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Extended approximated Born-Oppenheimer equation. I. Theory
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In this study we consider Born-Oppenheimer coupled equations with the aim of deriving a single approxi-
mated Born-Oppenheimer-type equation which contains the effect of the nonadiabatic coupling terms. The
derivation is done for a situation whereN ~>2! adiabatic surfaces, including the ground-state surface, have a
degeneracy along a single line~e.g., conical intersection!. The new equation can be considered as an extended
version of the Born-Oppenheimer approximation. Although derived for a nongeneral case, the extension to a
general case is also discussed. As special cases we treat, in the present paper, the two-state system and, in the
following paper, the three-state system.

PACS number~s!: 31.30.2i, 31.15.2p, 03.65.2w
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I. INTRODUCTION

One of the more interesting observations in molecular
namics was made by Herzberg and Longuet-Higgins~HLH!
@1# when they studied the Jahn-Teller conical intersect
~CI! model. These authors found that assuming the existe
of CI the corresponding electronic eigenfunctions have to
double-valued. HLH corrected for this deficiency in anad
hoc way. Irrespective of whether this correction is justifie
the importance of the HLH observation is in pointing out th
somethingmay go wrong if the whole system of electron
and nuclei is not treated with care. This is particularly ess
tial if, once the electronic eigenvalue problem is resolv
the resultingnuclear Schrödinger equation~SE! is solved,
employing the Born-Oppenheimer~BO! approximation@2#.

The starting point of the theory of molecular dynamics
usually the BO treatment, which is based on the fact t
within molecular systems fast-moving electrons can be
tinguished from slow-moving nuclei. This distinction als
applies to the BO approximation, which is based on the
sumption that nonadiabatic coupling terms are negligi
small, and that therefore the upper electronic surfaces do
affect the nuclear wave function on the lower surface. T
relevance of this assumption is not considered to be de
dent on the energy of the system. However, the ordinary
approximation was also employed for cases where these
pling terms are not necessarily small, assuming that the
ergy can be made as low as required. The justification
applying the approximation in such a case is that for a l
enough energy the upper adiabatic surfaces are classi
forbidden, implying that the components of the total wa
function related to these states are negligibly small. A
result the terms that contain the product of these compon
with the nonadiabatic coupling terms are also small, and
have a minor effect on the dynamical process. This assu
tion, which underlies many of the single-state dynamical c
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culations performed during the last three decades, beco
questionable when some of the nonadiabatic coupling te
are infinitely large. The reason for this is that, although t
components of the total wave function may be negligib
small, their product with the large nonadiabatic coupli
terms will result in non-negligible values, sometimes in ev
indefinitely large values. In that case this aspect of the
approximation will break down for any energy no matt
how low.

As is well known~and as follows from their definition!,
nonadiabatic coupling terms appear in the off-diagonal po
tions in the SE@3#. In order to form a single approximate
BO equation that contains nonadiabatic coupling terms, th
terms must first be shifted from their original off-diagon
positions to the diagonal. In a first publication on this subj
Baer and Englman@4# showed that such a possibility ma
exist, and derived, for the two-state case, an approxima
version of the BO equation which indeed contains the no
diabatic coupling term. Subsequently one of the present
thors @5# derived, from first principles and rigorously~i.e.
without approximations!, a new set of coupled BO-SE’s fo
the two-dimensional Hilbert space, in which all nonadiaba
coupling terms were shifted from the off-diagonal to the
agonal position. Thetwo equations, which now, among othe
functions, also contain the lower adiabatic potential ene
surface in their diagonal, remain coupled, but the coupl
term becomes a potential coupling. It was shown that t
coupling term is multiplied by the originaladiabaticnuclear
wave function associated with theupperelectronic state. As-
suming again that, for a low enough energy, this wave fu
tion is small, the BO approximation can be imposed on t
new set of equations by deleting this product. This proced
yields two ~decoupled! BO equations, one of which is iden
tical to the above-mentioned Baer-Englman~BE! equation.

