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We estimate the ratioR5g3 /g2 of the critical coupling constantsg2 and g3 that are required to achieve
binding of two or three bosons, respectively, with a short-range interaction, and examine how this ratio
depends on the shape of the potential. Simple monotonous potentials giveR.0.8. A wide repulsive core
pushes this ratio close toR51. On the other hand, for an attractive well protected by an external repulsive
barrier, the ratio approaches the rigorous lower boundR52/3. We also present results forN54 bosons, sketch
the extension toN.4, and discuss various consequences.

PACS number~s!: 31.10.1z
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I. INTRODUCTION

The phenomenon of ‘‘Borromean’’ binding is well know
@1,2#. In our world with three dimensions, a short-range p
tentialgv(r ) does not always achieve binding of two bodie
even ifv is attractive or contains attractive parts. A minim
strength is needed. More precisely, if one definesg2 as the
minimal strength to bind two particles of unit mass in t
potentialv, then the strengthg required to bind two particles
of massm in the same potential must be such thatmg>g2.
Similarly, binding three identical bosons of massm requires
mg>g3 for the pairwise interactiong(v(r i j ), wherer i j de-
notes the distance between particlesi and j. The crucial ob-
servation is thatg3,g2, implying that for a massm and a
couplingg such thatg3,mg,g2, the three-body system i
bound while none of its subsystems is bound.

Borromean binding is implicit to understand the Thom
collapse@3#. When the range of the potentialv is reduced, or
equivalently, wheng→g2 from above, the three-body bind
ing energyE3(g) becomes very large compared to the tw
body energyE2. Also the Efimov effect@4#, i.e., the prolif-
eration of loosely bound excited states in the three-b
spectrum nearg5g2 implies that the three-body ground
state already exists at this point.

An example of three-body bound state without bound s
system is the6He nucleus, considered schematically as
(a,n,n) system. It is stable against spontaneous dissocia
while neither the (a,n)5 5He nor the (n,n) systems are
bound. The name ‘‘Borromean’’ was given to such nuc
@1,2# after the Borromean rings, which are interlaced in su
a subtle topological way, that when one removes one
them, the two others become unlocked.

Borromean or nearly Borromean bound states also exis
molecular physics, as seen, for instance, from Ref.@5# and
references therein. In both the nuclear and the molec
1050-2947/2000/62~3!/032504~6!/$15.00 62 0325
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case, the basic potential includes a hard core at short
tances. This motivates the present study of Borromean b
ing with potentials whose shape differs from the purely
tractive models considered in some earlier investigati
@6,7#.

Let R5g3 /g2 be the ratio of critical coupling constants
For simple monotonous potentials, such as Yukawa, Ga
ian, or exponential, it is found@6# thatR is very close to 0.8.
This is in agreement with the rigorous lower boundR>2/3
@6#. The fact that all simple potentials give almost the sa
R.0.8 is understood as follows: at vanishing energy,
wave function extends very far outside the potential we
and thus does not probe very accurately the details of
short-range interaction, which is just seen as a contact att
tion.

There are, however, reasons to believe thatR can appre-
ciably differ from 0.8. The aim of the present paper is p
cisely to study howR evolves when one starts from a simp
monotonous potential and adds either an inner core or
external barrier.

When an external barrier of growing size is added to
potential,R evolves fromR.0.8 to R→2/3. An example is
provided byv}r 2 exp(22mr)2exp(2mr) whenm varies, or,
similarly, by combinations of Gaussians.

When an inner core is implemented, a transition is o
served fromR.0.8 toR→1. This will be seen for the Morse
and the Po¨schl-Teller potentials when an appropriate para
eter is varied. An extreme case consists of a hard core
radius c and an attractive delta shell2d(r 2d) located at
d.c. The critical strengthg2 can be calculated exactly. On
can also calculate exactly the strengthg` that makes the
two-body scattering length vanish and hence is sufficien
bind the infinite boson matter@8#, with the resultg` /g2
©2000 The American Physical Society04-1
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5c/d. Thus, asd→c, g` /g2 approaches 1 and so does a
gN /g2 ratio with N finite.

