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Extended approximated Born-Oppenheimer equation. II. Application
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In this work is applied the extended-approximated Born-Oppenheimer~BO! equation, as derived in the
preceding article@Phys. Rev. A62, 032506,~2000!# to a tristate system. For this sake an appropriate scattering
two-arrangement–two-coordinate model was devised. The calculations for each energy were done three times:
once without doing any approximation, and two times by approximating the three coupled Schro¨dinger equa-
tions by two different, but gauge-related, single~extended! BO equation. State-to-state~reactive and nonreac-
tive! transition probabilities were obtained, indicating that the new extended approximate BO equations yield
relevant results for a tristate system.

PACS number~s!: 31.30.2i, 31.15.2p, 03.65.2w
.
t

ol
ys
io

bil
d
BO
ila
tio
b

c
o

ile

ha
at

te

st

the

tial

les
i-
be-

ally

di-
en-
. In
ent
a

ili-

n-
ec.

ili-
ults.

atic
n-
u-
ua-

of
ci
I. INTRODUCTION

In the preceding paper@1# ~designated as I! a new ap-
proximated Born-Oppenheimer~BO! equation was derived
This equation is characterized by the fact that, in contras
the ordinary BO equation, it also contains topological~or
geometrical! effects due to nonadiabatic coupling terms. F
lowing that derivation, we showed that for a two-state s
tem this equation becomes the Baer-Englman equat
which was derived some time ago@2#, and which was found
to yield the correct state-to-state reactive transition proba
ties for a two-dimensional–two-arrangement channel mo
@3–5#. In the present paper the newly formed extended
equation will be applied to a tristate model, otherwise sim
to the one that was used in the previous two-state calcula
@3–5#. For this model we shall calculate the transition pro
abilities ~both reactive and nonreactive! for energies below
the upper excited states in several different ways:~1! A full
tristate calculation which will be considered as the ‘‘exa
treatment.’’~2! Two single-state calculations, employing tw
different, extended approximate BO equations.~3! A ‘‘rel-
evant’’ two-state calculation as will be explained later.

Recently two of the present authors carried out a deta
study of the topological effects related to a tristate model@6#.
Among other things, efforts were made to reveal to w
extent the topological effects of the decoupled two-st
model are related to topological effects of the full~three-
state! system. The topological effects for a two-state isola
system are presented in terms of an angleu t12(w), the two-
state adiabatic-diabatic-transformation~ADT! angle @7,8#,
which is obtained by integrating overt12(w) ~the nonadia-
batic coupling term! that couples the ground and the fir
excited states@9–11#:

u t12~w!5E
0

w

t12~w8!dw8. ~1!
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Herew stands for a nuclear angular coordinate defined in
range @0, 2p#. The topological effects for the full tristate
model were presented in terms of an angle,u12(w), which is
derived by solving the Top-Baer system of three differen
equations@11,12# which yield all three angles of the 333
ADT matrix. It was found that in some cases the two ang
behave similarly and therefore will yield identical topolog
cal effects; however, there were other cases where they
have differently and the topological features were essenti
‘‘opposite.’’ The fact that Eq.~1! yields topological effects
which are different from the actual ones is usually an in
cation that certain points of degeneracy, or a multideg
eracy at a give point, are not revealed by this expression
this study, among other things, we shall show to what ext
the failure to identify the correct topological features of
system will affect the final state-to-state transition probab
ties.

In Sec. II we derive quantization conditions for the eige
values of the assumed nonadiabatic coupling matrix. In S
III we present the tristate model and the various Schro¨dinger
equations that were solved to derive the transition probab
ties. In Sec. IV we present and analyze the numerical res
In Sec. V we list the conclusions.

II. ‘‘QUANTIZATION’’ OF THE TRISTATE
NONADIABATIC COUPLING MATRIX

In the present section we concentrate on an adiab
tristate model. For this we first derive the quantization co
ditions to be fulfilled by the eigenvalues of nonadiabatic co
pling matrix, and then the extended BO approximated eq
tion.

