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In this study we consider Born-Oppenheimer coupled equations with the aim of deriving a single approxi-
mated Born-Oppenheimer-type equation which contains the effect of the nonadiabatic coupling terms. The
derivation is done for a situation whelké(=2) adiabatic surfaces, including the ground-state surface, have a
degeneracy along a single lifle.g., conical intersectionThe new equation can be considered as an extended
version of the Born-Oppenheimer approximation. Although derived for a nongeneral case, the extension to a
general case is also discussed. As special cases we treat, in the present paper, the two-state system and, in the
following paper, the three-state system.

PACS numbegps): 31.30—i, 31.15—p, 03.65-w

[. INTRODUCTION culations performed during the last three decades, becomes

guestionable when some of the nonadiabatic coupling terms
One of the more interesting observations in molecular dyare infinitely large. The reason for this is that, although the
namics was made by Herzberg and Longuet-HigghtisH) ~ components of the total wave function may be negligibly
[1] when they studied the Jahn-Teller conical intersectiors™@ll: their product with the large nonadiabatic coupling
(Cl) model. These authors found that assuming the existen rms will result in non-negligible values, sometimes in even

of Cl the corresponding electronic eigenfunctions have to béndeflmtely large values. In that case this aspect of the BO

double-valued. HLH corrected for this deficiency in ad approximation will break down for any energy no matter
. ) 7y L how low.
hocway. Irrespective of whether this correction is justified,

. SR L As is well known(and as follows from their definition
the importance of the HLH observation is in pointing out that |, - jishatic coupling terms appear in the off-diagonal posi-

somethingmay go wrong if the whole system of electrons g in the SE3]. In order to form a single approximated
and nuclei is not treated with care. This is particularly essengg equation that contains nonadiabatic coupling terms, these
tial if, once the electronic eigenvalue problem is resolvedierms must first be shifted from their original off-diagonal
the resultingnuclear Schralinger equationSE) is solved,  positions to the diagonal. In a first publication on this subject
employing the Born-Oppenheimé@O) approximation 2]. Baer and Englman4] showed that such a possibility may
The starting point of the theory of molecular dynamics isexist, and derived, for the two-state case, an approximated
usually the BO treatment, which is based on the fact thaversion of the BO equation which indeed contains the nona-
within molecular systems fast-moving electrons can be diseiabatic coupling term. Subsequently one of the present au-
tinguished from slow-moving nuclei. This distinction also thors [5] derived, from first principles and rigorously.e.
applies to the BO approximation, which is based on the aswithout approximations a new set of coupled BO-SE'’s for
sumption that nonadiabatic coupling terms are negligiblythe two-dimensional Hilbert space, in which all nonadiabatic
small, and that therefore the upper electronic surfaces do nebupling terms were shifted from the off-diagonal to the di-
affect the nuclear wave function on the lower surface. Theagonal position. Théwo equations, which now, among other
relevance of this assumption is not considered to be depefriunctions, also contain the lower adiabatic potential energy
dent on the energy of the system. However, the ordinary BGurface in their diagonal, remain coupled, but the coupling
approximation was also employed for cases where these coterm becomes a potential coupling. It was shown that this
pling terms are not necessarily small, assuming that the ereoupling term is multiplied by the originadiabaticnuclear
ergy can be made as low as required. The justification fowave function associated with thgperelectronic state. As-
applying the approximation in such a case is that for a lowsuming again that, for a low enough energy, this wave func-
enough energy the upper adiabatic surfaces are classicallipn is small, the BO approximation can be imposed on this
forbidden, implying that the components of the total wavenew set of equations by deleting this product. This procedure
function related to these states are negligibly small. As gields two (decoupledl BO equations, one of which is iden-
result the terms that contain the product of these componential to the above-mentioned Baer-Englm@E) equation.
with the nonadiabatic coupling terms are also small, and will The BE equation was later used first by Baer, Charutz,
have a minor effect on the dynamical process. This assumgkosloff, and Bae{BCKB) [6] and subsequently by Adhikari
tion, which underlies many of the single-state dynamical caland Billing (AB) [7] to calculatereactive transition prob-
abilities for a two-arrangement-channel model. It was found
that whereas the total reactive probabilities obtained using
*Guest professor at the Institute of Atomic and Molecular Sci-the two types of the single BO equatiofieamely, the ordi-
ence, Taipei, Taiwan. nary BO equation and the BE equatiomere the same, the
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state-to-state transition probabilities were significantly differ- 1 ) 1, 1
ent. Repeating the calculations employing the two coupled— 5~ V=W + ( U=5 7~ E)‘I’— om (27 VAV DV =0.
diabatic equationévhich can rigorously be derived from the @)

