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Discrete momentum representation method for polar molecules: Calculation of the elastic electron
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We present an extension of the method of discrete momentum representation to the calculation of elastic
electron scattering from polar molecules. The essence of this method is the subtraction of the first Born term
from the Lippmann-Schwinger equation, which is solved for a modified interaction potential from which the
long-range part is removed. Forward scattering is described in the first Born approximation. The use of this
method is demonstrated for electron scattering from th® kholecule in the static-exchange approximation.

The results are in good agreement with former calculations as well as with experiments.

PACS numbd(s): 34.80.Bm

[. INTRODUCTION scattering by dipole potentials analyticall$,7]. Unfortu-
nately, analytical methods cannot be employed in calcula-
The method of discrete momentum representafidMR) tions of scattering on molecular potentials; their short-range
was originally developed by Pdlek et al.[1] for calculating ~ parts are too complicated. Similarly, even the two-potential
the differential and integral cross sections of the nonresonarf@rmalism(see, e.g., JoachajB]), where the dipole scatter-
elastic electron-molecule scattering. It belongs to the groufnd is solved analytically and the rest is calculated in the
of methods based on the solution of the Lippmann-bas's _of dipole-scattering elgenf_uncnons, seems to be too
Schwinger equation in momentum space. A similar, but nu€omplicated for our case. To avoid these problems, we have
merically different approach was used by McCarthy andd€veloped a simpler formalism, one that is easier to apply
Stelbovics[2] and Bray and Stelbovidg] for atoms and by com_putatlonally. It is based on the fapt that differential cross
McCarthy and Rossj4,5] for diatomic molecules. In Ref. sections as .vvell'as slcattenr'\g.amplltudes tend tq their f|rst
[1], as well as in this paper, larger molecules are treated. ThBorn approximations in the limit of forward scattering. This

Hartree-Fock wave function was used for the molecule, an Fmit was recognized by Mittleman and von Holf#] and
' ater used by other authors in the development of Born clo-

the scattered electron wave function was composed of plang, .. method§9—15). In these methods, the partial-wave ex-
waves, which are the natural basis of scattering processe, ansion is truncated at some certain,quantum number, and

The static-exchange approximation was employed to evalyye contripution of higher partial waves is expressed in terms

ate theT matrix. Although this method is quite simple, it 4 the first Born approximation. In the older studi@s-13,
provided good results for the elastic electron scattering ofpig approach was applied directly to the differential cross
hydrogen and methane molecules. However, the straightfokection, while in the more recent onlgt, 15 it is the scat-
ward extension of this theory to polar targets is not possibleering amplitude that is expressed in this way. Similarly, in
because the dipole potential influences the incoming electropur method this approximation is also applied to the scatter-
even at a long distance from the target. This long-range paing amplitude, but in a different way. Since no partial-wave
tential causes infinite values for the diagonal matrix elementexpansion is used in this method, the scattering amplitude for
of the Coulomb terms, i.e., those corresponding to the zerdow angles can be directly replaced by its first Born counter-
momentum-transfer vector, making any further treatment opart, and we can concentrate on calculating large-angle scat-
the interaction potential matrix impossible. Moreover, thetering only. Since large-angle scattering is controlled by the
problem with the dipole moment complicates not only theshort-range part of the interaction potential, we may use a
calculation of the elastic scattering of polar molecules, butruncated potential, one in which the long-range part is cut
also the calculation of inelastic scattering processes. Ele®ff by a rapidly decreasing functiofe.g., by an exponential
tronically excited states are often polar, even for moleculesunction with a negative exponentThus the truncation of
with a nonpolar ground state, and some vibrational modethe partial-wave expansion is replaced by the truncation of
give rise to polar molecular structures even when the targehe interaction potential. Altogether, it means that we can
molecule has a zero dipole moment at its equilibrium geomealculate the scattering amplitude with the subtracted first
etry. This means that the original version of DMR cannot beBorn term and the truncated potential, and then we can sim-
applied to inelastic-scattering calculations. ply add back the first Born amplitude.
Several papers describe methods for calculating elastic The theoretical background of the proposed method is
given in Sec. Il, and Sec. Ill describes computational details.
Section IV continues with results for our calculations of the
*Corresponding author. Email address: carsky@jh-inst.cas.cz  differential and momentum-transfer cross sections fg®H
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followed by a comparison of these results with some other a(k—ko)
theoretical results and with experimental data. X= bkrko)’ ()

