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Dynamical symmetry of screened Coulomb potential and isotropic harmonic oscillator
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It is shown that for the screened Coulomb potential and isotropic harmonic oscillator, there exists an infinite
number of closed orbits for suitable angular momentum values. At the aplipédhelion points of classical
orbits, an extended Runge-Lenz vector for the screened Coulomb potential and an extended quadrupole tensor
for the screened isotropic harmonic oscillator are still conserved. For the screened two-dimef&ipnal
Coulomb potential and isotropic harmonic oscillator, the dynamical symmetrigsaB® SU?2) are still
preserved at the aphelidperihelion points of classical orbits, respectively. For the screened 3D Coulomb
potential, the dynamical symmetry $@ also preserved at the apheliguerihelion points of classical orbits.
But for the screened 3D isotropic harmonic oscillator, the dynamical symmet(®) $Jonly preserved at the
aphelion (perihelion points of classical orbits in the eigencoordinate system. For the screened Coulomb
potential and isotropic harmonic oscillator, only the enegffgyt not angular momentunnaising and lowering
operators can be constructed from a factorization of the radial 8iclyer equation.

PACS numbeps): 03.65.Sq, 03.65.Ge

Bertrand’s famous theorem in classical mechanics statemomentum raising and lowering operators connecting neigh-
that the only central forces that result in closed orbits for allboring simultaneous eigenstates of energy and angular mo-
bound particles are the inverse square law and Hooke’s lamentum[8—11]. It was shown that there exists an intimate
[1,2]. In classical mechanics, the maximum number of funcrelation between the raising and lowering operators in quan-
tional independent conserved quantities of a closed systetnm mechanics, on the one hand, and the conserved quanti-
with N degrees of freedom isNe—1 [3]. For a system with ties responsible for the closeness of classical orbits on the
independent conserved quantities, no fewer tNanan be other hand, and that both are physically connected with the
called integrabld4]. An integrable classical system with  dynamical symmetry of the system considef&d,13.

+ A independent conserved quantities<(@<N-1) is A careful examination of the arguments to derive Ber-
called A -fold degenerate, and there existlinear relations trand’'s theorem shows that the form of the central potential
with integer coefficients between tHe frequenciesy; (i is assumed to be a power-law functionrof2]. We believe

=1,2,...N) of the system[5]. A classical system foA that Bertrand’s theorem does hold for a power-law central
=N-1 is called a completely degenerate system, and thergotential. However, if the restriction of a power-law form of
remains only one independent frequency, which implies théhe central potential is relaxed, Bertrand’s theorem may be
existence of closed orbits. The orbit of a particle in the at-extended. It was shown that there exists an infinite number of
tractive Coulomb potentiafV(r)=—k/r) is always closed closed orbits(rather than elliptic orbitsfor a particle with
for any continuous energyE(<0) and angular momentum Suitable discrete angular momenta in the screened Coulomb
L, i.e., an ellipse, of which the length of the semimajor axispotential and isotropic harmonic oscillatpt3,14. In this
is (m=k=1) a=1/(2|E|), and the eccentricity ise case, it was found thatnly the energy(but not angular mo-
=J1-2[E|LZ. The period of motion is T=1/y  Mentum raising .and Iowering. operators can be _constructed
— 7|E| %2/ 2=2ma%2 (Kepler's law. The closeness of the from a fac_:tonza_ltlon of the radial Schiimger equation. Gen-
orbits is guaranteed by the existence of an additional con€ral consideration shows that when the Coulomb potential or
served quantity—the Runge-Lenz vecRepxL—r/r [6].  isotropic harmonic oscillator is screened, the dynamical sym-
In fact, the direction oR is just that of the major axis of the metry [SO(N+1) for N-dimensional ND) hydrogen atom
elliptic orbit, and the magnitude oR is the eccentricity bound states or S®) for an ND isotropic harmonic oscil-
(IR|=e). It is seen thaR-L =0 andR?>=2HL2+1, so the lator] is broken, as a result the closeness of classical orbits is
number of independent conserved quantities is 5, and thigst in general. The revival of closeness of some classical
hydrogen atom is a completely degenerate system. The existbits may be an indication of the recurrence of the dynami-
tence of the Runge-Lenz vector implies that the Coulomkcal symmetry. In this paper, the dynamical symmetry of the
potential has a higher dynamical symmetry,3fan its geo- screened Coulomb potential and isotropic harmonic oscilla-
metric symmetry S@[7]. A similar situation exists for an tor will be investigated.
isotropic harmonic oscillator. In quantum mechanics, the ScHioger equation for the