The BE equation was later used first by Baer, Charu
Kosloff, and Baer~BCKB! @6# and subsequently by Adhikar
and Billing ~AB! @7# to calculatereactive transition prob-
abilities for a two-arrangement-channel model. It was fou
that whereas the total reactive probabilities obtained us
the two types of the single BO equations~namely, the ordi-
nary BO equation and the BE equation! were the same, the

-
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state-to-state transition probabilities were significantly diff
ent. Repeating the calculations employing the two coup
diabatic equations~which can rigorously be derived from th
two coupled adiabatic BO equations@3,8–11#! showed, with-
out ambiguity, that the BE equation, in contrast to the or
nary BO equation, was the one to yield correct results
could be of importance to point out that the calculations w
done in two different frameworks: the BCKB calculation
were done within the time-independent framework, and
AB ones within the time-dependent framework; still the fin
ings were the same. AB also showed that their results
identical to those obtained by employing a third approa
due to Kuppermann and co-workers@12,13#.

As mentioned earlier, the rigorously derived new set
BO equations leads totwo approximate uncoupled BO equa
tions, one of which is identified as the BE equation. It tur
out that the two equations are needed in order to show
the decoupling yields outcomes that are consistent with
original assumptions. In this paper the decoupling proc
will be extended to anN-state case whereN>2. However it
has to be emphasized that this extension will be done fo
model and not for the general case. The main idea, at
stage, is to show that such an extension is viable, and th
is consistent with original imposed assumptions. In ot
words, the purpose is to form an ‘‘existence theorem’’ f
the extended BO approximation to be applied for anN-state
system. A tristate model will then be treated, in the followi
paper, to show that, indeed, the new extended BO appr
mation is capable of yielding the correct results as obtai
by solving the full system of three BO coupled equations

II. EXTENDED BORN-OPPENHEIMER APPROXIMATION

Our starting point is the BO system of coupled equatio
written in the form@3#

2
1

2m
¹2c j1„uj~n!2E…c j

2
1

2m (
i 51

N

~2t j i
~1!
•“c i1t j i

~2!c i !50, ~1!

where thec j (n) and uj (n), n5 j, . . . ,N are the nuclear
wave functions and the~adiabatic! potential-energy surfaces
respectively,“ is the gradient~vector! operator,m is the
mass of the system,t (1) is the nonadiabatic~vector! matrix
of the first kind, andt (2) is non-adiabatic~scalar! matrix of
the second kind, both defined as

t j i
~1!5^z j u“z i& and t j i

~2!5^z j u“2z i&. ~2!

Herez j (eun), j 51, . . . ,N are the electronic eigenfunction
Recalling that for a given Hilbert space the relation betwe
t (1) andt (2) is

t~2!5~t~1!!21“t~1!, ~3!

Eq. ~1! becomes~in a matrix notation!:
03250
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1

2m
¹2C1S u2

1

2m
t22EDC2

1

2m
~2t•“1“t!C50.

~4!

HereC is a column matrix which contains the nuclear (c j )
wave functions,u is a diagonal matrix which contains th
adiabatic potentials, the dot designates scalar product, at
replacest (1) ~to simplify the notation!.

As stated in Sec. I, we intend to derive an extended
approximate equation for a Hilbert space of arbitrary dime
sions, for a situation where all surfaces, including t
ground-state surface, have a degeneracy along a single
~e.g.,@9# conical intersection!. A derivation of this kind, for
an arbitraryt matrix, can be done only in the two-state cas
In order to derive such an equation for a
N(.2)-dimensional case we have to limit somewhat the
bitrary form of the t-matrix elements. In this sense th
present derivation is not general. However, some of th
limitations are not as severe as they may look, and it is ho
that with additional assumptions this procedure will be a
plicable also for a more general case.

The t-matrix is an antisymmetricvector matrix with the
componentstp , p5x,y,z... . In what follows eachtp is
assumed to be a product of a scalarfunction tp and acon-
stantantisymmetric matrixg ~which does not depend onp!.
Thus

tp5tpg, ~5!

or, recalling Eq.~2!,

tp jk5tpgjk5^z j u“pzk&. ~6!

