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Quantum simulation with natural decoherence
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A quantum system may be efficiently simulated by a quantum information processor as suggested by
Feynman and developed by Lloyd, Wiesner, and Zalka. Within the limits of the experimental implementation,
simulation permits the design and control of the kinematic and dynamic parameters of a quantum system.
Extension to the inclusion of the effects of decoherence, if approached from a full quantum-mechanical
treatment of the system and the environment, or from a semiclassical fluctuating field treatment~Langevin!,
requires the difficult access to dynamics on the time scale of the environment correlation time. Alternatively,
a quantum-statistical approach may be taken which exploits the natural decoherence of the experimental
system, and requires a more modest control of the dynamics. This is illustrated for quantum simulations of a
four-level quantum system by a two-spin NMR ensemble quantum information processor.

PACS number~s!: 03.67.2a, 76.60.2k
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I. INTRODUCTION

In the study of quantum systems, the effect of coupling
an environment is inevitably encountered. The desire is o
to minimize this effect in order to address only the quant
system, but sometimes one wishes to consider the entire
tem including the environment. Control of the environme
has been achieved@1#, notably in quantum optics exper
ments, through modifying the mode density or symmetry
the reservoir either through temperature or cavity manipu
tions. Recently, engineered reservoirs have been constru
for quantum computational systems@2,3#. Decoherence due
to the environment places limits on the length and compl
ity of quantum simulations and computation@4–7#. To some
extent this can be avoided using methods of quantum e
correction@8–16#. These methods require ancillary degre
of freedom upon which are deposited some of the entr
arising from environmental interactions, thereby allowing t
encoded degrees of freedom to be protected from deco
ence. A complementary strategy is to shape a desired d
herence behavior from the natural decoherence through
propriate control @17,18#. One can, in principle, contro
decoherence in open systems using operationsU5U(t) that
are fast compared to the correlation time of the bathDt
;tc @19–21#. This time scale can, however, be prohibitive
short in most accessible cases. In addition, the effect of
control operations will alter the original Hamiltonian an
must be accounted for. A treatment of coupling to a coher
external field is given in@22#.

The goal of this paper is to examine the unavoidable
coherence effects when a quantum information processo
used to simulate another quantum system. There are tw
lated questions:~i! how is decoherence manifested in a qua
tum simulation, and~ii ! how can decoherence effects as th
appear in the simulated system be manipulated? Igno
decoherence, an explicit simulation@23# of one quantum sys

*Electronic address: dcory@mit.edu
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tem by another, namely the simulation of the kinematics a
dynamics of a truncated undriven harmonic oscillator an
driven anharmonic oscillator, has been demonstrated by
NMR quantum information processor. This paper aims
extend that simulation method to include decoherence
fects, and to illustrate the principles with a simple NM
ensemble quantum system. It is suggested here that s
degree of control of decoherence may be achieved in a si
lated system by varying the choice of mapping between
physical and simulated systems. Similar approaches h
been utilized in NMR@24,25#. The natural decoherence be
havior is tied to the physical system, but is manifested
different ways in the simulated system depending on the p
ticular mapping. In the absence of natural decoherence, t
are many equivalent mappings that will create a particu
simulation. If several appropriate mappings, exploiting s
cial decoherence symmetries, were implemented in se
one may design the overall effective decoherence appea
in the simulated system. Decoherence cannot be elimin
with this method, and the available signal will decay exp
nentially with the length of the simulation, but the effectiv
decoherence as a deviation against a decaying backgr
may be controlled, allowing the simulation to remain faithf
up to a scaling factor. These series are motivated in par
what is possible using refocusing techniques in nuclear m
netic resonance. In the average Hamiltonian sense, thes
ries are analogous to modifying the environmental cav
mode structure.

