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In this work is applied the extended-approximated Born-Oppenhe{B®) equation, as derived in the
preceding articl¢Phys. Rev. A62, 032506,(2000] to a tristate system. For this sake an appropriate scattering
two-arrangement—two-coordinate model was devised. The calculations for each energy were done three times:
once without doing any approximation, and two times by approximating the three coupledligeroequa-
tions by two different, but gauge-related, singgxtended BO equation. State-to-stateeactive and nonreac-
tive) transition probabilities were obtained, indicating that the new extended approximate BO equations yield
relevant results for a tristate system.

PACS numbegps): 31.30—i, 31.15—p, 03.65-w

[. INTRODUCTION Here ¢ stands for a nuclear angular coordinate defined in the
range [0, 27]. The topological effects for the full tristate
In the preceding papdrl] (designated as)la new ap- model were presented in terms of an anglg(¢), which is
proximated Born-OppenheiméBO) equation was derived. derived by solving the Top-Baer system of three differential
This equation is characterized by the fact that, in contrast tequations[11,17 which yield all three angles of the>33
the ordinary BO equation, it also contains topologiéal ~ ADT matrix. It was found that in some cases the two angles
geometrical effects due to nonadiabatic coupling terms. Fol-behave similarly and therefore will yield identical topologi-
lowing that derivation, we showed that for a two-state sys-cal effects; however, there were other cases where they be-
tem this equation becomes the Baer-Englman equatiorhave differently and the topological features were essentially
which was derived some time a@@], and which was found “opposite.” The fact that Eq(1) yields topological effects
to yield the correct state-to-state reactive transition probabiliwhich are different from the actual ones is usually an indi-
ties for a two-dimensional-two-arrangement channel modetation that certain points of degeneracy, or a multidegen-
[3-5]. In the present paper the newly formed extended BCeracy at a give point, are not revealed by this expression. In
equation will be applied to a tristate model, otherwise similarthis study, among other things, we shall show to what extent
to the one that was used in the previous two-state calculatiothe failure to identify the correct topological features of a
[3-5]. For this model we shall calculate the transition prob-system will affect the final state-to-state transition probabili-
abilities (both reactive and nonreactivéor energies below ties.
the upper excited states in several different wdgsA full In Sec. Il we derive quantization conditions for the eigen-
tristate calculation which will be considered as the “exactvalues of the assumed nonadiabatic coupling matrix. In Sec.
treatment.”(2) Two single-state calculations, employing two Il we present the tristate model and the various Sdimger
different, extended approximate BO equatio(®. A “rel- equations that were solved to derive the transition probabili-
evant” two-state calculation as will be explained later. ties. In Sec. IV we present and analyze the numerical results.
Recently two of the present authors carried out a detailedh Sec. V we list the conclusions.

study of the topological effects related to a tristate m@agl
Among other things, efforts were made to reveal to what ) .
extent the topological effects of the decoupled two-state Il. "QUANTIZATION” OF THE TRISTATE
model are related to topological effects of the f(ilree- NONADIABATIC COUPLING MATRIX

statg system. The topo_IogicaI effects for a two-state isolated |n the present section we concentrate on an adiabatic
system are presented in terms of an anfjie(¢), the two-  tristate model. For this we first derive the quantization con-
state adiabatic-diabatic-transformatiéADT) angle [7,8],  ditions to be fulfilled by the eigenvalues of nonadiabatic cou-

which is obtained by integrating oveny(¢) (the nonadia-  pling matrix, and then the extended BO approximated equa-
batic coupling term that couples the ground and the first tjon.

excited state§9—-11]: The starting point is the 83 nonadiabatic matrix
® ! ’
O @) = . T ¢’ )de’. (1) 0 t t
= -t 0 t3], 2
—t, —t3 O
*Guest professor at the Institute of Atomic and Molecular Sci-
ence, Taipei, Taiwan. wheret;, j=1,2,3, are, at this stage, arbitrary functions of
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the nuclear coordinates. The mat@xhat diagonalizes at a A=\E2+t2, o=+t
given point in configuration space is of the form

and the three eigenvalues areX0w). Assuming now that

itow—tzt; —it,o—tat;  tgAV2 the 7 matrix fulfills the conditions in Eq¥5) and(6) given in
1 L— S— | [these conditions ensure that the matgixhat diagonalizes

G= DN ot —itottl —LAWV2 ) (3 7(s) along a closed path is independent sifwe obtain,