wherea andb are constants. The latter is a Lebedev integra-
tion quadraturg¢16] of a given order. Radial quadrature also
A. Overview of the DMR method contains the residue point, which corresponds to the energy
The DMR method is discussed in detail in REf] and o EIt]k(islndci!sdcergtilelttai(c:)trzonr.ovides the LS equation in the matrix
only a brief summary is given here. An extension of the P q

treatment to polar molecules is described below. As in Refform

[1], all the quantities in the following equations are in atomic T=U+UG{T (6)
units. ’
The basic equation of the scattering problem is theyhere G is the matrix of the Green’s function in the
Lippmann-Schwinge(LS) equation: discrete-momentum representation. Because of a typographi-
cal error in Ref[1], we repeat the definition of its elements

|w())=|koy= fd3k—M| Ty, (1)  in this paper:
(Gg )ajpi=—Oqpdjii MWiko/2 for p=0, (73

Il. THEORY

In the DMR method, Eq(1) is solved to obtain matrix ele- 2abw,w, kﬁko

ments of thel operator for all combinations of wave vectors (G gi 0i= Oqpdii for p#0.
of the incoming and outgoing waves with magnitude 0 7alPTTaPTI (a—bxy) 2(k5—k?) b
ko= 2E, (2)  Inthese equationp=0 whenk,=kg, andx, is defined by

Eq. (5). Equation(6) can be easily solved for thE matrix

whereE is the energy of the incident electron. To perform T=(1- UGa’)‘lu. (8)
this, we transform the equation to the form

Once theT matrix is known, we can calculate the scattering
amplitude and differential cross section for those pairk of

(k'[U[k) (K| Tlko) (3y  vectors that are present in the angular quadrature,

(K [Tlko)=(Ulko) + | 0

ki—k2+ie
1
. . . Afi:—2—<kf|T|ki>, ©)
The integral on the right-hand side of E@) can be formally 77
evaluated in the form of its principal value and a residue: k|
f
0= |k | |Af||2- (10)
oy (UL (K Tlo)
kg—k2+is The determination of the scattering amplitudes for differ-
5 ent pairs of vectors as well as the averaging over the molecu-
b dk 40 k <k |U|k><k|T|ko> lar orientation is described in detail in Sec. IID.
- o K —K2+ie Once the differential cross section is calculated, we can

calculate the integral and momentum-transfer cross sections:

i mk
‘%f dQ (k' [U[ko)(Ko| Tlko).  (4)
- Tinf= fﬂa(ﬂ)dﬂ, (11)

In this equation{}, is a solid angle irk space. From Eq4)

we can obtain th&-matrix element for any pair of incoming Omi= f o(Q)[1—cog6)]dQ, (12
and outgoing wave vectors from the continuous momentum Q

space, but we must know all the correspondihglements,
defined as twice the interaction potenti(U=2V) ele-
ments. The analytical solution of E¢4) is not accessible.
Therefore we transformed it into matrix form, discretizing
the integral by means of quadrature in both the radial and
angular subspaces. The former is composed of the abscissasThe optical potential represents the interaction between
of Gauss-Legendre integration quadrature after transformahe incident electron and the target molecule. Its construction
tion of the integration intervallyi,,knay ONto the interval allows us to describe the electron-molecule collision as a
(=1, D (kmin is @ number close to zero atg, is a cutoff  one-electron process. Its form for the DMR methaglin the
value; see Refl1]) by the following substitution static-exchange approximation consists of the static (@art

whered is the scattering angle arfd represents the integra-
tion angles.

B. Construction of the optical potential
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Ref.[1], the factor 4r/K? is also erroneously applied to the Ref. [6]). For these reasons, we introduce an approximate
Coulombic term, but the computer code is free of this grror theory involving a modified potential from which the long-
range part is removed.