II. QUANTUM SIMULATION WITHOUT RELAXATION

Using a classical device, the simulation of a quantum s
tem in general is a difficult problem requiring time o
memory resources that scale exponentially with the size
the system. However, this is not the case for a unive
quantum simulator@26# which uses one quantum system
simulate another quantum system. In particular, it has b
shown that an arbitrary local Hamiltonian may be efficien
©2000 The American Physical Society09-1
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approximated using a sparsely coupled array of two-s
systems@27–30#.

To simulate the evolution of a quantum systemS under a

propagatorU, us&→
U

us(T)&, using a physical systemP ~a
quantum computer! and available operations,S is related to
P by an invertible mapf which determines a corresponden
between all the operators and states ofSand ofP. The propa-
gator U maps toVT5fUf21, and must be implemente
using the available external interactionsVi with intervening

periods of natural evolutione2 iHP
0 t/\ in P so that VT

5P ie
2 iHP

0 t i (T)Vi . Any operator~in particular VT! can be
composed of natural evolutions inP and external interaction
if a sufficient class of simple operations~logic gates! are
implementable in the physical system@31,32#. This general
scheme for quantum simulation is represented by the c
mutative diagram~where the simulated time flows from to
to bottom!:

~2.1!

For unitary mapsf, we may writeVT5e2 i H̄PT/\, where
H̄P[fH̄Sf† can be identified with the average Hamiltonia
of Waugh@33#. Many of the concepts of quantum simulatio
are implicit in the average Hamiltonian theory used to des
NMR pulse sequences which implement a specific des
effective Hamiltonian. After the computation in the physic

system up&→
VT

upT&, the map f21 identifies upT&→us(T)&
thereby completing the simulationus&→us(T)&. Note that the
physical timest i(T) are parametrized by the simulated tim
T. Also, the dimension of the Hilbert space of the quant
computer must be at least as large as that of the simul
system. In the case of an NMR quantum computer@34,35#,
for example, the kinematics of any 2N level quantum system
may be simulated using a givenN-spin 1

2 molecule. In what
follows, the simulation procedure is illustrated with a~four-
level! two-spin molecule. There are advantages and dr
backs to an ensemble NMR quantum computer; neverthe
the scheme introduced here should be applicable to any
alization of a quantum computer. The NMR implementati
permits an initial investigation of the principles of quantu
computation and simulation.

A. Basis mappings

The simulated quantum system is associated with
physical quantum computer through a basis mapping, wh
also dictates the associated operators in the two systems
the two-spin, four-level system the Hamiltonian can be w
ten as

HS5E0uc0&^c0u1E1uc1&^c1u1E2uc2&^c2u1E3uc3&^c3u,
~2.2!
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where theEj are energy eigenvalues~in no particular order!
anduc j& are the corresponding energy eigenstates. Under

mapping to a two-spin systemuck&→
f

u binary expansion of
k&:

uc0&→
f

u↑↑&,

uc1&→
f

u↑↓&,

uc2&→
f

u↓↑&,

uc3&→
f

u↓↓&. ~2.3!

Hs maps to

H̃P5 (
k50

3

EkEk5E0u↑↑&^↑↑u1E1u↑↓&^↑↓u

1E2u↓↑&^↓↑u1E3u↓↓&^↓↓u, ~2.4!

which may also be written, whereh j
k is the jth bit of k,

H̄P5 (
k50

3

ak~sz
1!h1

k
~sz

2!h2
k
,

5a01a1sz
11a2sz

21a3sz
1sz

2, ~2.5!

where it follows from the definition of the Pauli matrices th
@36#

a05
1

4
~E01E11E21E3!,

a15
1

4
~E02E11E22E3!,

~2.6!

a25
1

4
~E01E12E22E3!,

a35
1

4
~E02E12E21E3!.

In general, the vectora may be expressed in terms of th
energiesE:

a522nMTE. ~2.7!

The matrixMT is called the Hadamard 2n32n matrix @37#.

