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Ion-ion collision dynamics in two-dimensional Cartesian space
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Department of Physics, Auburn University, Auburn, Alabama 36849
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Ion-ion collision dynamics are studied by direct solution of the time-dependent Schro¨dinger and Dirac
equations on a two-dimensional Cartesian lattice. The time-dependent Dirac equation is solved in both its two-
and four-component forms using difference offsetting on the lattice to mitigate the fermion doubling pathol-
ogy. For Pd461 on Pd451, which energetically corresponds to U921 on U911 in a three-dimensional space, total
inelastic probabilities are calculated at a fixed ion velocity and several impact parameters. In this intermediate
energy range, the total inelastic probabilities from the Schro¨dinger and two- and four-component Dirac equa-
tions are in reasonable agreement, although the detailed collision dynamics reveal interesting differences.

PACS number~s!: 34.50.2s
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I. INTRODUCTION

Collisions between highly charged atomic ions provide
interesting test of relativistic scattering theory in the pr
ence of strong electromagnetic fields. One of the most pr
ising nonperturbative approaches is the direct solution of
time-dependent Dirac equation on a numerical lattice@1#.
With the continuing development of more powerful comp
ing platforms, the numerical feasibility of making extensi
scattering calculations using time-dependent lattice meth
is now dawning. An early formulation solved the tim
dependent Dirac equation at zero impact parameter u
two-dimensional cylindrical coordinates on a finite diffe
ence lattice for collisions of Ca201 on U911 @2# and U921 on
U911 @3,4#. Subsequent work solved the time-depend
Dirac equation at nonzero impact parameters using th
dimensional Cartesian coordinates on a basis spline lattic
extract muon pair production cross sections for collisions
Au ions @5,6# and U ions@7# and electron pair production
cross sections for collisions of U921 on Au781 @8#.

By domain decomposition over a distributed-memory p
allel computer, we have recently solved the time-depend
Schrödinger equation in three-dimensional Cartesian coo
nates and extracted state-selective excitation and cha
transfer cross sections for proton-hydrogen@9,10# and
proton-lithium@11# collisions. In this paper we extend thos
same lattice techniques to the solution of the time-depen
Dirac equation for ion-ion collisions. To reduce compu
tional demands in our exploratory studies and yet retain
concept of an impact parameter, we first consider ion-
collisions in two-dimensional Cartesian space. In previo
work on proton-hydrogen@12# and antiproton-hydrogen@13#
collisions using the time-dependent Schro¨dinger equation,
we have found that the scattering dynamics in tw
dimensional space is in good qualitative agreement with
found in full three-dimensional calculations.

We solve the time-dependent Dirac equation in both
two- and four-component forms on a two-dimensional l
tice. The two-component form has been used in fie
theoretical studies of quantum gravity@14#, of particles obey-
ing fractional statistics@15#, and of spontaneously broke
gauge theories@16#. The two-component form has recent
been used to study the planar hydrogen atom in a str
magnetic field@17#. The four-component form has been f
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vored in studies of intense laser-atom dynamics@18,19#. For
either form, we solve the time-dependent Dirac equation
ing difference offsetting on the lattice to mitigate the fermi
doubling pathology@20–23#. The ground-state binding en
ergy in two-dimensional space is four times that found
three-dimensional space. Thus, we carry out lattice calc
tions for collisions of Pd461 on Pd451, which energetically
corresponds to U921 on U911 in full three dimensions. To
check our relativistic calculations we choose an intermed
energy and solve the time-dependent Schro¨dinger equation in
two dimensions for the same collision partners. As a fi
check, we increase the radial spacing between lattice po
and solve the four-component time-dependent Dirac eq
tion on a three-dimensional lattice for one impact parame
In Sec. II we review collision theory involving the time
dependent Schro¨dinger and Dirac equations in two- an
three-dimensional space, computational lattice results
presented in Sec. III, and a brief summary is given in S
IV. For simplicity, conventional three-dimensional atom
units are used throughout the paper~i.e., 1.0 hartree5
27.212 eV!.

II. THEORY

The time-dependent Schro¨dinger equation in two spatia
dimensions for a bare ion (Zp) projectile colliding with a
hydrogenic ion (Zt) target is given by

i
]C~x,y,t !