\? \? tAv2 employing Eq.(26') in |, the following topologicalD matrix
[13] [the D matrix was introduced in I—see Eq4.7), (26),
where\ andw are defined as and (26')]:
|
12+ (12 +1,2)C;  tjwS;—2trtsS,  — ot,S+2tt5S,

D=w 2| tjws;—2t)tzs, t,2+(t;2+t3%)c; —taws;+2t5t,8,
WtyS+2tt3S,  tawS;+2tit,S, 24 (1,2 +t32) ey

: (4)

s =sin

wherecq, s;, ands, are defined as 0 1 0
: 8
j;ads), clzcos( #;E-ds), 0 -5 O
1 where 7 is a constant. From Eq$7) and (8) it is noted that
sz=sin2(— 3@ w-ds ) (5)  the = matrix first couples the ground adiabatic state to the
2 first excited state, and then this first excited state to the sec-
o _ _ ond excited state. No direct coupling is assumed between the
It is important to realize that Eq5) and(6) in | guarantee  ground state and the second excited state.
that the ratios;/w; j=1,2,3 are independent sf Next we Next we present a full adiabatic coupled system of Schro
note thatD becomes diagonal if and only if dinger equations for the abovex3 nonadiabatic coupling
matrix model[see Eq.4) in I]:

1 1
5 %st:z 3g Vti2+t,°+1t3%2-ds=n,  (6)

- t5 E thp d o ~0
+U1+W— lﬁﬁmﬁlﬁz—m%—,

wheren is an integer. Moreover, Ed6) guarantees thad

becomes the unit matrix. Equatid) is reminiscent of a t2(1+ 7?) t 9 t 9
uantization condition. Similar “quantization” laws exist if | T+ u,+ 0 7 —E|ip— —O—zp + ﬂ—lﬂ =0
q . q 2" om 2" mqae 1 mgae T

one of thet;’s becomes zerdif two out of the threet;’s
become zero, then we are back at the two-state case) snd
allowed to be half an integger

(€)

2,2 2
AD Nty J Us
5 TH+us+ —quz_E>l//3_m&_l//2_—2mq2 $1=0,
I1l. SCHRO DINGER EQUATION ¢
A. Adiabatic framework whereT is the nuclear kinetic energy operator:
The numerical treatment will be applied to a two- ) )
coordinate system, with being a radial coordinate anga T=_ e A (10
polar coordinate. We start the presentation by considering 2m\og® qoq q° de?)
the 3X 3 nonadiabatic(vecton matrix 7, which in a two-
coordinate system has two components, namgfyand 7,, . We shall now distinguish between three cases:
In what follows we assume that,=0, and, will be writ- (a) The case that botty and 5 are zero. In this case, Egs.
ten as[see Eq(5) in I] (9) become
to —E)y=
7=1,9= 40 (7 (T+u~B)$=0, (%3

which is the ordinary approximate BO equation.
Hereq is radial coordinatéy is, at this stage, a nonspecified  (b) The case thay is zero butt, differs from zero. In this
constant andy is a 3X 3 constant matrix of the form case Eqgs(9) become
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2 the interaction of the two-state system with the third state

J
T+uq+ Z—OZ—E Pyt 2 — =0, (i.e., assumingy=0). The extended approximate BO equa-
mq mq d¢ : . . . ; :
b tion for this case is also given in E(L2) by assumingw;
té ty 4 (9b) =1 (instead of 2 or zeno
T+ U2+ qu —E) 1102_ m_q %lﬂl:o,

B. Diabatic framework
which is a coupled system for the two lowest adiabatic states. ne of the main obstacles in solving E¢8) and (9b) is
_1 H

In the case that,=3, these equations become the relevanty,o existence of nonadiabatic singular terms which make the
equations for a conical intersection which were recently studn,merical procedure very unstable. Therefore, it was sug-
ied by Baeret al.[3] and Athkal’l and Billing[5]. In what gested, some time ag®,11], to eliminate these terms by an
follows, we assume thap= ;. orthogonal transformation—the ADT matrix—which forms

