PHYSICAL REVIEW A, VOLUME 62, 032313
Separability and Fourier representations of density matrices

Arthur O. Pittenger* and Morton H. Rubif
!Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland 21228-5398
’Department of Physics, University of Maryland, Baltimore County, Baltimore, Maryland 21228-5398
(Received 7 January 2000; revised manuscript received 16 March 2000; published 18 Auglist 2000

Using the finite Fourier transform, we introduce a generalization of Pauli-spin matricesdiorensional
spaces, and the resulting set of unitary matrig@) is a basis fod X d matrices. IIN=d;Xd,X - - - Xd, and
HIN'= @ HI% we give a sufficient condition for separability of a density magrielative to theH!% in terms
of the L, norm of the spin coefficients gf. Since the spin representation depends on the form of the tensor
product, the theory applies to both full and partial separability on a given $fakelt follows from this result
that for a prescribed form of separability, there is always a neighborhood of the normalized identity in which
every density matrix is separable. We also show that for every pprard n>1, the generalized Werner
density matrixw(P"l(s) is fully separable if and only is<(1+p"~ 1)L,

PACS numbe(s): 03.67.Lx, 03.67.Hk, 03.65.Ca

[. INTRODUCTION A necessary condition for separability is that the partial
transpose 't of a statep should be a statgl1]. If we rep-
One of the predictions of quantum mechanics is that sparesent p as a matrix, this means that ifp
tially separated components of a system can be entanglee:(p;, . «, ...k, ) then(takingr=1)
The consequent prediction of nonclassical correlations
among the separated components of a quantum system has
led to critiques of the foundations of quantum mechanics, as
in the famous Einstein, Podolsky, Rosen pajgr and to
experiments that have confirmed the predicted nonclassic& also a density matrix. It is easy to confirm that if a density
correlations, as if2]. Interest in entangled systems has beemmatrix is separable, its partial transposes are also separable,
heightened by proposed applications in quantum computaiut it has been showfi2] that the converse is true only in
tion, for example[3], and in quantum communication, as the 292 and 2»3 cases. In the proof of this last res{ie],
exemplified most dramatically by teleportatipfl. As a re- a necessary and sufficient criterion for separability was es-
sult, there have been many publications that have examinedblished, but there seems to be no operational way of using
various aspects of entanglement, its measurement, and its uses criterion as a general tool. Other studies of separability,
in quantum communication, such as R¢fs-9|, to mention  such as those if9,13—-17, have found operationally useful
only a few recent papers. necessary conditions and sufficient conditions for classes of
In this paper we shall be interested in the separabilitydensities or for special cases, but no general sufficient con-
properties of quantum systems in states defined on finiteditions with a breadth of applicability analogous to that of
dimensional Hilbert spacdd=H,® - - - ®H,, where thed,  the Peres condition.
denote the Hilbert spaces of the subsystems. A state specified Broadly speaking, necessary conditions tend to be de-
by a density matrix is said to be fully separable d# if it scribed in the computational basis, while sufficient condi-
is a convex combination of tensor products: tions for two-level systems tend to be described in terms of
the Pauli spin basis. That observation motivated the deriva-
tion of a change-of-basis formula [18] that facilitates the
p=2, p(a)pP(a)®- - ®pM(a), (1)  strategy of checking whether necessary conditions derived in
a the computational basis are sufficient by using theal
Pauli spin basis. This approach leads to general sufficient
wherep®(a) is a density matrix o, . Since the samp  conditions for full separability, which essentially give the
can have different convex representations, it has proven difeondition in[14] as a corollary, and also leads to necessary
ficult to determine generally applicable operational condi-and sufficient conditions for full separability of a param-
tions for separability, and determining such conditions is oneetrized family ofn-qubit densities that all satisfy the Peres
of the motivations for this paper. It is also possible to havecondition. The difficulty with extending this approach to
different types of separability by allowing sets of the sub-d-level systems is that the generally accepted definition of
systems to be entangled, ¢,10], and one can describe a spin matrices as generators of rotations does not capture the
lattice of levels of separability. The theory we develop herecomputationally useful features of the Pauli matrices when
applies to all of these various definitions of separability.  d=3. One of the basic purposes of this paper is to propose a
general definition ofi-level spin matrices that possess many
of those computational properties.
*Present address: The Center for Quantum Computation, Claren- The Pauli matrices are special in that they are both Her-
don Laboratory, Oxford University, Oxford, U.K. mitian and unitary, and together with the identity matsix
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they form a basis of the set 022 matrices. Our strategy is the necessary condition=4s(1+d""1). To show that this

to generalize the role of the Pauli matrices as a basis ofondition is also sufficient, we will use the spin representa-

unitary matrices at the expense of Hermiticity. We show thetion to proveW!Nl(s) is fully separable whed is prime and

applicability of these proposedtlevel spin matrices and in  s=(1+d" 1)1 In order to do that, however, we first need

the Appendix examine thd=3 case in some detail, identi- to define the spin representation.