Note that the ratioR cannot exceedR51 for the additive
potentialV5g(v(r i j ), providedv is purely attractive. This
means that one cannot conceive a situation where two-b
systems are bound while a three-boson system is unbo
The following proof is due to Basdevant@9#. For g,g2, let
w(r ) be the ground-state wavefunction of the two-body s
tem, with energy E2. The trial wavefunction C
5w(r 12)w(r 13) can be used for the three-body Hamiltoni
written as

H5
p2

2

2 S 1

m1
1

1

m2
D1

p3
2

2 S 1

m1
1

1

m3
D1

p2•p3

m1

1v~r 12!1v~r 23)1v~r 31!, ~1!

leading to an expectation value 2E2 if the interactionv(r 23)
is neglected. SoE3<2E2,0 if v<0 Q.E.D. The proof
holds for an asymmetric interactionV5(v i j with v12 bind-
ing (1, 2) andv13 binding (1, 3), andv23 only weakly attrac-
tive or even vanishing. We believe that this result rema
true if v is not purely attractive, but we have not been able
prove this generalization.

This paper is organized as follows. In Sec. II, we discu
how to compute accurately the critical couplingsgN . In Sec.
III, we present the results obtained for the Morse model a
a few other potentials: the three-body binding energy
tained atg5g2, at the edge of binding for the two-bod
systems; the critical couplingg3 for three-body systems; a
estimate ofg4, the minimal strength necessary to bind fo
bosons. It is expected thatg4,g3, with, however, the con-
straintsg4 /g3>3/4 andg4 /g3>1/2 established in Ref.@6#.
The numerical estimate ofg4 requires delicate variationa
calculations, especially when the potential displays both
tractive and repulsive parts. A simple extrapolation tog` ,
i.e., the infinite boson matter, will be presented in Sec.
Some conclusions and a list of open problems are prese
in Sec. V.

II. VARIATIONAL METHODS

There are well-known techniques, in particular variation
methods@10#, to compute with very high precision the bind
ing energyEN(g) of a system ofN particles in a regimeg
.gN where binding is established. It is a slightly differe
art, however, to estimate the valuegN corresponding to the
border of the stability domain. Even in the simple case
N52 constituents, this is not completely obvious, as se
e.g., from the discussion in Refs.@11,12# for the Yukawa
potential.

A first strategy consists in computing accurately the bin
ing energyEN(g) in a domain where binding occurs an
letting g decrease. As a behavior

EN}2~g2gN!2 ~2!

is expected, one better looks at (2EN)1/2 as a function ofg
and checks a straight behavior asEN→0. As in Ref.@13#, a
Padé-type of approximation is found adequate to extrapol
03250
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towardgN . In a typical variational method, the Schro¨dinger
equation (T1V)C5ENC is solved by expanding the wav
function on a basis of functions

C5(
i

Ciw i . ~3!

In a given set ofw i , the weightsCi ~represented by a vecto
C) and the variational energyE are obtained from a gener
alized eigenvalue equation

~ T̃1gṼ!C5EÑC, ~4!

involving the restrictions of the kinetic-energy operatorT
and potential energyV to the space spanned by thew i , and a
definite-positive matrixÑ, which does not reduce to the un
matrix when thew i are not orthogonal.

An alternative~though not strictly legal! method for esti-
mating the critical couplinggN consists of looking directly at
the pointE50 and rewriting the eigenvalue equation as

ṼC52
1

g
T̃C, ~5!

involving, again, a Hermitian matrix on the left, and
definite-positive matrix on the right. In principle, the wav
function need not be normalizable atE50, but in practice,
one can use a basis of normalizable functions, provided
allows for components with very long range.

