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Discrete momentum representation method for polar molecules: Calculation of the elastic electro
scattering on the H2O molecule
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We present an extension of the method of discrete momentum representation to the calculation of elastic
electron scattering from polar molecules. The essence of this method is the subtraction of the first Born term
from the Lippmann-Schwinger equation, which is solved for a modified interaction potential from which the
long-range part is removed. Forward scattering is described in the first Born approximation. The use of this
method is demonstrated for electron scattering from the H2O molecule in the static-exchange approximation.
The results are in good agreement with former calculations as well as with experiments.

PACS number~s!: 34.80.Bm
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I. INTRODUCTION

The method of discrete momentum representation~DMR!
was originally developed by Pola´šek et al. @1# for calculating
the differential and integral cross sections of the nonreson
elastic electron-molecule scattering. It belongs to the gr
of methods based on the solution of the Lippman
Schwinger equation in momentum space. A similar, but
merically different approach was used by McCarthy a
Stelbovics@2# and Bray and Stelbovics@3# for atoms and by
McCarthy and Rossi@4,5# for diatomic molecules. In Ref
@1#, as well as in this paper, larger molecules are treated.
Hartree-Fock wave function was used for the molecule,
the scattered electron wave function was composed of p
waves, which are the natural basis of scattering proces
The static-exchange approximation was employed to ev
ate theT matrix. Although this method is quite simple,
provided good results for the elastic electron scattering
hydrogen and methane molecules. However, the straigh
ward extension of this theory to polar targets is not poss
because the dipole potential influences the incoming elec
even at a long distance from the target. This long-range
tential causes infinite values for the diagonal matrix eleme
of the Coulomb terms, i.e., those corresponding to the z
momentum-transfer vector, making any further treatmen
the interaction potential matrix impossible. Moreover, t
problem with the dipole moment complicates not only t
calculation of the elastic scattering of polar molecules,
also the calculation of inelastic scattering processes. E
tronically excited states are often polar, even for molecu
with a nonpolar ground state, and some vibrational mo
give rise to polar molecular structures even when the ta
molecule has a zero dipole moment at its equilibrium geo
etry. This means that the original version of DMR cannot
applied to inelastic-scattering calculations.

Several papers describe methods for calculating ela
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scattering by dipole potentials analytically@6,7#. Unfortu-
nately, analytical methods cannot be employed in calcu
tions of scattering on molecular potentials; their short-ran
parts are too complicated. Similarly, even the two-poten
formalism ~see, e.g., Joachain@8#!, where the dipole scatter
ing is solved analytically and the rest is calculated in t
basis of dipole-scattering eigenfunctions, seems to be
complicated for our case. To avoid these problems, we h
developed a simpler formalism, one that is easier to ap
computationally. It is based on the fact that differential cro
sections as well as scattering amplitudes tend to their
Born approximations in the limit of forward scattering. Th
limit was recognized by Mittleman and von Holdt@6# and
later used by other authors in the development of Born c
sure methods@9–15#. In these methods, the partial-wave e
pansion is truncated at some certain quantum number,
the contribution of higher partial waves is expressed in ter
of the first Born approximation. In the older studies@9–13#,
this approach was applied directly to the differential cro
section, while in the more recent ones@14,15# it is the scat-
tering amplitude that is expressed in this way. Similarly,
our method this approximation is also applied to the scat
ing amplitude, but in a different way. Since no partial-wa
expansion is used in this method, the scattering amplitude
low angles can be directly replaced by its first Born count
part, and we can concentrate on calculating large-angle s
tering only. Since large-angle scattering is controlled by
short-range part of the interaction potential, we may us
truncated potential, one in which the long-range part is
off by a rapidly decreasing function~e.g., by an exponentia
function with a negative exponent!. Thus the truncation of
the partial-wave expansion is replaced by the truncation
the interaction potential. Altogether, it means that we c
calculate the scattering amplitude with the subtracted fi
Born term and the truncated potential, and then we can s
ply add back the first Born amplitude.

The theoretical background of the proposed method
given in Sec. II, and Sec. III describes computational deta
Section IV continues with results for our calculations of t
differential and momentum-transfer cross sections for H2O,
©2000 The American Physical Society03-1
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followed by a comparison of these results with some ot
theoretical results and with experimental data.