B. Truncated quantum harmonic oscillator

The above procedure may be applied to the simulation
a truncated quantum harmonic oscillator~TQHO!. This is
shown for two different mappings,f0 and f1 , introduced
9-2
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here, for which the simulation exhibits markedly differe
relaxation behavior; however, without decoherence, the m
pings are equivalent.

The Hamiltonian for a harmonic oscillator truncated to t
first four energy eigenstates,un&, is

HS5\V/2~ u0&^0u13u1&^1u15u2&^2u17u3&^3u!.
~2.8!

Consider the mapf0 for the simulation of the truncated ha
monic oscillator,

un50&→
f0

u↑↑&[ua&,

un51&→
f0

u↑↓&[ub&,

un53&→
f0

u↓↑&[uc&,

un52&→
f0

u↓↓&[ud&. ~2.9!

This maps the Hamiltonian to

H̄P5 (
k50

3

EkEk

5\V/2~ ua&^au13ub&^bu15ud&^du17uc&^cu!, ~2.10!

which implies

E05
1

2
\V,

E15
3

2
\V,

E25
7

2
\V,

E35
5

2
\V,

⇒ 5
a052\V,

a150,

a252\V,

a352
1

2
\V.

~2.11!

Equation ~2.5! then becomesH̄P
0 5\V(22sz

22 1
2 sz

1sz
2).

Given the internal Hamiltonian for the weakly coupled liqu
state NMR two-spin system~in the rotating framev0!,

H05S \

2D @~v12v0!sz
11~v22v0!sz

21pJsz
1sz

2#,

~2.12!

H̄P is implemented by the pulse sequence

VT
05S t1

0

2
2py

122
t1

0

2
1py

121t2
0D ~2.13!

with v05v1 and delays

t1
052VTS 1

pJ
2

2

~v22v1! D , ~2.14!
03230
p-

t2
0522VTS 1

~v22v1! D .

Herepy
12, for example, refers to a radio-frequency pulse

spins 1 and 2 with a rotation of anglep about they axis.
Note thatp12 is just (ad)(bc), the two cycle permutations
a↔d andb↔c, and that it is possible to simulate negativ
timesT for the unitary dynamics. The negative signs int1,2

0

may be accommodated by considering the refocused ph
modulo 2p. For short simulation times, the expected sin
soidal behavior of the populations of the harmonic oscilla
is verified for several different initial states~see Fig. 1!.

Similarly, the map,f1 , can be defined where up i
switched with down for spin 2:

un51&→
f1

u↑↑&5ua&,

un50&→
f1

u↑↓&5ub&,

un52&→
f1

u↓↑&5uc&,

un53&→
f1

u↓↓&5ud&. ~2.15!

This gives H̄P
1 5\V(21sz

211/2sz
1sz

2), and the pulse se
quence

VT
15S py

22
t1

1

2
2py

122
t1

1

2
1py

121t2
1D , ~2.16!

with v05v1 and delays

t1
152VTS 1

pJ
1

2

~v22v1! D , ~2.17!

FIG. 1. NMR peak signals from 2,3-dibromothiophene demo
strating a quantum simulation of a truncated harmonic oscillato
implemented by the mappingf0 . Various initial states will express
oscillations according to the energy differences between the ei
states involved. Evolution of the initial states expresses oscillati
according to the energy differences between the eigenstate
volved: ~a! u0& ~0V!, ~b! u0&1 i u2& ~2V!, and u0&1u1&1u2&1u3&
@~c! V and ~d! 3V shown#. The solid lines are to guide the eye.
9-3
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t2
1512VTS 1

~v22v1! D .

The map f1 is related to f0 through the permutation
(ab)(cd). Other related mappings may be obtained fro
permutation considerations. These maps and others d
mine the subset of the control algebra over the physical
tem VT , which will implement the desired unitary transfo
mationU in the simulated system.

