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Binding three or four bosons without bound subsystems
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We estimate the rati®=gs/g, of the critical coupling constanty, and g, that are required to achieve
binding of two or three bosons, respectively, with a short-range interaction, and examine how this ratio
depends on the shape of the potential. Simple monotonous potential&fkgi@8. A wide repulsive core
pushes this ratio close t8=1. On the other hand, for an attractive well protected by an external repulsive
barrier, the ratio approaches the rigorous lower boRr®2/3. We also present results fdi=4 bosons, sketch
the extension tdtN>4, and discuss various consequences.

PACS numbd(s): 31.10+z

I. INTRODUCTION case, the basic potential includes a hard core at short dis-

The phenomenon of “Borromean” binding is well known tances. This motivates the present study of Borromean bind-
[1,2]. In our world with three dimensions, a short-range po-ing with potentials whose shape differs from the purely at-
tentialguv (r) does not always achieve binding of two bodies,tractive models considered in some earlier investigations
even ifv is attractive or contains attractive parts. A minimal [6,7].
strength is needed. More precisely, if one defigesas the Let R=g3/g, be the ratio of critical coupling constants.
minimal strength to bind two particles of unit mass in the For simple monotonous potentials, such as Yukawa, Gauss-
potentialv, then the strength required to bind two particles jan, or exponential, it is founfb] thatR is very close to 0.8.
of massm in the same potential must be such the§=g,.  This is in agreement with the rigorous lower bouRg 2/3
Similarly, binding three identical bosons of massequires  [g]. The fact that all simple potentials give almost the same
mg=gs for the pairwise interactiog>u(ry;), wherer;; de-  p_0 g is understood as follows: at vanishing energy, the
notes the distance between partidemd]. The crucial ob- \ave function extends very far outside the potential well,

servation is thags<gy, implying that for a massnand a a4 thys does not probe very accurately the details of the

coupling g'such thatg?,<mg<gz, the @hree—body system Is short-range interaction, which is just seen as a contact attrac-
bound while none of its subsystems is bound. tion

Borromean binding is implicit to understand the Thomas There are, however, reasons to believe Rasan appre-
collapse(3]. When the range of the potentialis reduced, or ciably differ from 0.8. The aim of the present paper is pre-

equivalently, wherg— g, from above, the three-body bind- . ;
ing energyEs(g) becomes very large compared to the tWO_Clser to study hOV\R_evoIves when one starts_ from a simple
monotonous potential and adds either an inner core or an

body energyE,. Also the Efimov effec{4], i.e., the prolif- .
eration of loosely bound excited states in the three-bodyXternal barrier. _ L
spectrum neag=g, implies that the three-body ground- Whgn an external barrier of growing size is added tg the
state already exists at this point. pote_ntlaI,R evolves fromR=0.8 toR—2/3. An example is
An example of three-body bound state without bound subProvided byv «r? exp(—2ur) —exp(- ur) whenp varies, or,
system is the®He nucleus, considered schematically as aSimilarly, by combinations of Gaussians.
(a,n,n) system. It is stable against spontaneous dissociation, When an inner core is implemented, a transition is ob-
while neither the &,n)=°He nor the (,n) systems are served frorR=0.8 toR— 1. This will be seen for the Morse
bound. The name “Borromean” was given to such nucleiand the Pschl-Teller potentials when an appropriate param-
[1,2] after the Borromean rings, which are interlaced in sucheter is varied. An extreme case consists of a hard core of
a subtle topological way, that when one removes one ofadiusc and an attractive delta she#t §(r —d) located at
them, the two others become unlocked. d>c. The critical strengtly, can be calculated exactly. One
Borromean or nearly Borromean bound states also exist inan also calculate exactly the strenggh that makes the
molecular physics, as seen, for instance, from R&f.and two-body scattering length vanish and hence is sufficient to
references therein. In both the nuclear and the moleculdrsind the infinite boson mattefi8], with the resultg../g,
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=c/d. Thus, asd—c, g../g, approaches 1 and so does anytowardg, . In a typical variational method, the Schliinger

on/gs ratio with N finite. equation T+ V)V =E\WV is solved by expanding the wave
Note that the ratidk cannot excee®=1 for the additive  function on a basis of functions

potential V=gZuv(r;), providedv is purely attractive. This

means that one cannot conceive a situation where two-body - 2 Cio 3

systems are bound while a three-boson system is unbound. A

The following proof is due to Basdevaffl]. Forg<g., let

#(r) be the ground-state wavefunction of the two-body sysin @ given set ofp; , the weightsC; (represented by a vector

tem, with energy E,. The trial wavefunction ¥ C) and the variational enerdy are obtained from a gener-