two coupled adiabatic BO equatiof%8-11) showed, with-
out ambiguity, that the BE equation, in contrast to the ordi-Here ¥ is a column matrix which contains the nuclea;)
nary BO equation, was the one to yield correct results. livave functionsu is a diagonal matrix which contains the
could be of importance to point out that the calculations wereadiabatic potentials, the dot designates scalar productyand
done in two different frameworks: the BCKB calculations replacesr*) (to simplify the notation
were done within the time-independent framework, and the As stated in Sec. |, we intend to derive an extended BO
AB ones within the time-dependent framework; still the find- approximate equation for a Hilbert space of arbitrary dimen-
ings were the same. AB also showed that their results argions, for a situation where all surfaces, including the
identical to those obtained by employing a third approachground-state surface, have a degeneracy along a single line
due to Kuppermann and co-workdrk2,13. (e.g.,[9] conical intersection A derivation of this kind, for

As mentioned earlier, the rigorously derived new set ofan arbitraryr matrix, can be done only in the two-state case.
BO equations leads tiovo approximate uncoupled BO equa- In  order to derive such an equation for an
tions, one of which is identified as the BE equation. It turnsN(>2)-dimensional case we have to limit somewhat the ar-
out that the two equations are needed in order to show thaitrary form of the r~matrix elements. In this sense the
the decoupling yields outcomes that are consistent with thgresent derivation is not general. However, some of these
original assumptions. In this paper the decoupling proceskmitations are not as severe as they may look, and it is hoped
will be extended to al-state case wheld=2. However it that with additional assumptions this procedure will be ap-
has to be emphasized that this extension will be done for plicable also for a more general case.
model and not for the general case. The main idea, at this The r~matrix is an antisymmetrizector matrix with the
stage, is to show that such an extension is viable, and that fomponentsr,, p=x,y,z.... In what follows eachr, is
is consistent with original imposed assumptions. In othemssumed to be a product of a scafanction t, and acon-

words, the purpose is to form an “existence theorem” for stantantisymmetric matri>g (which does not depend qu).
the extended BO approximation to be applied forNaatate  Thus

system. A tristate model will then be treated, in the following

paper, to show that, indeed, the new extended BO approxi- Tp=1,9, 5)
mation is capable of yielding the correct results as obtained .

by solving the full system of three BO coupled equations. °F recalling Eq.(2),

Tpik=tpGjk= (| Vplio)- (6)
_ o ~If Gis the unitary transformation matrix that diagonalizes
Our starting point is the BO system of coupled equationsand iw is the resulting(imaginary diagonal matrix with
written in the form([3] iwj; j=1,... N as the corresponding eigenvalues, it can be

shown that, following the unitary transformation performed
by G, Eq. (4) becomes

1. EXTENDED BORN-OPPENHEIMER APPROXIMATION

1 2
~omV it U -B)y,

1
12 — 5 (V+itw) x+(W—E)x=0, @
3mSR =0, (@
- wherey is related to¥ through the transformation

where the;(n) and u;(n), n=j,...,N are the nuclear T=Gy, (89)
wave functions and th@adiabati¢ potential-energy surfaces,