III. QUANTUM SIMULATION WITH RELAXATION

The effect of relaxation in the physical system on t
result as it appears in the simulated system can be stra
forwardly calculated once the implementationVT is deter-
mined. This assumes that the relaxation is completely c
acterized. Since natural relaxation is tied to the phys
system, two otherwise equivalent simulation mappings
yield different results. Furthermore, by combining su
simulation steps or blocks@as described by the commutativ
diagram~2.1!# with different basis mappings, and exploitin
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certain symmetries, the final evolution of the simulated s
tem may be modified to appear as if it occurred unde
different effective relaxation. In the same way that quant
simulation without decoherence is an adaptation of AHT,
scheme described here is an adaptation of average Lio
lian theory@24,25#.

The goal is to simulate an evolution of a reduced dens
matrix rS under a HamiltonianHS and a relaxation superop
eratorGS ,

rS~0! ——→
HS ,GS

rS~Tf !. ~3.1!

This may be implemented in several steps, where each st
a simulation implemented using a particular mapping,

rS~0!→
HS

rS~T!5rS~T!→
HS

rS~T1T8!5¯ . ~3.2!

The general scheme for simulation with decoherence
ing a physical system is given by the diagram~where the
simulated time flows from left to right!
~3.3!
is

e
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The density operatorrS will evolve underHS andGS deter-
mined by GP and the mappingsf i . For example,GS

5S if iGPf i
21 for equal time blocks. Note that the simula

tion is faithful only at the beginning and end of each bloc
and that the transformationUi j 5f jf i

21 is required in order
to match the output of one simulation block to the approp
ate input state of the next:rP(t2)→Ui j →rP(t1). Each
block is a simulation as described in the preceding sect
but now generalized to include the effect of decoherence
the implementation ofVT , the free evolutions will be gov-
erned by a relaxation matrixGP , while we assume that th
pulses inVTi

are fast enough so that no relaxation takes pl

during them. The control available is limited by a time sca
which is the time to implement each pulse sequence. S
the quantum simulation scheme presented here incorpo
decoherence effects via a relaxation superoperator, it is a
restricted case than fast control processes which assum
cess to fast time scales. Furthermore, because of the
trolled correspondence between physical and simula
times, long simulated time behavior may be explored.

Of particular interest here are those sequences off i

whereUi j 5f if j
21 is a permutation that reflects a physic

symmetry. For example, the unitary mapsf i among the
eigenstates in the two-spin case are just the 4!524 permu-
tation operations which are related to the logic gates for
,

-

n,
In

e

ce
tes
ss
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n-
d

o

spins as discussed by@38#. In NMR where there is a strongly
quantizing field, the relaxation superoperator
simplified—in this case dominated by four parameters~see
Appendix A!. The maps we consider,f0 andf1 , yield ef-
fective Hamiltonians involving$sz

2,sz
1sz

2%, while other
maps would yield effective Hamiltonians involving$sz

1,sz
2%

or $sz
1,sz

1sz
2%. Any map will involve one or the other of the

combinations ofs’s and may be classified accordingly. Th
same maps can also be considered for the unitary trans
mations used to alter the effective decoherence. For the t
spin case, there are four~plus conditional versions! transfor-
mations~corresponding toUi j 5f if j

21! that are natural to
consider: ~i! Swap spin 1↔spin 2, (bc) ZQT; ~ii ! flip both
spins u↑&↔u↓& (ad) DQT, (cb) ZQT; ~iii ! flip spin
2u↑&↔u↓& (ab) 1QT, (cd) 1QT; ~iv! flip spin 1u↑&↔u↓&
(ac) 1QT, (bd) 1QT; where ZQT, 1QT, and DQT refer t
the zero, single, and double quantum transitions discusse
Appendix A. Suppose spin 1 decoheres rapidly, whereas
2 does not decohere at all. Then any simulation under a m
f i is equivalent to a simulation under a mapf j provided that
Ui j 5f if j

21 flips only spin 2. Moreover, if by symmetry
considerations a subspace that is invariant under its deco
ence operators@39,40# is also preserved by a transformatio
then mappings related by that transformation are equiva
~and noiseless! for simulation within that subspace. Map
9-4
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pings that are noninvariant are useful for constructing
simulation with a modified decoherence behavior.

