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Separability and Fourier representations of density matrices
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Using the finite Fourier transform, we introduce a generalization of Pauli-spin matrices ford-dimensional
spaces, and the resulting set of unitary matricesS(d) is a basis ford3d matrices. IfN5d13d23•••3db and
H [N]5 ^ H [dk] , we give a sufficient condition for separability of a density matrixr relative to theH [dk] in terms
of the L1 norm of the spin coefficients ofr. Since the spin representation depends on the form of the tensor
product, the theory applies to both full and partial separability on a given spaceH [N] . It follows from this result
that for a prescribed form of separability, there is always a neighborhood of the normalized identity in which
every density matrix is separable. We also show that for every primep and n.1, the generalized Werner

density matrixW[ pn] (s) is fully separable if and only ifs<(11pn21)21.

PACS number~s!: 03.67.Lx, 03.67.Hk, 03.65.Ca
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I. INTRODUCTION

One of the predictions of quantum mechanics is that s
tially separated components of a system can be entang
The consequent prediction of nonclassical correlati
among the separated components of a quantum system
led to critiques of the foundations of quantum mechanics
in the famous Einstein, Podolsky, Rosen paper@1#, and to
experiments that have confirmed the predicted nonclass
correlations, as in@2#. Interest in entangled systems has be
heightened by proposed applications in quantum comp
tion, for example@3#, and in quantum communication, a
exemplified most dramatically by teleportation@4#. As a re-
sult, there have been many publications that have exam
various aspects of entanglement, its measurement, and it
in quantum communication, such as Refs.@5–9#, to mention
only a few recent papers.

In this paper we shall be interested in the separab
properties of quantum systems in states defined on fin
dimensional Hilbert spacesH5H1^ •••^ Hn , where theHk
denote the Hilbert spaces of the subsystems. A state spec
by a density matrixr is said to be fully separable onH if it
is a convex combination of tensor products:

r5(
a

p~a!r (1)~a! ^ •••^ r (n)~a!, ~1!

wherer (k)(a) is a density matrix onHk . Since the samer
can have different convex representations, it has proven
ficult to determine generally applicable operational con
tions for separability, and determining such conditions is o
of the motivations for this paper. It is also possible to ha
different types of separability by allowing sets of the su
systems to be entangled, cf.@9,10#, and one can describe
lattice of levels of separability. The theory we develop he
applies to all of these various definitions of separability.

*Present address: The Center for Quantum Computation, Cla
don Laboratory, Oxford University, Oxford, U.K.
1050-2947/2000/62~3!/032313~9!/$15.00 62 0323
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A necessary condition for separability is that the part
transposerTr of a stater should be a state@11#. If we rep-
resent r as a matrix, this means that ifr
5(r j 1 . . . j n ,k1 . . . kn ,) then ~taking r 51)

rT15~r
k1 j 2 . . . j n , j 1k2 . . . kn ,

! ~2!

is also a density matrix. It is easy to confirm that if a dens
matrix is separable, its partial transposes are also separ
but it has been shown@12# that the converse is true only i
the 2^ 2 and 2̂ 3 cases. In the proof of this last result@12#,
a necessary and sufficient criterion for separability was
tablished, but there seems to be no operational way of u
this criterion as a general tool. Other studies of separabi
such as those in@9,13–17#, have found operationally usefu
necessary conditions and sufficient conditions for classe
densities or for special cases, but no general sufficient c
ditions with a breadth of applicability analogous to that
the Peres condition.

Broadly speaking, necessary conditions tend to be
scribed in the computational basis, while sufficient con
tions for two-level systems tend to be described in terms
the Pauli spin basis. That observation motivated the der
tion of a change-of-basis formula in@18# that facilitates the
strategy of checking whether necessary conditions derive
the computational basis are sufficient by using the~real!
Pauli spin basis. This approach leads to general suffic
conditions for full separability, which essentially give th
condition in @14# as a corollary, and also leads to necess
and sufficient conditions for full separability of a param
etrized family ofn-qubit densities that all satisfy the Pere
condition. The difficulty with extending this approach
d-level systems is that the generally accepted definition
spin matrices as generators of rotations does not capture
computationally useful features of the Pauli matrices wh
d>3. One of the basic purposes of this paper is to propos
general definition ofd-level spin matrices that possess ma
of those computational properties.

The Pauli matrices are special in that they are both H
mitian and unitary, and together with the identity matrixs0

n-
©2000 The American Physical Society13-1
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ARTHUR O. PITTENGER AND MORTON H. RUBIN PHYSICAL REVIEW A62 032313
they form a basis of the set of 232 matrices. Our strategy i
to generalize the role of the Pauli matrices as a basis
unitary matrices at the expense of Hermiticity. We show
applicability of these proposedd-level spin matrices and in
the Appendix examine thed53 case in some detail, ident
fying properties analogous to those of the Pauli matrices.
also define directly a general characterization of cert
classes of trace one projections ofd-level systems. We use
those projections to establish necessary and sufficient co
tions for full separability of generalized Werner densiti
composed of any numbern of d-dimensional subsystems fo
any primed. In addition, we establish a general sufficie
condition for full or partial separability of densities of an
dimension. Analogous results for full separability were o
tained in@18# for d52 by essentially the same methodolog

Other authors@19# have used a different set of operato
in thed53 case, and some separability results were obtai
recently in @15#. Our proposed class is different, and w
show that stronger separability results can be obtained u
these matrices and the strategy developed in@18#.