If G is the unitary transformation matrix that diagonalizesg,
and iv is the resulting~imaginary! diagonal matrix with
iv j ; j 51, . . . ,N as the corresponding eigenvalues, it can
shown that, following the unitary transformation perform
by G, Eq. ~4! becomes

2
1

2m
~“1 i tv!2x1~w2E!x50, ~7!

wherex is related toC through the transformation

C5Gx, ~8a!

and the nondiagonal diabatic potential matrixW is related to
the adiabatic potential matrixu as

w5G* uG. ~8b!

HereG* is the complex conjugate ofG. Considering Eq.~7!,
it is seen that the first term in front of the~column! vectorx
is a diagonal matrix, becauset is a vector of functions~not of
matrices!, andv is a diagonal matrix. However, due to th
transformation a new nondiagonal potential matrix is form
which couples the various differential equations. It is impo
tant to emphasize that so far the derivation has been rigor
and no approximations have been imposed. Thus the solu
of Eq. ~7! will be the same as the solution of Eq.~4!. Having
arrived at Eq.~7!, we are now in a position to impose the B
6-2
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approximation. As stated earlier, since for low enough en
gies all upper adiabatic states are energetically closed,
of the corresponding adiabatic functionsc j , j 52, . . . ,N is
expected to fulfill the condition

uc1u@uc j u, j 52, . . . ,N ~9!

at those regions of configuration space~CS! where the lower
surface is energetically allowed. This assumption has to
employed with great care, because so far it was proven,
merically, to hold for a two-state system (N52) only. Al-
though some risk is involved by extending it to an arbitra
number of states, we shall make this assumption. In the
lowing paper we show that this assumption is nicely fulfill
for a three-state case.

Our next step is to analyze the productWx for the j th
equation of Eq.~7!. Recalling Eqs.~8a! and ~8b!, we have:

~wx! j5$~G* uG!~G* C!% j5~G* uC! j5 (
k51

N

Gjk* ukck

5u1x j2u1(
k51

N

Gjk* ck1 (
k51

N

Gjk* ukck

or ~10!

~wx! j7u1x j1 (
k52

N

Gjk* ~uj2u1!ck , j 51, . . . ,N.

It should be noted from Eq.~10! that, for each j
(51, . . . ,N) this equation contains the product of the fun
tion x j and the lowestadiabatic potential surfaceu1 and a
summation of products of the negligibly smallck’s ~namely,
only those fork>2! with potential terms. Substituting Eq
~10! into Eq.~7! and deleting, in each of the equations, the
summations, yields the following system of equations:

2
1

2m
~“1 i tv j !

2x j1~u12E!x j50, j 51, . . . ,N.

~11!

It should be noted that this system ofN equations for theN x
functions is decoupled, and therefore each equation stand
its own and can be solved independently of all other eq
tions. However, it is also to be noted that all these equati
are solved for the same~adiabatic! potential-energy surface
u1 but for differentv j ’s.

Once thex functions are derived the final adiabatic vect
C f is obtained from Eq.~8a! when applied tox f . In particu-
lar the final nuclear wave functionc1 f follows from the ex-
plicit expression:

c1 f5 (
k51

N

G1kxk f . ~12!

A potential difficulty associated with this approach is d
to the fact that the calculatedx functions also yield, through
the transformation in Eq.~8a!, all other c f functions,
namely,c j f , j .1. These functions, by definition, have to b
03250
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identically zero at all asymptotes, because they belong to
upper adiabatic states which are classically forbidden at
these regions. At this stage nothing in the theory guaran
that the calculatedx functions will fulfill this demand.