fying properties analogous to those of the Pauli matrices. We

also define directly a general characterization of certain

classes of trace one projections abfevel systems. We use Ill. COMPUTATIONAL AND SPIN BASES

t_hose projections to e:.syablish necessary and sufficient gqndi— Let HIN denote anN-dimensional Hilbert space where

tions for full separability of ge_nerah_zed Werner denS|t|esN:dl><d2>< ...Xd,. In this section we define different

composed of any numberof d-dimensional subsystems for \ocaq fox N matrices onH!N based on different repre-

any primed. In addition, we establish a general sufficient sentations oHN! as a tensor product space, and the discus-

condition for full or partial separability of densities of any i, is purely mathematical. In the applications, we will be

dimens_ion. Analogous results for full separability were Ob'concemed with a specific representatidfiVl=c?_, H(d%]

talrg)etﬂ |n[18:t|r:or d1=92hby essendtlall)é'tf?e satme [nefthodoltigy. and with the corresponding separability properties of densi-

T SUDOTEL0] e e et set of SPEIROT s onkl . The bases use il epend on e oder ofhe

recently in[15] ’Our oroposed class is different, and we nsor product as will the representation of a.qlensny matrix
: o - Casp=p Q- - ®pp, the tensor product of densitipg on the

show that stronger separability results can be obtained usindidd For example, we might want to examine separability

these matrices and the strategy developefd 8]. of a density matrix onH[®=HlgHS! ysing matrices

consistent with that tensor product. In a subsequent applica-
tion one might wanH!®! to represent the tensor product of

As mentioned above, the Peres partial transpose conditiofPin and spin-1 particles, i.e., a tensor productf! and
a weaker but useful condition was derived using the Cauchythe theory. We shall need the result that permuting the order
Schwarz inequality. That result is generalized in Appendix AOf @ tensor product corresponds to a conjugation operation

Il. ANECESSARY CONDITION

(i, k) or (k;,j,). Then for fully separable statgs notational changes for particular applications. For complete-
ness, we state this as a lemma.
(\/EM)ZMUUL (3) Lemma 1LetN=d;Xxd,X .- Xd, and suppos# is an
o ' Nx N matrix withM=CWg...@C® where theC are
where p is written as a matrix in the computational basis d, X d, matrices. Given a permutation ¢f, . . . b}, denoted

defined by the tensor products [§f)(ki|,1<i<n. As an ap- by o, there is a matrixQ,, such thatQ,M UQ;1= M for all
plication, consider the following generalization of the suchC®’s whereM,=Cl‘Mlg...gcle®]

Werner density matrix20] on theN=d" dimensional Hil- The motivation for this work comes from noticing the role
bert spaceH!N: of the 2x2 Hadamard matrix in working with density ma-
trices for two-level systems. In the computational basis de-
fined by the rna.triceEj'k: |]><k|, pZEJ-’kpj'kEj'k, Whlle |n

the spin basip is expressed in terms of the Pauli matrices,
p=32(oo+ 0y, Where on=2mjo; and o1=o0y, 0,=0y,
wherel is the identity andr is the projection defined by the andos=o,. We can relate these two operator bases using

1-s
WINI(s)= ——1 +s7
dn

state the 2x2 Hadamard matrix,
|<//[N1>=i[|o O+ oo o1| (1 11/Eoo Eox -
\/a 0'3 i0'2 1 _1 El,l El,o ’

+ .. 4(d=1)...(d-1))]. (4)
B An interpretation of Eq.5) is suggested by the usage in
(In the sequel we let denote the repeated ind&x . .k.) In quantum computing. The Pauli matrices related to phase

the computational basi/(s) equals changesr, and o5 are the Hadamard transforms of the pro-
jectionsEq o andE, ;, while the matricesr; andio, related
1-s s to state changes are the Hadamard transforms of the raising
( qn + a) and lowering operatorgg; and E; 5. That being the case,

one could then regard E¢) as defining the real Pauli ma-
. ) trices as Hadamard transforms of the corresponding compu-
whenj is in {k:0=<k<d} and equals (& s)/d" othekmse. tational basis matrices. The Hadamard matrix also connects
The only nonzero off-diagonal elements ar\eﬁ{'}](s) the coefficients in the two bases if we rearrange the matrix
=(s/d). Choosingj andk appropriately in Eq(3), we have elements of the density matrix in a honstandard way:
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1 m 1 1\({pow Po1 (i) S k=(S10'(S0", (S0 7= 77Jk_Sd—j,d—_k_:(Sj,k)dil

e —ima =1 -1 . (6) and[Sjyk,Sr'S]=(77kr— 7'°)Sj 41 k+s Using addition mod.