II. A NECESSARY CONDITION

As mentioned above, the Peres partial transpose cond
is a general necessary condition for separability@11#. In @18#,
a weaker but useful condition was derived using the Cauc
Schwarz inequality. That result is generalized in Appendix
to give the following result. For eachr, let (ur ,v r) be either
( j r ,kr) or (kr , j r). Then for fully separable statesr

~Ar j , jArk,k!>uru,vu, ~3!

where r is written as a matrix in the computational bas
defined by the tensor products ofu j i&^ki u,1< i<n. As an ap-
plication, consider the following generalization of th
Werner density matrix@20# on theN5dn dimensional Hil-
bert spaceH [N] :

W[N]~s!5
12s

dn
I 1st

whereI is the identity andt is the projection defined by th
state

uc [N]&5
1

Ad
@ u0 . . . 0&1u1 . . . 1&

1 . . . 1u~d21! . . . ~d21!&]. ~4!

~In the sequel we letk̃ denote the repeated indexk . . . k.) In
the computational basisWj , j

[N] (s) equals

S 12s

dn
1

s

dD
when j is in $k̃:0<k,d% and equals (12s)/dn otherwise.
The only nonzero off-diagonal elements areWj̃ ,k̃

[N] (s)
5(s/d). Choosingj andk appropriately in Eq.~3!, we have
03231
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the necessary condition 1>s(11dn21). To show that this
condition is also sufficient, we will use the spin represen
tion to proveW[N] (s) is fully separable whend is prime and
s5(11dn21)21. In order to do that, however, we first nee
to define the spin representation.

III. COMPUTATIONAL AND SPIN BASES

Let H [N] denote anN-dimensional Hilbert space wher
N5d13d23•••3db . In this section we define differen
bases forN3N matrices onH [N] based on different repre
sentations ofH [N] as a tensor product space, and the disc
sion is purely mathematical. In the applications, we will
concerned with a specific representationH [N]5 ^ a51

b H [da]

and with the corresponding separability properties of den
ties onH [N] . The bases used will depend on the order of
tensor product as will the representation of a density ma
asr5r1^ •••^ rb , the tensor product of densitiesrk on the
H [dk] . For example, we might want to examine separabi
of a density matrix onH [90]5H [6]

^ H [15] using matrices
consistent with that tensor product. In a subsequent app
tion one might wantH [6] to represent the tensor product
spin-12 and spin-1 particles, i.e., a tensor product ofH [2] and
H [3] , and the order of the subtensor product should not af
the theory. We shall need the result that permuting the or
of a tensor product corresponds to a conjugation opera
and thus that the theory is generally applicable with o
notational changes for particular applications. For comple
ness, we state this as a lemma.

Lemma 1. Let N5d13d23•••3db and supposeM is an
N3N matrix with M5C(1)

^ •••^ C(b), where theC(k) are
dk3dk matrices. Given a permutation of$1, . . . ,b%, denoted
by s, there is a matrixQs such thatQsMsQs

215M for all
suchC(k)’s whereMs5C[s(1)]

^ •••^ C[s(b)] .
The motivation for this work comes from noticing the ro

of the 232 Hadamard matrix in working with density ma
trices for two-level systems. In the computational basis
fined by the matricesEj ,k5u j &^ku, r5( j ,kr j ,kEj ,k , while in
the spin basisr is expressed in terms of the Pauli matrice
r5 1

2 (s01sm), wheresm5(mjs j and s15sx , s25sy ,
and s35sz . We can relate these two operator bases us
the 232 Hadamard matrix,

S s0 s1

s3 is2
D 5S 1 1

1 21D S E0,0 E0,1

E1,1 E1,0
D . ~5!

An interpretation of Eq.~5! is suggested by the usage
quantum computing. The Pauli matrices related to ph
changess0 ands3 are the Hadamard transforms of the pr
jectionsE0,0 andE1,1, while the matricess1 andis2 related
to state changes are the Hadamard transforms of the ra
and lowering operatorsE0,1 and E1,0. That being the case
one could then regard Eq.~5! as defining the real Pauli ma
trices as Hadamard transforms of the corresponding com
tational basis matrices. The Hadamard matrix also conn
the coefficients in the two bases if we rearrange the ma
elements of the density matrix in a nonstandard way:
3-2
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S 1 m1

m3 2 im2
D 5S 1 1

1 21D S r00 r01

r11 r10
D . ~6!

Note that a systematic application of these ideas requ
both the use of the real Pauli matrices and a reindexing
both the Pauli matrices and the computational basis matr
to conform to the observed connection.

Since the Hadamard matrix is the 232 Fourier transform,
we can extend this interpretation of Eq.~5! to d-level sys-
tems by using the corresponding discrete Fourier transfo
Define theadjustedbasisA5$Aj ,k,0< j ,k,d% as the set of
d3d matrices defined byAj ,k5Ej , j 1k , where 1 denotes
addition modulo d, and define the ‘‘spin’’ matrices S
5$Sj ,k,0< j ,k,d% using the analogue of Eq.~5! and the
finite Fourier transform. Thus (S)[F(A) where F( j ,k)
5exp(2pijk/d)5hjk with h5exp(2pi/d). ~We will make the
dependence ond explicit below.! In detail,

Sj ,k5 (
r 50

d21

F~ j ,r !Ar ,k ~7!

is a sum of products of scalars times matrices. SinceF is
invertible, it follows thatS is also a basis for thed3d ma-
trices. Note that Eq.~5! is a special case of Eq.~7! with d
52 andh521.