respectively,V is the gradient(vecton operator,m is the  and the nondiagonal diabatic potential matkis related to
mass of the system—,(l) is the nonadiabati¢vecton matrix ~ the adiabatic potential matrix as

of the first kind, and~? is non-adiabati¢scalay matrix of

the second kind, both defined as w=G*uG. (8b)
1 2 HereG* is the complex conjugate @&. Considering Eq(7),
7 =(5IV&) and 7P =(¢|V2¢). @ itis seen that the first term in front of theolumn vector y
i o ) is a diagonal matrix, becausés a vector of functiongnot of
Heregj(e|n), j=1,... N are the electronic eigenfunctions. matrices, andw is a diagonal matrix. However, due to the
R(icalllng gh?‘t for a given Hilbert space the relation betweenyansformation a new nondiagonal potential matrix is formed
7™ and % is which couples the various differential equations. It is impor-
tant to emphasize that so far the derivation has been rigorous,
2 =(7V)2+ v, (3 and no approximations have been imposed. Thus the solution
of Eq. (7) will be the same as the solution of Ed). Having
Eqg. (1) becomegin a matrix notatiop arrived at Eq(7), we are now in a position to impose the BO
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approximation. As stated earlier, since for low enough eneridentically zero at all asymptotes, because they belong to the
gies all upper adiabatic states are energetically closed, eacipper adiabatic states which are classically forbidden at all

of the corresponding adiabatic functioss, j=2,... N is  these regions. At this stage nothing in the theory guarantees
expected to fulfill the condition that the calculategy functions will fulfill this demand.
) There is, however, at least one case for which the calcu-
lpal>yl, i=2,... N (9 lated x functions will producedy;i’s, j>1, which are all

. , . identically zero, and that is the case when E(sl) are
at those regions of configuration spd&S where the lower auge invarian{13—15 (we shall elaborate on the gauge

surface is energetically allowed. This assqmption has to b%wariance property in Sec. )l At this stage let us assume
employed with great care, because so far it was proven, NUpat the functions fw); j=1,...N are such that these

merically, to hold for a two-state syster¢2) only. Al- equations are gauge invariant, so that varigiss if calcu-

though some risk is involved by ext_endmg Lo an arbltraryIated for the same boundary conditions, are all identical.
number of states, we shall make this assumption. In the fols

lowing paper we show that this assumption is nicel fquiIIedThus our next step will be to determine the boundary condi-
g pap P y tions for the y functions in order to solve Eq11). To find
for a three-state case.

. . those we need to impose boundary conditions onytifienc-
eqt?aliirogegft é;ig)lstc:Iﬂﬁg?q;Tg a)pg)nd dugbé) fc\;/\rletr;g/ teh_ tions. We assume that at the givénitial) asymptote all/'s
' ' " are zero except for the ground-state functi@y, . Thus

N
(W) ={(G*UGHGM W)} =(G*uw); = 2, Gt =i, G=Um=0, j=2,...N. (13a

N N
=u1x,-—u12 G+ > GliU i Due to Eq.(8a), the boundary conditions for thefunctions
K=t k=1 are given in the form
or (10)
N Xjin=G1j¥1n, J=1,... N (13b
(Wx); Ui+ 2, G —ui, j=1,... N.

It is seen that the boundary conditions for th&nctions are
all identical, up to a constafit=(G4;)* ], and therefore the
same applies to thg functions at every point in CS. Thus if
at a given asymptotic region we defing as they function
calculated for ay;, which is identical tog;, (not propor-

It should be noted from Eq.10) that, for each ]
(=1, ... N) this equation contains the product of the func-
tion x; and the lowesadiabatic potential surfaces; and a

summation of products of the negligibly smail’'s (namely, . . !

only those fork=2) with potential terms. Substituting Eq. ;Sﬁg:;ﬁslt)é:hfﬁi;t Czr:titéilasmrogvsfsge tgfé(laglrt::‘;thel’.z’
(10) into Eq.(7) and deleting, in each of the equations, these ™ N become P ymplote, it )
summations, yields the following system of equations: T