The results presented below have been checked u
both the extrapolation method and the direct estimate of
critical coupling.

When the number of terms in Eq.~3! is incremented, there
is a dramatic increase of the number of nonlinear parame
entering the basis functions~the coefficientsai j in the ex-
amples below!. The minimization of the variational energ
by varying these parameters becomes~i! ambiguous, as
neighboring sets of values give comparable energies, and~ii !
intractable, even with sophisticated minimization routines
simple trick @14# is inspired by the work of Kamimura@15#.
It consists of imposing allai j parameters to be chosen in
single geometric series. Then only the lowest and the larg
values have to be optimized numerically. The minimizati
is much faster. The slight loss in accuracy is more than co
pensated by the possibility of increasing easily the numbe
terms. This works rather well for achieving a reasonable
curacy. When one aims at very precise results, more sop
ticated techniques are required, such as the well-docume
and powerful stochastic variational method~SVM! @10,16#.

It remains to choose the basis functions in Eq.~3!. We
have compared the results obtained with exponential fu
tions

w i5expS 2( ai j r i j D1••• ~6!

and Gaussians

w i5expS 2( ai j r i j
2 D1•••, ~7!
4-2
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BINDING THREE OR FOUR BOSONS WITHOUT BOUND . . . PHYSICAL REVIEW A62 032504
where the parentheses can be rewritten as the most ge
quadratic form involving relative Jacobi coordinates. In bo
cases, the ellipses are meant for terms deduced by perm
tion, to ensure the proper symmetry properties of the t
basis.

The former basis is by far more efficient when the exp
sion ~3! is limited to a small number of terms. For instanc
a single exponential function is sufficient to demonstrate
stability of the ion Ps25(e1e2e2) in quantum chemistry,
while several Gaussians are needed. However, when
number of terms increases, the exponential basis, even w
associated with a stochastic search, tends to give rise to
merical instabilities similar to those described, e.g.,
Spruch and Delves@17#. The problem can certainly be cir
cumvented@18#, but we found it more convenient to us
SVM with Gaussians to get stable and accurate results. A
how, the results involving more thanN53 particles have
been obtained with Gaussians only, since one cannot de
simple analytic expressions for the matrix elements wit
the exponential basis. Note that whenN increases, the sur
face and tail of the system play a relatively less import
role, so the use of Gaussian functions should become m
appropriate.

III. RESULTS FOR g3 Õg2 AND g4 Õg2

In this section, we present some results onR5g3 /g2 and
R45g4 /g2. We restrict ourselves to symmetric three-
four-body systems, involving identical bosons. Some res
on equal-mass particles with asymmetric interaction h
been given in Refs.@6,7#.

To simplify the discussion on the influence of the para
eters such as the constituent mass, the range and the stre
we use scaling laws. Consider, for instance, the case of
particles of massm interacting through a Yukawa potentia
2K exp(2mr)/r. A change of variablemr→r , where the
new r is dimensionless, transforms the HamiltonianH gov-
erning the relative motion into

H5
\2m2

m F2D r2g
exp~2r !

r G , ~8!

whereg5Km/(m\2) involves the product of the strengthK
and the constituent massm, as expected. The spectral pro
erties of the dimensionless bracket as a function ofg gives
access to all cases. A similar scaling transformation can
applied to all potentials we shall consider.

A. Monotonous potentials

We consider here three simple functional forms, Yukaw
exponential, and Gaussian, corresponding to

2v~r !5
exp~2mr !

r
, exp~2mr !, exp~2m2r 2!,

~9!

respectively, where, without loss of generality, the range
rameterm and the constituent massm can be set tom5m
51 by simple rescaling.
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The critical couplings are displayed in Table I. As alrea
stressed, the most remarkable feature is the close cluste
of all values ofR near 0.80. This means a 20% window f
Borromean three-body binding. Similarly, all values ofR4
are found around 0.64. There is no obvious meaning to
observation thatg4 /g3.g3 /g2. Anyhow, gN11 /gN cannot
be smaller thanN/(N11) @6#, so it should tend to 1 asN
increases.