To illustrate these ideas, it is useful to write out the resu
for d53 in detail. Thenh5exp(2pi/3) and

S005S 1 0 0

0 1 0

0 0 1
D S015S 0 1 0

0 0 1

1 0 0
D S025S 0 0 1

1 0 0

0 1 0
D

S105S 1 0 0

0 h 0

0 0 h2
D S115S 0 1 0

0 0 h

h2 0 0
D S125S 0 0 1

h 0 0

0 h2 0
D

S205S 1 0 0

0 h2 0

0 0 h
D S215S 0 1 0

0 0 h2

h 0 0
D S225S 0 0 1

h2 0 0

0 h 0
D .

The spin matricesS not only form a basis ford3d ma-
trices, but share many other properties with the real P
matrices, which we record next. We should note that
matricesSj ,k were also defined in an earlier work by Fiv
@21# on Hamiltonians on discrete spaces, and many of
properties listed below were first established there.

Proposition 1. Fix d>2 and letS denote the correspond
ing set of spin matrices.

~i! S is an orthogonal basis of unitary matrices with r
spect to the trace inner product.

~ii ! If d is odd, each matrix inS is in SU(d), while if d is
even,Sj ,k is in SU(d) if and only if j 1k is even.
03231
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~iii ! Sj ,k5(S1,0)
j (S0,1)

k, (Sj ,k)
†5h jkSd2 j ,d2k5(Sj ,k)

d21

and @Sj ,k ,Sr ,s#5(hkr2h js)Sj 1r ,k1s using addition modd.
~iv! tr(Sj ,k)50 for all ( j ,k)Þ(0,0).
Proof. The key observation, noted in@21#, is that the ma-

trices are generated byS1,0 andS0,1:Sj ,k5(S1,0)
j (S0,1)

k with
S0,1S1,05hS1,1. All of the remaining assertions, includin
orthogonality, follow from those relations and from ea
computations. A useful consequence of the manipulation

~Sj ,k!
m5h ( jk)m(m21)/2Sm j,mk . ~8!

Unlike the Pauli matrices, these spin matrices need no
Hermitian; for example, whend53 only the identity matrix
is Hermitian. Thus when computing the coefficients of a de
sity matrix in these bases, as we do next, the Hermitian c
jugation notation has to be retained. Note that the asser
~iii ! in Corollary 1 corresponds to the usual inequality rel
ing theL2 magnitude of a Fourier transform and theL2 mag-
nitiude of the original function.

Corollary 1. ~i! The matrix elements of ad3d density
matrix r in the different bases are related by (s)5F* (a).

~ii ! s0,051, sd2 j ,d2k5h jksj ,k* and (1/d)(Fs) j ,05r j , j>0.
~iii ! ( j ,kusj ,ku25d(ur j ,ku2 and A( j ,kusj ,ku2A( j ,kur j ,ku2

>1/Ad.
~iv! usj ,ku<1.
Proof. We expand an arbitrary density matrix in the tw

bases:

r5(
j ,k

aj ,kAj ,k5
1

d (
j ,k

sj ,kSj ,k ,

where aj ,k5Tr(Aj ,k
† r) gives aj ,k5r j , j 1k , using addition

modd, and sj ,k5Tr(Sj ,k
† r). Then from Eq. ~7!, sj ,k

5( r 50
d21F* ( j ,r )ar ,k , which proves~i!. Note that we have to

include a complex conjugation in the formula, which is u
necessary in thed52 case, since the Hadamard matrix h
real entries. The assertions in (i i ) follow from the definitions
and from the fact thatr is Hermitian with trace equal to one
The relations in ~iii ! follow from Tr„(s)†(s)…
5Tr„(a)†(F* )†(F* )(a)…5d Tr„(a)†(a)…5d Tr(r2), and
from Tr(r2)5(klk

2>(k1/d251/d, where thelk are the
non-negative eigenvalues of the densityr. Finally, ~iv! fol-
lows from usj ,ku25uTr(r1/2Sj ,k

† r1/2)u2<Tr(r)Tr(Sj ,kSj ,k
† r)

51.
Now let N5d13d23•••3db with di>2 and with the

order of multiplication fixed throughout the discussion. W
use the underlying and fixed tensor product representatio
H [N] to define the sets of computational and adjusted ba
E[N] andA[N] for N3N matrices as

Ej ,k
[N]5Ej 1 ,k1

(1)
^ •••^ Ej b ,kb

(b) and Aj ,k
[N]5Aj 1 ,k1

(1)
^ •••^ Aj b ,kb

(b) ,

where j and k correspond to theirb tuples and the super
scripts in parentheses identify the correspondingdi . It fol-
lows thatAj ,k

[N]5Ej , j % k
[N] where the addition of the indices i

defined by

j % k[~ j 11k1 modd1 , . . . ,j b1kb moddb!. ~9!
3-3
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ARTHUR O. PITTENGER AND MORTON H. RUBIN PHYSICAL REVIEW A62 032313
The corresponding set of spin matricesS[N] is then defined
by (S[N] )5F [N] (A[N] ) or

Sj ,k
[N]5 (

r 50

N21

F [N]~ j ,r !Ar ,k
[N] ,

whereF [N]5F (1)
^ •••^ F (b) is the usual tensor product o

the Fourier transformsF (k) that depend ondk . Since we will
be taking powers of theh ’s, we will use subscripts to denot
the dependency ofh on dk : hk5exp(2pi/dk). It is easy to
show that an equivalent definition ofS[N] is given by

Sj ,k
[N]5 ^ i 51

b ~F ( i )A( i )! j i ,ki
. ~10!