There is, however, at least one case for which the ca
lated x functions will producec j f ’s, j .1, which are all
identically zero, and that is the case when Eqs.~11! are
gauge invariant@13–15# ~we shall elaborate on the gaug
invariance property in Sec. III!. At this stage let us assum
that the functions (tv j ); j 51, . . . ,N are such that these
equations are gauge invariant, so that variousx’s, if calcu-
lated for the same boundary conditions, are all identic
Thus our next step will be to determine the boundary con
tions for thex functions in order to solve Eq.~11!. To find
those we need to impose boundary conditions on thec func-
tions. We assume that at the given~initial! asymptote allc’s
are zero except for the ground-state functionc1in . Thus

c15c1in , c j5c j in50, j 52, . . . ,N. ~13a!

Due to Eq.~8a!, the boundary conditions for thex functions
are given in the form

x j in5G1 j* c1in , j 51, . . . ,N. ~13b!

It is seen that the boundary conditions for thex functions are
all identical, up to a constant@5(G1 j )* #, and therefore the
same applies to thex functions at every point in CS. Thus i
at a given asymptotic region we definex f as thex function
calculated for ax in which is identical toc in ~not propor-
tional to it!, then it can be shown@see Eq.~12!# that thec
functions at this particular asymptote, namelyc j f , j
51, . . . ,N become

c1 f5x f , c j f 50, j 52, . . . ,N. ~128!

Thus, for the particular case of a gauge invariant set of
coupled equations, we indeed obtain a solution which
compatible with the assumptions.

We now summarize what has been achieved so far. It
found that in order to construct a BO approximation for
N-state BO system that takes into account the nonadiab
coupling terms, we have to solveN uncoupled differential
equations all related to the electronicground~or lowest! state
but with different eigenvalues of the nonadiabatic matrix
presented in Eq.~11!. In order for these equations to yield
meaningful physical solution, the eigenvalues of theg matrix
cannot be arbitrary functions but have to fulfill certain r
quirements. It was shown that if, for instance, these eig
values produce gauge invariant equations the solution wil
compatible with the assumption concerning the BO appro
mation. In Sec. III we shall show that the necessary con
tion for an arbitrary nonadiabatict matrix to be relevant is
that its eigenvalues have to be such that Eqs.~11! are gauge
invariant.
6-3
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III. ‘‘QUANTIZATION’’ OF THE EIGENVALUES OF THE
NONADIABATIC COUPLING MATRIX ALONG A

CLOSED PATH

In a previous publication@16# it was proved that the ei
genvalues of the nonadiabatic matrices have to bequantized
~similar to the Bohr-Sommerfeld quantization of the angu
momentum! in order to yield a continuous, uniquely define
diabatic potential matrixW(s). As a result we assume tha
the extended BO approximation, as presented in Sec. II,
be applied only to those cases that fulfill these quantiza
rules. Next we briefly summarize the main points of the de
vation for the quantization, and present the final outcom
This will be done in two steps: first we derive the featur
required from the adiabatic-diabatic transformation~ADT!
matrix @8–10# to yield continuous diabatic potentials, an
then, in the second step, we refer to the nonadiabatic c
pling matrix ~the ADT matrix is obtained once the nonadi
batic matrix is given!.

We start by assuming the existence of an ADT mat
A(s,s0), which transforms a givenadiabaticpotential matrix
u(s) to a diabatic potential matrixW(s,s0) @3,8–10#:

W~s,s0!5A* ~s,s0!u~s!A~s,s0!. ~14!

HereA* (s,s0) is the complex conjugate matrix ofA(s,s0),
s0 is a given initial point in CS, ands is some other point.
Next it is assumed thatW(s,s0) is uniquely defined through
out CS, and our aim is to derive the features to be fulfilled
A(s,s0) in order to ensure the uniqueness ofW(s,s0). In this
respect it is important to mention thatu(s) is uniquely de-
fined throughout CS.

To reveal the features ofA(s,s0), we introduce a closed
pathG defined in terms of a continuous parameterl, so that
the starting points0 of the path is atl50. Next we defineb
as the value attained byl, once the path completes a fu
cycle, and reaches its starting point. Thus, for instance, in
case of a circleb52p.

Having introduced these definitions, we can now expr
our assumption regarding the uniqueness ofW(s,s0) in the
following way: ateach point s0 in CS the diabatic potentia
matrix W(l) @[W(s,s0)# fulfills the relation

W~l50!5W~l5b! . ~15!