B. Potentials with external barrier

The potential

v~r !5a exp~2m2r 2/2!1b exp~22m2r 2! ~10!

has been used by Nielsen, Fedorov, and Jensen@19#, to study
Borromean binding in two dimensions. By rescaling, one c
fix m5m51. The cases (a,b)5(21,0) and (a,b)5(1,
22) are shown in Fig. 1 for illustration. Fora and b both
negative, this potential reduces to a simple monotonous fu
tion, and, not surprisingly, a ratioR.0.80 is obtained for the
critical couplingsg3 andg2. With a andb of different signs,
one can build a potential that looks like an almost pure h
monic oscillator at small values ofr and vanishes only a
distances that are very large as compared to the size o
ground-state wave function. One then obtainsR→2/3.

In this limit, we are, indeed, approaching the situati
where the decomposition

H̃3~m,g!5(
i , j

H̃2
( i , j )~3m/2,g! ~11!

TABLE I. Comparison of critical couplingsgN to achieve bind-
ing of N52, 3, and 4 identical bosons in a Yukawa (Y), exponen-
tial (E), or Gaussian (G) potential. Also shown isg` , which cor-
responds to a vanishing of the two-body scattering length, theE3

obtained forg5g2, and the four-body energyE4 for g5g3.

Potential g2 E3(g2) g3 /g2 E4(g3) g4 /g3 g` /g2

Y 1.68 –0.172 0.80 –0.320 0.81 0
E 1.45 –0.047 0.80 –0.093 0.80 0
G 2.68 –0.236 0.79 –0.438 0.80 0

FIG. 1. Shape of the potential of Eq.~10! for (a,b)5(1,22)
~with external barrier! and (21,0) ~monotonous!.
4-3
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STEVEN MOSZKOWSKIet al. PHYSICAL REVIEW A 62 032504
corresponds to an exact factorization of the wave funct
@20,6#, and thus the vanishing ofH̃3(m,g) implies that of
H̃2

( i , j )(3m/2,g) i.e., g352g2/3 @6#. Otherwise, one simply
gets from Eq.~11!, when saturated with the exact three-bo
wave function, E3(m,g)5(^H̃2&>3E2(3m/2,g), i.e., g3
>2g2/3. Here,

H̃N~m,g!5(
k

pk
2

2m
1g(

k, l
v~r kl!2

S (
k

pkD 2

2Nm
~12!

is the translation-invariant Hamiltonian describing the re
tive motion ofN particles.

Table I gives the values for a pure Gaussian poten
corresponding to (a,b)5(21,0): one obtainsg252.680,
g3 /g250.79 andg4 /g350.80. For the potential (a,b)5(1,
22) also shown in Fig. 1, the values becomeg2521.20,
g3 /g250.672, andg4 /g350.754. We are already very clos
to the limit wheregN11 /gN5N/(N11).

C. Morse potential

The Morse potential reads

v~r !5exp@22m~r 2r 0!#22 exp@2m~r 2r 0!#. ~13!

Again, one can setm5m51 by rescaling. The shape is dis
played in Fig. 2, forr 051 andr 052. The two-body problem
with this potential can be worked out exactly@21#. In par-
ticular, the critical couplingg2 is obtained from an equatio
involving the Kummer function, which can be solved easi
Our normalization is such thatg2→1/4 asr 0 increases. The
critical couplingsg3 and g4 have been estimated numer

FIG. 2. Shape of the Morse potential forr 051 ~left! and r 0

52 ~right!.