3 2 P11 P10 (iv) tr(S;,) =0 for all (j,k)#(0,0).
Proof. The key observation, noted j21], is that the ma-

Note that a systematic application of these ideas requiresices are generated I , andSO,l:Sj,k=(Slyo)j(SO,1)kWith
both the use of the real Pauli matrices and a reindexing 0§, ;S ;= #S; ;. All of the remaining assertions, including
both the Pauli matrices and the computational basis matricesrthogonality, follow from those relations and from easy

to conform to the observed connection. computations. A useful consequence of the manipulations is
Since the Hadamard matrix is the<2 Fourier transform, A

we can extend this interpretation of E@) to d-level sys- (Sj M= plikImm=Dl2g . . 8

tems by using the corresponding discrete Fourier transform.

Define theadjustedbasisA={A; ,,0<j,k<d} as the set of Unlike the Pauli matrices, these spin matrices need not be

dxd matrices defined by \=E; ;;«, where + denotes Hermitian; for examplewhend=3 only the identity matrix

addition modulo d, and define the “spin” matrices S is Hermitian. Thus when computing the coefficients of a den-
=1{S; k,.0=j,k<d} using the analogue of Ed5) and the sity matrix in these bases, as we do next, the Hermitian con-
finite Fourier transform. Thus §)=F(A) where F(j,k)  jugation notation has to be retained. Note that the assertion

=exp(2mijk/d)=7* with »=exp(2ri/d). (We will make the (iii ) in Corollary 1 corresponds to the usual inequality relat-

dependence od explicit below) In detail, ing theL, magnitude of a Fourier transform and the mag-
nitiude of the original function.
d-1 Corollary 1. (i) The matrix elements of @xd density
_ . matrix p in the different bases are related ks) € F* (a).
S = F(j,rnA 7 " ‘
= 2, FUDA i) So0=1, 8¢_ja1= 7Ty and (1) (FS), o=p; =0,
(i) = ulsjul?=d=|pjl? and V= s k*VEj klpjul?
is a sum of products of scalars times matrices. SiRds 21/_ Vd.
invertible, it follows thatSis also a basis for thdxd ma- (iv) i <1. , _ o
trices. Note that Eq(5) is a special case of Ed7) with d Proof. We expand an arbitrary density matrix in the two
_ __ bases:
=2 andnp=—1.
To illustrate these ideas, it is useful to write out the results 1
for d=3 in detail. Thens=exp(27i/3) and p:% aj,kAj,k:a % SjkSi K

100 010 001 where a; ,=Tr(Al p) gives a;y=p; ., using addition
So=(0 1 0fsy=(0 0 1|5,=|1 0 O modd, and sj,=Tr(S/p). Then from Eq. (7), s
0 0 1 1 0 0 0 1 0 =E?;§F*(j,r)ar,k, which proved(i). Note that we have to
include a complex conjugation in the formula, which is un-
necessary in the=2 case, since the Hadamard matrix has

100 0 10 0 0 1 real entries. The assertions i) follow from the definitions
So=/0 7 0]s,=[ 0 0 7|S,=|7 0 O and from the fact thgp is Hermitian with trace equal to one.
0 0 2 2 0 0 0 2 0 The relations in (i) follow from Tr((s)"(s))

7 7 7 =Tr((2) (F*)(F*)(2))=d Tr((a)"(a))=d Tr(p?),  and

from Tr(p?)=3\2=3,1/d>=1/d, where thex, are the

0 01 0 0 01 non-negative eigenvalues of the densityFinally, (iv) fol-

2__ 12t 1/2(2 T

=0 72 0|s,=| 0 0 #|s,=|#* 0 0 EVXS from |[s; |*=|Tr(p"*S] o)) [*<Tr(p) Tr(S; kS kp)
0 0 7 70 0 0 70 Now let N=d;xd,X - - - Xd, with =2 and with the

order of multiplication fixed throughout the discussion. We

The spin matrice$ not only form a basis fodxd ma-  use the underlying and fixed tensor product representation of
trices, but share many other properties with the real Pauli!"! to define the sets of computational and adjusted bases
matrices, which we record next. We should note that théE™™ andAIM for Nx N matrices as
matricesS; , were also defined in an earlier work by Fivel Nl (1) ) IN]_ A1) )
[21] on Hamiltonians on discrete spaces, and many of th&jk =Ej ik, ® - ®Ej " and Aj\/=A;7"y ®--- @A °y
properties listed below were first established there.