]t
5S 2

1

2

]2

]x2 2
1

2

]2

]y22
Zt

r
2

Zp

r 8~ t !
D C~x,y,t !,

~1!

where

r 5Ax21y2, ~2!

r 8~ t !5A~x2b!21@y2~y01vt !#2, ~3!

b is the impact parameter, andv is the projectile velocity for
straight line motion parallel to they axis beginning at (b,y0)
with y0,0.

The time-dependent Dirac equation in two spatial dime
sions is given by
©2000 The American Physical Society07-1
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i
]CW ~x,y,t !

]t
5S 2 icax

]

]x
2 icay

]

]y
2

Zt

r
2

GLZp

r 9~ t !
1bc2D

3CW ~x,y,t !, ~4!

where

r 9~ t !5A~x2b!21g2@y2~y01vt !#2, ~5!

c is the speed of light, andg51/A12(v2/c2). The factorGL
in the projectile potential is given in the Lorentz gauge by@1#

GL5gS 12
v
c

ayD . ~6!

The two-component form of the Dirac equation is o
tained by choosing the Dirac matrices equal to the stand
Pauli matrices:

ax5S 0 1

1 0D , ay5S 0 2 i

i 0 D , b5S 1 0

0 21D . ~7!

We find the two-component Dirac equation to be covari
under Lorentz transformations in three-dimensional spa
time ~one time, two space!. The standard nonrelativistic re
duction of Eq.~4! yields

i
]CL~x,y,t !

]t
5S 2

1

2

]2

]x22
1

2 F ]

]y
1

i

c
AyG2

2
Zt

r
2

Zp

r 8~ t !
1

1

2c

]Ay

]x D CL~x,y,t !, ~8!

where

Ay5
bZp

r 8~ t !
, ~9!

andCL is the ‘‘large’’ component of theCW spinor.
The four-component form of the Dirac equation is o

tained by choosing only three of the four Dirac matrices:

ax5S 0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

D , ay5S 0 0 1 0

0 0 0 21

1 0 0 0

0 21 0 0

D ,

b5S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

D . ~10!

The four-component Dirac equation is also found to be
variant under Lorentz transformations in three-dimensio
spacetime. The standard nonrelativistic reduction of Eq.~4!
now yields
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i
]

]t S CL1~x,y,t !

CL2~x,y,t ! D 5S 2
1

2

]2

]x2 2
1

2 F ]

]y
1

i

c
AyG2

2
Zt

r
2

Zp

r 8~ t !
D S CL1~x,y,t !

CL2~x,y,t ! D ~11!

1
1

2c S 0 i

2 i 0D ]Ay

]x S CL1~x,y,t !

CL2~x,y,t ! D ,

~12!

where (CL2

CL1) is the ‘‘large’’ spinor component of theCW

bispinor.
The exact analytic solution for the ground state of t

Schrödinger equation in two dimensions is given by

c1s
ex~x,y!5A8Zt

2

p
e22Ztr , ~13!

with

E1s522Zt
2 . ~14!

To provide a proper representation of the ground state on
choice of two-dimensional lattice, we relax the exact analy
solution by solving the time-dependent Schro¨dinger equation
in imaginary time (t5 i t ):

2
]c1s~x,y!

]t
5S 2

1

2

]2

]x22
1

2

]2

]y2 2
Zt

r Dc1s~x,y!.

~15!

The exact analytic solution for the ground state of t
two-component Dirac equation in two dimensions is giv
by

cW 1s
ex~x,y!5A h1h

pG~112d!~h11h2!

~2hr !d

Ar
e2hr

3S 1

2
h2

h
e2 iuD , ~16!

with

d5A1

4
2S Zt

c D 2

~17!

and

E1s52~122d!c2. ~18!

In Eq. ~16!, h15(112d)c, h25(122d)c, and h
5Ah1h2. The exact analytic solution for the ground state
the four-component Dirac equation in two dimensions
given by
7-2
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cW 1s
ex~x,y!5A h1h

pG~112d!~h11h2!

~2hr !d

Ar
e2hr

3S 1

0

i
h2

h
cosu

i
h2

h
sinu

D , ~19!

and the energyE1s is the same as found in Eq.~18!. We
relax the exact analytic solution by solving the tim
dependent ‘‘squared’’ Dirac equation in imaginary time:

2
]cW 1s~x,y!