II. THEORY

A. Overview of the DMR method

The DMR method is discussed in detail in Ref.@1# and
only a brief summary is given here. An extension of t
treatment to polar molecules is described below. As in R
@1#, all the quantities in the following equations are in atom
units.

The basic equation of the scattering problem is
Lippmann-Schwinger~LS! equation:

uC~1 !&5uk0&5E d3k
uk&^ku

k0
22k21 i«

UuC~1 !&. ~1!

In the DMR method, Eq.~1! is solved to obtain matrix ele
ments of theT operator for all combinations of wave vecto
of the incoming and outgoing waves with magnitude

k05A2E, ~2!

whereE is the energy of the incident electron. To perfor
this, we transform the equation to the form

^k8uTuk0&5^k8uUuk0&1E d3k
^k8uUuk&^kuTuk0&

k0
22k21 i«

. ~3!

The integral on the right-hand side of Eq.~3! can be formally
evaluated in the form of its principal value and a residue

E d3k
^k8uUuk&^kuTuk0&

k0
22k21 i«

5PE
0

`

dkE
Vk

dVk

k2^k8uUuk&^kuTuk0&
k0

22k21 i«

2
ipk0

2 E
Vk

dVk^k8uUuk0&^k0uTuk0&. ~4!

In this equation,Vk is a solid angle ink space. From Eq.~4!
we can obtain theT-matrix element for any pair of incoming
and outgoing wave vectors from the continuous momen
space, but we must know all the correspondingU elements,
defined as twice the interaction potentialV(U52V) ele-
ments. The analytical solution of Eq.~4! is not accessible
Therefore we transformed it into matrix form, discretizin
the integral by means of quadrature in both the radial
angular subspaces. The former is composed of the absc
of Gauss-Legendre integration quadrature after transfor
tion of the integration interval (kmin ,kmax) onto the interval
~21, 1! (kmin is a number close to zero andkmax is a cutoff
value; see Ref.@1#! by the following substitution
03270
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a~k2k0!

b~k1k0!
, ~5!

wherea andb are constants. The latter is a Lebedev integ
tion quadrature@16# of a given order. Radial quadrature als
contains the residue point, which corresponds to the ene
of the incident electron.

This discretization provides the LS equation in the mat
form

T5U1UG0
1T, ~6!

where G0
1 is the matrix of the Green’s function in th

discrete-momentum representation. Because of a typogra
cal error in Ref.@1#, we repeat the definition of its elemen
in this paper:

~G0
1!q j ,pi52dqpd j i ipwik0/2 for p50, ~7a!

~G0
1!q j ,pi5dqpd j i

2abwpwikp
2k0

~a2bxp!2~k0
22kp

2!
for pÞ0.

~7b!

In these equations,p50 whenkp5k0 , andxp is defined by
Eq. ~5!. Equation~6! can be easily solved for theT matrix

T5~12UG0
1!21U. ~8!

Once theT matrix is known, we can calculate the scatteri
amplitude and differential cross section for those pairs ok
vectors that are present in the angular quadrature,

Af i52
1

2p
^k f uTuk i&, ~9!

s f i5
uk f u
uk i u

uAf i u2. ~10!

The determination of the scattering amplitudes for diffe
ent pairs of vectors as well as the averaging over the mole
lar orientation is described in detail in Sec. II D.

Once the differential cross section is calculated, we c
calculate the integral and momentum-transfer cross secti

s inf5E
V

s~V!dV, ~11!

smt5E
V

s~V!@12cos~u!#dV, ~12!

whereu is the scattering angle andV represents the integra
tion angles.

B. Construction of the optical potential

The optical potential represents the interaction betw
the incident electron and the target molecule. Its construc
allows us to describe the electron-molecule collision a
one-electron process. Its form for the DMR method@1# in the
static-exchange approximation consists of the static part~in
3-2
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Ref. @1#, the factor 4p/K2 is also erroneously applied to th
Coulombic term, but the computer code is free of this err!

^k1uVSuk2&52
4p

K2 (
A

ZA exp~ iK•RA!