Following Eq. ~14! this requirement implies that for ever
point s0 we have

A* ~0!u~0!A~0!5A* ~b!u~b!A~b!. ~16!

To continue, we introduce another transformation matrixD,
defined as

D5A~b!A* ~0!, ~17!

which for everys0 makes a connection betweenu(b) and
u(0):

u~b!5Du~0!D* . ~18!
03250
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TheD matrix is, by definition, a unitary matrix~because it
is a product of two unitary matrices!, and, at this stage, ex
cept for being dependent on the pathG ~and, eventually, on
the initial point s0!, is rather arbitrary. In what follows we
shall derive the features ofD.

Since the adiabatic eigenvalues are uniquely defined
each point in CS we have:u(0)[u(b), and therefore Eq.
~18! can also be written as

u~0!5Du~0!D* . ~188!

Performing the multiplication, it can be shown that it yield
the following system of relations between the adiabatic
genvaluesuj (0) and theD-matrix elements:

(
j 51

~Dk j* Dk j2dk j!uj~0!50, k51, . . . ,N. ~19!

Equation~19! is reminiscent of a homogeneous set of
gebraic equations, with theuj (0) as ‘‘unknowns.’’ It has to
hold for every arbitrary points0([l50) and for an, essen
tial, arbitrary set of nonzero~adiabatic eigenvalues! uj (0);
j 51, . . . ,N. Due to the arbitrariness of theuj (0)’s, Eqs.
~19! can be satisfied if and only if the ‘‘coefficients’’ becom
identically zero, namely, theD matrix elements have to ful
fill the conditions

~D jk!* D jk5d jk , j ,k51, . . . ,N ~20!

or

D jk5d jk exp~ ixk!. ~21!

Thus D is a diagonal matrix which contains in its diagon
complex numbers whose norm is 1. In what follows theD
matrix is termed as ‘‘topological matrix.’’

Recalling Eq.~17!, we obtain that:

A~b!5DA~0!. ~22!

It is noted thatA(b) does not have to be identicalA(0), that
is, it does not have to be uniquely defined at every poin
CS, in order to be able to produce physical meaningful
abatic potentials; however, upon tracing a closed path, it
to fulfill the conditions as specified in Eqs.~21! and ~22!.

Our next step will be to deriveA(b), and this we do by
applying the first-order differential vector equations@8#

¹A1tA50, ~23!

wheret, as mentioned earlier, is the nonadiabatic coupl
matrix. In considering Eq.~23! we are facing two problems
~a! Does Eq.~23! have a solution?~b! Is the solution unique?
The conditions for Eq.~23! to have a solution are discusse
in Appendix A. Solutions exist for any complete Hilbe
space or a sub-Hilbert space of dimensionM (,N), which is
made up of eigenfunctions all satisfying the conditions

t i j 5^z i u¹z j&50 for i<M , j .M . ~24!
6-4
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Equation~23! does not necessarily yield a uniquely d
fined A matrix. These are guaranteed if and only if t
t-matrix elements are all regular functions defined atevery
point in CS. However we have seen that in order to obt
uniquely defined diabatic potentials it isnot necessaryfor the
A matrix to be uniquely defined throughout CS, and the
fore we shall ignore this fact and just go ahead and derivA
~for the above-defined sub-Hilbert space! by a direct integra-
tion of Eq. ~23!. Formally the solution of Eq.~23! can be
written as an ordered integral@10#

A~s!5expS 2E
s0

s

ds•t DA~s0!, ~25!

where the integration is performed along a pathG that com-
biness and s0 , ds is a differential~vector! length element
along this path, and the dot stands for a scalar product~we
recall thatt is a vector!. More general cases are treated
Refs.@16#, @17#. Here we just carry out the derivation for th
t-matrix elements defined in Eq.~5!, so that the expressio
for the A-matrix can be obtained without any difficulty:

A~s!5G expS 2 ivE
s0

s

ds•t~s! DG* A~s0!, ~258!

where, as we recall, the~constant! matrix G is the unitary
transformation matrix that diagonalizesg, and iv is a diag-
onal matrix withiv j , j 51, . . . ,N being the eigenvalues o
the g matrix. We also recall thatt is the vector with the
componentstp as defined in Eq.~5!. Next we consider Eq
~17!, where we introduced theD matrix, for which, follow-
ing Eq. ~25!, we obtain an explicit expression:

D5exp„ R
G
ds•t~s!… ~26!

or @10#

D5G exp„2 iv R
G
ds•t~s!…G* . ~268!

Since the matrixD has to be a diagonal matrix with numbe
of norm 1 @namely,~11!’s and ~21!’s in the diagonal#, this
fact imposes strong limitations on the allowed values of
t-matrix elements. In the special cases that will be discus
in this paper, these limitations lead to a kind of quantizat
of the eigenvalues (v j t) of thet matrix, very much reminis-
cent of the Bohr-Sommerfeld quantization law of the angu
momentum@16–18#. To see this more explicitly we conside
the two simplest cases for theD matrix. For the case thatD
is the unit matrix@namely, only~11!’s in the diagonal#, we
obtain that each of the eigenvalues of thet matrix has to
fulfill the quantization rule

1

2p
v j R

G
ds•t~s!5nj , j 51, . . . ,N, ~27!

wherenj is an integer~this, in fact, is the case of the ord
nary BO equation!. In the same way, if theD matrix is the
03250
n
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unit matrix multiplied by~21! @namely, only~21!’s in the
diagonal#, the values of allnj have to behalf of an odd
integer. In this and the following paper, we shall discuss
some extent the two- and three-state cases. The gen
M-state case, where thet-matrix elements are functions o
the coordinates, are discussed in Refs.@17# and @18#.

We are now in a position to make a connection betwe
the quantization of the eigenvalues of thet matrix and the
gauge invariant requirement of Eqs.~11! in order to yield an
extended BO approximation. It is known that Eqs.~27!, with
nj being either a series of integers or a series of half of o
integers, are in fact necessary conditions for Eqs.~11! to
become gauge invariant. In other words the quantization
quirement, which is a necessary condition for havi
uniquely defined diabatic potentials, also guarantees the ex
istence of the extended BO equation. The fact that all
equations in Eq.~11! are gauge invariant means that they
yield, for the same set of initial conditions, identical sol
tions. Since this is the case it is, in fact, sufficient to consi
only one of these equations. Thus, like the ordinary BO
proximation, the inclusion of the effect of the nonadiaba
coupling terms leads to a single~extended! BO approxima-
tion.

In Sec. IV we explicitly discuss the two-state model. T
following paper is devoted to the tristate case.

IV. STUDY OF THE TWO-STATE SYSTEM

In the two-state case thet matrix has only one nonzero
element, and therefore it can always be written as require
Eq. ~5!, where theg matrix is given in the form

g5S 0 1

21 0D , ~28!

and the resulting eigenvalues are6 iv, wherev51. For this
g matrix we obtain the following unitaryG matrix:

G5
1

&
S 1 1

i 2 i D , ~29!

which, in turn, yields the following diabatic potential matr
W @see Eq.~8b!#:

w5
1

2 S u11u2 u12u2

2~u12u2! u11u2
D . ~30!

The corresponding two uncoupled~extended! BO equations
are then

F2
1

2m
~“6 i t !21u12EGx50, ~31!

and the topological matrixD is given in the form@see Eq.
~268!#

D5G expX6 i R
G
ds•t~s!CG* , ~2688!
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where we recallv1,2561. If D is chosen to be the uni
matrix the quantization of thet(s) function yields the condi-
tion

1

2p R
G
ds•t~s!5n n50,1, . . . , ~278!

which is the case of no topological effects, and in fact yiel
for n50 ~as well as forn51!, theordinary BO approxima-
tion @see Eq. 31#. On the other hand, choosingD to be a
negative unit matrix yields the condition

1

2p R
G
ds•t~s!5~2n11!/2 n50,1, . . . , ~2788!

which is the usual condition for an~extended! conical inter-
section. In this case the extended BO equation in Eq.~31!
becomes identical to the BE equation@4# which, as men-
tioned in Sec. I was successful in yielding the correct sta
to-state transition probability for a model that contains
conical intersection.