In quantum mechanics, for bound states, both the angulggoulomb potential and isotropic harmonic oscillator in arbi-
momentum and energy are discrete. It is interesting to nottrary dimensions can be solved exactly. In classical mechan-
that the Coulomb potential and isotropic harmonic oscillatorics, the orbits of a particle in a central potential, due to the
are the only central potentials for which a radial Sclinger  conservation of angular momentulm always lie in a 2D
equation can be factorized to yielwth energy and angular plane perpendicular td-. For clarity and simplicity, to ex-
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FIG. 1. Closed orbits of a particle in the screened 2D Coulomb potential of BEgwith A=0.2 andE=—0.5. () k=1/2, (b) «
=1/3, and(c) k=2/3.

pose the breaking and recurrence of the dynamical symmes still conserved at the aphelion (perihelion) poiiffs=0),
try, we first discuss the 2D case; the extension to the 3D casgs .,

is addressed later.

For the screened 2D Coulomb potentied€k=1), dR’/dt=0. 6)
V(p)=—1lp—Np? (0<A<1), (1) _ _ o
From this one can understand why there exists an infinite
number of closed orbits with angular momenta,
=\2\/(1— &%) (k being a rational numbgr
1 1 For a pure Coulomb potentiah&0), R’ is reduced to

Z= [1+ /l+2EL27K2 cosk(6—6)], (2)  the usual Runge-Lenz vect®, which remains constant at

p L§K2 all points along the closed orbit. The quantum analog of Eq.

(6) is [R’",H]=0, which holds at the apheliofperihelion

whereE<0 andL, are the energy and angular momentum,points. Moreover, it can be shown thdi< 1)
and k= \/1-2\/L2<1. In general, the orbit is not closed.
However, for rational values of, i.e., for suitable angular [LZ,R)’(]=iR§,
momentaL,=2\/(1—«?), there still exists an infinite
number of closed orbitgrather than elliptic orbits whose

the orbit equation may be expressed as

geometry depends only on the angular momentum, but is [Lz.Ry]==IRy, @)
irrespective of the energf. Three simplest examples«<(

=1, 1 and2) are displayed in Fig. 1. It is seen that the [Ry.R;]1=(—2H)iL,,

directions of each aphelion vectof,() and perihelion vector

(6p) are given by where H=p?%2-1/jp—\/p? and R'=(pxL—ip)—(1

+2\/p)e, [the quantum version d&®” in Eq. (5)]. Equation
(7) implies that ,,R;,R}) constitute an S@ algebra in
Hilbert space spanned by degenerate states belonging to a
nw=0212... . (3  given energy eigenvalue E,=—1/(2n?)(n=1/2,3/2,
5/2,...).Because, in addition tpL,,H]=0, [R’',H]=0
The closeness of a planar orbit implies that the radial freholds at the apheliofperihelion points, it is seen that, in
quencyw, and angular frequency, are commensurate, and general, through the dynamical symmetry S@ a 2D hy-
it is seen that drogen atom is broken, the $8ymmetry may be restored at
the aphelion(perihelion points of the classical orbits.
w,lwy= k. 4 The extension to the 3D case is straightforward, but the
situation is more complicated. Due to angular momentum
For the screened 2D Coulomb potentialL k), the usual  conservation, the classical orbits still remain in a plane per-
Runge-Lenz vectoR=pxL—e, no longer remains con- pendicular to the angular momentum and the orbit equa-
served. What is the additional conserved quantity responsiblgon is the same as E@2), which is nonclosed in general.
for the closeness of the orbits? It is found that the extendegimilarly, for rational values ok= \1—2\/L?, i.e., for suit-
Runge-Lenz vector able angular momenta= \2\/(1— «?), there still exists an
infinite number of closed orbits, and it can be shown that the
5) extended Runge-Lenz vect®'=pXL—(1+2N/r)r/r is
conserved at the aphelidperihelion points of classical or-