]t
5S 2 icax

]

]x
2 icay

]

]y

2
Zt

r
1bc2D 2

cW 1s~x,y!. ~20!

We solve the time-dependent Schro¨dinger and Dirac
equations using lattice techniques to obtain a discrete re
sentation of the wave function@cW (x,y)→cW i , j # and all opera-
tors on a two-dimensional Cartesian mesh. Local operat
such as the potential energy, become diagonal matrices c
posed of their values at the lattice points@V(x,y)→Vi , j #.
Derivative operators, such as the kinetic energy, have la
representations in terms of banded matrices. The spatia
rivatives in the Schro¨dinger equation may be given by sta
dard central difference formulas@24#:

]2c~x,y!

]x2 → c i 11,j22c i , j1c i 21,j

Dx2
, ~21!

or
03270
e-

s,
m-

e
e-

]2c~x,y!

]x2 → 2c i 12,j116c i 11,j230c i , j116c i 21,j2c i 22,j

12Dx2
,

~22!

whereDx is the lattice spacing. To avoid the fermion do
bling pathology, the spatial derivatives in the Dirac equat
may be given by standard backward-forward difference f
mulas@24#:

]cu~x,y!

]x
→ 3c i , j24c i 21,j1c i 22,j

2Dx
,

~23!

]c l~x,y!

]x
→ 2c i 12,j14c i 11,j23c i , j

2Dx
,

or

]cu~x,y!

]x
→ 3c i 11,j110c i , j218c i 21,j16c i 22,j2c i 23,j

12Dx
,

~24!

]c l~x,y!

]x
→ c i 13,j26c i 12,j118c i 11,j210c i , j23c i 21,j

12Dx
,

where the subscriptsu,l refer to the upper positive and lowe
negative energy components ofcW (x,y).

Following Bottcher and Strayer@21#, central differences
for the spatial derivatives in the one-dimensional fre
particle Dirac equation lead to bivalued energy dispers
relations. The three- and five-point central difference disp
sion relations are given by

E25S 12cos 2pDx

2Dx2 D c21c4 ~25!

and
oint
E25S 130232 cospDx2128 cos 2pDx132 cos 3pDx22 cos 4pDx

144Dx2 D c21c4, ~26!

where p is the linear momentum andp05p/Dx is the maximum momentum on the lattice. The three- and five-p
backward-forward differences found in Eqs.~23! and ~24! lead to the following energy dispersion relations:

E25S 13216 cospDx13 cos 2pDx

2Dx2 D c21c4 ~27!

and

E25S 4702528 cospDx148 cos 2pDx116 cos 3pDx26 cos 4pDx

144Dx2 D c21c4. ~28!
7-3



io

er
tw

ck
a
g
m
e
rs
de

p

n

ar

c-

y

of

ice.

0
the
ite

ed

ion

nd-

al

he
(
y
get,

na

um

M. S. PINDZOLA PHYSICAL REVIEW A 62 032707
In Fig. 1 we compare the four approximate energy dispers
relations with the exact result:E25p2c21c4 for Dx
50.001. The symmetric three- and five-point central diff
ence dispersion relations associate a single energy to
different momenta. The offset three- and five-point ba
ward-forward difference dispersion relations are single v
ued, and thus not subject to the fermion doubling patholo

For implementation on distributed-memory parallel co
puters, the two-dimensional lattice is partitioned over proc
sors along they axis. Message passing between processo
restricted to lattice points at the partition boundaries nee
to evaluate first or second derivatives iny. Relaxation in
imaginary time uses a power series expansion of the ex
nential operator in the expression

c~t1Dt!5e2DtHc~t!, ~29!

while propagation in real time uses a second-order differe
ing scheme:

C~ t1Dt !5C~ t2Dt !22iDtHC~ t !. ~30!

In either case, the matrix-vector multiplications needed
performed in parallel.

The total inelastic probability at a specific incident velo
ity and impact parameter is given by

` inelastic~v,b!512U E dxE dyc1s* ~x,y!C~x,y,T!U2

,

~31!

where

C~x,y,0!5c1s~x,y!, ~32!

andC(x,y,T) is the solution of Eq.~1! at a timeT following
the collision. The total inelastic ‘‘cross section’’ is given b

s inelastic~v !52E `~v,b!db. ~33!