Proposition 1 Fix d=2 and letS denote the correspond- wherej and k correspond to theib tuples and the super-

ing set of spin matrices. scripts in parentheses identify the corresponding It fol-
(i) Sis an orthogonal basis of unitary matrices with re-lows thatAl'l =EI\l| ‘where the addition of the indices is
spect to the trace inner product. defined by
(i) If dis odd, each matrix i is in SU(), while if d is
even,S;  is in SUW) if and only if j+k is even. j®k=(j,+kymoddy, ..., p+k,modd,). 9)
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The corresponding set of spin matric8%" is then defined tional to Sy for 0<m< p. Therefore onlyS , contributes to
by (SN =FINI(AINTy or the trace ofP,(u), confirming the trace condition. Using Eq.
(8) it follows that[(%"S,)™"=(%'S,)P ™ and that wherp

is odd  (7'S)"(7'S)P M= (S,)P= ()PP Vs,
=Sy0. Thus P,(u) is Hermitian. The verification that
P (u)?= P(u) follows from an easy computation. The as-
whereFIN=F(Mg ... gF®) js the usual tensor product of sertion that ¢/¥)[P(°P~112=1 fails for primep only when
the Fourier transformg® that depend od,. Since we will p=2 and j=k=1. Thus the reintroduction of and of

be taking powers of they’s, we will use subscripts to denote —o,=iS; ; is required to complete the proof.

N—1
si= 2 FMG.DAN,

the dependency ofy on d,: 7,=exp(2ri/dy). It is easy to As an example of the notation, it is easy to check that if
show that an equivalent definition &M is given by k=0, thenP; «(r) is one of the diagonal projectiorts; ;.
o Other projections are less sparse, however. For example,
W= (FOAD), . (10 whend=3 andk#0, P;(r) has no zero entries in the
computational basis representation.
Linearity again implies that ip!™ is a density matrix on In the preceding proof, we exploited the fact thatdpan
the NX N Hilbert spaceH™ with odd prime, the powers of each mat, u# (0,0), form a
cyclic subgroup of orded. Whend is not prime we can get
PN =S a[N]A[N]zi S NN gnalogous res_ult§ using a similar _proof, but ther_e_are restric-
% TIKTLKTN A TRk tions on the indices that arise since the coefficient of the
identity matrix in Eg.(8) whenm=d need not be unity. In
then Proposition 2 this led to the introduction of the factor
NI\ _ % [N/ a[N] =exp(mi/2) whend=2, and that modification is a special
(s =F*"(a™) (1) case of a more general situation.

INJ_ [N] ) Proposition 3 Supposel is composite. Leu=(j,k) be
anda; i = pj ek - Thus we have two different representa- (g 1), (1,0) or else an index such that0 andk=0 have
tions for a density matrip™, and both of them depend on g common factors. Supposeis odd orjk is even. Then if
the underlying tensor product representatiorH&¥!. r is an integer,

IV. o VARIATIONS 1 d-1
Pu(r)== mE:O (7'Sy™

A fully separable density matrix can be represented as a
convex combination of tensor products of pure states or trace

one projections, and we need to represent sligld projec-  is a projection with unit trace. il is even andk is odd, then
tions in a systematic fashion in the spin bassll projec-

tions in this paper are trace one projectioms.the Appendix q 947t
we show how all trace one projections fib=3 can be rep- Pu(r)= Pl EO (an'Sy)™
m=

resented in a form completely analogous to the2 case,

but for our immediate purposes we only need to characterize o ) )
a subclass. The motivation is given by writing the particularS @ Projection with ”r”'t tn:ace, wh:arze=me_ _
d=2 projectionsk (oo~ o) ast(r)=%Eﬁ]:0[(—1)’ok]m, Proof. Suppose §'S,) or (an'Sy)™ is proportional to
wherer =0 orr = 1. ThenP,(r) is the average of the cyclic 0o for 0<m<d, so thatmj=rd and mk=sd for some
subgroup generated by—(1) oy, and since[(—1) o ]? !ntegersr ands. Sincej andKare relatively prime, there are
— 0, the key propertyP,(r)P,(r)=P,(r) reduces to an integersa and b such thataj+bk=1 [2_2],_ and it follows
exercise in group theory. The generalization of this idea tghat m=ard+bsd=(ar+bs)d, contradictingm<d. Thus

arbitraryd is immediate, and we first treat the case whgs  Fu() has trace one. Using E(8) whenm=d, we find that
prime. the coefficient ofSy o is one in the first case, while in the

Proposition 2 Let d=p=2 be prime. Letu=(j,k) second case the extra factor ef=(—1) is necessary to