1(
a,b

PabK k1aU 1

r 12
Uk2b L , ~13!

and the exchange part

^k1uVXuk2&52
1

2 (
a,b

PabK k1aU 1

r 12
Ubk2L . ~14!

Here a and b denote the basis-set functions,Pab are the
density-matrix elements,K5k22k1 is the momentum-
transfer vector,ZA is the nuclear charge of the nucleusA, and
RA is its position vector. Methods for calculating the Co
lomb and exchange integrals that occur in Eqs.~13! and~14!
are described in detail in@17#.

C. Modification of DMR for polar targets

The problem of the dipole singularity originates from t
static potential. As we showed in Ref.@1#, by integration
over r1 , the matrix element can be expressed as

^k1uVSuk2&5
4p

K2 E eiK•rr~r !dr , ~15!

where the total charge density~nuclear plus electronic! is
defined as

r~r !52(
A

ZAd~r2RA!12(
i

uw i~r !u2. ~16!

The symbolw i stands for all occupied spatial orbitals. Usin
the Taylor expansion for the exponential in Eq.~15! we ob-
tain

^k1uVSuk2&5
4p

K2 E F11 iK•r2
~K•r !2

2

2 i
~K•r !3

6
1¯Gr~r !d3r . ~17!

The first term on the right-hand side of Eq.~17! represents
integration over the total charge density, and it therefore v
ishes for neutral molecules. The second term correspond
the electron-permanent dipole interaction. It is obvious t
this term tends to infinity in the forward direction, i.e., whe
K→0. All other terms of the static part of theU element in
Eq. ~17! are finite. Therefore the dipole term is a leadi
term in the forward direction. As we mentioned above, t
singularity is caused by the long-range part of the interac
potential and does not influence significantly scattering
larger angles. Moreover, the scattering amplitude tends t
first Born approximation in the forward direction~see, e.g.,
03270
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Ref. @6#!. For these reasons, we introduce an approxim
theory involving a modified potential from which the long
range part is removed.

Consequently, we propose a method for the solution
the LS equation in which the first Born term is subtracted
is derived from Eq.~6! in the following simple way:

T5U1UG0
1T,

T2U5UG0
1T5UG0

1~T2U1U!5UG0
1U1UG0

1~T2U!,

T2U5~12UG0
1!21UG0

1U. ~18!

In general, we can derive a whole class of such equatio
subtracting more than one Born term:

T2B12¯2Bn5~12UG0
1!21Bn11 , ~19!

whereBn denotes thenth Born term. For our practical pur
pose, however, Eq.~18! is the most suitable. The potential o
a polar molecule consists of the dipole partUD and the short-
range part. For the purpose of the solution of Eq.~18!, we
construct a modified dipole potentialUm of the form

Um~r !5UD~r !e2cr52
D•r

r 3 e2cr, ~20!

and use it instead of the dipole potentialUD ~D is the dipole
moment!. The factor 2 arises from the difference betweenU
andV potentials (U52V). Whereas theUD element of the
unmodified dipole potential is

^k1uUDuk2&5
8p iK•D

K2 , ~21!

the element ofUm is

^k1uUmuk2&5
8p iK•D

K2 F12
c

K
arctanS K

c D G . ~22!

Obviously, this element is analytical over the whole mome
tum space, including the origin of the coordinate system,
which its limit asK→0 is vanishing. Having obtainedUm ,
we substitute it for the dipole potentialUD , which may be
identified with the second term on the right-hand side of E
~17!. TheU potential so prepared is then used for the ‘‘su
tracted’’ LS equation~18!. Its solution may be viewed a
integration of singular functions ignoring the singulari
@18#. Although this method must be used with caution
some cases, it can provide reasonable results. Then, fo
elements with nonzeroK , we evaluate the first Born term a
it is done for nonpolar targets@1#, and we add them to the
solution of Eq.~18! to obtain the completeT matrix.

This approach is similar to the method of Rescignoet al.
@14# and Gianturco and Scialla@19#. They also divided the
scattering amplitude into the first Born term and the rest. T
latter part is expressed in the form of a truncated part
wave expansion in which the short-range potential plays
dominant role. This part is especially important in the larg
angle directions. The long-range part, on the other hand
3-3
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described by the first Born term and is dominant in the lo
angle directions. We do not truncate the partial-wave ser
but the potential itself.