FIG. 1. Energy dispersion relations for the one-dimensio
free-particle Dirac equation. The labeling (n pt sym! refers to a
symmetricn point central difference, while (n pt off! refers to an
offset n point backward-forward difference. The scaled moment
units are inp05p/Dx, the maximum momentum on the lattice.
03270
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Similar equations provide probabilities for the solution
Eq. ~4!.

III. RESULTS

Total inelastic probabilities for collisions of Pd461 on
Pd451 are calculated by direct solution of the Schro¨dinger
and Dirac equations on a two-dimensional Cartesian latt
We employ a 6003600 point lattice with a uniform grid
spacing ofDx5Dy50.001 a.u., yielding a box size of 0.6
a.u. on each side. To avoid difficulties with representing
singular Coulomb potential on a numerical lattice of fin
spacing, we introduce a soft-core parameters such that

V~r !52
Z

r
→V~r !52

Z

As21r 2
. ~34!

For the 6003600 point lattice we chooses50.002 a.u. Spu-
rious wave reflection at the lattice boundary is eliminat
through the use of exponential masking.

We present electron probability density plots as a funct
of time in Figs. 2 and 3 for a solution of the Schro¨dinger
equation at an incident energy of 50 MeV/amu, correspo
ing to an incident velocity of 44.9 a.u.~or approximately1

3

the speed of light!, and zero impact parameter. The initi
position of the bare Pd461 projectile is indicated by a star in
Fig. 2 at (x50.00,y520.20), while the single electron
Pd451 target is centered in the box. After moving past t
center of the box, the projectile is now located atx
50.00,y510.07) in Fig. 3. The electron probability densit
is almost equally centered about the projectile and tar

l

FIG. 2. Time-equal 0.00-a.u. Schro¨dinger equation solution on a
6003600 point lattice. The Pd461 on Pd451 collision is at 50.0
MeV/amu and zero impact parameter@radial distances (x,y) are in
atomic units, 1.0 a.u.55.2931029 cm#.
7-4
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indicating substantial charge transfer. Out ahead of the p
jectile is a small ‘‘hill’’ of probability, indicating a small
chance of binary electron knockout at twice the project
speed. The time propagation is continued until the projec
reaches (x50.00,y510.20), at which time the inelastic
probability from Eq.~31! is found to be 0.53.

We present electron probability density plots as a funct
of time in Figs. 4 and 5 for a solution of the Dirac equatio
at an incident energy of 54.4 MeV/amu, corresponding to
incident velocity of 44.9 a.u., and zero impact parame
The two-component Dirac equation results are shown in F
4 and the four-component Dirac equation results are sho
in Fig. 5. Both relativistic solutions began at the same init
position of the bare Pd461 projectile as shown in Fig. 2, and
the results presented are at the same collision time and p
tion as shown in Fig. 3. Somewhat more electron probabi
density is centered on the projectile than on the target, in
cating more charge transfer in the relativistic case. When
time propagation is continued until the projectile reachesx
50.00,y510.20), the two-component Dirac inelastic pro
ability is found to be 0.82, while the inelastic probability fo
the four-component solution is found to be 0.74.

Of peculiar interest are the small flows of electron pro
ability density moving ahead and to the sides of the Pd461

projectile in Figs. 4 and 5. Although the collision takes pla
at zero impact parameter, there is quite a noticeable refl
tion asymmetry about thex50 axis for the two-componen
Dirac solution shown in Fig. 4. Although one might expe
some small asymmetry due to numerical error, the sa
large asymmetry is found in the two-component Dirac so
tion on comparing calculations made with three-po
backward-forward, five-point backward-forward, and ev

FIG. 3. Time-equal 0.09-a.u. Schro¨dinger equation solution on a
6003600 point lattice. The Pd461 on Pd451 collision is at 50.0
MeV/amu and zero impact parameter@radial distances (x,y) are in
atomic units, 1.0 a.u.55.2931029 cm#.
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three-point central difference forms for the momentum op
erators. We attribute the change in the degree of reflecti
asymmetry in moving from the two- to four-componen
Dirac solutions as due to the asymmetric]Ay /]x ‘‘mag-
netic’’ term in the respective nonrelativistic reductions foun
in Eqs. ~8! and ~12!. In the two-component case, the asym
metric ‘‘magnetic’’ term acts directly on the spin 0 reduced

FIG. 4. Time-equal 0.09-a.u. two-component Dirac equation s
lution on a 6003600 point lattice. The Pd461 on Pd451 collision is
at 54.4 MeV/amu and zero impact parameter@radial distances (x,y)
are in atomic units, 1.0 a.u.55.2931029 cm#.