+#(0,0) denote the index of a spin mat, and letr be an make the overall coefficient equal to one. In both cases it
integer. Then ifp>2, the matrix follows from that key result, as in Proposition 2, tI'Faﬁ(r)
=P,(r) and thatP,(r) is Hermitian, completing the proof.
p-1 An important relationship between these subgroup projec-
> (7S (12)  tions and the generating spin matrix follows from the defini-
m=0 tions. Since it is easy to check thg® (r),0<r<d} defines

mild

Pu(r)=

Tl

an orthogonal family of trace one projections, the next result
gives the spectral decomposition af'S,)" explicitly.
Corollary 2. For any integet=0 and anyd=2,

is a projection with unit trace. The assertion is also valid for
p=2 providediS, is used in lieu ofS, throughout wheru

=(1,1).
Proof. A matrix P is a pure state or a trace one projection d-1
e L _ . e B
if itis H_ermltlan, has t.race one, arRf P First, ("Sy)M is (7'Sy)t= 2 7 ™P,(m+r), (13)
proportional toSy; mi; consequently, it cannot be propor- m=0
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subject to the usual caveat about In particular, Sy g Proof. The assertion is true far=1 and suppose it holds
=34"1p (m+r). for n. Let u"*Y andr("*1) be given index and parameter
Proof. As required, vectors. Since we require only tléth and (+ 1)’st indi-

ces in the proof, we leave the other indices fixed and implicit

d-1 . .
- 1 - and letp(u,,r,) denotep(u™,r(). By the induction hy-

> mtpu(m‘H):aE (7'S)> 7~ My pothesis

m=0 k m

d—1
=(7'Sy".
7S 3 2 Ut 9OPE N1 1-s)
Next consider a Hilbert space that is the direct product of
b Hilbert spaces with dimensiornt, . . . d,. Projections in s fully separable. Multiplying out and collecting terms pro-

the constituentl; dimensional spaces also define projectionsquces expressions of the form
in tensor product spaces, and the proof of the following is

immediate. As before, we let the superscriptienote the [(7"1S,) ™M@ - @ (7S, )™]
dependence ody.

Corollary 3. Let N=d;Xd,x---xd, and let HIN ) . o (i)
=®"_,H4%l be anN-dimensional Hilbert space. Let de- B8, )y 520 7
note ab-dimensional vector of index paitg=(j; ,k;) where
0=<jj,ki=d;—1, and letr=(ry, ... r,) where ther; are By the same analysis used earlier, terms with=m, have
integers. Then if thePfjt)(rk) are trace one projections on an overall coefficient of 1 while all other terms have a coef-
Hldd ficient of 0, and that completes the proof of the induction

step.

b

_ k
PU(r)_k(i)lPEJk)(rk) V. APPLICATIONS
. ¢ acti (NI ided . di We now have the tools to prove a general sufficient con-
'S @ trace one projection o » proviae .“S.“ IS USed N gition for full and partial separability that extends the results
place ofS, whend 1S evern andi=(j,k) with jk odd. Fur-,7116] it has been shown in earlier wof6,17 that for
thermore, if(r)=II,_, " andt is a non-negative integer, finite dimensional systems there is a neighborhood of the
completely random state in which every density matrix is

dl_l db—l b . )
[N\t ~ It o (k) fully separable. That result together with the result$lid]
(n(r)S7)" = ,12*0 e ,beO k‘}fl”k Py (et 1w, and[15] obtaining a lower bound on the size of this neigh-

(14) borhood(for N=2" andN=23", respectively follow as cor-
ollaries to Theorem 1.
and in particular As usualH™ will denote anN-dimensional Hilbert space
that can be written as a tensor produgtN=H[lg ...
. dit dlop © @H!9%l where theH! are d,-dimensional spaces ard
o= 2 -+ 2 @ PRtry). —dyxdyX - Xdy. We defineD=(dy, ... ,dy) and refer
! bTF k=1 to H% ... oHI%! as theD tensor product version of

. . Nl gj [N]
In order to show separability results for Werner densmes,H ' Smch may be reprv_s-sented as a tensor prOdl.JCt
pace in different ways, the kind of separability to be dis-

we need to identify a special class of fully separable densitf ) .
matrices in the tensor product spadeN'(d) of n cussed depends on the representation. For exampld, if

: _ : _ —3n IN] | ;
d-dimensional Hilbert spaces, wheke=d". This approach d'3 an_dH | is represented asd';he tensorgrﬁduondﬁrg_?t It
is motivated by results if18] and is our final variation on |mbent5|on;:1 thspatc_::‘s, we taLe |fcustsr|]ng u d Seépara “tyd .
the Paulic matrices. subsets of the trits are taken together and represented in

Proposition 4 Let d=2 and letu™=(u u,) and 3k-dimensional spaces, we are discussing the corresponding
= - 1y v vy . L i
rM=(r,, ... r.) denote vectors of indices and r\]/alues aspartlal separability. By virtue of Lemma 1, we know that the