(c) The third case is the case of a coupled system of threge giabatic framework. This ADT matrix A fulfils the fol-

adia_lbat_ic equations_as presented in E®, but _whgren lowing first-order differential equatiof9,11];
(which is a constantis chosen so that the quantization con-

dition given in Egs.(6), is fulfilled. Inserting the following VA+7A=0. (13
values fort;, namely,t;=1/(2q), t,=0, and t3(= nt,)
= y/(2q) into Egs.(6) yields, for an arbitraryinteged n, the  The conditions for this equation to have a solution are dis-

following 7 values cussed in the Appendix ifl). The A matrix is solely deter-
, mined by ther matrix (and boundary conditionsbut its
n=v4n“—1 for n=1=7n=v3. (1)) physical relevance is decided upon its ability to form con-

tinuous, uniquely defined diabatic potenti&i§q,¢) which

It is important to reiterate that ondg is chosen to be equal follows from the ADT:

to 3, Egs.(9) are physically relevant if and only i is given
by Eq.(11). In the present case, we assumel.

Our next task is to present the relevaxtendedapproxi-
mate BO equation. For this purpose we consider the set
uncoupledequations as presented in Efjl) in | for the case
N=3. The functions w; that appear in these equations are
the eigenvalues of thg matrix, given in Eq.(8) (of the
present papér By solving the relevant eigenvalue problem
we obtain

W(q,¢)=A*(a,¢|00,®0)u(d,¢)A(d,¢[dg,@o). (14)

% this equationu(q, ¢) is the adiabatic potential matrix as-

sumed to be continuous and uniquely defined throughout

configuration space. Section Il was devoted to this problem,

and we made sure that thrematrix, constructed in the Sec.

I A, will indeed yield diabatic potentials as required.

The ADT matrix of a two-state casgo transform Eq.

©01=2, @,=—2, w3=0, (9b)J was dispus_sed on many occasi¢fgll], so that here

we just mention it for the sake of completeness:

so that Eqs(11) in | become

- cosf sind 15

towj '[Owj d = . ’

i aad 2 = —sin@ cosé

where 6 for our model is[see also Eqd.7) and(8)]

For to=3 and for variousw; values, this set of uncoupled
equations is a set of three gauge invariant equations, and ¢ @
therefore it is enough to solve only one of them. In the 0= fo te)gde’=7. (16)
present study we solved them twice, once f@r=0 and
once forw;=2. It is noted that fow; =0, Eq.(12) becomes ¢ derive the tristate ADT matrix, th& matrix is pre-

Eq.(9a), namely, the ordinary approximate BO equation. Wegented as a product of three matrices of the type given in Eq.
also solved it forw; =2, just to show that, indeed, we obtain (15) [, 17,

similar results to those fow; =0.
As mentioned earlier, we shall compare the presentthree-  A(g,,,60,5,60,9) =A12(0,) A (0,9A3 (0,9, (17)
state results, with results due to two-state calculations. The
relevant system of equations for this case is the one given iyhere the matrixa*?(0,,) is defined as
Eq. (9b), where agairto=3. In addition, for completeness,

we will present results due the extended approximate BO cosf;, sinfy, O

equation for this caséin fact the Baer-Englman equatipn (12 , 0

which is obtained from Eq12) by settingw;=1. AT(01)=| —sinbi, C€OSOy, ' (18)
Let us summarize what was done so far: We derived the 0 0 1

three adiabatic coupled BO equatiofsee Eq.(9)] for a

tristate two-coordinate model that we intend to study, as weland the other two matrices are defined in a similar way ex-
as the corresponding extended approximate BO equatioreept that the position of the 1 is shifted along the diagonal.
[see Eq.12)]. In addition, we presented a set of two equa-As shown by Top and Baefl12], following Eq. (13), the
tions[see Eq(9b)] which follows from Eqs(9) by dropping three angles fulfill the three coupled first-order equations
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2 TABLE |. Adiabatic potential-energy parameters used in the
calculations.
m 0.58 amu
A 3.0eVv
D,,Dj 0.5 eV, 10.0 eV
@ -1 o 0.30 A
g oo 0.75 A
5 wo 39.14x 108s !
g @0 7.83x 10857t
3
s
= 0 the value 2r. Thus theA matrix does not change sidsee
Eq. (17)] while completing a cycle. This is in contrast to the
two-state case witliy=3, where the corresponding angle
becomesr and theA-matrix changes sigfsee Eqs(15) and
(19)].
Once theA matrix is known, employing Eq.14) we can
n I obtain the diabatic potenti&V/ matrix and solve the relevant
0 T 2t diabatic Schrdinger equation(SE), which is of the form
s [9,11].
FIG. 1. The three adiabatic-to-diabatic transformation angles as TE+(W-IE)E=0, (22)
obtained by solving Eq420): ------ y Orp; —, Opg; s ,
013. whereE=A*W¥, andl is the unit matrix.