The starting point is the 333 nonadiabatic matrix

t5S 0 t1 t2

2t1 0 t3

2t2 2t3 0
D , ~2!

where t j , j 51,2,3, are, at this stage, arbitrary functions
-
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the nuclear coordinates. The matrixG that diagonalizest at a
given point in configuration space is of the form

G5
1

v̄l& S i t 2v̄2t3t1 2 i t 2v̄2t3t1 t3l&

i t 3v̄1t2t1 2 i t 3v̄1t2t1 2t2l&

l2 l2 t1l&
D ~3!

wherel and v̄ are defined as
if

d

o-

rin

d

03250
l5At2
21t3

2, v̄5At1
21t2

21t3
2,

and the three eigenvalues are (0,6 i v̄). Assuming now that
thet matrix fulfills the conditions in Eqs.~5! and~6! given in
I @these conditions ensure that the matrixG that diagonalizes
t(s) along a closed path is independent ofs# we obtain,
employing Eq.~268! in I, the following topologicalD matrix
@13# @the D matrix was introduced in I—see Eqs.~17!, ~26!,
and ~268!#:
D5v̄22S t3
21~ t1

21t2
2!c1 t1v̄s122t2t3s2 2v̄t2s112t1t3s2

t1v̄s122t2t3s2 t2
21~ t1

21t3
2!c1 2t3v̄s112t1t2s2

v̄t2s112t1t3s2 t3v̄s112t1t2s2 t1
21~ t2

21t3
2!c1

D , ~4!
the
ec-
the

ro

.

wherec1 , s1 , ands2 are defined as

s15sinS R v̄•dsD , c15cosS R v̄•dsD ,

s25sin2X12 S R v̄•dsD C. ~5!

It is important to realize that Eqs.~5! and ~6! in I guarantee
that the ratiost j /v̄; j 51,2,3 are independent ofs. Next we
note thatD becomes diagonal if and only if

1

2p R v̄•ds5
1

2p R At1
21t2

21t3
2
•ds5n, ~6!

wheren is an integer. Moreover, Eq.~6! guarantees thatD
becomes the unit matrix. Equation~6! is reminiscent of a
quantization condition. Similar ‘‘quantization’’ laws exist
one of thet j ’s becomes zero~if two out of the threet j ’s
become zero, then we are back at the two-state case, ann is
allowed to be half an integer!.

III. SCHRÖ DINGER EQUATION

A. Adiabatic framework

The numerical treatment will be applied to a tw
coordinate system, withq being a radial coordinate andw a
polar coordinate. We start the presentation by conside
the 333 nonadiabatic~vector! matrix t, which in a two-
coordinate system has two components, namely,tq andtw .
In what follows we assume thattq[0, andtw will be writ-
ten as@see Eq.~5! in I#

tw5twg5
t0

q
g. ~7!

Hereq is radial coordinatet0 is, at this stage, a nonspecifie
constant andg is a 333 constant matrix of the form
g

g5S 0 1 0

21 0 h

0 2h 0
D , ~8!

whereh is a constant. From Eqs.~7! and~8! it is noted that
the t matrix first couples the ground adiabatic state to
first excited state, and then this first excited state to the s
ond excited state. No direct coupling is assumed between
ground state and the second excited state.

Next we present a full adiabatic coupled system of Sch¨-
dinger equations for the above 333 nonadiabatic coupling
matrix model@see Eq.~4! in I#:

S T1u11
t0
2

2mq22EDc11
t0

mq

]

]w
c22

ht0
2

2mq2 c350,

S T1u21
t0
2~11h2!

2mq2 2EDc22
t0

mq

]

]w
c11

ht0

mq

]

]w
c350,

~9!

S T1u31
h2t0

2

2mq22EDc32
ht0

mq

]

]w
c22

ht0
2

2mq2 c150,

whereT is the nuclear kinetic energy operator:

T52
1

2m S ]2

]q2 1
1

q

]

]q
1

1

q2

]2

]w2D . ~10!