V. CONCLUSIONS

In this study we considered BO coupled equations w
the aim of deriving an approximated set of uncoupled eq
tions which, in contrast to the original BO approximat
equation, will also contain effects of the nonadiabatic co
pling terms. It is important to extend the BO approximati
in this way because, in case electronic states are degene
some of the nonadiabatic coupling terms may become
nite, thus affecting the dynamics of the nuclei, irrespective
how far it takes place from the location of the degenera
The ordinary procedure to treat these infinities is to elimin
them by transforming to the diabatic~or quasidiabatic!
framework, @3,8–10#. However the main drawback of thi
transformation is that once done, the BOapproximationcan
no longer be activated, and one is forced to treat the sys
of equations in its full dimensionality. An alternative way
overcome this difficulty, while still maintaining the possibi
ity of imposing the BO approximation, is to perform a tran
formation~or a series of transformations! that will not elimi-
nate the nonadiabatic coupling terms, but shift them fr
their off diagonal positions to the diagonal ones. Once suc
procedure is completed the BO approximation can be in
duced.

The shift transformation in the present study was do
with respect to a certain class of nonadiabatic coupling m
trices, mainly with the aim of proving an ‘‘existence the
rem’’ for an extended BO approximation for anN(>2) sys-
tem. However, although not carried out for the most gene
case, the present treatment reveals some interesting resu
was found that the suggested procedure is compatible
the requirement that the nonadiabatic matrix has to yiel
uniquelydefined diabatic potential matrix. This, as discuss
in previous publications, implies Bohr-Sommerfeld-ty
quantized eigenvalues of the nonadiabatic coupling ma
The quantization, as shown, also guarantees thatall N decou-
pled equations, that follow as a result of deleting the~poten-
03250
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tial! coupling terms, are invariant under gauge transform
tion, and therefore yield, for a similar set of bounda
conditions, identical result. In other words, it is enough
solve one equation only because all the others will yield
same solution.

Having successful results for the nongeneral case br
us to the next subject, namely, how to extend this proced
to a more general case? Assuming we have a nonadia
matrix which yields continuous diabatic potentials, then t
recipe we are suggesting is as follows: One has to derive
each point in CS, the eigenvalues of the nonadiabatic ma
and then insert one continuous set of these in Eqs.~11! for
j 51, and solve it for given boundary conditions. The meth
how to solve such an equation was described in Ref.@4#.

Finally we would like to refer the subject of whether thet
matrix is a pure longitudinal-type vector or not because i
only these kinds of vectors that fulfill the Curl condition a
expressed in Eq.~A3! in the Appendix~or its extensive ver-
sion for a general dimensionM „.2…!. This question was
and still is frequently raised by referees and others. The
swer is only partly given here, and more extensively in R
@18#. It goes as follows:t matrices formed for a sub-Hilber
space as defined in Eq.~24! @or in Eq.~A7! in the Appendix!
can be shown to fulfil the extensive version of Eq.~A3!, and
therefore by definition have only the longitudinal compone
~and completely lack the transverse component!. The present
paper, as well as the next one, deal only with this kind
situation.
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APPENDIX: ON THE SOLUTION OF THE FIRST-ORDER
DIFFERENTIAL VECTOR EQUATION “A¿tAÄ0

The equation mentioned in the title is Eq.~23!. The solu-
tion of this equation, namely, the adiabatic-to-diabatic tra
formation ~ADT! matrix A, is frequently questioned by ref
erees and others, and so we decided to discuss it to s
extent in this appendix. However, in order to simplify th
discussion we shall refer to a two-coordinate–two-state c
for which the ADT matrix can be presented in terms of
angleg which has to fulfill the first-order differential equa
tion @8#