C. Adiabatic potential-energy matrix

VO1o= —ty—tanbps( — 1, C0SO1,+ 13 SiN b15), For the present model we assumed a two-arrangement

channel potential similar to the one employed in the previous
two-state studief3—5|. Moreover, the two lowest states are
identical to the ones employed before, namely,

V023: _(t3 C03012+t2 sin 012), (19)

V 613= — (C0Sb,3) " 1(—t, c0SH ,+ t3SIN6;),
_ , , ur(R) =3 mlwo—w(R)J’r*+Af(Rr) (233

where thet;, j=1,2,3, were introduced in Eq2). For the
present choice of the’s [see Eqs(7) and(8)], we obtain the and
following equations: Uy(R1) =2 mwdr?— (Dy— AVF(RI), (23b)
wherem wg, A, andD, are constant&heir values are listed
in Table ), Randr are Cartesian coordinatédefined in the
intervals —oo<R<o and —w<r<w~) related tog and ¢ in
the following ways:

1
\Y 012: - at0(1+ n sin letan 623) s

1
V 623= — — 7ty COSH1, (20
q R=qsing and r=qcose. (24

1 ) . The functionf(R,r) is chosen to be a two-variable Gaussian

Vi3=-— q 7t SiN61(COSbp3) which peaks af0, 0), namely,
It is noted that the third equation is decoupled from the other FRI) =ex;{ B R?+r?
two (this, by no means, implies that the andle; is less ' a?
important than the two other angjetn fact, to guarantee the
correct topological features, all three matrices in ELjy)
have to be derived and to be included in the product. R2

Equations(20) were solved for the present case where o(R)=wq exp{ - —2) (26)
to=3% and »=v3, and for 70

: (29

andw(R) is a anR-dependent frequency given in the form

The values oo and oy are also listed in Table I. The third
surfaceus is chosen to be similar to, defined for a different

D value, namely, foD;=10eV. In Fig. 2 we present the
two-dimensional three adiabatic potential-energy surfaces. It
The ¢-dependent);; angles, in the rang, 2], are shown can be seen that this potential describes a two-arrangement
in Fig. 1. It is noted that the two angles end up, following achannel system; the reagent-arrangement define®Rfero
complete cycle, with the value zero, and one of them withand a product-arrangement defined Fors — .

_1(9

V=——. 21
qde 1
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This completes the derivation of the model. In Sec. IV we
present the results due to the various sets of equations, par-
ticularly Eq. (9) [or its diabatic counterpart given in Eq.
(22)], Eq. (9b) (or its diabatic counterpart presented in Refs.
[3], [5]), and Eq.(12) for three different cases, namely;;
j=1,2,3.

IV. RESULTS AND DISCUSSION

In order to obtain the transition probabilities, the various
SEs mentioned in Sec. Il were solved using the wave-packet
time-dependence approach. This approach was fully de-
scribed in Ref[5], and will not be repeated here. The results
are presented in two tables: the inelastic probabilities are
given in Table I, and the reactive ones in Table Ill.

The calculations were done for four energies, iE.,
=1.0, 1.5, 2.0, and 2.5 eV, all of them below the upper
surfaces and thus below the common intersection point of the
three surfaces which takes placekat 3.0 eV. We shall re-
port on transitions from the ground vibrational state only.
Five different types of probabilities will be shown for each
transition: (a) Probabilities due to a full tristate calculation,

F.IG. .2. The three adiabatic potential-energy surfaces that werg, ried out within the diabetic representation, employing Eq.
applied in the present study.

(22). (b) Probabilities due to a two-state calculati¢for

TABLE Il. Nonreactive state-to-state transition probabilities.