=¢(r1) ¢(r19) can be used for the three-body Hamiltonian @lized eigenvalue equation

written as ~ - ~
(T+gV)C=ENC, (4)
2 2
1 1 1 1 .
H= %(—Jr —) + %(—-F —) + P2"Ps involving the restrictions of the kinetic-energy operafor
my M m, My my and potential energy to the space spanned by the, and a
+o(ri)+ov(ragto(ray, (1) definite-positive matrixN, which does not reduce to the unit
) ] ) . ) matrix when thep; are not orthogonal.
leading to an expectation valudez if the interactionu (r 3 An alternative(though not strictly legalmethod for esti-

is neglected. ScE3=<2E,<0 if v<0 Q.E.D. The proof mating the critical couplingy consists of looking directly at
holds for an asymmetric interaction=Xvj; with v1, bind-  the pointE=0 and rewriting the eigenvalue equation as
ing (1, 2) andv 13 binding (1, 3), and »3 only weakly attrac-
tive or even vanishing. We believe that this result remains
true if v is not purely attractive, but we have not been able to
prove this generalization.

This paper is organized as follows. In Sec. I, we discussnvolving, again, a Hermitian matrix on the left, and a
how to compute accurately the critical couplirmg. In Sec.  definite-positive matrix on the right. In principle, the wave-
[, we present the results obtained for the Morse model andunction need not be normalizable Bt=0, but in practice,

a few other potentials: the three-body binding energy ob-one can use a basis of normalizable functions, provided one

tained atg=g,, at the edge of binding for the two-body allows for components with very long range.

systems; the critical coupling; for three-body systems; an The results presented below have been checked using

estimate ofg,, the minimal strength necessary to bind four both the extrapolation method and the direct estimate of the

bosons. It is expected thay<gs, with, however, the con- critical coupling.

straintsg,/g;=3/4 andg,/g;=1/2 established in Ref6]. When the number of terms in E€B) is incremented, there

The numerical estimate af, requires delicate variational is a dramatic increase of the number of nonlinear parameters

calculations, especially when the potential displays both atentering the basis functionshe coefficientsa;; in the ex-

tractive and repulsive parts. A simple extrapolationgto, amples below The minimization of the variational energy

i.e., the infinite boson matter, will be presented in Sec. IV.by varying these parameters becomgs ambiguous, as

Some conclusions and a list of open problems are presentéwighboring sets of values give comparable energies(ignd

in Sec. V. intractable, even with sophisticated minimization routines. A
simple trick[14] is inspired by the work of Kamimurfl5].

Il. VARIATIONAL METHODS It consists of imposing ala;; parameters to be chosen in a

single geometric series. Then only the lowest and the largest

There are well-known techniques, in particular variationalyalues have to be optimized numerically. The minimization
methodgq 10], to compute with very high precision the bind- is much faster. The slight loss in accuracy is more than com-
ing energyEy(g) of a system ofN particles in a regim@  pensated by the possibility of increasing easily the number of
>gn where binding is established. It is a slightly different terms. This works rather well for achieving a reasonable ac-
art, however, to estimate the valgg corresponding to the curacy. When one aims at very precise results, more sophis-
border of the stability domain. Even in the simple case ofticated techniques are required, such as the well-documented
N=2 constituents, this is not completely obvious, as seenand powerful stochastic variational methg&VM) [10,16.

e.g., from the discussion in Reffl1,12 for the Yukawa It remains to choose the basis functions in Eg). We
potential. have compared the results obtained with exponential func-

A first strategy consists in computing accurately the bind-+tjons
ing energyEy(g) in a domain where binding occurs and

- 1.
ve=-3Tc. (5)

letting g decrease. As a behavior
99 ‘Pi:eXF<_2 ajjrij |+ - (6)
En—(9—0n)° 2 .
and Gaussians
is expected, one better looks at Ey)*? as a function ofy
and checks a straight behavior Bg—0. As in Ref.[13], a _ F( B 2
Padetype of approximation is found adequate to extrapolate gi=exg — 2 ajrij |+ @)
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where the parentheses can be rewritten as the most general TABLE I. Comparison of critical couplinggy to achieve bind-
quadratic form involving relative Jacobi coordinates. In bothing of N=2, 3, and 4 identical bosons in a Yukawé)( exponen-
cases, the ellipses are meant for terms deduced by permuté! (E), or Gaussian@) potential. Also shown ig.., which cor-
tion, to ensure the proper symmetry properties of the triarésponds to a vanishing of the two-body scattering lengthFthe
basis. obtained forg=g,, and the four-body energg, for g=gs.