1 . ,
—ﬁ(V—Htw]—)ZXj—F(ul—E)X]—:O, i=1,...N. bii=xs, ¥5=0, j=2,... N. (12)

11
Thus, for the particular case of a gauge invariant set of un-

It should be noted that this systemMfequations for théN x  coupled equations, we indeed obtain a solution which is
functions is decoupled, and therefore each equation stands @Bmpatible with the assumptions.
its own and can be solved independently of all other equa- \ye now summarize what has been achieved so far. It was
are solved for the samdiabati¢ potential-energy surface N.state BO system that takes into account the nonadiabatic
uy but for differenta;’s. , _ o coupling terms, we have to solve uncoupled differential

Once the)( functions are derived the final adiabatic vector equations all related to the e|ectr0gmund(0r |owes) state
Wy is obtained from Eq(8a) when applied toy¢ . In particu- byt with different eigenvalues of the nonadiabatic matrix as
lar the final nuclear wave functios; follows from the ex-  presented in Eq11). In order for these equations to yield a
plicit expression: meaningful physical solution, the eigenvalues of ghmeatrix
cannot be arbitrary functions but have to fulfill certain re-
quirements. It was shown that if, for instance, these eigen-
values produce gauge invariant equations the solution will be
compatible with the assumption concerning the BO approxi-

A potential difficulty associated with this approach is duemation. In Sec. Il we shall show that the necessary condi-
to the fact that the calculatedfunctions also yield, through tion for an arbitrary nonadiabatie matrix to be relevant is
the transformation in Eq(8a, all other ¢; functions, that its eigenvalues have to be such that Efj$) are gauge
namely, ;s , j>1. These functions, by definition, have to be invariant.

N
¢lf:gl GaiXkf - (12

032506-3



BAER, LIN, ALIJAH, ADHIKARI, AND BILLING PHYSICAL REVIEW A 62 032506

Il “QUANTIZATION” OF THE EIGENVALUES OF THE TheD matrix is, by definition, a unitary matribecause it
NONADIABATIC COUPLING MATRIX ALONG A is a product of two unitary matricgsand, at this stage, ex-
CLOSED PATH cept for being dependent on the pdthand, eventually, on

In a previous publicatiofi16] it was proved that the ei- the initial pointsy), is rather arbitrary. In what follows we

genvalues of the nonadiabatic matrices have touemntized shaII_ derive the .featulres dij - :

- o Since the adiabatic eigenvalues are uniquely defined at
(similar to the Bohr-Sommerfeld quantization of the angulareach oint in CS we havai(0)=u(g), and therefore E
momentum in order to yield a continuous, uniquely defined, (18) P Iso b itte ’ 9
diabatic potential matrixW(s). As a result we assume that can aiso be written as
the extended BO approximation, as presented in Sec. Il, will _ * ,
be applied only to those cases that fulfill these quantization u(0)=Du(0)b™. (18)

rulgs. Next we brlefly summarize the main points of the derl'Performing the multiplication, it can be shown that it yields
vation for the quantization, and present the final outcome

This will be done in two steps: first we derive the featuresthe following system of relations between the adiabatic ei-

required from the adiabatic-diabatic transformati@DT) genvalues;(0) and theD-matrix elements:
matrix [8—10] to yield continuous diabatic potentials, and
then, in the second step, we refer to the nonadiabatic cou- > (Dg;Dyj— 6ij)uj(0)=0, k=1,...N. (19
pling matrix (the ADT matrix is obtained once the nonadia- =1
batic matrix is given _ ) o

We start by assuming the existence of an ADT matrix Equation(19) is reminiscent of a homogeneous set of al-
A(s,so), which transforms a giveadiabaticpotential matrix ~ 9ebraic equations, with the;(0) as “unknowns.” It has to

u(s) to a diabatic potential matrixV(s,sy) [3,8—10: hold for every arbitrary poinso(=\=0) and for an, essen-
tial, arbitrary set of nonzergadiabatic eigenvalugsi;(0);
W(S,Sp) = A* (S,50) U(S)A(S, So). (14 1=1,...N. Due to the arbitrariness of the;(0)’s, Egs.

