 600 point lattice. The P" on Pd®" collision is at 50.0
MeV/amu and zero impact paramefeadial distancesx,y) are in

2 atomic units, 1.0 a.&=5.29x 10 ° cm].
Winelasti&vab)zl_‘f de dyz,lfi‘s(x,y)\lf(x,y,T) ’
(31) Similar equations provide probabilities for the solution of
Eq. (4).
where
Ill. RESULTS

‘I'(X,ylo) = ¢15(X’Y), (32)
Total inelastic probabilities for collisions of Bd on
and¥(x,y,T) is the solution of Eq(1) at a timeT following  p*5* are calculated by direct solution of the Sottirer
the collision. The total inelastic “cross section” is given by and Dirac equations on a two-dimensional Cartesian lattice.
We employ a 608600 point lattice with a uniform grid
amemn(gv):zf @ (v,b)db. (33)  spacing ofAx=Ay=0.001 a.u., yielding a box size of 0.60
a.u. on each side. To avoid difficulties with representing the
singular Coulomb potential on a numerical lattice of finite

15 spacing, we introduce a soft-core parametsuch that

3 pt off Z Z
V(== —=V(=-—"F=. (34)

\/SZ—I— r2

For the 600< 600 point lattice we choosg=0.002 a.u. Spu-
Bxact rious wave reflection at the lattice boundary is eliminated
through the use of exponential masking.

We present electron probability density plots as a function
of time in Figs. 2 and 3 for a solution of the ScHioger
equation at an incident energy of 50 MeV/amu, correspond-
ing to an incident velocity of 44.9 a.or approximatelys
the speed of light and zero impact parameter. The initial
position of the bare PG" projectile is indicated by a star in

FIG. 1. Energy dispersion relations for the one-dimensionalFig- 2 at =0.00y=—0.20), while the single electron
free-particle Dirac equation. The labeling pt sym refers to a  Pd™" target is centered in the box. After moving past the
symmetricn point central difference, whilen( pt off) refers to an ~ center of the box, the projectile is now located at (
offsetn point backward-forward difference. The scaled momentum=0.00y= +0.07) in Fig. 3. The electron probability density
units are inp,=m/Ax, the maximum momentum on the lattice.  is almost equally centered about the projectile and target,

—-
[=]
T

5 pt off

Energy (MeV)

3]

5 pt sym

3 pt sym

0 1 ! 1 L
0.0 0.2 0.4 0.6 0.8 1.0

Momentum (p/p,)
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FIG. 3. Time-equal 0.09-a.u. Scliinger equation solution on a FIG. 4. Time-equal 0.09-a.u. two-component Dirac equation so-
600X 600 point lattice. The P&" on Pd>" collision is at 50.0 lution on a 60(x 600 point lattice. The P&" on Pd>" collision is
MeV/amu and zero impact paramefeadial distancesx,y) are in  at 54.4 MeV/amu and zero impact paramgtedial distancesx,y)
atomic units, 1.0 a.&=5.29x 10~ ° cm). are in atomic units, 1.0 a.5.29< 10" ° cm).

three-point central difference forms for the momentum op-
indicating substantial charge transfer. Out ahead of the praerators. We attribute the change in the degree of reflection
jectile is a small “hill” of probability, indicating a small asymmetry in moving from the two- to four-component
chance of binary electron knockout at twice the projectileDirac solutions as due to the asymmettid, /ox “mag-
speed. The time propagation is continued until the projectilenetic” term in the respective nonrelativistic reductions found
reaches X=0.00y=+0.20), at which time the inelastic in Egs.(8) and(12). In the two-component case, the asym-
probability from Eq.(31) is found to be 0.53. metric “magnetic” term acts directly on the spin 0 reduced

We present electron probability density plots as a function
of time in Figs. 4 and 5 for a solution of the Dirac equation
at an incident energy of 54.4 MeV/amu, corresponding to ar
incident velocity of 44.9 a.u., and zero impact parameter
The two-component Dirac equation results are shown in Fig
4 and the four-component Dirac equation results are show 015
in Fig. 5. Both relativistic solutions began at the same initial
position of the bare P8" projectile as shown in Fig. 2, and -
the results presented are at the same collision time and pos
tion as shown in Fig. 3. Somewhat more electron probability< 0.00 -
density is centered on the projectile than on the target, indi
cating more charge transfer in the relativistic case. When th L
time propagation is continued until the projectile reaches ( .
=0.00y=+0.20), the two-component Dirac inelastic prob- 445 | T
ability is found to be 0.82, while the inelastic probability for
the four-component solution is found to be 0.74.