0—0 0—1 0—2 0—3 0—4 0—5 0—6 0—7 0—38
E=1.00eV
0.351F - 0.6434 -
0.351% - 0.6411 -
0.3404 - 0.6574 B}
0.3473% - 0.6509 -
0.2762 - 0.6916 -
E=15eV
0.1913 - 0.3231 - 0.3419
0.1918 - 0.3184 - 0.3389
0.2065 - 0.3195 - 0.3304
0.1962 - 0.3202 - 0.3397
0.3172 - 0.2422 - 0.2773
E=2.0eV
0.2304 - 0.1515 - 0.1713 - 0.0894
0.2357 - 0.1470 - 0.1664 - 0.0900
0.2305 - 0.1587 - 0.1808 - 0.0784
0.2409 - 0.1463 - 0.1691 - 0.0918
0.2745 - 0.1481 - 0.0962 - 0.0406
E=25eV
0.0955 - 0.1188 - 0.0900 - 0.0512 - 0.0359
0.1198 - 0.1199 - 0.0652 - 0.0350 - 0.0126
0.1051 - 0.1199 - 0.0813 - 0.0434 - 0.0328
0.1173 - 0.1088 - 0.0613 - 0.0323 - 0.0126
0.1559 - 0.1161 - 0.0642 - 0.0377 - 0.0323

&Trisurface calculation.

®Two-surface calculation.

Single-surface calculationu(=2).
dSingle-sun‘ace calculationu(=1).
Single-surface calculationw(=0); the ordinary BO approximation.
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TABLE lll. Reactive state-to-state transition probabilities.

0—0 0—1 0—2 0—3 0—4 0—5 0—6 0—7 0—8 0—9
E=1.00eV
0.0044 - 0.0063 -
- 0.0049 - 0.0079
0.0047 - 0.0195 -
- 0.004% - 0.0080
0.0094 - 0.0362 -
E=15eV
0.0325 - 0.0592 - 0.0311
- 0.1068 - 0.0256 - 0.0068
0.0419 - 0.0648 - 0.0308 -
- 0.1078 - 0.0248 - 0.0075
0.0644 - 0.0612 - 0.0328 -
E=2.0eV
0.1110 - 0.0279 - 0.0319 - 0.2177
- 0.1232 - 0.03333 - 0.0633 - 0.1675
0.1068 - 0.0172 - 0.0274 - 0.2277 -
- 0.1264 - 0.0353 - 0.0656 - 0.1678
0.1351 - 0.0217 - 0.0304 - 0.2647 -
E=25eV
0.1318 - 0.0295 - 0.0091 - 0.1375 - 0.2043 -
- 0.0936 - 0.0698 - 0.1350 - 0.0200 - 0.2398
0.1256 - 0.0155 - 0.0084 - 0.1545 - 0.1977 -
- 0.0947 - 0.0658 - 0.1363 - 0.0190 - 0.2367
0.1831 - 0.0343 - 0.0089 - 0.1607 - 0.1157 -

#Trisurface calculation.

PTwo-surface calculation.

‘Single-surface calculationuy=2).

dSingle-surface calculationy(=1).

€Single-surface calculations(=0); the ordinary BO approximation.

which »=0), carried out within the corresponding diabetic somewhat different than those due to the other equations
representation, employing a set of equatipsisiilar to Eq.  (including its gauge invariant equatipriVe do not have a
(22)] discussed elsewhel&,5], (c) Probabilities due to a sensible explanation for this finding other than speculating
single state equation presented in Ef2) for w;=2. (d)  thatthe time-dependent grid method as applied here becomes
Probabilities due to a single state equation presented in Egnore cumbersome when tkgingulay nonadiabatic coupling
(12) for w;=1. (¢) Probabilities due to a single state equationterms are included in the SE equation.
presented in Eq(12) for «;=0 [this case is, in fact, Effects due to nonadiabatic coupling terms are seen in
the ordinary BO equation—see E(a)]. Out of the five Table lll, where the two-state results and the corresponding
cases, twathe second and the fouitipresent the ordinary extended approximated-BO equation resulisose for w
conical intersectioiCl) case;a priori, we expect the two CI =1) transformed the evereven and odd-odd selection
cases to show symmetry effe¢tss demonstrated in Ref8,  rules to ode-even selection rules. This transformation was
5]), and if the extended BO approximation is correctly discussed at length in previous publicatid8s5], and there-
worked out, then the other three calculations are not exfore will not be repeated here. The more interesting results
pected to yield any symmetry-affected results. are those for the tristate case which is also dominatet}, by
At this stage we would like to mention that the model, =1, just like the two-state case, but does not prodaiyg
without the inclusion of the vector potential, is constructed ingeometrical effects. This behavior was expected from the
such a way that it obeys certain selection rules, namely, onlyelevant extended approximated BO equation, which, as we
even—even and odd-odd transitions are allowed. Thus any showed, is identical to the ordinary BO equation. Neverthe-
deviation, in the results, from these selection rules will beless, we thought that, since the extended BO equation is still
interpreted as a symmetry change. approximate, the geometrical effects could be partly wrong
The inelastic(nonreactive processes, presented in Table (they were ngt Thus the present calculations revealed two
II, are in general not affected by the nonadiabatic couplingacts: (a) Geometrical features do not necessarily show up
terms, immaterial of what kind is used or which approximatewhere they are expected, as seen in the present tristate case.
BO equation is solved. Still we note that the ordinary BO(b) The extended approximate BO equation contains the cor-
equation vyields, on certain occasions, results which areect information regarding the geometrical effects, in the
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two-state case it contains geometrical effects due to the coni- (1) We wanted to demonstrate the validity of the newly
cal intersection, and in the tristate case it tells us that sucberived BO approximation for aN-state system which ex-