Consequently, we propose a method for the solution of
the LS equation in which the first Born term is subtracted. It
is derived from Eq(6) in the following simple way:

k2ﬁ’>’ (13 T=U+UGT,

4 ]
(ka|Vglka)=— FEA“ ZpexpiK-Rp)

1
+ P.sl Kia|—
aZ,B B< ! 12

and the exchange part T—U=UGT=UG, (T—-U+U)=UG, U+ UG, (T-U),

T—U=(1-UG{) UG U. (19

1 1
(kq|Vxlka)y=— 52 Pa,e< Kia r_lz‘ ,3k2> : (14

ap In general, we can derive a whole class of such equations,

subtracting more than one Born term:
Here o and g denote the basis-set function,; are the

density-matrix elementsK =k,—k; is the momentum- T—B;——B,=(1-UGg) 'Bp:1, (19
transfer vectorZ, is the nuclear charge of the nucledisand .
R, is its position vector. Methods for calculating the Cou- WhereB,, denotes thexth Born term. For our practical pur-

lomb and exchange integra's that occur in Hqg) and (14) pose, hOWeVer, E((18) is the most suitable. The pOtential of
are described in detail ifL7]. a polar molecule consists of the dipole pdg and the short-

range part. For the purpose of the solution of ELB), we
C. Modification of DMR for polar targets construct a modified dipole potentidl,, of the form
The problem of the dipole singularity originates from the _ PN PL S
static potential. As we showed in Réfl], by integration Un(r)=Up(r)e —ZT;e ' (20
overr,, the matrix element can be expressed as
and use it instead of the dipole potentid}, (D is the dipole
_om iKor momenj. The factor 2 arises from the difference betwéén
(ka|Vslkz) Wf e p(ndr, 19 andv potentials (U =2V). Whereas théJ, element of the
unmodified dipole potential is
where the total charge densitypuclear plus electronjcis

defined 87iK-D
efined as (kq]Uplko) = —7— (21)

p(r)= —2 Zpd(r=Rp) +22 |@i(n)|2. (16)  the element ofJy, is

87iK-D c K
The symbolg; stands for all occupied spatial orbitals. Using (kq|Upl ko) = —xz |1 Rarctar(E } (22
the Taylor expansion for the exponential in Efj5) we ob-

tain Obviously, this element is analytical over the whole momen-
5 tum space, including the origin of the coordinate system, for

(ko [V ko) = 47Tf L4iK.r— (K1) which its limit asK — 0 is vanishing. Having obtained ;,,

HYsIt2/ = 2 2 we substitute it for the dipole potentitly, which may be
3 identified with the second term on the right-hand side of Eq.
—j (K-r) +--[p(r)dr (17) (17). The U potential so prepared is then used for the “sub-
6 ' tracted” LS equation(18). Its solution may be viewed as

integration of singular functions ignoring the singularity
The first term on the right-hand side of Ed.7) represents [18]. Although this method must be used with caution in
integration over the total charge density, and it therefore vansome cases, it can provide reasonable results. Then, for the
ishes for neutral molecules. The second term corresponds glements with nonzerl, we evaluate the first Born term as
the electron-permanent dipole interaction. It is obvious thatt is done for nonpolar targefd], and we add them to the
this term tends to infinity in the forward direction, i.e., when solution of Eq.(18) to obtain the completd matrix.
K—0. All other terms of the static part of tHg element in This approach is similar to the method of Rescignal.
Eq. (17) are finite. Therefore the dipole term is a leading[14] and Gianturco and Sciallgl9]. They also divided the
term in the forward direction. As we mentioned above, thisscattering amplitude into the first Born term and the rest. The
singularity is caused by the long-range part of the interactiortatter part is expressed in the form of a truncated partial-
potential and does not influence significantly scattering tovave expansion in which the short-range potential plays the
larger angles. Moreover, the scattering amplitude tends to itdominant role. This part is especially important in the larger-
first Born approximation in the forward directigsee, e.g., angle directions. The long-range part, on the other hand, is
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described by the first Born term and is dominant in the low- N
angle directions. We do not truncate the partial-wave series, Tmn=Umnt 2 Uni(Gg)iTjn- (24)
but the potential itself. .

Next, we comment on the form of tHe,, potential. The | these equations, the indice§ correspond to the original
smaller the constart, the more accurate the result we canquadrature vectors, whileyn denote the newly generated
obtain because the modified potenti}, approximates bet- random vectors. Hence we need to evaluate the rectangle
ter the dipole potential. However, our grid consists of a finitematrix U; » (and its complex conjugatey, ;) and the square
number ofk vectors. Hence for a sufficiently small value of matrix U, ,. After the evaluation of the additiondl ele-
the constant, theU ,, elements are practically indistinguish- ments, all the pairs of the new vectors are sorted according to
able from theU elements for all pairs ok vectors present the angle between them into the intervals of a given length,
in our grid that have a nonzero difference. Differences bee.g., 1°. Scattering amplitudes and corresponding differential
tweenU,, and Uy elements occur only foK vectors too Cross sections are determined for these pairs and averaged