Next, we comment on the form of theUm potential. The
smaller the constantc, the more accurate the result we c
obtain because the modified potentialUm approximates bet-
ter the dipole potential. However, our grid consists of a fin
number ofk vectors. Hence for a sufficiently small value
the constantc, theUm elements are practically indistinguish
able from theUD elements for all pairs ofk vectors presen
in our grid that have a nonzero difference. Differences
tween Um and UD elements occur only forK vectors too
small to be resolved by our grid vectors. Therefore we
UD elements instead ofUm elements for all pairs of grid
vectors withK different from zero, and forK50 we set the
element to zero. Potential elements evaluated in this w
correspond to elements of theUm potential with an ex-
tremely smallc. ~It should be mentioned that the functio
e2cr is not the only possibility for the cutoff function. Man
functions that decrease rapidly at large distances and
equal to 1 at the origin might be used. The present cho
was done mainly for mathematical convenience.!

When the conclusions of the preceding paragraph are
plied, the computational procedure can be simplified con
erably. TheUS elements are evaluated by means of Eq.~17!
for all pairs ofk vectors withKÞ0, just as they are done fo
nonpolar targets. Thus the second~dipole! term in Eq.~17! is
kept without change. ForK50, however, only the third
~quadrupole! term in Eq.~17! is kept, since the dipole term i
omitted ~as explained in the preceding paragraph! and the
other terms are equal to zero. Thus the singularity in
forward scattering is eliminated by this construction of t
potential elements. Equation~18! can be rearranged back t
the form of Eq.~8!, as it is no longer necessary to subtra
the singular part of the potential elements. Physically me
ingful scattering amplitudes are obtained for nonzero sca
ing angles. The results for the water molecule were obtai
in this way.

D. Averaging over the molecular orientation

A basic method of molecular-orientation averaging w
described in@1#. In this technique, many pairs ofk vectors
are constructed for every scattering angle, distributing th
endpoints on a circle of a given radius around each qua
ture point. Although this method provides reliable results,
disadvantage is that it requires a large computational ef
and therefore enormous demands on computer time. To c
with this problem we suggest an alternative method base
the same principle but using the calculated matrix eleme
more efficiently.

In this alternative method, a set of randomly oriented v
tors of magnitudeuk0u is generated using a random-numb
generator. NewT elements are calculated for every pair
the vectors using the following equations:

Ti ,n5(
j

@~12UG0
1!21# i , jU j ,n , ~23!
03270
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Tm,n5Um,n1(
j

Um j~G0
1! jTj ,n . ~24!

In these equations, the indicesi, j correspond to the origina
quadrature vectors, whilem,n denote the newly generate
random vectors. Hence we need to evaluate the recta
matrix Uj ,n ~and its complex conjugateUm, j ) and the square
matrix Um,n . After the evaluation of the additionalT ele-
ments, all the pairs of the new vectors are sorted accordin
the angle between them into the intervals of a given leng
e.g., 1°. Scattering amplitudes and corresponding differen
cross sections are determined for these pairs and aver
within every interval. The averaged value is then conside
as the value of the differential cross section at the mid
point of the given interval.

Thus the values of the differential cross sections are
tained for many points over the interval@0°, 180°#. The more
random vectors we generate, the smoother is the cu
formed by the calculated points. Its smoothness can be
ther improved by expanding the individual averaging int
vals, since more vectors are averaged in each interval. H
ever, when the differential cross section changes rapidly o
a short range of angles, structure can be lost in the avera
procedure if the intervals are too long. Although it is possib
in principle to use a large number of random vectors and
produce very smooth curves, this technique would be v
costly. Therefore it is more efficient to use only some of t
vectors, e.g., one in ten, and to construct the curve by fitt
with cubic splines.

Another problem with this method arises from the fa
that the number of pairs of random vectors in every inter
is proportional to the sine of the angle corresponding to
interval ~e.g., its middle point!. Due to this proportionality,
the highest number of pairs occurs in the intervals arou
90°, while in the intervals around 0° and 180° the number
pairs is markedly smaller. Therefore in these sparse area
cross section must be extrapolated from the adjoining in
vals. Nevertheless, when calculating polar molecules th
are no problems with the region close to 0°, because here
cross section diverges, and we do not calculate values in
region at all. A different and more efficient averagin
method based on the decomposition of theT element in the
basis of spherical harmonic functions is presently being
veloped in our group.