We shall now distinguish between three cases:
~a! The case that botht0 andh are zero. In this case, Eqs

~9! become

~T1u12E!c50, ~9a!

which is the ordinary approximate BO equation.
~b! The case thath is zero butt0 differs from zero. In this

case Eqs.~9! become
7-2
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S T1u11
t0
2

2mq22EDc11
t0

mq

]

]w
c250,

~9b!S T1u21
t0
2

2mq22EDc22
t0

mq

]

]w
c150,

which is a coupled system for the two lowest adiabatic sta
In the case thatt05 1

2 , these equations become the releva
equations for a conical intersection which were recently st
ied by Baeret al. @3# and Adhikari and Billing@5#. In what
follows, we assume thatt05 1

2 .
~c! The third case is the case of a coupled system of th

adiabatic equations as presented in Eqs.~9!, but whereh
~which is a constant! is chosen so that the quantization co
dition given in Eqs.~6!, is fulfilled. Inserting the following
values for t j , namely, t151/(2q), t250, and t3(5ht1)
5h/(2q) into Eqs.~6! yields, for an arbitrary~integer! n, the
following h values

h5A4n221 for n51⇒h5). ~11!

It is important to reiterate that oncet0 is chosen to be equa
to 1

2, Eqs.~9! are physically relevant if and only ifh is given
by Eq. ~11!. In the present case, we assumen51.

Our next task is to present the relevantextendedapproxi-
mate BO equation. For this purpose we consider the se
uncoupledequations as presented in Eq.~11! in I for the case
N53. The functionsiv j that appear in these equations a
the eigenvalues of theg matrix, given in Eq.~8! ~of the
present paper!. By solving the relevant eigenvalue proble
we obtain

v152, v2522, v350,

so that Eqs.~11! in I become

S T1u11
t0
2v j

2

2mq22EDc11
t0v j

mq

]

]w
c250. ~12!

For t05 1
2 and for variousv j values, this set of uncouple

equations is a set of three gauge invariant equations,
therefore it is enough to solve only one of them. In t
present study we solved them twice, once forv j50 and
once forv j52. It is noted that forv j50, Eq.~12! becomes
Eq. ~9a!, namely, the ordinary approximate BO equation. W
also solved it forv j52, just to show that, indeed, we obta
similar results to those forv j50.

As mentioned earlier, we shall compare the present th
state results, with results due to two-state calculations.
relevant system of equations for this case is the one give
Eq. ~9b!, where againt05 1

2 . In addition, for completeness
we will present results due the extended approximate
equation for this case~in fact the Baer-Englman equation!
which is obtained from Eq.~12! by settingv j51.

Let us summarize what was done so far: We derived
three adiabatic coupled BO equations@see Eq.~9!# for a
tristate two-coordinate model that we intend to study, as w
as the corresponding extended approximate BO equat
@see Eq.~12!#. In addition, we presented a set of two equ
tions @see Eq.~9b!# which follows from Eqs.~9! by dropping
03250
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the interaction of the two-state system with the third st
~i.e., assumingh50!. The extended approximate BO equ
tion for this case is also given in Eq.~12! by assumingv j
51 ~instead of 2 or zero!.

B. Diabatic framework

One of the main obstacles in solving Eqs.~9! and ~9b! is
the existence of nonadiabatic singular terms which make
numerical procedure very unstable. Therefore, it was s
gested, some time ago@9,11#, to eliminate these terms by a
orthogonal transformation—the ADT matrix—which form
the diabatic framework. This ADT matrix A fulfils the fol
lowing first-order differential equation@9,11#:

“A1tA50. ~13!

The conditions for this equation to have a solution are d
cussed in the Appendix in~I!. The A matrix is solely deter-
mined by thet matrix ~and boundary conditions!, but its
physical relevance is decided upon its ability to form co
tinuous, uniquely defined diabatic potentialsW(q,w) which
follows from the ADT:

W~q,w!5A* ~q,wuq0 ,w0!u~q,w!A~q,wuq0 ,w0!. ~14!