small to be resolved by our grid vectors. Therefore we us&vithin every interval. The averaged value is then considered
Up elements instead df,, elements for all pairs of grid @s the value of the differential cross section at the middle

vectors withK different from zero, and fok =0 we set the ~ POint of the given interval. _ _
element to zero. Potential elements evaluated in this wa Thus the values of the differential cross sections are ob-

correspond to elements of th,, potential with an ex- ained for many points over the intenj@°, 1809. The more

tremely smallc. (It should be mentioned that the function random vectors we genergte, the smoother is the curve
e~ °"is not the only possibility for the cutoff function. Many fo”"_ed by the calculated points. _Its _sr_noothness can l_)e fur-
functions that decrease rapidly at large distances and attger '”_'pro"ed by expanding the mdw@ual averaging inter-

equal to 1 at the origin might be used. The present choicgals’ since more vectors are averaggd in each mterv.al. How-
was done mainly for mathematical conveniefce ever, when the differential cross section changes rapidly over

When the conclusions of the preceding paragraph are a& short range of angles, structure can be lost in the averaging

plied, the computational procedure can be simplified considprocedqre if the intervals are too long. Although it is possible
erably. TheUs elements are evaluated by means of @) " principle to use a large number of random vectors and so
for all pairs ofk vectors withK #0, just as they are done for produce very smooth curves, this technique would be very

. ; - costly. Therefore it is more efficient to use only some of the
Eggtp %ﬁ;}?&?‘?ﬁé:& gs It:hoeKSE%)dﬂl:ES\lz)vfrmeI:; ?h(; 7’2hlﬁ’d vectors, e.g., one in ten, and to construct the curve by fitting
(quadrupolgterm in Eq.(17) is kept, since the dipole term is with cubic splines.

omited (a5 expiained in he preceding paragrmphd the . AOI"T PIOMEM wih s methed aees fom e fact
other terms are equal to zero. Thus the singularity in thé P y

forward scattering is eliminated by this construction of the'S proportional to the sine of the angle correspanding to the

potential elements. Equatidii8) can be rearranged back to ![Eteer%/grf:'s%h:}?nlg?ﬂf pnglrgt ODCl::?JI’tSOiIt’}hItSI’]gri?] ?:rr\t/lzglrs]agtr)cl)’un q
the form of Eq.(8), as it is no longer necessary to SubtraCt90°, while in the intervals around 0° and 180° the number of

the singular part of the potential elements. Physically Mean airs is markedly smaller. Therefore in these sparse areas the
ingful scattering amplitudes are obtained for nonzero scattef? y ' P

ing angles. The results for the water molecule were obtaine§ 05S section must be extrapolateq from the adjoining inter-
in this way. vals. Nevertheless, when calculating polar molecules there

are no problems with the region close to 0°, because here the
cross section diverges, and we do not calculate values in this
region at all. A different and more efficient averaging
method based on the decomposition of Thelement in the

A basic method of molecular-orientation averaging Washasis of spherical harmonic functions is presently being de-
described in1]. In this technique, many pairs &f vectors  veloped in our group.

are constructed for every scattering angle, distributing their
endpoints on a circle of a given radius around each quadra-
ture point. Although this method provides reliable results, its
disadvantage is that it requires a large computational effort All calculations for the water molecule were performed in
and therefore enormous demands on computer time. To cop optimized geometry at the Hartree-Fock level using
with this problem we suggest an alternative method based o8adlej's TZV basis sd20]. The value of the dipole moment
the same principle but using the calculated matrix elementfor the SCF-optimized geometry in this basis set is 0.8060
more efficiently. a.u., which is slightly overestimated in comparison with the
In this alternative method, a set of randomly oriented vecexperimental value of 0.724 a.i21]. The basis set and the

tors of magnitudek,| is generated using a random-number obtained molecular-orbital density matrix were transferred
generator. Newl elements are calculated for every pair of into the DMR program to compute Coulomb and exchange

D. Averaging over the molecular orientation

Ill. COMPUTATIONAL DETAILS

the vectors using the following equations: integrals by means of Eq$13) and (14). The numerical
quadrature used for the integration of the Lippmann-
Ti’n:; [(1— UGg)il]i,jUj,nu (23) Schwinger equation consisted of a radial part formed by a