(19) can be satisfied if and only if the “coefficients” become
identically zero, namely, thB matrix elements have to ful-

Here A*(s,sy) is the complex conjugate matrix @f(s,sp), ; >
fill the conditions

Sp is a given initial point in CS, ang is some other point.
Next it is assumed thad/(s,s;) is uniquely defined through-

out CS, and our aim is to derive the features to be fulfilled by (DjW* D=0k, J,k=1,...N (20)
A(s,sp) in order to ensure the uniquenessféfs,sy). In this
respect it is important to mention thats) is uniquely de-
fined throughout CS. .
g D]k: 5“( qu|Xk). (21)

To reveal the features @&(s,sy), we introduce a closed

pathl” defined in terms of a continuous parameteso that ThusD is a diagonal matrix which contains in its diagonal

the starting poins, of the path is ah =0. Next we defing3 complex numbers whose norm is 1. In what follows e
as the value attained hy, once the path completes a full pe " . o
matrix is termed as “topological matrix.

cycle, and r_each(is its starting point. Thus, for instance, in the Recalling Eq.(17), we obtain that:
case of a circlegB=21.

Having introduced these definitions, we can now express
our assumption regarding the uniquenes3\gf,sy) in the
following way: ateach point § in CS the diabatic potential
matrix W(\) [=W(s,sp) ] fulfills the relation

A(B)=DA(0). (22)

It is noted thatA(B) does not have to be identica(0), that

is, it does not have to be uniquely defined at every point in

CS, in order to be able to produce physical meaningful di-

abatic potentials; however, upon tracing a closed path, it has

) ) ) o to fulfill the conditions as specified in Eq&1) and (22).
Following Eq. (14) this requirement implies that for every 5+ next step will be to deriv(8), and this we do by

W(A=0)=W(A=23). (15)

point s, we have applying the first-order differential vector equatidigg
A*(0)u(0)A(0)=A*(B)U(B)A(B). (16) VA+7A=0, (23
To continue, we introduce another transformation maix where 7, as mentioned earlier, is the nonadiabatic coupling
defined as matrix. In considering Eq(23) we are facing two problems:
(a) Does Eq.{(23) have a solution®o) Is the solution unique?
D=A(B)A*(0), (17)  The conditions for Eq(23) to have a solution are discussed

in Appendix A. Solutions exist for any complete Hilbert
which for everysy makes a connection betweeif3) and  space or a sub-Hilbert space of dimensi(<<N), which is
u(0): made up of eigenfunctions all satisfying the conditions
U(,B):DU(O)D* (18) T|J:<§||V§]>:O for i=M, J>M (24)
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Equation(23) does not necessarily yield a uniquely de- unit matrix multiplied by(—1) [namely, only(—1)’s in the
fined A matrix. These are guaranteed if and only if thediagonal, the values of alln; have to behalf of an odd
7matrix elements are all regular functions definecea¢ry integer In this and the following paper, we shall discuss to
point in CS. However we have seen that in order to obtairsome extent the two- and three-state cases. The general
uniquely defined diabatic potentials itriot necessarjor the  M-state case, where thematrix elements are functions of
A matrix to be uniquely defined throughout CS, and therethe coordinates, are discussed in R¢1F] and[18].
fore we shall ignore this fact and just go ahead and dekive ~ We are now in a position to make a connection between
(for the above-defined sub-Hilbert spaty a direct integra- the quantization of the eigenvalues of thenatrix and the
tion of Eq. (23). Formally the solution of Eq(23) can be gauge invariant requirement of Eq41) in order to yield an