III. COMPUTATIONAL DETAILS

All calculations for the water molecule were performed
its optimized geometry at the Hartree-Fock level usi
Sadlej’s TZV basis set@20#. The value of the dipole momen
for the SCF-optimized geometry in this basis set is 0.80
a.u., which is slightly overestimated in comparison with t
experimental value of 0.724 a.u.@21#. The basis set and th
obtained molecular-orbital density matrix were transferr
into the DMR program to compute Coulomb and exchan
integrals by means of Eqs.~13! and ~14!. The numerical
quadrature used for the integration of the Lippman
Schwinger equation consisted of a radial part formed b
Gauss-Legendre quadrature transformed to the integra
3-4
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interval ~see Sec. II A! and an angular part consisting of th
points of Lebedev quadrature@16#. Radial quadratures with
19, 21, and 23 points and angular quadratures with 50,
and 110 points were used in individual calculations to de
onstrate the convergence in both dimensions. In the ave
ing procedure, 1000 random vectors were generated and
averaging-interval length was set to 1°.

IV. RESULTS AND DISCUSSION

As the results of our method depend on the constantc @see
Eqs. ~20! and ~22!#, we first tested the convergence of th
cross section with respect to this constant. For this purp
the elastic electron scattering on the dipole potential~dipole
moment of 1 a.u.! was calculated. The differential cross se
tions for several values ofc are presented in Fig. 1. Th

FIG. 1. Differential cross sections for the pure dipole poten
~1 a.u.! for different values of the constantc. Dotted line,c50.1;
dot-dashed line,c50.05; dashed line,c50.01; solid line,c50.

FIG. 2. Differential cross sections of the elastic electron scat
ing on H2O for 6 eV ~convergence with respect to the angu
quadrature, the number of radial points in all calculations is 2!.
Long-dashed line, 50 angular points; dashed line, 86 angular po
solid line, 110 angular points.
03270
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values apparently converge to the limiting valuec50, as was
explained in Sec. II C. Hence in practice it is not necessar
restrict the long-range potential by the exponential funct
since it is done automatically by the discrete integration g
in the k space.

Making use of this fact, we developed a remarkab
simple method of using the modified dipole potential. F
each pair ofk vectors withKÞ0 the value of the unmodified
interaction potential is used, and forK50 its dipole part in
Eq. ~17! is set to zero. We used this method to calcula
differential and momentum-transfer cross sections of ela
electron scattering from the H2O molecule in the static-

l

r-

ts;

FIG. 3. Differential cross sections of the elastic electron scat
ing on H2O for 20 eV ~convergence with respect to the angul
quadrature, the number of radial points in all calculations is 2!.
Long-dashed line, 50 angular points; dashed line, 86 angular po
solid line, 110 angular points.

FIG. 4. Differential cross sections of the elastic electron scat
ing on H2O for 6 eV. Solid line, present results; long-dashed lin
calculations by Brescansinet al. @22#; dashed line, calculations by
Gianturco and Scialla@19#; 1, experiment by Shyn and Cho@23#;
3, experiment by Danjo and Nishimura@24#.
3-5
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exchange approximation for incident electron energies fr
2 to 20 eV. The convergence studies were performed fo
combinations of three radial~19, 21, 23 points! and three
angular Lebedev quadratures~50, 86, 110 points!. The cal-
culation is remarkably stable with respect to the change
the radial quadrature. The corresponding curves are, in
identical, and therefore not shown. The angular converge
is demonstrated in Figs. 2 and 3 for 6 and 20 eV, resp
tively. The angular quadrature with 50 points is apparen
insufficient, but the two higher ones provide good conv
gence. Identical convergence tests were also performed
energies of 10 and 15 eV with analogous results~not shown!.
Differential cross sections for 6, 10, 15, and 20 eV are sho
in Figs. 4–7 together with the results of Brescansinet al.
@22# and Gianturco and Scialla@19#, also performed in the
static-exchange approximation, and with two sets of exp
mental values by Shyn and Cho@23# and Danjo and Nish-

FIG. 5. Differential cross sections of the elastic electron scat
ing on H2O for 10 eV. For the description of the individual curve
see Fig. 4.