“g2t50, ~A1!

where“5(]/]r ,]/]R). The solution of Eq.~A1! can be
written in several ways, as already stated in Ref.@8#. One
way of doing this is

g~r ,R!5g~r 0 ,R0!1E
r 0

r

t r~r ,R0!dr1E
R0

R

tR~r ,R!dR,

~A2!
6-6
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wheret r and tR are the two components oft. Our task is
now to show that the expression in Eq.~A2! is indeed a
solution of Eq.~A1!. A straightforward differentiation of Eq
~A2! with respect toR yields theR component of Eq.~A1!
namely,

]g~r ,R!

]R
5tR~r ,R!. ~A1a!

To show that also ther component of Eq.~A1! is fulfilled,
we have to assume that at the point~r,R! the following ~curl!
relation holds:

curlt5
]t r

]R
2

]tR

]r
50. ~A3!

In Ref. @8# it was shown that as long as the two electron
eigenfunctions are analytic functions with respect to
nuclear coordinates, at the point~r,R! and its close proximity
this relation is indeed fulfilled. Assuming the existence
Eq. ~A3! along the whole routeG from (r 0 ,R0) to ~r,R!, one
can show that the solution given in Eq.~A2! also fulfills the
second component of Eq.~A1!, namely,

]g~r ,R!

]r
5t r~r ,R!. ~A1b!

We shall now generalize this result to any pathG, and
refer to the following presentation of the solution of E
~A1!:

g~s!5g~s0!1E
s0

s

t•ds, ~A4!

wheres ands0 are two points in CS combined by the pathG.
It is important to realize that Eq.~A1! has a solution along
the pathG, and this solution is given in Eq.~A4!, if along
this path~and only along this path! the relevant functions are
analytic, or in other words the curl relation in Eq.~A3! is
fulfilled. The existence of the solution is not affected in a
way by the existence of singular points in the region t
contains the pathG. These singular points may affect th
uniquenessof the solution but not its existence.

The generalized solution of Eq.~A1! may also be written,
in a more explicit way, as
a

ys

03250
e

f

t

g~s!5g~s0!expS 2E
s0

s

ds•t D . ~A5!

This expression can be extended to anyN-state system by
writing an explicit solution for the ADT matrixA(s) in the
following way @10#:

A~s!5expS 2E
s0

s

ds•t DA~s0!, ~A6!

wheret is now not a single matrix element but the fullN
3N matrix.

To prove the existence of the curl condition in Eq.~A3! or
its extended version to any dimensionN @8#, we had to as-
sume the resolution of the unity operator in terms of t
electronic eigenstates of the relevantN-dimensional Hilbert
space. Recently, however, we have shown that the exten
version of Eq.~A3! also exists for a sub-Hilbert space o
dimensionM (,N) if certain conditions are fulfilled@18#.
These conditions can be summarized as follows: All the c
pling terms formed by electronic eigenfunctions belonging
the sub-Hilbert space with electronic eigenfunctions belo
ing to other parts of this Hilbert space have to be identica
zero. These conditions can be written in a more mathem
cal form as

t i j 5t i j
~1!5^z i u¹z j&50 for i<M , j .M . ~A7!

As mentioned, the proof was given in Ref.@18#, and will not
be repeated here. It is important to mention that in gene
the complete Hilbert is expected to be composed of sev
sub-Hilbert spaces of this kind. Assuming that a situat
like this, indeed, exists in molecular systems, we can refe
sub-Hilbert spaces and the discussion in the body of the
per is related for these situations.

The only open question to be considered is whether th
is any evidence of the existence of sub-Hilbert spaces
general, hardly any effort was made in this respect Yarko
was, until recently, the only one to look for such systems,
so far without success@19#. It seems however that Mebe
Baer, and Lin were somewhat more successful, and w
studying the C2H system found that the two lowest eige
states of this system indeed form, for given fixedC-C dis-
tances, sub-Hilbert spaces@20#.
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