FIG. 5. Time-equal 0.09-a.u. four-component Dirac equation s
lution on a 6003600 point lattice. The Pd461 on Pd451 collision is
at 54.4 MeV/amu and zero impact parameter@radial distances (x,y)
are in atomic units, 1.0 a.u.55.2931029 cm#.
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wave function, while in the four-component case it acts
couple the spin1

2 components of the reduced wave functio
Extending both our Schro¨dinger and Dirac equation solu

tions to nonzero impact parameters, we present the tota
elastic probability as a function of impact parameter in Fig
at an incident ion velocity of 44.9 a.u. All the inelastic pro
ability results are in good agreement at large impact par
eters, but the two- and four-component Dirac results are s
stantially higher than the Schro¨dinger results at small impac
parameters.

For a final comparison, we employ a 2403240 point two-
dimensional lattice with a uniform grid spacing ofDx5Dy

FIG. 7. Time-equal 0.09-a.u. four-component Dirac equation
lution on a 2403240 point lattice. The Pd461 on Pd451 collision is
at 54.4 MeV/amu and zero impact parameter@radial distances (x,y)
are in atomic units, 1.0 a.u.55.2931029 cm#.

FIG. 6. Inelastic probabilities versus impact parameter for Pd461

on Pd451 collisions at the same incident ion velocity of 44.9 a
Solid line: Schro¨dinger equation solution, solid circles: two
component Dirac equation solution, solid squares: four-compon
Dirac equation solution.
03270
o
.

n-
6

-
b-

50.002 a.u. and a soft core parameters50.004. The four-
component Dirac results are shown in Fig. 7 following
collision of Pd461 on Pd451 at an incident velocity of 44.9
a.u. and zero impact parameter. The time-dependent calc
tions for the four-component Dirac equation are then
peated on a full 24032403240 point three-dimensional lat
tice. The probability density in thez50 plane is shown in
Fig. 8 at the same point in collision time and position
found in Fig. 7. The collision dynamics in two and thre
dimensions are quite similar, even though the weaker bi
ing for a Pd461 on Pd451 collision in three dimensions is
reflected in a much larger spatial extent of the electron d
sity cloud.

IV. SUMMARY

Ion-ion collision dynamics are studied by direct solutio
of the time-dependent Schro¨dinger and Dirac equations o
an identical two-dimensional lattice. In the intermediate e
ergy range, the nonrelativistic and fully relativistic inelas
probabilities for a Pd461 on Pd451 collision are found to be
in good agreement at large impact parameters, but differ s
stantially at small impact parameters. When the ion-ion c
lision solutions of the time-dependent Dirac equation in t
and three dimensions are compared, the evolution of
electron probability densities is found to be similar. This is
keeping with previous studies@13,14# comparing ion-atom
solutions of the time-dependent Schro¨dinger equation in two
and three dimensions. Based on these exploratory studie
seems that ion-ion collisions may be readily carried out
direct solution of the time-dependent Dirac equation on a
three-dimensional lattice, although the computational eff
is about four times that of the Schro¨dinger equation. The fac
that this nonperturbative computational approach permit

-

FIG. 8. Time-equal 0.09-a.u. four-component Dirac equation
lution on a 24032403240 point lattice. The Pd461 on Pd451 col-
lision is at 54.4 MeV/amu and zero impact parameter@radial dis-
tances (x,y) are in atomic units, 1.0 a.u.55.2931029 cm#.
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close examination of the short time collision dynamics, wh
at the same time providing cross sections for a variety
state-selective excitation and charge-transfer processes
mains its most appealing feature. However, we urge cau
in extending these studies to examine relatively weak co
sion processes at high incident energies, where the cho
that we have made for the energy dispersion relation,
nuclear potential, and the gauge for the projectile interac
must all be reevaluated.
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