In this equationu(q,w) is the adiabatic potential matrix as
sumed to be continuous and uniquely defined through
configuration space. Section II was devoted to this proble
and we made sure that thet matrix, constructed in the Sec
III A, will indeed yield diabatic potentials as required.

The ADT matrix of a two-state case@to transform Eq.
~9b!# was discussed on many occasions@9,11#, so that here
we just mention it for the sake of completeness:

A5S cosu sinu

2sinu cosu D , ~15!

whereu for our model is@see also Eqs.~7! and ~8!#

u5E
0

w

t~w8!q dw85
w

2
. ~16!

To derive the tristate ADT matrix, theA matrix is pre-
sented as a product of three matrices of the type given in
~15! @6,12#,

A~u12,u23,u13!5A~12!~u12!A
~23!~u23!A

~13!~u13!, ~17!

where the matrixA(12)(u12) is defined as

A~12!~u12!5S cosu12 sinu12 0

2sinu12 cosu12 0

0 0 1
D , ~18!

and the other two matrices are defined in a similar way
cept that the position of the 1 is shifted along the diagon
As shown by Top and Baer,@12#, following Eq. ~13!, the
three angles fulfill the three coupled first-order equations
7-3
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¹u1252t12tanu23~2t2 cosu121t3 sinu12!,

¹u2352~ t3 cosu121t2 sinu12!, ~19!

¹u1352~cosu23!
21~2t2 cosu121t3 sinu12!,

where thet j , j 51,2,3, were introduced in Eq.~2!. For the
present choice of thet j ’s @see Eqs.~7! and~8!#, we obtain the
following equations:

¹u1252
1

q
t0~11h sinu12 tanu23!,

¹u2352
1

q
ht0 cosu12, ~20!

¹u1352
1

q
ht0 sinu12~cosu23!

21.

It is noted that the third equation is decoupled from the ot
two ~this, by no means, implies that the angleu13 is less
important than the two other angles!. In fact, to guarantee the
correct topological features, all three matrices in Eq.~17!
have to be derived and to be included in the product.

Equations~20! were solved for the present case whe
t05 1

2 andh5), and for

¹5
1

q

]

]w
. ~21!

The w-dependentu i j angles, in the range@0, 2p#, are shown
in Fig. 1. It is noted that the two angles end up, following
complete cycle, with the value zero, and one of them w

FIG. 1. The three adiabatic-to-diabatic transformation angles
obtained by solving Eqs.~20!: ------, u12; , u23; •••••••••••,
u13.
03250
r

h

the value 2p. Thus theA matrix does not change sign@see
Eq. ~17!# while completing a cycle. This is in contrast to th
two-state case witht05 1

2 , where the corresponding ang
becomesp and theA-matrix changes sign@see Eqs.~15! and
~16!#.

Once theA matrix is known, employing Eq.~14! we can
obtain the diabatic potentialW matrix and solve the relevan
diabatic Schro¨dinger equation~SE!, which is of the form
@9,11#.

TJ1~W2IE !J50, ~22!

whereJ5A* C, andI is the unit matrix.

C. Adiabatic potential-energy matrix

For the present model we assumed a two-arrangem
channel potential similar to the one employed in the previo
two-state studies@3–5#. Moreover, the two lowest states a
identical to the ones employed before, namely,

u1~R,r !5 1
2 m@v02v~R!#2r 21A f~R,r ! ~23a!

and

u2~R,r !5 1
2 mv0

2r 22~D22A! f ~R,r !, ~23b!

wherem v0 , A, andD2 are constants~their values are listed
in Table I!, R andr are Cartesian coordinates~defined in the
intervals2`<R<` and2`<r<`! related toq andw in
the following ways:

R5q sinw and r 5q cosw. ~24!