. . . o . . fundamental mathematics involved does not depend on the
defined in the preceding propositions. Then, provid& is . . : .
used in place ofS, whend is even andu=(j,k) with jk order in which the tensor products are taken or which trits

odd are grouped together. In expressing the condition of the theo-
’ rem, we use th® spin coefficients to introduce drn, norm

1 on the space oNXN densities, and we will refer to that
p(uUM rMy="|(5,® - ®Sy0) hereafter as thB spin norm and to the related separability as

d" ' ’ D separability.

i1 Theorem 1 Let HIN! denote anN-dimensional Hill[)’\%rt
r m fhe \m space with N=d;Xd,x.--Xd,. Suppose H

+,n§=:l [(71S)"® & (7S, ]) =Hlg...@HI%! where theH!d are d,-dimensional
Hilbert spaces. If is a density matrix orHN | thenp is
is a fully separable density matrix d#™(d). D=(d,, ... ,d,) separable provided
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1
= M|<1, 15 1- s =S .
||p||l,D (j,k)z(0,0) | ], k| ( ) (j'k);(oyo) | J,k| N SO,O
wherep has the spin representation The hypothesis guarantees that the coefficient oS} is
non-negative, and that completes the proobdeparability.
i E SINIGINI As another application of the machinery, we can prove for
N £ kK prime p that the necessary condities (1+p"~1) 1 is suf-

. ficient for full separability of the generalized Werner density
defined in term of thé® tensor producg\l=®_,S{’, . It matrix WINI(s)=[(1—s)/N] I+s7. We haveN=p", | is
follows that in the set of density matrices 8Nl there is a  the identity, 7 is the projection defined by the state
neighborhood relative t® of the random state (LW)SO Nl in -1
which every density matrix i® separable. |tV = i > |~k>

Proof. If d; is prime orj; andk; are relatively prime, the \/B =0
factorS 2 K, can be written as a weighted sum of projections
asin Corollary 2. Ifd; is composite and the indicgsandk; andk denotes tha-long repeated indek . . . k. Given this
are not relatively prime, then up to a factor gf , SJ(:)'ki can  special structure we find

be written as ¢'S{)® for someu=(j;,k;) with j; andk;

~1p-1
relatively prime, and thu§(')k can also be written as a WiN(s) = 1 E E 2 1)k
weighted sum of projectrons Now singeis a densrty, ei- p" p “0 k=0
therS:'y N] |s Hermitian and thus!"} k is real, orS k appears in 1—s s

a palrs VSN + s NS n the second case we use Eq. = . E Z L'\T'(] ,
(14) in Corollary 3 and the preceding comments to collect IOn b j=ok=o !

. t; .
the various factors 0f7i together and obtain where we have used the modular vector addition defined in

[N] NI, o[N]\ T Eqg. (9). Computing the spin coefficients givege=1, S;
Sj, S +S]k (Sjk) ) ) o =9 I
’ =0 if mis not ak with 0=<k<p, and otherwise

di—1 dp-1
=2 ... 2 @ PRI{B sV 7 () s

11=0 Ip=0 k=1 {B] “ 77 sj;<=2 F*(j,r)Eé(r,lnd),

r
+ 8BSt n()} ~
-1 db-1 | wherelnd={r:0=<r <p}. Using the dot product of the index
[N]| 2 2 P(k)(l ) vectorsj-r=2Xj,r, modp,
Ip=0 kfl .
~ —2m ~
X{exp(i 6; 1) 7* (1) +exp(—i6; ) n(l)}, SJWKZZ eXF( p (J-r))ark

where 6; , denotes the phase & s[ and| denotes théo
vector with component$,. The caveat thaty; S, is in the
projectionsP(')(l W) in lieu of S, whend; is even andu

=(ji,k;) with J,k odd applies throughout the proof and will | gt Ind(p,n)={j: gr OJr 0 modp}. Then it is easy to

not be explicitly cited. Sincey; has magnitude 1, only the check thats; ;= if and only if j is in Ind(p,n) and that

phase factor will be affected. Using the last assertion in Corthere are exacﬂp ! such indices. All othes; ; equal zero,
N] Q[N
olary 3, we can write [s\V|S{0+3(SVSY  and we can writahNI(s) in the spin basis as

+sr NS as

1+2 ex im J?)”.

p—1

1-s S
di-1 dp—1 WIN(g)=— "gINl, = SN (16
SIS .S @ Py () (&= " 0 p“Je'nEd(nm 2 Sk (19
=0 15=0 k=1

Theorem 2Let p be prime andN=p". Then the general-
X{1+cog 6 k—argn(1))]}. ized Werner density matrisVN(s) is fully separable on
(p) if and only if s<(1+p" 1)L
Proof. As shown above, necessariy<(1+p" 1)1
Checking the preceding derivation, note that