0a— 0o=u+ L) wlk, 6,—60=2umlk,

2\
R'=pxL—|1+ e,
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FIG. 2. Closed orbits of a particle in the screened 2D isotropic harmonic oscillator il Bgwith A\=0.2 andE=5. (a) k=1/2, (b)
k=1/3, and(c) k=2/3.

bits (r=0). The corresponding quantum version &

’ -~ - - - + ’
=(pXL—ip)—(1+2N/r)r/r, and it can be shown that Xnsam (p) =M n+1 (pd/dp=p/n+1)xnm(p),
(m=%=1) 11

n
[Lo.Lgl=i€up,l,, Xn1,m’(P)~M(m)(Pd/dp+P/n_n)Xn,m’(P)a
[La Rgl=—ieapR,, (8 where M(K) is a scaling operator, defined byt(K)f(p)
=1f(kp). The factorization of the radial Schdimger equation
[RyRpl=(—2H)i€ gL, for the 3D case is similar.

Now we discuss the screened 2D isotropic harmonic os-
i.e.,L andR’ still constitute an S@algebra in Hilbert space cillator (m=k=1)
spanned by degenerate states belonging to a given energy

eigenvalueE<0. For A=0, R’ is reduced to the usual 1
Runge-Lenz vectoR. It is interesting to note that, unlike, V(p)= EPZ—?\/PZ- (12)
R’ is conservednly at the aphelion(perihelion points of
classical orbits. o . The orbit equation can be expressed as
Now we address the factorization of the radial Sehro
dinger equation for the screened 2D Coulomb potential. The 1
energy eigenstate may be chosen as the simultaneous eigen- — = [E+ VE2— |_§K2 cos 2«(0—6y)], (13
state of H,L,), ¢~ an’(P)elma'\'Xn,m’(P)elmH/Pv and p2 Lng

Xn.m(p) satisfies
where k= \/1—2\/L2<1. Similarly, for rational values of
D (p) Xnm (p) == 2Eqxnm(p),  m'=ym*=2X, k, i.e., for suitable angular momentg= \2\/(1— %), the
orbits are closedrather than elliptic orbifs The three sim-
Dy (p)=d?/dp?—(m'2—1/4)/ p>—2W(p), (9)  plest examplesk=3%, 1, and%) are given in Fig. 2. It is
seen that the directions of each aphelion vect@y) (and

W(p)=—1lp, perihelion vector ¢,) are given by
which can be recast in the forms Oa— Oo=(u+ 12wk, 6p—6g=pmlc, wu=012...
(14
Dn(P)Xn,m’(P):(m,2_1/4)Xn,m’(P)7
(10 and
Dn(p)=p*d*/dp®+2E,p*~2W(p)p?,
w,l0y=2k. (15

where E,=-1/(2n%), n=n,+|m'[+1/2, and n,

=0,1,2... . BecauseAm’=+1 does not implyAm  For a pure 2D isotropic harmonic oscillatox£0), the or-
=+1, one cannot constitute the angular momentum raisindpits are always closed.e. elliptic orbitg, which are guaran-
and lowering operators. However, for a given value ofteed by the existence of conserved quantitigs Q,, =Xy
m’(m), from the factorization of Eq(10), one may obtain  +pypy andQ; =1/ (x*~y?)+(pz—p;)] [15]. In fact, the
the energy raising and lowering operators, as direction of the major axis and the eccentricity of the ellip-
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tiorbit are determined byQ,,/Q; and (Q§y+ Qf), 0. Moreover, the real symmetrical matIQ({j has three or-
respectively. When the screening effect is turned an ( thogonal eigenvectors, so we can rotate the coordinates

#0), we may define (x,y,z) into new coordinates§, n,{) (called eigencoordi-
, . nates. The ¢ coordinate axis is parallel tb, and theé— 7
Qxy= (1+2N/p™)Xy+pypy, coordinate axes lie in the orbital plane. In the eigencoordi-

O = U2 (14 20 ) (- y?) 4 (92— 2 (16 nates, we have
1 p y9)+(px—py)].