written as an ordered integrgl0] extended BO approximation. It is known that E¢&7), with
n; being either a series of integers or a series of half of odd
s . : e
A(s) = ex _f ds 7| A(sy), (25) integers, are m_fact_necessary conditions for E(q,_ﬂ.) to
S become gauge invariant. In other words the quantization re-

quirement, which is a necessary condition for having
where the integration is performed along a phtthat com-  uniquely defined diabatic potentialalso guarantees the ex-
biness and sy, ds is a differential(vectop length element istence of the extended BO equation. The fact that all the
along this path, and the dot stands for a scalar produet equations in Eq(11) are gauge invariant means that they alll
recall thatr is a vectoj. More general cases are treated inyield, for the same set of initial conditions, identical solu-
Refs.[16], [17]. Here we just carry out the derivation for the tions. Since this is the case it is, in fact, sufficient to consider
7matrix elements defined in E@5), so that the expression only one of these equations. Thus, like the ordinary BO ap-
for the A-matrix can be obtained without any difficulty: proximation, the inclusion of the effect of the nonadiabatic
coupling terms leads to a singlextended BO approxima-
* ) tion.
G*Al%0), (25) In Sec. IV we explicitly discuss the two-state model. The
following paper is devoted to the tristate case.

A(s)=G exr{ —iwrds-t(s)

where, as we recall, theconstankt matrix G is the unitary

transformation matrix that diagonalizgsandiw is a diag- IV. STUDY OF THE TWO-STATE SYSTEM
onal matrix withiw;, j=1,... N being the eigenvalues of _
the g matrix. We also recall that is the vector with the In the two-state case thematrix has only one nonzero

components, as defined in Eq(5). Next we consider Eq. element, and therefore it can always be written as required in
(17), where we introduced thB matrix, for which, follow-  Ed. (5), where theg matrix is given in the form
ing Eq. (25), we obtain an explicit expression:

0 1
9= _1 o) (28
D =exp( jE ds: 7(s)) (26)
r
and the resulting eigenvalues atéw, wherew=1. For this
or [10] g matrix we obtain the following unitar$s matrix:
D=Gexp—iw fﬁ ds-1(s))G*. (26)) s=(t ?t (29
r valio —i)’

Since the matribD has to be a diagonal matrix with numbers
of norm 1[namely,(+1)’s and(—1)’s in the diagond| this
fact imposes strong limitations on the allowed values of th

which, in turn, yields the following diabatic potential matrix
eW [see Eq.(8b)]:

mmatrix elements. In the special cases that will be discussed 1/ uj+u Ui—U

P o ; o 17U 1~ U

in this paper, these limitations lead to a kind of quantization w= _( ) (30)
of the eigenvaluesd;t) of the 7 matrix, very much reminis- 2\ —(up—uy) uptu

cent of the Bohr-Sommerfeld quantization law of the angular _ )
momentun{16—18. To see this more explicitly we consider The corresponding two uncoupléextended BO equations
the two simplest cases for i matrix. For the case thaa ~ are then
is the unit matrixinamely, only(+1)’s in the diagond] we

obtain that each of the eigenvalues of thenatrix has to

fulfill the quantization rule

1
—ﬁ(Viit)anul—E}X:O, (31)

1 , and the topological matri is given in the form[see Eg.
79 ﬂgrdst(s):nj , J=1,... N, (27 (26))]
wheren; is an integer(this, in fact, is the case of the ordi- D=G ex;{ii % ds- t(s))G* (26)
nary BO equatioh In the same way, if th® matrix is the r '
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where we recallw; ,=*1. If D is chosen to be the unit tial) coupling terms, are invariant under gauge transforma-
matrix the quantization of thgs) function yields the condi- tion, and therefore yield, for a similar set of boundary
tion conditions, identical result. In other words, it is enough to
solve one equation only because all the others will yield the
same solution.