TABLE II. Same as Table I, but for a Morse potential~13!,
whose characteristic radiusr 0 is varied.

r 0 g2 E3(g2) g3 /g2 E4(g3) g4 /g3 g` /g2

0. 0.810 –0.0411 0.799 –0.0808 0.798 0
1.0 0.369 –0.0325 0.797 –0.0636 0.790 0
2.0 0.254 –0.0174 0.807 –0.0333 0.794 0
3.0 0.250 –0.0081 0.862 –0.0146 0.860 0.09
4.0 0.250 –0.0046 0.900 –0.0080 0.907 0.28
03250
n
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cally, as well asE3(g2), the three-body ground-state energ
at the edge of binding two-body systems, and simila
E4(g3). The results are shown in Table II.

A warning is that the calculation becomes very difficult
r 0 becomes larger than about three. Our parametrization
comes inadequate. The vanishing of the wave function
small interparticle distancer i j is obtained at the expense o
huge cancellations in the expansion~3!. This considerably
reduces the accuracy. Specific methods can be develope
interactions with hard core, see, e.g.,@22# and references
therein. Our results, however, seem good enough to s
unambiguously the trends of theRN ratios as the sizer 0 of
the core increases.

The size of the attractive pocket is measured by the in
val betweenr 1, where the potential vanishes, andr 0, where
it reaches its minimum. Within our normalization,dr 5r 0
2r 15 ln 2 is constant. Asr 0 increases,dr /r 0→0, and the
Morse potential becomes similar to the attractive delta s
with a hard core described in Sec. I in the limitd/c→1, and
then a behaviorR→1 is expected. This is clearly observed
Table II. The trend is, however, rather slow. For moder
values ofr 0, our numerical results are well reproduced by
fit

R.12c
dr

r 0
.12

0.43

r 0
, ~14!

with c.0.62. For largerr 0, some departure is observe
probably due to the difficulties in the variational calculatio
We believe the behavior~14! is rather general.

D. Pöschl-Teller potential

The Pöschl-Teller potential reads

v~r !5
a~a21!

sinh2~mr !
2

a~a11!

cosh2~mr !
, ~15!

with, again,m5m51 for the range and the mass of ea
constituent. The strength factors of the repulsive and att
tive terms are tuned to give a zero-energy two-body st
i.e., g251 @21#. The potential is drawn in Fig. 3 for som
values ofa.

In the casea51, we have a simple monotonous potenti
and, not surprisingly, a valueR.0.8 is found, as seen in
Table III.

FIG. 3. Shape of the Po¨schl-Teller potential fora51 ~monoto-
nous! and, from left to righta52, 3, 5, and 9.
4-4
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For a.1, we can again define the size of the attract
well asdr 5r 02r 1, with v(r 1)50 andv8(r 0)50. The fit of
R using the empirical formula~14! turns out to be quite
good. This can be checked from the values displayed
Table III.

For both the Morse and Po¨schl-Teller potentials, the ap
proximate equality ofg4 /g3 and g3 /g2 survives a strong
repulsive core, unlike the case of an external barrier. Th
is, however, a slight difference in the patterns exhibited
these potentials. In the Morse case, the ratiosg4 /g3 and
g3 /g2 start departing from about 0.80 at the same value
the parameterr 0 for which g` /g2 becomes positive, i.e.
binding the infinite boson matter requires a minimal streng
In the Pöschl-Teller case,g4 /g3 andg3 /g2 immediately in-
crease when the parametera becomes larger than 1, thoug
g` /g2 still vanishes for a while.