' ’ [Lngér;]z_Ziin
It can be shown thad Q,,/dt=0 anddQ;/dt=0 hold only

at the aphelion (perihelion) points of classical orbifp [L;,Q1]=2iQ¢,, (19
=0). In quantum mechanick,,, Q,,, andQ; constitute an _
SU, algebra. Similarly, it can be shown that £,Qy,,Q}) [Q,,Qi]=—2iL,.
still constitute the same SU algebra as that for , , _ .
(L2.Qy. Q1) i, ThusL,, Qgﬁf and Q_l const|tu_te an _sy algebra, i.e., the
screened 3D isotropic harmonic oscillator has an, Sym-
[L, ,Q)’(y] =-2iQ;, metry at the apheliofperihelion points of classical orbits in
the eigencoordinate system.
[L,.Qi]1=2iQy,, (17 The factorization of the radial Schiimger equationg9)
and (10) for a screened 2D isotropic harmonic oscillator
[Q}y.Q1]=—2iL,. [W(p)=3p?], Ep=n+1,n=2n,+|m'|,n,=0,1,2...,1is,

similar to Eq.(11),
But unlike Q,, andQ,, [Qy,,H]=0 and[Q;,H]=0 hold

at the aphelionperihelion points, i.e., the Sk symmetry Xn+2m(p)~[pdldp—p?+(N+3/2) T xnm(p),
holds only at certain points along the classical orbits. 9 (20
The extension to the screened 3D isotropic harmonic os- Xn-2m (p)~[pdldp+p"—(n+1/2)]xnm (p),

cillator is more complicated. Besides the conservative anguzhere the raising and lowering operators for eneftgyt not
lar momentumL, (L,,Ly,L;), we may define an extended o, angular momentujrare constructed. The factorization of
quadrupole tensor the radial Schrdinger equation for the 3D case is similar.
r_ 4 In summary, we have shown that, for the screened Cou-
Quy=(L+2M )Xy + Py lomb potential and isotropic harmonic oscillator, there exists
an infinite number of closed orbits for suitable angular mo-
mentum values. At the apheligiperihelion points of clas-
sical orbits, an extended Runge-Lenz vector for the screened
Coulomb potential and an extended quadrupole tensor for the
' Ay y2_ 2 2 2 screened isotropic harmonic oscillator are still conserved.
Q 1/2[(1,+ 2)\//r )Y+ PPyl For the screened 2D Coulomb potential and isotropic har-
=1/2(Qux—Qyy), (18 monic oscillator, the dynamical symmetries Sénd SU2)
s 2 are still preserved at the apheligmerihelion points of clas-
Q6=1/(2\/§)[(1+ 2)\/r4)(x2+y2—222)+(px+ Py~ p3)] sical orbits, respectively. For the screened 3D Coulomb po-
=1/(2/3)(0’ .+ 0’ —20"). tential, the dynamical symmetry S@ also preserved at the
(2V3)(Q Qy~2Q:) aphelion (perihelion points of classical orbits. But for the
It can be shown that at the apheli¢perihelion points of  screened 3D isotropic harmonic oscillator, the dynamical
classical orbits (=0), the extended quadrupole tensor isls.ymmet.ry Sl?Z)I IS 9”'3{ prbgse_rveg at the aphgpoﬁpenhe-

—dQJ/dt=0). From this it can be seen that for the screenedzor.the screened Coulomb potential and isotropic harmonic
oscillator, only the energgbut not angular momentupnnais-

3D isotropic harmonic oscillator in quantum mechanics the|ng and lowering operators can be constructed from a factor-

$U3 symmetry no Iong_er holds. Let us go one step further tolzation of the radial Schidinger equation.
investigate the dynamical symmetry of the screened 3D iso-
tropic _harmonic oscillator by considering the eigenvalue  This work was supported in part by the Nonlinear Science
problem of the tenserQi’j =(1+2)\/r4)rir1+ pip;. Since  Project and the National Natural Science Foundation of

EJ-Q{J-LJ:O, we obtain an eigenvectdr with an eigenvalue China.

Qy,=(1+ 2Nrhyz+pyp,,

QL= (L+2NrH)zx+ p,py,
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