Linearity again implies that ifr [N] is a density matrix on
the N3N Hilbert spaceH [N] with

r [N]5(
j ,k

aj ,k
[N]Aj ,k

[N]5
1

N (
j ,k

sj ,k
[N]Sj ,k

[N] ,

then

~s[N] !5F* [N]~a[N] ! ~11!

and aj ,k
[N]5r j ,( j % k)

[N] . Thus we have two different represent
tions for a density matrixr [N] , and both of them depend o
the underlying tensor product representation ofH [N] .

IV. s VARIATIONS

A fully separable density matrix can be represented a
convex combination of tensor products of pure states or tr
one projections, and we need to represent suchd3d projec-
tions in a systematic fashion in the spin basis.~All projec-
tions in this paper are trace one projections.! In the Appendix
we show how all trace one projections ford53 can be rep-
resented in a form completely analogous to thed52 case,
but for our immediate purposes we only need to characte
a subclass. The motivation is given by writing the particu
d52 projections1

2 (s06sk) asPk(r )5 1
2 (m50

1 @(21)rsk#
m,

wherer 50 or r 51. ThenPk(r ) is the average of the cyclic
subgroup generated by (21)rsk , and since@(21)rsk#

2

5s0, the key propertyPk(r )Pk(r )5Pk(r ) reduces to an
exercise in group theory. The generalization of this idea
arbitraryd is immediate, and we first treat the case whend is
prime.

Proposition 2. Let d5p>2 be prime. Let u5( j ,k)
Þ(0,0) denote the index of a spin matrixSu , and letr be an
integer. Then ifp.2, the matrix

Pu~r ![
1

p (
m50

p21

~h rSu!m ~12!

is a projection with unit trace. The assertion is also valid
p52 providediSu is used in lieu ofSu throughout whenu
5(1,1).

Proof. A matrix P is a pure state or a trace one projecti
if it is Hermitian, has trace one, andP25P. First, (h rSu)m is
proportional toSm j,mk ; consequently, it cannot be propo
03231
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tional toS0,0 for 0,m,p. Therefore onlyS0,0 contributes to
the trace ofPr(u), confirming the trace condition. Using Eq
~8! it follows that @(h rSu)m#†5(h rSu)p2m and that whenp
is odd (h rSu)m(h rSu)p2m5(Su)p5(h jk) [ p(p21)]/2S0,0
5S0,0. Thus Pr(u) is Hermitian. The verification tha
Pr(u)25Pr(u) follows from an easy computation. The a
sertion that (h jk) [ p(p21)]/251 fails for prime p only when
p52 and j 5k51. Thus the reintroduction ofi and of
2sy5 iS1,1 is required to complete the proof.

As an example of the notation, it is easy to check tha
k50, then Pj ,0(r ) is one of the diagonal projectionsEi ,i .
Other projections are less sparse, however. For exam
when d53 and kÞ0, Pj ,k(r ) has no zero entries in th
computational basis representation.

In the preceding proof, we exploited the fact that ford, an
odd prime, the powers of each matrixSu , uÞ(0,0), form a
cyclic subgroup of orderd. Whend is not prime we can ge
analogous results using a similar proof, but there are res
tions on the indices that arise since the coefficient of
identity matrix in Eq.~8! whenm5d need not be unity. In
Proposition 2 this led to the introduction of the factori
5exp(pi/2) when d52, and that modification is a specia
case of a more general situation.

Proposition 3. Supposed is composite. Letu5( j ,k) be
(0,1), (1,0) or else an index such thatj Þ0 andkÞ0 have
no common factors. Supposed is odd or jk is even. Then if
r is an integer,

Pu~r !5
1

d (
m50

d21

~h rSu!m

is a projection with unit trace. Ifd is even andjk is odd, then

Pu~r !5
1

d (
m50

d21

~ah rSu!m

is a projection with unit trace, wherea5ep i /d.
Proof. Suppose (h rSu)m or (ah rSu)m is proportional to

S0,0 for 0,m,d, so thatm j5rd and mk5sd for some
integersr ands. Sincej andk are relatively prime, there are
integersa and b such thata j1bk51 @22#, and it follows
that m5ard1bsd5(ar1bs)d, contradictingm,d. Thus
Pu(r ) has trace one. Using Eq.~8! whenm5d, we find that
the coefficient ofS0,0 is one in the first case, while in th
second case the extra factor ofad5(21) is necessary to
make the overall coefficient equal to one. In both case
follows from that key result, as in Proposition 2, thatPu

2(r )
5Pu(r ) and thatPu(r ) is Hermitian, completing the proof.