Of peculiar interest are the small flows of electron prob-
ability density moving ahead and to the sides of th&%Pd
projectile in Figs. 4 and 5. Although the collision takes place
at zero impact parameter, there is quite a noticeable reflec
tion asymmetry about the=0 axis for the two-component y
Dirac solution shown in Fig. 4. Although one might expect
some small asymmetry due to numerical error, the same F|G. 5. Time-equal 0.09-a.u. four-component Dirac equation so-
large asymmetry is found in the two-component Dirac solu4ution on a 60 600 point lattice. The P& on P> collision is
tion on comparing calculations made with three-pointat 54.4 MeV/amu and zero impact paramégtedial distancesx,y)
backward-forward, five-point backward-forward, and evenare in atomic units, 1.0 a#.5.29x 10~ ° cm).

0.30 T T T T

-0.30 i ! I 1 I 1 I
-0.30 -0.15 0.00 0.15 0.30
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FIG. 6. Inelastic probabilities versus impact parameter ffPd
on P4 collisions at the same incident ion velocity of 44.9 a.u.

Solid line: Schidinger equation solution, solid circles: two- -0.24 ' ’ ' ' ' : ’
component Dirac equation solution, solid squares: four-component -0.24 -0.12 0.00 0.12 0.24
Dirac equation solution. y

wave function, while in the four-component case it acts to  FIG. 8. Time-equal 0.09-a.u. four-component Dirac equation so-

couple the spirk components of the reduced wave function. jution on a 24 240x 240 point lattice. The P§" on Pd*" col-
Extending both our Schdinger and Dirac equation solu- lision is at 54.4 MeV/amu and zero impact paramétadial dis-

tions to nonzero impact parameters, we present the total inances x,y) are in atomic units, 1.0 a4.5.29x107° cm].

elastic probability as a function of impact parameter in Fig. 6

at an incident ion velocity of 44.9 a.u. All the inelastic prob- =0-002 a.u. and a soft core parameser0.004. The four-

ability results are in good agreement at large impact paramomponent D|r6ic resu|t55+ are shown in Fig. 7 following a

eters, but the two- and four-component Dirac results are sutiollision of Pd_l on Pd*" at an incident velocity of 44.9

stantially higher than the Schdimger results at small impact &:U- @nd zero impact parameter. The time-dependent calcula-

parameters. tions for the four-component Dlrac equatllon are then re-
For a final comparison, we employ a 24240 point two- peated on a full 248 240X 240 point three-dimensional lat-

dimensional lattice with a uniform grid spacing aAk=Ay  (ice. The probability density in the=0 plane is shown in
Fig. 8 at the same point in collision time and position as

0.24 ; . 1 ; : , found in Fig. 7. The collision dynamics in two and three
dimensions are quite similar, even though the weaker bind-
L | ing for a Pd%" on Pd®" collision in three dimensions is
reflected in a much larger spatial extent of the electron den-
sity cloud.

0.12 - -
IV. SUMMARY

lon-ion collision dynamics are studied by direct solution
= of the time-dependent Schiinger and Dirac equations on
an identical two-dimensional lattice. In the intermediate en-
- ergy range, the nonrelativistic and fully relativistic inelastic
probabilities for a P#¥* on Pd>" collision are found to be
in good agreement at large impact parameters, but differ sub-
stantially at small impact parameters. When the ion-ion col-
lision solutions of the time-dependent Dirac equation in two
and three dimensions are compared, the evolution of the
electron probability densities is found to be similar. This is in
keeping with previous studigs3,14] comparing ion-atom
solutions of the time-dependent Sctiimger equation in two
y and three dimensions. Based on these exploratory studies, it
seems that ion-ion collisions may be readily carried out by
FIG. 7. Time-equal 0.09-a.u. four-component Dirac equation sodirect solution of the time-dependent Dirac equation on a full
lution on a 240 240 point lattice. The P&" on Pd°" collisionis  three-dimensional lattice, although the computational effort
at 54.4 MeV/amu and zero impact paramgtedial distancesxy) is about four times that of the Scluimger equation. The fact
are in atomic units, 1.0 a#.5.29x10° cm). that this nonperturbative computational approach permits a

¥ 0.00 |-

-0.12 B

-0.24 ) [ L | L ! I
-0.24 -0.12 0.00 0.12 0.24
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