The former basis is by far more efficient when the expan- :
sion (3) is limited to a small number of terms. For instance, Potential g Es(9z)  9s/92  Ea(9s) 94/93  9:/92

a single exponential function is sufficient to demonstrate the v 168 -0.172 0.80 -0320 081 0
stability of the ion PS=(e"e"e™) in quantum chemistry, E 145 -0047 080 -0.093 080 0
while several Gaussians are needed. However, when the s 268 -0.236 079 -0438 0.80 0

number of terms increases, the exponential basis, even when
associated with a stochastic search, tends to give rise to nu-
merical instabilities similar to those described, e.g., by

Spruch and Delve17). The problem can certainly be cir- stressed, the most remarkable feature is the close clustering

cumvented[18], but we found it more convenient to use i on
SVM with Gaussians to get stable and accurate results. AnyQf all values ofR near 0.80. This means a 20% window for

how, the results involving more thaN=3 particles have Borromean three-body binding. Similarly, all values Rf

been obtained with Gaussians only, since one cannot deri (e found around 0.64. There is no obvious meaning 1o the

) ; . . .. observation that,/gs=gs/9,. Anyhow, gy.1/gyn cannot
simple analytic expressions for the matrix elements W|th|nbe smaller tharN/(N+1) [6], so it should tend to 1 ai

the exponential basis. Note that whBhnincreases, the sur- ereases
face and tail of the system play a relatively less importanf :
role, so the use of Gaussian functions should become more

appropriate. B. Potentials with external barrier

The critical couplings are displayed in Table I. As already

lll. RESULTS FOR gs/g, AND g,/g; The potential

— 2,2 _ 2.2
In this section, we present some resultsRag, /g, and v(r)=aexp—ur/2)+bexp—2ure) (10

R4s=04/9,. We restrict ourselves to symmetric three- or

four-body systems, i_nvolving identical bogor_]s. Some result$,5s peen used by Nielsen, Fedorov, and Jef@into study
on equal-mass particles with asymmetric interaction havgsgrromean binding in two dimensions. By rescaling, one can
been given in Refd6,7]. , fix m=u=1. The cases &b)=(—1,0) and @,b)=(1,

To simplify the dlscu_ssmn on the influence of the param-_y are shown in Fig. 1 for illustration. Fa and b both
eters such as the constituent mass, the range and the streng{Bigative, this potential reduces to a simple monotonous func-
we use scaling laws. Consider, for instance, the case of tWgon and, not surprisingly, a ratie=0.80 is obtained for the
particles of massn interacting thrqugh a Yukawa potential qitical couplingsgs; andg,. With a andb of different signs,
—Kexp(-ur)lr. A change of variableur—r, where the  gne can build a potential that looks like an almost pure har-
newr is dimensionless, transforms the Hamiltonidrgov-  monic oscillator at small values of and vanishes only at

eming the relative motion into distances that are very large as compared to the size of the

2 9 ground-state wave function. One then obtdis 2/3.
h exp(—r) o ; . N
H= Ll - —} (8) In this limit, we are, indeed, approaching the situation
m r where the decomposition

whereg=Km/(u#%2) involves the product of the strengkh

and the constituent mass, as expected. The spectral prop- ~ = i)

erties of the dimensionless bracket as a functiony gfves H3(m,g)=i2<_ H>"(3mi2,g) (11
access to all cases. A similar scaling transformation can be .

applied to all potentials we shall consider.

V(r)
A. Monotonous potentials
: . . 1
We consider here three simple functional forms, Yukawa, 0 : : % r
exponential, and Gaussian, corresponding to
exp(— ur)
—u(r)= # exp —pur), exp—u’r?),
€)
. . . -17
respectively, where, without loss of generality, the range pa-
rameteru and the constituent mass can be set tqu=m FIG. 1. Shape of the potential of E¢LO) for (a,b)=(1,—2)
=1 by simple rescaling. (with external barrierand (— 1,0) (monotonoujs
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V(r) Vi(r)
1 27
1 2 3
0 : i : T 0
-1+ -2
FIG. 2. Shape of the Morse potential fog=1 (left) andr, FIG. 3. Shape of the Rahl-Teller potential forw=1 (monoto-
=2 (right). nous and, from left to righta=2, 3,5, and 9.

corresponds to an exact factorization of the wave functiorfally, as well as£5(gy), the three-body ground-state energy
[20,6], and thus the vanishing dfis(m,g) implies that of at the edge of binding two-body systems, and similarly