An important relationship between these subgroup pro
tions and the generating spin matrix follows from the defi
tions. Since it is easy to check that$Pu(r ),0<r ,d% defines
an orthogonal family of trace one projections, the next res
gives the spectral decomposition of (h rSu) t explicitly.

Corollary 2. For any integert>0 and anyd>2,

~h rSu! t5 (
m50

d21

h2mtPu~m1r !, ~13!
3-4
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subject to the usual caveat abouta. In particular, S0,0

5(m50
d21 Pu(m1r ).

Proof. As required,

(
m50

d21

h2mtPu~m1r !5
1

d (
k

~h rSu!k(
m

h2mthmk

5~h rSu! t.

Next consider a Hilbert space that is the direct produc
b Hilbert spaces with dimensionsd1 , . . . ,db . Projections in
the constituentdi dimensional spaces also define projectio
in tensor product spaces, and the proof of the following
immediate. As before, we let the superscriptk denote the
dependence ondk .

Corollary 3. Let N5d13d23•••3db and let H [N]

5 ^ a51
b H [da] be anN-dimensional Hilbert space. Letu de-

note ab-dimensional vector of index pairsui5( j i ,ki) where
0< j i ,ki<di21, and letr 5(r 1 , . . . ,r b) where ther i are
integers. Then if thePuk

(k)(r k) are trace one projections o

H [dk] ,

Pu~r !5 ^

k51

b

Puk

(k)~r k!

is a trace one projection onH [N] , providedaSu is used in
place ofSu whend is even andu5( j ,k) with jk odd. Fur-
thermore, ifh(r )[)k51

b hk
r k and t is a non-negative integer

„h~r !Su
[N]

…

t5 (
l 150

d121

. . . (
l b50

db21

^

k51

b

hk
2 l ktPuk

(k)~ l k1r k!,

~14!

and in particular

S0,0
[N]5 (

l 150

d121

. . . (
l b50

db21

^

k51

b

Puk

(k)~ l k1r k!.

In order to show separability results for Werner densiti
we need to identify a special class of fully separable den
matrices in the tensor product spaceH [N] (d) of n
d-dimensional Hilbert spaces, whereN5dn. This approach
is motivated by results in@18# and is our final variation on
the Paulis matrices.

Proposition 4. Let d>2 and letu(n)5(u1 , . . . ,un) and
r (n)5(r 1 , . . . ,r n) denote vectors of indices and values
defined in the preceding propositions. Then, providedaSu is
used in place ofSu when d is even andu5( j ,k) with jk
odd,

r~u(n),r (n)!5
1

dn S ~S0,0^ •••^ S0,0!

1 (
m51

d21

@~h r 1Su1
!m

^ •••^ ~h r nSun
!m# D

is a fully separable density matrix onH [N] (d).
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Proof. The assertion is true forn51 and suppose it holds
for n. Let u(n11) and r (n11) be given index and paramete
vectors. Since we require only then8th and (n11)8st indi-
ces in the proof, we leave the other indices fixed and impl
and letr(un ,r n) denoter(u(n),r (n)). By the induction hy-
pothesis

1

d (
s50

d21

r~un ,r n1s! ^ Pun11

(n11)~r n112s!

is fully separable. Multiplying out and collecting terms pr
duces expressions of the form

@~h r 1Su1
!m1^ •••^ ~h r nSun

!m1#

^ ~h r n11Sun11
!m2

1

d (
s50

d21

hs(m12m2).

By the same analysis used earlier, terms withm15m2 have
an overall coefficient of 1 while all other terms have a co
ficient of 0, and that completes the proof of the inducti
step.

V. APPLICATIONS

We now have the tools to prove a general sufficient c
dition for full and partial separability that extends the resu
in @18#. It has been shown in earlier work@16,17# that for
finite dimensional systems there is a neighborhood of
completely random state in which every density matrix
fully separable. That result together with the results in@14#
and @15# obtaining a lower bound on the size of this neig
borhood~for N52n andN53n, respectively! follow as cor-
ollaries to Theorem 1.

As usualH [N] will denote anN-dimensional Hilbert space
that can be written as a tensor product:H [N]5H [d1]

^ •••

^ H [db] , where theH [dk] are dk-dimensional spaces andN
5d13d23•••3db . We defineD[(d1 , . . . ,db) and refer
to H [d1]

^ •••^ H [db] as the D tensor product version o
H [N] . Since H [N] may be represented as a tensor prod
space in different ways, the kind of separability to be d
cussed depends on the representation. For example,N
53n andH [N] is represented as the tensor product ofn three-
dimensional spaces, we are discussing full separability
subsets of the trits are taken together and represente
3k-dimensional spaces, we are discussing the correspon
partial separability. By virtue of Lemma 1, we know that th
fundamental mathematics involved does not depend on
order in which the tensor products are taken or which t
are grouped together. In expressing the condition of the th
rem, we use theD spin coefficients to introduce anL1 norm
on the space ofN3N densities, and we will refer to tha
hereafter as theD spin norm and to the related separability
D separability.