Since the expression in brackets is non-negative, the right:|
hand side is a non-negative multiple ofDaseparable den-
sity. In the case WheS][f]'(] is Hermitian we derive the same

expression with the same conclusion. It follows thatan be 1Pt 1P 1
written as a convex combination of fully separable densities Z 2 E:r == Z AN = — S
plus the residual term PEp =0 110 pnjeiddtpny
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is a sum of fully separable projections. Takirg= (1 on H2" that has|p|;p<1+e. Thus for each fixedh the

n-1y-1 i (n] - . . .
+p"7) " we can writeW!™(s) as sufficient condition of Theorem 1 is the best possible for full
separability of qubits. We conjecture that the same is true in

winl(s) = ; general: given any separability vectorand e>0 there ex-
1+p"t ists aD-inseparable density with |p[l;p<1+e.
= -1 Note added in proofTheorem 2 has been shown to hold
«|= E Eost S5+ z Sm;) . for all integers=2 in Ref.[24].
P j=o jelnd(p,n) p k=1
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p—1
+ > [—n S0+ > Sm)” 17 APPENDIX A: PROOF OF EQ. (3)
jelnd(p,n) P k=1
_ In [18] a weaker but useful condition for qubits was de-
But since rived using the Cauchy-Schwarz inequality. In this Appendix
0 we extend that analysis to a more general context. For speci-
(S, @@ (8 0"= 715 1= Sk ficity, assume tha}t/H[le H[d1]®l9|[d2]®H[d3], with N P

=d,d,d;, and that a given density matrixon HIN is sepa-
rable with respect to that tensor product structure. Then
can be written as a convex combination of density matrices
(r)(a) on the factor spaces. In the computational basis on
Hd] denoted bylj;),,1<i=<d,, the matrix elements op
may be written as

forjinInd(p,n), eachj sumin Eq.(17) is fully separable by
Proposition 4, completing the proof.

It follows for the Werner densities that at the extreme
value s=(1+p" H7L S h-olsiW=p(1—p /(1
+p~("=1), where the coefficients are based on the decom
position D=(p, ...,p). When p=n=2, that value is 1,
showing that the global bound of Theorem 1lis attained.

However, for largem and primep=2 the condition|pl|; Pi g ok = Z p(a)p(l)kl(a)p(z)kz(a)p(3)k3(a)

<1 is too strong for that class, and the special structure of

the Werner densities allowed a more refined analysi® of fan ) _ . .

=(p, ....p) separability. Since each'’(a) is a density matrix, positivity requires that
. . (r) (r) =1|,M -

It was shown in the qubit case [a8] that for eacm and ~ vP; ;. (@) \/pk . (@)=]p{" (a)] for eachr anda. Then us
given e>0, there exists ® =(2, . . . ,2}inseparable density ing the Cauchy Schwarz mequality we have

12

2 3
[p111213 j1i2i3PKqkokg K k2k3]1/2_ 2 p(a)(\/P(l) (a)P( ) (a)P( )

J141 IS I3J3

[2 P(@) (i ()P, ()Pl k()

=2 p(a)\p; (@)p0y (2)p(2 (a)pl) (2)p(D; (2)p() (a)
a

J1i1 Joilo I3:)3

=2 p(@)lpf) i, @Ik} k(@)

= |pv1u2v3,ulu2u3|

where, because of the Hermiticity of the density matrices, APPENDIX B: TRACE ONE PROJECTIONS FOR d=3

(v, ,u,) may be either ; ,k,) or (k;,j,;). This proof obvi-

ously generalizes to any number of factor spaces, yielding By emphasizing selected properties of projectionsdor
Eq. (3). =2, we can obtain a representation of @hce ong projec-
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tions in spin notation fod>2. We concentrate od=3. To  associated with §ixed § . If p is such a projection, then in
motivate the approach, recall from E@) that whend=2,  the computational coordinates=|u){u|, where|u) denotes
m3=(1)poot+ (—1)p11, SO that this particular spin coordi- a normalized three vector with,=b,e'?« and >lby|?=1
nate is a convex combination of-(1) and (—1), another Fixing s, ofixes theb’s, and it follows from Corollary 1 and
way of stating the well-known correspondence betwesn  the structure op that

the coefficient ofo,, and the diagonal op. If p is also a

projection, then in the computational coordmatqq K Sp,1 1 1 1 eh 0 0 bob,
=b; blE)exm((;DJ glok)]thso ;[]hat flfxm?@rrng fixes poo=bj and sii|={1 7* 7% 0 €% o bib, |
p1,1=b71, and only the phase factdt=¢q— ¢, is unspeci- 9 o

fied. Using the change-of-basis formula, the two remaining ' >21 Lowmom 0 0 €%/ \bahy

spin coefficients of a projection with prescribeg are thus where = o, @y, ; with addition modulo 2r and with the

given in terms of the parametérby normalizationX 6,=0 mod 2. Again, lettingt, denote the
my So1 1 1 bobye'’ value ofs, ; when thed,’s are chosen to be zero, this time
( ) ):( ' :(1 )(b b _m), we obtain a two-parameter family of projections associated
— M2 S11 001€ with a given value o, o. Letting s denote the column vec-

where 0< §<2. If we lett, denote the value of, ; when  tor of parameters{, the column vector with componerts,