FIG. 6. Differential cross sections of the elastic electron scat
ing on H2O for 15 eV. For the description of the individual curve
see Fig. 4.
03270
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imura @24#. These results are also tabulated in Table I. T
agreement with previous theoretical results seems to be
isfactory. Our results are closer to those of Brescansinet al.
@22#, which may be explained by the rather different a
proach that was used in the calculations of Gianturco
Scialla@19#. The experimental data are also reproduced re
tively well, although only the static-exchange approximati
is used. Calculations for energies lower than 2 eV were
attempted since the use of the static-exchange approxima
is not justifiable in this region.

Momentum-transfer cross sections were calculated us
Eq. ~12!. Only the values of differential cross sections fro

r-

r-

FIG. 7. Differential cross sections of the elastic electron scat
ing on H2O for 20 eV. For the description of the individual curve
see Fig. 4.

TABLE I. Differential cross sections for elastic electron scatte
ing on H2O for electron energies of 6, 10, 15, and 20 eV.

Scattering angle
~deg!

DCS ~Å2/sr!

6 eV 10 eV 15 eV 20 eV

25 4.05 3.30 3.32 3.16
30 3.14 2.64 2.73 2.61
40 1.91 1.70 1.75 1.65
50 1.40 1.24 1.16 1.04
60 1.11 1.00 0.85 0.72
70 0.91 0.83 0.65 0.52
80 0.72 0.67 0.53 0.41
90 0.56 0.53 0.43 0.34

100 0.42 0.40 0.35 0.29
110 0.30 0.29 0.30 0.26
120 0.23 0.25 0.31 0.28
130 0.22 0.30 0.40 0.37
140 0.27 0.47 0.60 0.55
150 0.35 0.69 0.86 0.78
160 0.44 0.92 1.13 1.02
170 0.51 1.07 1.31 1.18
180 0.54 1.15 1.41 1.28
3-6
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25° to 180° are taken into account for two reasons. The d
for lower angles are not reliable, and they contribute ne
gibly to the integral. The result is plotted in Fig. 8 togeth
with other theoretical@19,22# and experimental@23,24# re-
sults, and it is tabulated in Table II. Our curve agrees be
with the one from Ref.@22# than with that from Ref.@19# for
the reasons discussed above. Both experimental re
@23,24# show the maximum in the energy range of 10–
eV. A more precise statement cannot be given because
a few experimental points are available in both studies~see
Fig. 8!. However, this feature is qualitatively reproduced
our calculation; the absolute values lie between the two
periments. We can conclude that both the calculations
differential and integral cross sections provide reliable
sults in the investigated energy region.

FIG. 8. Integral cross sections for the elastic electron scatte
on H2O. Solid line, present results; dotted line, calculation by Br
cansinet al. @22#; dashed line, calculation by Gianturco and Scia
@19#; 1, experiment by Shyn and Cho@23#; 3, experiment by
Danjo and Nishimura@24#.
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V. CONCLUSIONS

We have extended the original DMR method@1# to the
calculation of elastic electron-molecule-scattering cross s
tions for polar targets. Although the method is remarka
simple, it provides good results for intermediate scatter
energies, as was demonstrated by the example of the2O
molecule. Moreover, this method is not excessively tim
consuming, so it may be applied to scattering calculations
larger molecules. An alternative algorithm for averaging t
result over the molecular orientation was introduced, wh
is based on the same principle as the former one@1# but is
more efficient. With the planned addition of polarizatio
terms to the optical potential, the DMR method seems
have the potential to be very promising as a powerful too
the field of scattering calculations.
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TABLE II. Integral cross sections for elastic electron scatteri
on H2O.

Energy
~eV!

ICS
~Å2!

Energy
~eV!

ICS
~Å2!

2 9.82 12 7.57
3 7.68 13 7.61
4 6.30 14 7.56
5 6.08 15 7.45
6 6.16 16 7.30
7 6.32 17 7.12
8 6.56 18 6.93
9 6.85 19 6.74

10 7.15 20 6.55
11 7.40
.
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