Theorem 1. Let H [N] denote anN-dimensional Hilbert
space with N5d13d23•••3db . Suppose H [N]

5H [d1]
^ •••^ H [db] , where theH [dk] are dk-dimensional

Hilbert spaces. Ifr is a density matrix onH [N] , then r is
D[(d1 , . . . ,db) separable provided
3-5
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iri1,D[ (
( j ,k)Þ(0,0)

usj ,k
[N] u<1, ~15!

wherer has the spin representation

1

N (
j ,k

sj ,k
[N]Sj ,k

[N]

defined in term of theD tensor productSj ,k
[N]5 ^ i 51

b Sj i ,ki

( i ) . It

follows that in the set of density matrices onH [N] there is a
neighborhood relative toD of the random state (1/N)S0,0

[N] in
which every density matrix isD separable.

Proof. If di is prime or j i andki are relatively prime, the
factor Sj i ,ki

( i ) can be written as a weighted sum of projectio

as in Corollary 2. Ifdi is composite and the indicesj i andki

are not relatively prime, then up to a factor ofh i
t i , Sj i ,ki

( i ) can

be written as (h i
rSu

( i ))s for someu5( j̄ i ,k̄i) with j̄ i and k̄i

relatively prime, and thusSj i ,ki

( i ) can also be written as

weighted sum of projections. Now, sincer is a density, ei-
therSj ,k

[N] is Hermitian and thussj ,k
[N] is real, orSj ,k

[N] appears in
a pairsj ,k

[N]Sj ,k
[N]1sj ,k* [N] (Sj ,k

[N] )†. In the second case we use E
~14! in Corollary 3 and the preceding comments to colle
the various factors ofh i

t i together and obtain

sj ,k
[N]Sj ,k

[N]1sj ,k* [N]~Sj ,k
[N] !†

5 (
l 150

d121

. . . (
l b50

db21

^

k51

b

Puk

(k)~ l k!$b j ,ksj ,k
[N]h* ~ l !

1b j ,k* sj ,k* [N]h~ l !%

5usj ,k
[N] u (

l 150

d121

. . . (
l b50

db21

^

k51

b

Puk

(k)~ l k!

3$exp~ iu j ,k!h* ~ l !1exp~2 iu j ,k!h~ l !%,

whereu j ,k denotes the phase ofb j ,ksj ,k
[N] and l denotes theb

vector with componentsl k . The caveat thata iSu is in the
projectionsPuk

( i )( l k) in lieu of Su when di is even andu

5( j i ,ki) with j iki odd applies throughout the proof and w
not be explicitly cited. Sincea i has magnitude 1, only the
phase factor will be affected. Using the last assertion in C
ollary 3, we can write usj ,k

[N] uS0,0
[N]1 1

2 „sj ,k
[N]Sj ,k

[N]

1sj ,k* [N] (Sj ,k
[N] )†

… as

usj ,k
[N] u (

l 150

d121

. . . (
l b50

db21

^

k51

b

Puk
~ l k!

3$11cos@u j ,k2arg„h~ l !…#%.

Since the expression in brackets is non-negative, the ri
hand side is a non-negative multiple of aD-separable den
sity. In the case whenSj ,k

[N] is Hermitian we derive the sam
expression with the same conclusion. It follows thatr can be
written as a convex combination of fully separable densi
plus the residual term
03231
t

r-

t-

s

S 12 (
( j ,k)Þ(0,0)

usj ,k
[N] u D 1

N
S0,0

[N] .

The hypothesis guarantees that the coefficient of (1/N)S0,0
[N] is

non-negative, and that completes the proof ofD separability.
As another application of the machinery, we can prove

primep that the necessary conditions<(11pn21)21 is suf-
ficient for full separability of the generalized Werner dens
matrix W[N] (s)5@(12s)/N# I 1st. We haveN5pn, I is
the identity,t is the projection defined by the state

uc [N]&5
1

Ap
(
k50

p21

uk̃&

and k̃ denotes then-long repeated indexk . . . k. Given this
special structure we find

W[N]~s!5
12s

pn
I 1

s

p (
j 50

p21

(
k50

p21

u j̃ &^k̃u

5
12s

pn
I 1

s

p (
j 50

p21

(
k50

p21

Aj̃ ,k̃
[N] ,

where we have used the modular vector addition defined
Eq. ~9!. Computing the spin coefficients givess0,051, sj ,m

50 if m is not ak̃ with 0<k,p, and otherwise

sj ,k̃5(
r

F* ~ j ,r !
s

p
d~r ,Ind!,

whereInd5$ r̃ :0<r ,p%. Using the dot product of the inde
vectorsj •r 5( j kr k modp,

sj ,k̃5(
r

expS 22p i

p
~ j •r ! Dar ,k̃

5
s

p F11 (
r 51

p21

expS 22p i

p
~ j • r̃ ! D G .

Let Ind(p,n)5$ j :( r 50
N21 j r50 modp%. Then it is easy to

check thatsj ,k̃5s if and only if j is in Ind(p,n) and that
there are exactlypn21 such indices. All othersj ,k̃ equal zero,
and we can writeW[N] (s) in the spin basis as

W[N]~s!5
12s

pn
S0,0

[N]1
s

pn (
j PInd(p,n)

(
k50

p21

Sj ,k̃
[N] . ~16!

Theorem 2. Let p be prime andN5pn. Then the general-
ized Werner density matrixW[N] (s) is fully separable on
H [n] (p) if and only if s<(11pn21)21.