Gauss-Legendre quadrature transformed to the integration
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FIG. 1. Differential cross sections for the pure dipole potential

(1 a.u) for different values of the constant Dotted line,c=0.1; FIG. 3. Differential cross sections of the elastic electron scatter-

dot-dashed lineg=0.05; dashed linec=0.01; solid line,c=0. ing on HO for 20 eV (convergence with respect to the angular
guadrature, the number of radial points in all calculations is 23

interval (see Sec. Il Aand an angular part consisting of the Long-dashed line, 50 angular points; dashed line, 86 angular points;

points of Lebedev quadratufé6]. Radial quadratures with Solid line, 110 angular points.

19, 21, and 23 points and angular quadratures with 50, 86,

and 110 pOiI’ltS were used in individual calculations to demvalues apparently converge to the Iimiting valire 0, as was

onstrate the convergence in both dimensions. In the averagxplained in Sec. Il C. Hence in practice it is not necessary to

ing procedure, 1000 random vectors were generated and thestrict the long-range potential by the exponential function

averaging-interval length was set to 1°. since it is done automatically by the discrete integration grid
in the k space.
IV. RESULTS AND DISCUSSION Making use of this fact, we developed a remarkably

simple method of using the modified dipole potential. For
As the results of our method depend on the constasee  o4ch pair ok vectors withK 0 the value of the unmodified
Egs. (20) and (22)], we first tested the convergence of the jyteraction potential is used, and fr=0 its dipole part in

cross section with respect to this constant. For this PUIPOS§sq (17) is set to zero. We used this method to calculate

the elastic electron scattering on the dipole poteritiglole ifterential and momentum-transfer cross sections of elastic
moment of 1 a.y.was calculated. The differential cross SeC- qjactron scattering from the 4 molecule in the static-

tions for several values of are presented in Fig. 1. The

40 4.0 ¢
) &
Ns s
5 3.0 _§ 30 r
- [}
8 8 2.0
(=] L = R r
S 20 5
g g
2 £ 10
£ 10 E
a a
0.0 L L L L L 0.0 ! . L L L
0.0 30.0 60.0 90.0 120.0 150.0 180.0 0.0 30.0 60.0 . 90.0 120.0 150.0 180.0
Scattering angle (deg) Scattering angle (deg)

FIG. 2. Differential cross sections of the elastic electron scatter- FIG. 4. Differential cross sections of the elastic electron scatter-
ing on H,O for 6 eV (convergence with respect to the angular ing on HO for 6 eV. Solid line, present results; long-dashed line,
quadrature, the number of radial points in all calculations is 23 calculations by Brescansiet al. [22]; dashed line, calculations by
Long-dashed line, 50 angular points; dashed line, 86 angular point§ianturco and Sciallf19]; +, experiment by Shyn and CH@3];
solid line, 110 angular points. X, experiment by Danjo and Nishimufa4].
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3.0 - 3.0
Ns Ns
S S
g 20 ¢ 8 20
8 2
) G
8 8
$ 1.0 F $ 10
2 2
[a) =)
0.0 ‘ - . : : 0.0 ! ‘ ‘ : ;
0.0 30.0 60.0 90.0 120.0 150.0 180.0 0.0 30.0 60.0 90.0 120.0 150.0 180.0
Scattering angle (deg) Scattering angle (deg)

FIG. 5. Differential cross sections of the elastic electron scatter- FIG. 7. Differential cross sections of the elastic electron scatter-
ing on H,0 for 10 eV. For the description of the individual curves ing on H,0 for 20 eV. For the description of the individual curves
see Fig. 4. see Fig. 4.

exchange approximation for incident electron energies fromy, -4 24]. These results are also tabulated in Table I. The
210 20 eV. The convergence studies were performed for all greement with previous theoretical results seems to be sat-
combinations of three radiall9, 21, 23 pointsand three jstactory. Our results are closer to those of Brescaasil.
angular Lebedev quadratur€s0, 86, 110 points The cal- 2] which may be explained by the rather different ap-

culation is remarkably stable with respect to the change ”Eéroach that was used in the calculations of Gianturco and
the radial quadrature. The corresponding curves are, in facga|a[19]. The experimental data are also reproduced rela-
identical, and therefore not shown. The angular convergencge|y well, although only the static-exchange approximation

is demonstrated in Figs. 2 and 3 for 6 and 20 eV, respeqy ,geq. Calculations for energies lower than 2 eV were not

tively. The angular quadrature with 50 points is apparentlyaiempted since the use of the static-exchange approximation
insufficient, but the two higher ones provide good conver-g not justifiable in this region.