The functionf (R,r ) is chosen to be a two-variable Gaussi
which peaks at~0, 0!, namely,

f ~R,r !5expS 2
R21r 2

s2 D , ~25!

andv(R) is a anR-dependent frequency given in the form

v~R!5v̄0 expS 2
R2

s0
2D . ~26!

The values ofs ands0 are also listed in Table I. The third
surfaceu3 is chosen to be similar tou2 defined for a different
D value, namely, forD3510 eV. In Fig. 2 we present the
two-dimensional three adiabatic potential-energy surface
can be seen that this potential describes a two-arrangem
channel system; the reagent-arrangement defined forR→`
and a product-arrangement defined forR→2`.

s

TABLE I. Adiabatic potential-energy parameters used in t
calculations.

m 0.58 amu
A 3.0 eV
D2 ,D3 0.5 eV, 10.0 eV
s 0.30 Å
s0 0.75 Å
v0 39.1431013 s21

v̄0 7.8331013 s21
7-4
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FIG. 2. The three adiabatic potential-energy surfaces that w
applied in the present study.
03250
This completes the derivation of the model. In Sec. IV w
present the results due to the various sets of equations,
ticularly Eq. ~9! @or its diabatic counterpart given in Eq
~22!#, Eq. ~9b! ~or its diabatic counterpart presented in Re
@3#, @5#!, and Eq.~12! for three different cases, namely,v j ;
j51,2,3.

IV. RESULTS AND DISCUSSION

In order to obtain the transition probabilities, the vario
SEs mentioned in Sec. III were solved using the wave-pac
time-dependence approach. This approach was fully
scribed in Ref.@5#, and will not be repeated here. The resu
are presented in two tables: the inelastic probabilities
given in Table II, and the reactive ones in Table III.

The calculations were done for four energies, i.e.,E
51.0, 1.5, 2.0, and 2.5 eV, all of them below the upp
surfaces and thus below the common intersection point of
three surfaces which takes place atE53.0 eV. We shall re-
port on transitions from the ground vibrational state on
Five different types of probabilities will be shown for eac
transition:~a! Probabilities due to a full tristate calculation
carried out within the diabetic representation, employing E
~22!. ~b! Probabilities due to a two-state calculation~for

re
9
6
8
6
3

TABLE II. Nonreactive state-to-state transition probabilities.

0→0 0→1 0→2 0→3 0→4 0→5 0→6 0→7 0→8

E51.00 eV
0.3511a - 0.6434 -
0.3515b - 0.6411 -
0.3404c - 0.6574 -
0.3473d - 0.6509 -
0.2762e - 0.6916 -

E51.5 eV
0.1913 - 0.3231 - 0.3419
0.1918 - 0.3184 - 0.3389
0.2065 - 0.3195 - 0.3304
0.1962 - 0.3202 - 0.3397
0.3172 - 0.2422 - 0.2773

E52.0 eV
0.2304 - 0.1515 - 0.1713 - 0.0894
0.2357 - 0.1470 - 0.1664 - 0.0900
0.2305 - 0.1587 - 0.1808 - 0.0784
0.2409 - 0.1463 - 0.1691 - 0.0918
0.2745 - 0.1481 - 0.0962 - 0.0406

E52.5 eV
0.0955 - 0.1188 - 0.0900 - 0.0512 - 0.035
0.1198 - 0.1199 - 0.0652 - 0.0350 - 0.012
0.1051 - 0.1199 - 0.0813 - 0.0434 - 0.032
0.1173 - 0.1088 - 0.0613 - 0.0323 - 0.012
0.1559 - 0.1161 - 0.0642 - 0.0377 - 0.032

aTrisurface calculation.
bTwo-surface calculation.
cSingle-surface calculation (v52).
dSingle-surface calculation (v51).
eSingle-surface calculation (v50); the ordinary BO approximation.
7-5
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TABLE III. Reactive state-to-state transition probabilities.