Proof. As shown above, necessarilys<(11pn21)21.
Checking the preceding derivation, note that

1

p (
j 50

p21

Ej̃ , j̃ 5
1

p (
j 50

p21

Aj̃ ,0̃
[N]

5
1

pn (
j PInd(p,n)

Sj ,0
[N]
3-6
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is a sum of fully separable projections. Takings5(1
1pn21)21 we can writeW[n] (s) as

W[n]~s!5
1

11pn21

3F1

p (
j 50

p21

Ej̃ , j̃ 1 (
j PInd(p,n)

1

pn S S0̃,0̃1 (
k51

p21

Sj ,k̃D G .

For eachkÞ0, Ind(p,n) is mapped in a one-to-one mann
onto itself by j→ j where (k j) r5k j r modp. Thus

W[n]~s!5
1

11pn21H 1

p (
j 50

p21

Ej̃ , j̃

1 (
j PInd(p,n)

F 1

pn S S0̃,0̃1 (
k51

p21

Sk j ,k̃D G J . ~17!

But since

~Sj 1,1!
k

^ •••^ ~Sj n,1!
k5hk( j iSk j ,k̃5Sk j ,k̃

for j in Ind(p,n), eachj sum in Eq.~17! is fully separable by
Proposition 4, completing the proof.

It follows for the Werner densities that at the extrem
value s5(11pn21)21, ( ( j ,k)Þ(0,0)usj ,k

[N] u5p(12p2n)/(1
1p2(n21)), where the coefficients are based on the deco
position D5(p, . . . ,p). When p5n52, that value is 1,
showing that the global bound of Theorem 1 is attain
However, for largern and primep>2 the conditioniri1,D
<1 is too strong for that class, and the special structure
the Werner densities allowed a more refined analysis oD
5(p, . . . ,p) separability.

It was shown in the qubit case in@18# that for eachn and
given e.0, there exists aD5(2, . . . ,2)-inseparable density
es

in

03231
-

.

of

on H [2n] that hasiri1,D,11e. Thus for each fixedn the
sufficient condition of Theorem 1 is the best possible for f
separability of qubits. We conjecture that the same is true
general: given any separability vectorD ande.0 there ex-
ists aD-inseparable densityr with iri1,D,11e.

Note added in proof.Theorem 2 has been shown to ho
for all integers>2 in Ref. @24#.
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APPENDIX A: PROOF OF EQ. „3…

In @18# a weaker but useful condition for qubits was d
rived using the Cauchy-Schwarz inequality. In this Append
we extend that analysis to a more general context. For sp
ficity, assume thatH [N]5H [d1]

^ H [d2]
^ H [d3] , with N

5d1d2d3, and that a given density matrixr on H [N] is sepa-
rable with respect to that tensor product structure. Ther
can be written as a convex combination of density matri
r (r )(a) on the factor spaces. In the computational basis
H [dr ] denoted byu j i& r ,1< i<dr , the matrix elements ofr
may be written as

r j 1 j 2 j 3 ,k1k2k3
5(

a
p~a!r j 1 ,k1

(1) ~a!r j 2 ,k2

(2) ~a!r j 3 ,k3

(3) ~a!.

Since eachr (r )(a) is a density matrix, positivity requires tha
Ar j r , j r

(r ) (a)Arkr ,kr

(r ) (a)>ur j r ,kr

(r ) (a)u for eachr anda. Then us-

ing the Cauchy-Schwarz inequality we have
@r j 1 j 2 j 3 , j 1 j 2 j 3
rk1k2k3 ,k1k2k3

#1/25F(
a

p~a!„Ar j 1 , j 1

(1) ~a!r j 2 , j 2

(2) ~a!r j 3 , j 3

(3) ~a!…2G1/2F(
a

p~a!„Ark1 ,k1

(1) ~a!rk2 ,k2

(2) ~a!rk3 ,k3

(3) ~a!…2G1/2

>(
a

p~a!Ar j 1 , j 1

(1) ~a!rk1 ,k1

(1) ~a!r j 2 , j 2

(2) ~a!rk2 ,k2

(2) ~a!r j 3 , j 3

(3) ~a!rk3 ,k3

(3) ~a!

>(
a

p~a!ur j 1 ,k1

(1) ~a!uur j 2 ,k2

(2) ~a!uur j 3 ,k3

(3) ~a!u

>urv1v2v3 ,u1u2u3
u

r

where, because of the Hermiticity of the density matric
(v r ,ur) may be either (j r ,kr) or (kr , j r). This proof obvi-
ously generalizes to any number of factor spaces, yield
Eq. ~3!.
,

g

APPENDIX B: TRACE ONE PROJECTIONS FOR dÄ3

By emphasizing selected properties of projections fod
52, we can obtain a representation of all~trace one! projec-
3-7
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tions in spin notation ford.2. We concentrate ond53. To
motivate the approach, recall from Eq.~6… that whend52,
m35(1)r0,01(21)r1,1, so that this particular spin coord
nate is a convex combination of (11) and (21), another
way of stating the well-known correspondence betweenm3,
the coefficient ofsz , and the diagonal ofr. If r is also a
projection, then in the computational coordinates,r j ,k

5bjbk exp@i(wj2wk)#, so that fixingm3 fixes r0,05b0
2 and

r1,15b1
2, and only the phase factoru5w02w1 is unspeci-

fied. Using the change-of-basis formula, the two remain
spin coefficients of a projection with prescribedm3 are thus
given in terms of the parameteru by

S m1

2 im2
D 5S s0,1

s1,1
D 5S 1 1

1 21D S b0b1eiu

b0b1e2 iuD ,

where 0<u,2p. If we let tk denote the value ofsk,1 when
u50, we can rewrite the preceding equation as

S s0,1

s1,1
D 5

1

2 S 1 1

1 21D S eiu 0

0 e2 iuD S 1 1

1 21D S t0

t1
D .