=) _ N : . E4(93). The results are shown in Table II.
Hz"(3m/2g) i.e., g3=20,/3 [6]. Otherwise, one simply " A\arning is that the calculation becomes very difficult as

gets from Eq(11), when saturated with the exact three-body ' hecomes larger than about three. Our parametrization be-
wave function, Eg(m,g) =2(H,)=3E,(3m/2g), i.e,, 935  comes inadequate. The vanishing of the wave function at
=20,/3. Here, small interparticle distance; is obtained at the expense of
5 huge cancellations in the expansi@). This considerably

E D ) reduces the accuracy. Specific methods can be developed for

o Tk interactions with hard core, see, e.f22] and references
ToNm (12)  therein. Our results, however, seem good enough to show
unambiguously the trends of they ratios as the size, of
- P : P I the core increases.
is the translation-invariant Hamiltonian describing the rela The size of the attractive pocket is measured by the inter-

tive motion ofN particles. | betw here th rential ish h
Table | gives the values for a pure Gaussian potentialya etweerr,, where the potential vanisnes, ang where
it reaches its minimum. Within our normalizatiody =r

corresponding to g,b)=(—1,0): one obtainsy,=2.680, . ;
gglgz=po.79 gndg‘f(/g«o?: 5_80. Izor the potentisaﬁg(,b)z(l, —ri;=In2is constant. A3, increasessr/ro—0, and the
—2) also shown in Fig. 1, the values become=21.20, M_orse potential becomes s'|m|lar to Fhe att(aqt|ve delta shell
9s/9,=0.672, andy,/gs=0.754. We are already very close with a hard core described in Sec. I in the lidit—1, and -
to the limit wheregy; ;/gy=N/(N+1). then a behavioR— 1 is expected. This is clearly observed in
N+1TEN Table II. The trend is, however, rather slow. For moderate
values ofr g, our numerical results are well reproduced by a

- p2
Fin(mg)=2 ﬁﬂ_% V(1) —

C. Morse potential it
The Morse potential reads st 0.43
R=1-c—=1——, 14
() =exd —2u(r—ro)]—2 exg — u(r—ro)]. (13 L - (14

Again, one can san= =1 by rescaling. The shape is dis- With ¢=0.62. For largerr,, some departure is observed,
played in Fig. 2, for ;=1 andr,= 2. The two-body problem probably due to the difficulties in the variational calculation.
with this potential can be worked out exacfigl]. In par-  We believe the behavidil4) is rather general.

ticular, the critical couplingy, is obtained from an equation

involving the Kummer function, which can be solved easily. D. Poschl-Teller potential

Our normalization is such tha,— 1/4 asr increases. The

" ! ' i The Pwchl-Teller potential reads
critical couplingsgs and g, have been estimated numeri-

ala—1) B ala+1)

TABLE Il. Same as Table I, but for a Morse potentid3), v(r)=— ,
whose characteristic radiug is varied. sint?(ur)  cosk(ur)

(15

with, again,u=m=1 for the range and the mass of each
fo 92 Eo0 9s/0: Eal0s) QG5 0-0: constitl?ent. l‘IL'he strength factorsgof the repulsive and attrac-
0. 0.810 -0.0411 0.799 -0.0808 0.798 O tive terms are tuned to give a zero-energy two-body state,
1.0 0369 -0.0325 0.797 -0.0636 0.790 O i.e., g,=1 [21]. The potential is drawn in Fig. 3 for some
2.0 0.254 -0.0174 0.807 -0.0333 0.794 0 values ofa.

3.0 0.250 -0.0081 0.862 -0.0146 0.860 0.09 In the casexr=1, we have a simple monotonous potential,
40 0250 -0.0046 0.900 -0.0080 0.907 0.28 and, not surprisingly, a valuR=0.8 is found, as seen in
Table Il
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TABLE Ill. Same as Table I, but for a Bohl-Teller potential R
(15), for several values of its parameter
ed 92 Ea(92) 03/92 E4(93) 04/93 9-/92 0.85 )
-0.135 0.797 -0.264 0.796 0 ® %, .
0.80 b

-0.064 0.818 -0.131  0.777 0
-0.046 0.836 -0.085 0.835 0
-0.032 0.859 -0.060 0.856 0.12 0.75 1
-0.018 0.885 -0.042 0.878 0.23