Having successful results for the nongeneral case brings
us to the next subject, namely, how to extend this procedure

which is the case of no topological effects, and in fact yields{0 @ more general case? Assuming we have a nonadiabatic
for n=0 (as well as fom=1), theordinary BO approxima- ~ matrix which yields continuous diabatic potentials, thgn the
tion [see Eq. 31 On the other hand, choosir to be a  fecipe we are suggesting is as follows: One has to derive, for
negative unit matrix yields the condition each point in CS, the eigenvalues of the nonadiabatic matrix,
and then insert one continuous set of these in ELB. for
1 j=1, and solve it for given boundary conditions. The method
pye fﬁFdS-I(S)Z(ZnJrl)/Z n=01,..., (27)  how to solve such an equation was described in R&f.

Finally we would like to refer the subject of whether the
matrix is a pure longitudinal-type vector or not because it is
only these kinds of vectors that fulfill the Curl condition as
becomes identical to the BE equatiph] which, as men- e_xpressed in EA3) _in the_Appendix(or it_s extens_ive ver-

sion for a general dimensiol (>2)). This question was

tioned in Sec. | was successful in yielding the correct state i -

to-state transition probability for a model that contains aand S.t'" IS frequently raised by referees and others. '_I'he an-

conical intersection. swer is only partly given here, and more extensively in Ref.
[18]. It goes as followsr matrices formed for a sub-Hilbert
space as defined in E4) [or in Eq.(A7) in the Appendix

V. CONCLUSIONS can be shown to fulfil the extensive version of E43), and

In this study we considered BO coupled equations witntherefore by definition have only the longitudinal component
the aim of deriving an approximated set of uncoupled equal@nd completely lack the transverse compoheftie present
tions which, in contrast to the original BO approximated Paper, as well as the next one, deal only with this kind of
equation, will also contain effects of the nonadiabatic cou-Situation.
pling terms. It is important to extend the BO approximation
in this way because, in case electronic states are degenerate, ACKNOWLEDGMENTS
some of the nonadiabatic coupling terms may become infi-
nite, thus affecting the dynamics of the nuclei, irrespective of One of the author¢éM.B.) would like to thank Professor
how far it takes place from the location of the degeneracyY- T. Lee and Professor S. H. Lin for their warm hospitality
The ordinary procedure to treat these infinities is to eliminatedt the IAMS, and the Academia Sinica for supporting this
them by transforming to the diabatitor quasidiabatic ~ research.
framework, [3,8—10. However the main drawback of this
transformation is. that once done,_ the B@proximationcan APPENDIX: ON THE SOLUTION OF THE FIRST-ORDER
no longer be activated, and one is forced to treat the system prEERENTIAL VECTOR EQUATION VA+7A=0
of equations in its full dimensionality. An alternative way to
overcome this difficulty, while still maintaining the possibil- The equation mentioned in the title is E§3). The solu-
ity of imposing the BO approximation, is to perform a trans-tion of this equation, namely, the adiabatic-to-diabatic trans-
formation(or a series of transformationthat will not elimi- ~ formation (ADT) matrix A, is frequently questioned by ref-
nate the nonadiabatic coupling terms, but shift them fromerees and others, and so we decided to discuss it to some
their off diagonal positions to the diagonal ones. Once such axtent in this appendix. However, in order to simplify the
procedure is completed the BO approximation can be introdiscussion we shall refer to a two-coordinate—two-state case
duced. for which the ADT matrix can be presented in terms of an

The shift transformation in the present study was doneangle y which has to fulfill the first-order differential equa-
with respect to a certain class of nonadiabatic coupling mation [8]
trices, mainly with the aim of proving an “existence theo-
rem” for an extended BO approximation for &(=2) sys- Vy—7=0, (A1)
tem. However, although not carried out for the most general

case, the present treatment reveals some interesting results ttnereV=(a/¢9r JlaR). The solution of Eq(A1) can be
was found that the suggested procedure is compatible Wit&fritten in sever:'sll ways, as already stated in R8}. One
the requirement that the nonadiabatic matrix has to yield (?vay of doing this is '

uniquelydefined diabatic potential matrix. This, as discusse

in previous publications, implies Bohr-Sommerfeld-type

guantized eigenvalues of the nonadiabatic coupling matrix. V(r,R)ZV(fo,Ro)ﬂLJ
The quantization, as shown, also guaranteesatat decou- r
pled equations, that follow as a result of deleting peten- (A2)