Making the obvious definitions, this givessW5M2(u) tW, and
we also find that

M2~u!5S cos~u! i sin~u!

i sin~u! cos~u!
D 5cos~u!s01 i sin~u!sx .

The geometry of this result is that if21,m3,1, then the
remaining spin coefficients in the projections associated w
m3 can be identified with the range of a one parameter fa
ily of invertible mappings$M2(u)% acting ontW and are rep-
resented by the intersection of the surface of the Blo
sphere with a horizontal plane at heightm3.

The same pattern of results holds ford53. Sinces2,0

5s1,0* , the diagonal of a givenr is in one-to-one correspon
dence with s1,0 via the equations1,05r0,0(1)1r1,1(h

2)
1r2,2(h). That is,s1,0 is a convex combination of the vert
ces of an equilateral triangle in the complex plane and t
uniquelycorresponds to the weights of the vertices, weig
that are the entries of the diagonal ofr. For larger values of
d, the geometry is more complicated. For example ifd54,
the diagonal of a givenr corresponds to two spin coeffi
cients:21<s2,0<11 ands1,0, which is restricted to a rect
angle in the complex plane with vertices6(11s2,0)/2
6 i (12s2,0)/2. In general the diagonal of a density matrixr
corresponds tod/2 spin coefficientssj ,0 , j Þ0, when d is
even and (d21)/2 spin coefficients whend is odd.

Onces1,0 is fixed in thed53 case, there are three com
plex parameters remaining to be specified:s0,1,s1,1, and
s2,1, since the other four spin coefficients are forced by
restriction s32 j ,32k5h jksj ,k* . If r is a projection,(usj ,ku2

53(ur j ,ku253, and thusus2,0u21(usk,1u251, tempting one
to look for an analogue of the Bloch sphere to represen
densities. However, the normalization arising from tr(r2)
51 is only a necessary condition on the parameters,
examples show it is not sufficient.~See also@19#.! Instead we
follow the d52 paradigm and describe trace one projectio
03231
g
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associated with afixed s1,0. If r is such a projection, then in
the computational coordinatesr5uu&^uu, whereuu& denotes
a normalized three vector withuk5bke

iwk and (ubku251.
Fixing s1,0 fixes thebk’s, and it follows from Corollary 1 and
the structure ofr that

S s0,1

s1,1

s2,1

D 5S 1 1 1

1 h2 h

1 h h2
D S eiu0 0 0

0 eiu1 0

0 0 eiu2

D S b0b1

b1b2

b2b0

D ,

whereuk5wk2wk11 with addition modulo 2p and with the
normalization(uk50 mod 2p. Again, letting tk denote the
value ofsk,1 when theuk’s are chosen to be zero, this tim
we obtain a two-parameter family of projections associa
with a given value ofs1,0. Letting sW denote the column vec
tor of parameters,tW the column vector with componentstk ,
and u the three-vector of phase parameters, we havsW

5M3(u) tW, where

M3~u!5
1

3 S 1 1 1

1 h2 h

1 h h2
D S eiu0 0 0

0 eiu1 0

0 0 eiu2

D
3S 1 1 1

1 h h2

1 h2 h
D

5 (
k50

2

f ~k,u!S0,k . ~B1!

If u1f is defined as component-wise addition, then it
easy to check that$M3(u)% also defines an Abelian group o
invertible mappings,

M3~u!M3~f!5M3~u1f!,

giving the functional equation(kf (k,u) f ( j 2k,f)5 f ( j ,u
1f) in analogy with the corresponding result whend52.
We have thus established a correspondence between all
one projection matrices with given diagonal and the range
a two-parameter family of mappings acting ontW. ~We are
endebted to Rasmus Hansen for bringing to our atten
@23#, which contains an analysis of the geometry of the co
vex space ofd53 densities. The pretransform characteriz
tion of the projections associated with a given diagona
similar to the results derived here.!

In thed52 case, the choices ofmz561 produce specia
cases of projections, and the same is true whend53. If s1,0
is one of the extreme points 1,h, or h2, then two of thebk’s
equal zero and all of thesk,1’s equal zero. It follows that for
r 50, 1, and 2, 1

3 @S0,01h rS1,01(h rS1,0)
†# is a trace one

projection, and those are the three subgroup projecti
P1,0(r ). A degeneracy that has no analogue in thed52 case
occurs whens1,0 lies between two extreme points on an edg
Then exactly one of thebk’s equals zero, and there is
one-parameter family of projections associated withs1,0.
3-8
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The most interesting cases occur whens1,0 lies in the interior
of the equilateral triangle. In particular whens1,050, the
bk’s are equal to 1/A3, and by choosing the components ofu
appropriately from$0,2p/3,4p/3% we find the remaining
A

03231
subgroup projectionsPu(r ). Thus our entire analysis o
separability in thed53 case uses only the projections ass
ciated with the origin and with the vertices of the equilate
triangle.
01
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