gence. Identical convergence tests were also performed for \;omentum-transfer cross sections were calculated using
energies of 10 and 15 eV with analogous resitst shown. Eq. (12). Only the values of differential cross sections from
Differential cross sections for 6, 10, 15, and 20 eV are shown
I[gzl]:lgf]a 4&;&%?2?2;?;2;?&5 S;IILSO Ofeﬁgerﬁ](::;ei:ilhe TABLE |. Differential cross sections for elastic electron scatter-
i . . ' . P .ing on H,O for electron energies of 6, 10, 15, and 20 eV.
static-exchange approximation, and with two sets of experi-

mental values by Shyn and CHa3] and Danjo and Nish-

_ DCS (A?%srn)
Scattering angle

' ' ' (deg 6 eV 10 eV 15 eV 20 eV
30 - 25 4.05 3.30 3.32 3.16
5 30 3.14 2.64 2.73 2.61
S 40 1.91 1.70 1.75 1.65
S 50 1.40 1.24 1.16 1.04
g 20 60 1.11 1.00 0.85 0.72
§ 70 0.91 0.83 0.65 0.52
E 80 0.72 0.67 0.53 0.41
'% 90 0.56 0.53 0.43 0.34
§ 10 r 100 0.42 0.40 0.35 0.29
a 110 0.30 0.29 0.30 0.26
120 0.23 0.25 0.31 0.28
‘ ‘ ‘ ‘ ‘ 130 0.22 0.30 0.40 0.37
%0 300 600 900 1200 1500 180.0 140 0.27 0.47 0.60 0.55
Scattering angle (deg) 150 0.35 0.69 0.86 0.78
160 0.44 0.92 1.13 1.02
FIG. 6. Differential cross sections of the elastic electron scatter- 170 0.51 1.07 1.31 1.18
ing on H,O for 15 eV. For the description of the individual curves 180 0.54 1.15 1.41 1.28

see Fig. 4.
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12.0 TABLE II. Integral cross sections for elastic electron scattering
\ on H,0.
< Energy ICS Energy ICS
g (eV) (R?) eV) (AR?)
5 2 9.82 12 7.57
s 3 7.68 13 7.61
2 4 6.30 14 7.56
£ 5 6.08 15 7.45
2 6 6.16 16 7.30
% 7 6.32 17 7.12
= 8 6.56 18 6.93
9 6.85 19 6.74
20 5.0 10.0 15.0 20.0 10 7.15 20 6.55
Scattering energy (eV) 11 7.40

FIG. 8. Integral cross sections for the elastic electron scattering
on H,0. Solid line, present results; dotted line, calculation by Bres-
cansinet al.[22]; dashed line, calculation by Gianturco and Scialla
[19]; +, experiment by Shyn and Chi®@3]; X, experiment by
Danjo and Nishimur#?24].

V. CONCLUSIONS

We have extended the original DMR methfi to the
calculation of elastic electron-molecule-scattering cross sec-
tions for polar targets. Although the method is remarkably

simple, it provides good results for intermediate scattering

25° to 180° are taken into account for two reasons. The dat@nergies, as was demonstrated by the example of @& H
for lower angles are not reliable, and they contribute negliyhglecule. Moreover, this method is not excessively time
gibly to the integral. The result is plotted in Fig. 8 together consuming, so it may be applied to scattering calculations for
with other theoretica[19,22 and experimental23,24 re-  |arger molecules. An alternative algorithm for averaging the
sults, and it is tabulated in Table Il. Our curve agrees bettefes it over the molecular orientation was introduced, which
with the one from Ref[22] than with that from Ref[lg] for  is pased on the same principle as the former [dijeout is

the reasons discussed above. Both experimental resuligore efficient. With the planned addition of polarization
[23,24 show the maximum in the energy range of 10-15rms to the optical potential, the DMR method seems to

eV. A more precise statement cannot be given because onfyaye the potential to be very promising as a powerful tool in
a few experimental points are available in both stud&® he field of scattering calculations.

Fig. 8. However, this feature is qualitatively reproduced by
our calculation; the absolute values lie between the two ex-
periments. We can conclude that both the calculations of
differential and integral cross sections provide reliable re-
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