0→0 0→1 0→2 0→3 0→4 0→5 0→6 0→7 0→8 0→9

E51.00 eV
0.0044a - 0.0063 -
- 0.0049b - 0.0079
0.0047c - 0.0195 -
- 0.0045d - 0.0080
0.0094e - 0.0362 -

E51.5 eV
0.0325 - 0.0592 - 0.0311
- 0.1068 - 0.0256 - 0.0068
0.0419 - 0.0648 - 0.0308 -
- 0.1078 - 0.0248 - 0.0075
0.0644 - 0.0612 - 0.0328 -

E52.0 eV
0.1110 - 0.0279 - 0.0319 - 0.2177
- 0.1232 - 0.03333 - 0.0633 - 0.1675
0.1068 - 0.0172 - 0.0274 - 0.2277 -
- 0.1264 - 0.0353 - 0.0656 - 0.1678
0.1351 - 0.0217 - 0.0304 - 0.2647 -

E52.5 eV
0.1318 - 0.0295 - 0.0091 - 0.1375 - 0.2043 -
- 0.0936 - 0.0698 - 0.1350 - 0.0200 - 0.239
0.1256 - 0.0155 - 0.0084 - 0.1545 - 0.1977 -
- 0.0947 - 0.0658 - 0.1363 - 0.0190 - 0.236
0.1831 - 0.0343 - 0.0089 - 0.1607 - 0.1157 -

aTrisurface calculation.
bTwo-surface calculation.
cSingle-surface calculation (v52).
dSingle-surface calculation (v51).
eSingle-surface calculation (v50); the ordinary BO approximation.
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which h50!, carried out within the corresponding diabet
representation, employing a set of equations@similar to Eq.
~22!# discussed elsewhere@3,5#, ~c! Probabilities due to a
single state equation presented in Eq.~12! for v j52. ~d!
Probabilities due to a single state equation presented in
~12! for v j51. ~e! Probabilities due to a single state equati
presented in Eq.~12! for v j50 @this case is, in fact,
the ordinary BO equation—see Eq.~9a!#. Out of the five
cases, two~the second and the fourth! present the ordinary
conical intersection~CI! case;a priori, we expect the two CI
cases to show symmetry effects~as demonstrated in Refs.@3,
5#!, and if the extended BO approximation is correc
worked out, then the other three calculations are not
pected to yield any symmetry-affected results.

At this stage we would like to mention that the mod
without the inclusion of the vector potential, is constructed
such a way that it obeys certain selection rules, namely, o
even→even and odd→odd transitions are allowed. Thus an
deviation, in the results, from these selection rules will
interpreted as a symmetry change.

The inelastic~nonreactive! processes, presented in Tab
II, are in general not affected by the nonadiabatic coupl
terms, immaterial of what kind is used or which approxima
BO equation is solved. Still we note that the ordinary B
equation yields, on certain occasions, results which
03250
q.

x-

,
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somewhat different than those due to the other equat
~including its gauge invariant equation!. We do not have a
sensible explanation for this finding other than speculat
that the time-dependent grid method as applied here beco
more cumbersome when the~singular! nonadiabatic coupling
terms are included in the SE equation.

Effects due to nonadiabatic coupling terms are seen
Table III, where the two-state results and the correspond
extended approximated-BO equation results~those for v
51! transformed the even→even and odd→odd selection
rules to odd↔even selection rules. This transformation w
discussed at length in previous publications@3,5#, and there-
fore will not be repeated here. The more interesting res
are those for the tristate case which is also dominated bt0
5 1

2 , just like the two-state case, but does not produceany
geometrical effects. This behavior was expected from
relevant extended approximated BO equation, which, as
showed, is identical to the ordinary BO equation. Nevert
less, we thought that, since the extended BO equation is
approximate, the geometrical effects could be partly wro
~they were not!. Thus the present calculations revealed tw
facts: ~a! Geometrical features do not necessarily show
where they are expected, as seen in the present tristate
~b! The extended approximate BO equation contains the
rect information regarding the geometrical effects, in t
7-6
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two-state case it contains geometrical effects due to the c
cal intersection, and in the tristate case it tells us that s
effects do not exist.