effects do not exist. hibits topological effects. We treated two different cases: the
N=2 case and thBl=3 case. In both cases the nonadiabatic
V. CONCLUSIONS coupling terms are expected to yield different topological

. ) effects. The solution of the relevant two coupled equations
In this work we tested the extended-approximate BOyn( the three coupled equations justified these expectations.
equation as derived in paper | for a tristate system. For thigpe relevant single approximate BO equation for each of the
sake a two-arrangement—two-coordinate reactive model Wag,o cases correctly reproduced the results obtained from
devised. The model consisted of three adiabatic potentlagoh,ing the full system of Schdinger equations.
energy surfaces and &3 nonadiabatic coupling matriof (2) The most important outcome of this study is that one
a specific form to be able to produce physical diabatic ponas to be very careful in correctly defining the sub-Hilbert
tentialg. The model was solved twice: once without doing space. Assuming that solving the relevant Sdimger equa-
any gp.proximation_and once approximating_the thrge couplegon for two coupled states is a good approximation of a
Schralinger equations by the above-mentioned sin@e-  system of three coupled states may lead to erroneous results.
tended BO equation. The_ calcu_latlons were QOne for ener-the danger is small if the two-state system exhibits the same
gies below the lowesexcitedadiabatic potentialthus for symmetry as does the three-state system, but irrelevant re-
cases where the two upper excited states are energetically,ts are expected when the two and three-state systems ex-
forbidden. Very similar state-to-stat@eactive and nonreac- hipit different symmetriesthe numerical example worked
tive) transition probabilities were obtained, indicating that gyt in this publication is of such a featjre
the new approximate BO equation yields relevant results for  another outcome, not related to the numerical study, is
a tristate system. It is important to emphasize that to OUfne fact that we found that the topological matBxwhich is
knowledge, this is the first time that such a BO approxima- diagonal matrix and should have in its diagonal a mixture
tion is applied to a system of three adiabatic Sdimger  f (+1)'s and(—1)'s is found to be very restricted in case of
equations coupled by singular nonadiabatic coupling termsy =3 |n a recent publicatiofL4], one of the present authors
and is found to yield the relevant state-to-state transitiony,ggested a classification of topological effects according to
probabilities. _ _ the sizeN of the sub-Hilbert space. Thus fdi=2 we en-
~We also found other interesting features, and one of therdgyntered only two possibilities: tH matrix contains either
will be discussed next. The model was devised in such a way,q (+1)'s in its diagonal or twa—1)’s. WhenN=3, it was

that in case the nonadiabatic coupling terms are ignored th@,,nd that theD matrix contains either threer1)'s or two
allowed transitions in both channels—the reactive one ang_1ys and one(+1) in its diagonal. However, the analytic
the inelastic one—are evereven and ode-odd, whereas yeatment of our simplified model, as performed in Sec. I,
even—odd transitions are forbidden. In a previous publica-yje|ded only the case of thrde-1)’s in the diagonalsee Eq.
tions[3,5] it was shown that including nonadiabatic coupling (g)]. This would imply that in case dil=3 no topological
terms related to a conical intersection changes the charactgfects are expected. However, recently, two of the present
of the transitions for thereactive channel: namely, the authorg[6] studied a more general case fér=3, and found
above-mentioned eveneven and ode-odd transitions be- there that the topological matrix has twe-1)’'s and one
came forbidden, but then, instead, the evemdd became (. 1) in its diagonal, which seems to indicate that topological
allowed. Now, extending the two-state model to a tristatesffects are also expected in tristate systems.

model, where the third state is coupled to the second state by

a singular nonadiabatic coupling term, again affects the se-

lection rules for the reactive transitions. It was found that the ACKNOWLEDGMENTS
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