1
7 ﬁds-t(s)=n n=0,1,..., 27)

which is the usual condition for afextende¢l conical inter-
section. In this case the extended BO equation in (Bd)

r R
Tr(r,Ro)dr"‘f TR(r,R)dR,
0 Ro
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where 7, and 7y are the two components of Our task is s
now to show that the expression in E@2) is indeed a 7(S)=7(50)e><p( —f ds- 7
solution of Eq.(Al). A straightforward differentiation of Eq. S0
(A2) with respect toR yields theR component of Eq(Al)

. (A5)

This expression can be extended to afgtate system by

namely, writing an explicit solution for the ADT matrbA(s) in the
Iy(r,R) following way [10]:
T:TR(r!R)' (Ala) <
A(s)=exp< —f ds- r) A(sp), (AB)
To show that also the component of Eq(Al) is fulfilled, So

we have to assume that at the pdinR) the following (curl)

relation holds: where 7 i_s now not a single matrix element but the fiNI
XN matrix.
ar, JdTR To prove the existence of the curl condition in E43) or
curlr= R o O (A3)  its extended version to any dimensidbh[8], we had to as-

sume the resolution of the unity operator in terms of the
In Ref. [8] it was shown that as long as the two electronicelectronic eigenstates of the relevatdimensional Hilbert
eigenfunctions are analytic functions with respect to thespace. Recently, however, we have shown that the extended
nuclear coordinates, at the poinR) and its close proximity Vversion of Eq.(A3) also exists for a sub-Hilbert space of
this relation is indeed fulfilled. Assuming the existence ofdimensionM (<N) if certain conditions are fulfilled18].
Eq. (A3) along the whole rout& from (r,,R,) to (r,R), one  These conditions can be summarized as follows: All the cou-
can show that the solution given in E@2) also fulfills the ~ pling terms formed by electronic eigenfunctions belonging to

second component of E¢AL), namely, the sub-Hilbert space with electronic eigenfunctions belong-
ing to other parts of this Hilbert space have to be identically
dy(r,R) zero. These conditions can be written in a more mathemati-
o~ n(R). (AID) ¢l form as
We shall now generalize this result to any pathand ri=71=(5VE)=0 for i=M, j>M. (A7)
refer to the following presentation of the solution of Eqg.

(AL): As mentioned, the proof was given in RgL8], and will not

be repeated here. It is important to mention that in general

s the complete Hilbert is expected to be composed of several
OT'dS (A4) sub-Hilbert spaces of this kind. Assuming that a situation
like this, indeed, exists in molecular systems, we can refer to
wheres ands, are two points in CS combined by the pdth  sub-Hilbert spaces and the discussion in the body of the pa-
It is important to realize that EqA1) has a solution along per is related for these situations.
the pathl’, and this solution is given in EqA4), if along The only open question to be considered is whether there
this path(and only along this pajtthe relevant functions are is any evidence of the existence of sub-Hilbert spaces. In
analytic, or in other words the curl relation in EGA3) is  general, hardly any effort was made in this respect Yarkony
fulfilled. The existence of the solution is not affected in anywas, until recently, the only one to look for such systems, but
way by the existence of singular points in the region thatso far without succesgl9]. It seems however that Mebel,
contains the patd’. These singular points may affect the Baer, and Lin were somewhat more successful, and while

y(s)= v(so)+f

S

uniquenes®f the solution but not its existence. studying the GH system found that the two lowest eigen-
The generalized solution of E¢A1) may also be written, states of this system indeed form, for given fix@dC dis-
in a more explicit way, as tances, sub-Hilbert spacg20].
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