0=0, we can rewrite the preceding equation as and @ the three-vector of phase parameters, we have
Soa| 1/1 1\/€? 0 \(1 1\[t =Ms(0)t, where
si 211 —-1/\o e \1 —1)it) 1 1 1\ /€% 0 0
R R M (9):3 1 7 7 0 €% o0
Making the obvious definitions, this gives=M,(6)t, and 3 3 ) .
we also find that 1 7 7 0O 0 ex
v cog ) isin(6) o 11 12
= = + .
2 isin6) cog0) cog O)apti sin(f) oy x|1 7 7
1 7 7

The geometry of this result is that if 1<m;<<1, then the )

remaining spin coefficients in the projections associated with _ 2 f(k

m; can be identified with the range of a one parameter fam- = (k, 0)Sok- (B1)

ily of invertible mappings{M,(6)} acting ont and are rep-

resented by the intersection of the surface of the Blochf ¢+ ¢ is defined as component-wise addition, then it is

sphere with a horizontal plane at heighs. easy to check thgtM;(6)} also defines an Abelian group of
The same pattern of results holds fd=3. Sinces,, invertible mappings,

=s) o, the diagonal of a givep is in one-to-one correspon-

dence withs;, via the equations; o=po 1)+ p1(7?) M3(0)M3(h)=M3(0+ ),

+poA7n). Thatis,s; g is a convex combination of the verti-

ces of an equilateral triangle in the complex plane and thugiving the functional equatior®,f(k,8)f(j—k,¢)=1(j,0

uniquelycorresponds to the weights of the vertices, weightst+ ¢) in analogy with the corresponding result wher2.

that are the entries of the diagonalmfFor larger values of We have thus established a correspondence between all trace

d, the geometry is more complicated. For exampld#f4,  one projection matrices with given diagonal and the range of

the diagonal of a giver corresponds to two spin coeffi- a two-parameter family of mappings acting on(We are
cients:—1s<s,,<+1 ands; o, which is restricted to a rect- endebted to Rasmus Hansen for bringing to our attention
angle in the complex plane with vertices (1+s,0)/2  [23], which contains an analysis of the geometry of the con-
*i(1—s;,0)/2. In general the diagonal of a density matpix vex space ofl=3 densities. The pretransform characteriza-
corresponds tal/2 spin coefficientss; o, j#0, whend is  tion of the projections associated with a given diagonal is
even and §—1)/2 spin coefficients whed is odd. similar to the results derived heye.

Onces, 4 is fixed in thed=3 case, there are three com-  In thed=2 case, the choices aofi,= =1 produce special
plex parameters remaining to be specifieg;y,s; 1, and cases of projections, and the same is true wier8. If s; o
S.1, since the other four spin coefficients are forced by thes one of the extreme points 1y, or %2, then two of theb,’s
restriction 53_J 3 k=7 s k- If pisa prOJectlon 3s;, 2 equal zero and all of thg, ;'s equal zero. It follows that for
=33|p; x/*=3, and thusjszol +3|sc4?>=1, tempting one  r=0, 1, and 2,3[Syot+ 7' S10t+ (7'S10 '] is a trace one
to look for an analogue of the Bloch sphere to represent alprojection, and those are the three subgroup projections
densities. However, the normalization arising fromp®) P1o(r). A degeneracy that has no analogue indie2 case
=1 is only a necessary condition on the parameters, andccurs whers, g lies between two extreme points on an edge.
examples show it is not sufficien(See als§19].) Instead we Then exactly one of thdy,'s equals zero, and there is a
follow the d=2 paradigm and describe trace one projectionsone-parameter family of projections associated wsihy.
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The most interesting cases occur wisgglies in the interior
of the equilateral triangle. In particular whex; =0, the

b,’s are equal to Y3, and by choosing the componentstof
appropriately from{0,27/3,47/3} we find the remaining

PHYSICAL REVIEW A 62 032313

subgroup projectiond?,(r). Thus our entire analysis of
separability in thed=3 case uses only the projections asso-
ciated with the origin and with the vertices of the equilateral
triangle.
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