V. CONCLUSIONS

In this work we tested the extended-approximate B
equation as derived in paper I for a tristate system. For
sake a two-arrangement—two-coordinate reactive model
devised. The model consisted of three adiabatic poten
energy surfaces and a 333 nonadiabatic coupling matrix~of
a specific form to be able to produce physical diabatic
tentials!. The model was solved twice: once without doin
any approximation and once approximating the three coup
Schrödinger equations by the above-mentioned single~ex-
tended! BO equation. The calculations were done for en
gies below the lowestexcitedadiabatic potential~thus for
cases where the two upper excited states are energeti
forbidden!. Very similar state-to-state~reactive and nonreac
tive! transition probabilities were obtained, indicating th
the new approximate BO equation yields relevant results
a tristate system. It is important to emphasize that to
knowledge, this is the first time that such a BO approxim
tion is applied to a system of three adiabatic Schro¨dinger
equations coupled by singular nonadiabatic coupling ter
and is found to yield the relevant state-to-state transit
probabilities.

We also found other interesting features, and one of th
will be discussed next. The model was devised in such a
that in case the nonadiabatic coupling terms are ignored
allowed transitions in both channels—the reactive one
the inelastic one—are even→even and odd→odd, whereas
even→odd transitions are forbidden. In a previous public
tions@3,5# it was shown that including nonadiabatic couplin
terms related to a conical intersection changes the chara
of the transitions for thereactive channel: namely, the
above-mentioned even→even and odd→odd transitions be-
came forbidden, but then, instead, the even↔odd became
allowed. Now, extending the two-state model to a trist
model, where the third state is coupled to the second stat
a singular nonadiabatic coupling term, again affects the
lection rules for the reactive transitions. It was found that
original selection rules which were significantly destroyed
the conical intersection are restored due to the incorpor
coupling to thethird state.

In performing this numerical study we were interested
making two points.
ys
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~1! We wanted to demonstrate the validity of the new
derived BO approximation for anN-state system which ex
hibits topological effects. We treated two different cases:
N52 case and theN53 case. In both cases the nonadiaba
coupling terms are expected to yield different topologic
effects. The solution of the relevant two coupled equatio
and the three coupled equations justified these expectat
The relevant single approximate BO equation for each of
two cases correctly reproduced the results obtained f
solving the full system of Schro¨dinger equations.

~2! The most important outcome of this study is that o
has to be very careful in correctly defining the sub-Hilb
space. Assuming that solving the relevant Schro¨dinger equa-
tion for two coupled states is a good approximation of
system of three coupled states may lead to erroneous res
The danger is small if the two-state system exhibits the sa
symmetry as does the three-state system, but irrelevan
sults are expected when the two and three-state system
hibit different symmetries~the numerical example worke
out in this publication is of such a feature!.

Another outcome, not related to the numerical study,
the fact that we found that the topological matrixD which is
a diagonal matrix and should have in its diagonal a mixt
of ~11!’s and~21!’s is found to be very restricted in case o
N53. In a recent publication@14#, one of the present author
suggested a classification of topological effects according
the sizeN of the sub-Hilbert space. Thus forN52 we en-
countered only two possibilities: theD matrix contains either
two ~11!’s in its diagonal or two~21!’s. WhenN53, it was
found that theD matrix contains either three~11!’s or two
~21!’s and one~11! in its diagonal. However, the analyti
treatment of our simplified model, as performed in Sec.
yielded only the case of three~11!’s in the diagonal@see Eq.
~6!#. This would imply that in case ofN53 no topological
effects are expected. However, recently, two of the pres
authors@6# studied a more general case forN53, and found
there that the topological matrix has two~21!’s and one
~11! in its diagonal, which seems to indicate that topologic
effects are also expected in tristate systems.
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