E. More complicated potentials

In Ref. @14# the ratioR is studied for the potential

v~r !5
r 2

a2
exp~22mr !2exp~2mr !, ~16!

which is shown in Fig. 4, for selected values of the para
eters. We fix the scales such thatm5m51. Fora very large,
this potential is always attractive, and one thus obtains
usualR.0.80. On the other hand, for very smalla, we have
an almost pure oscillatorv(r ).r 22a2 in the region of in-

TABLE III. Same as Table I, but for a Po¨schl-Teller potential
~15!, for several values of its parametera.

a g2 E3(g2) g3 /g2 E4(g3) g4 /g3 g` /g2

1 1. –0.135 0.797 –0.264 0.796 0
2 1. –0.064 0.818 –0.131 0.777 0
3 1. –0.046 0.836 –0.085 0.835 0
5 1. –0.032 0.859 –0.060 0.856 0.12
9 1. –0.018 0.885 –0.042 0.878 0.23

FIG. 4. Potential of Eq.~16!, for a50.4 ~thick line!, a51 ~thin
line!, anda50.67~dotted line!. The potential is always negative a
large distancer.
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terest, and one getsR→2/3. For intermediate values ofa,
the potential exhibits both an internal pocket of attracti
and an external attractive tail.

The numerical results are shown in Fig. 5. The expec
behaviorR52/3 for a→0 andR.0.80 for a→` are veri-
fied. Neara50.70, there is an interesting tunnelling betwe
the internal and the external pockets of attraction. The bar
is seen as an internal core by the latter, and this pusheR
toward 1, as for a Morse potential of large radius.

IV. LARGER SYSTEMS

The case of an infinite boson matter sheds some ligh
our discussion. For a purely attractive potential, a syst
containing many bosons is bound, however weak
strengthg: we will thus setg`50. Now, if the potential
contains a large repulsive part, it is conceivable that bind
requires a minimal strength of the potential, sayg.g`.0 to
pull the wave function in the attractive parts of the potentia
A result that looksa posteriori reasonable is thatg` is the
value of the coupling for which the scattering length va
ishes@8#. Indeed, the optimal state of the infinite boson m
ter is a compromise between the large-density limit,
which the kinetic energy is too large, and the extreme d
tion. The latter case, dominated by two-body collisions
zero energy, should exhibit a tendency toward binding, i.e
negative scattering length.

The scattering length can be calculated analytically or
merically for the potentials considered previously. Then it
rather straightforward to determine the valueg` of the
strength that makes it vanish. Of course, for a poten
whose integral is negative, the scattering length is alre
negative in the weak coupling limit, and remains negat
until g5g2. This corresponds tog`50.

In Tables I, II, and III, we display the valueg` for which
the scattering length vanishes. This is simplyg`50 for the
monotonous potentials of Table I and the limiting casesr 0
50 of the Morse potential anda51 of Pöschl-Teller. Asr 0
or a increases, one observes almost simultaneouslyg` be-
coming finite andR5g3 /g2 departing from about 0.80 an
approachingR51. This is the limit between, say, simpl

FIG. 5. Computed value ofR5g3 /g2 for the potential of Eq.
~16!, for various values of the parametera.
4-5
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potentials that are purely attractive or contain a small rep
sion, and nontrivial potentials with a strong core.

V. DISCUSSION AND OUTLOOK

In this paper, we have studied some aspects of the p
nomenon of Borromean binding in three dimensions by co
paring the critical couplingsgN required for bindingN52, 3,
or more bosons interacting with various types of potentia

All monotonous, short-range potentials give almost
same ratiosg3 /g2.0.80 andg4 /g2.0.64.

We then considered potentials with a short-range att
tion and an external repulsive barrier, which behave v
much like an oscillator, and, not surprisingly, give ratios
critical couplings close to the lower boundgN11 /gN
5N/(N11). These potentials with an external barrier a
not very often encountered in physical systems. They
however, interesting, since, according to Ref.@19#, they are
.

.
s.
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the only ones to give rise to Borromean binding in two d
mensions.

We then studied the more physical case of potentials w
a strong repulsive core at short distances. The window
Borromean binding turns out to be much narrower than
purely attractive potentials.

The present investigation could be extended to exc
states. In particular, as long asg3,g2, the Efimov effect
should remain asg approachesg2. It would be interesting to
study how the onset and disappearance of Efimov st
change when the strength of the core is varied.
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