© U wWN R
=

0.70 o

For «>1, we can again define the size of the attractive 0.65 , , : ; : o
well asér=rg—rq, withv(r,) =0 andv’(ry)=0. The fit of 0 04 08 12 16 2
R using the empirical formuld14) turns out to be quite ]
good. This can be checked from the values displayed in FIG. 5. Computed value dR=g;/g, for the potential of Eq.
Table IlI. (16), for various values of the parameter

For both the Morse and Bohl-Teller potentials, the ap-
proximate equality ofg,/gs and g;/g, survives a strong terest, and one gelR—2/3. For intermediate values af,
repulsive core, unlike the case of an external barrier. Ther¢he potential exhibits both an internal pocket of attraction
is, however, a slight difference in the patterns exhibited byand an external attractive tail.
these potentials. In the Morse case, the ratigégs and The numerical results are shown in Fig. 5. The expected
g;/9g, start departing from about 0.80 at the same value obehaviorR=2/3 for «—0 andR=0.80 for a— are veri-
the parameter, for which g../g, becomes positive, i.e., fied. Neara=0.70, there is an interesting tunnelling between
binding the infinite boson matter requires a minimal strengththe internal and the external pockets of attraction. The barrier
In the Paschl-Teller caseg,/g; andgs/g, immediately in-  is seen as an internal core by the latter, and this puBhes
crease when the parameterbecomes larger than 1, though toward 1, as for a Morse potential of large radius.

0. /9, still vanishes for a while.

IV. LARGER SYSTEMS

E. More complicated potentials o .
The case of an infinite boson matter sheds some light on

In Ref.[14] the ratioR is studied for the potential our discussion. For a purely attractive potential, a system
2 containing many bosons is bound, however weak the

)= —exp —2ur)—exp — ur), 16 strengthg: we will thus_ setgm=_0_. Now, i_f the potent_ial_
v(r) a? A=2pr) = pr) (16) contains a large repulsive part, it is conceivable that binding

requires a minimal strength of the potential, $payg..>0 to

o o pull the wave function in the attractive parts of the potentials.
which is shown in Fig. 4, for selected values of the param-p result that looksa posteriorireasonable is thay.. is the
eters. We fix the scales such that m=1. Fora very large, yajue of the coupling for which the scattering length van-
this potential is always attractive, and one thus obtains th?shes[S]. Indeed, the optimal state of the infinite boson mat-
usualR=0.80. On the other hand, for very smal] we have  ter js a compromise between the large-density limit, for
an almost pure oscillatar(r)=r’—a? in the region of in-  \hich the kinetic energy is too large, and the extreme dilu-

tion. The latter case, dominated by two-body collisions at
Vv zero energy, should exhibit a tendency toward binding, i.e., a
1! negative scattering length.

The scattering length can be calculated analytically or nu-
merically for the potentials considered previously. Then it is
rather straightforward to determine the valge of the
strength that makes it vanish. Of course, for a potential
whose integral is negative, the scattering length is already
negative in the weak coupling limit, and remains negative
until g=g,. This corresponds tg.,=0.

In Tables I, II, and Ill, we display the valug, for which
the scattering length vanishes. This is simply=0 for the
monotonous potentials of Table | and the limiting casgs
=0 of the Morse potential and=1 of Pcschl-Teller. Asry,

FIG. 4. Potential of Eq(16), for «= 0.4 (thick line), =1 (thin or a increases, one observes almost simultaneogsiye-
line), anda=0.67 (dotted lind. The potential is always negative at coming finite andR=g3/g, departing from about 0.80 and
large distance. approachingR=1. This is the limit between, say, simple

-1
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potentials that are purely attractive or contain a small repulthe only ones to give rise to Borromean binding in two di-
sion, and nontrivial potentials with a strong core. mensions.
We then studied the more physical case of potentials with
a strong repulsive core at short distances. The window for
Borromean binding turns out to be much narrower than for
In this paper, we have studied some aspects of the pheurely attractive potentials.
nomenon of Borromean binding in three dimensions by com- The present investigation could be extended to excited

V. DISCUSSION AND OUTLOOK

paring the critical couplinggy required for bindingN=2, 3,

states. In particular, as long as<g,, the Efimov effect

or more bosons interacting with various types of potentials.should remain ag approachegz. It would be intere_sting to
All monotonous, short-range potentials give almost thestudy how the onset and disappearance of Efimov states

same ratiog3/g,=0.80 andg,/g,=0.64.

change when the strength of the core is varied.

We then considered potentials with a short-range attrac-

tion and an external repulsive barrier, which behave very
much like an oscillator, and, not surprisingly, give ratios of

critical couplings close to the lower boundy.1/dn
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