More generally, one would like to be able to homogen
the relaxation superoperator such that all terms decay
the same rate, allowing; one to create decoherence beh
as a deviation from an overall attenuation. While homoge
zation is possible for matrices under permutations of ba
states, it is not fully possible for a superoperator. For
arbitrary N3N matrix R with no assumed symmetry, th
sum over all possible (N!) permutations of the basis state
will average the off-diagonal elements with each other, a
will average the diagonal elements with each other. For
off-diagonal elements

Ri j 52~N22!!(
kÞ l

Rkl ~3.4!

and for the diagonal elements

Rii 5~N21!!(
k

Rkk ~3.5!

giving, after summing over all permutation mappings,

^R&5G@11e~J21!# ~3.6!

where J is the N3N matrix with all 1’s. G represents an
overall attenuation factor, ande is the off-diagonal contribu-
tion. Permutation operations alone will not equilibrate t
diagonal with the off-diagonal values. Mappingsf that take
a basis element to a linear combination of basis elements
needed to mix the diagonal with the nondiagonal terms.
a relaxation superoperator, however, the permutations am
the basis states of the quantum system will not average
the transitions described by elements of the superoperatoG.
For example, no basis state permutation is able to takeG i jkl
to G i j i l (kÞ i ). In the secular approximation the termsG i i i i
(T1), G i i j j ~nuclear Overhauser effect!, and G i j i j (T2) are
allowed, whereas the termsG i i i j , G i i jk , G i j ik , andG i jkl are
not allowed. This means that by basis-state permutations
may homogenize each of the above three types of relaxa
only among themselves. In any case, a simulation carried
using Eq. ~3.3! appears as if evolution occurred und
HS ,GS , whereGS equals the averaged relaxation^GP&. In
practice, a smaller number of permutations may be enoug
simplify GS .

In general, calculation of the complete evolution ofr un-
der HP as implemented byVT(f i) involves free evolution
under the internal HamiltonianH0 , and external interaction
such as radio-frequency~RF! pulses in NMR, in addition to
relaxation which is characterized by a superoperatorG. For
no relaxation, the evolution ofr should be equivalent to
evolution underHint alone. The Liouville density operato
can be expanded in terms of basis operators where the
propriate choice of basis will be determined by the dynam
@41#. In this way, the final density matrix afterVT may be
calculated. The Redfield matrix,G, for the case of two spins
is given in Appendix A, and an analytical solution for ev
lution underG is given in Appendix B.
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Simulation blocks usingf0 or f1 , for example, exhibit
different relaxation behaviors in the simulated system due
the choice of mapping. In the general case whereHS
ÞHint , the effect of relaxation must be worked out for ea
pulse sequenceVT . For the mappingsf0 andf1 , the pulse
sequencesVT are particularly simple, and involve onlyp
pulses and delays. A consequence of this is that the pop
tions will be independent of the off-diagonal terms in t
density matrix. The harmonic-oscillator stateu0&1u2&, for
example, when implemented usingf0 andf1 on a two-spin
homonuclear molecule, will correspond tou↑↓&1u↓↑&(f0)
and u↑↑&1u↓↓&(f1). The stateu↑↑&1u↓↓& is known as a
double quantum coherence~DQC! state, and will relax with
a transverse magnetization relaxation rate@(;T2

(a,b))21#.
The stateu↑↓&1u↓↑& is known as a zero quantum coheren
~ZQC! state, and will relax with a much slower rat
@(;T2

(c,d))21#. These relaxation rates contain an adiaba
contribution caused by independent fluctuations that cha
the energy-level difference. Multiple quantum relaxati
rates such as (;T2

(a,b))21 provide information not obtainable
in general from single quantum relaxation measureme
@41#. The experimental data verifying this behavior a
shown in Fig. 2. The harmonic-oscillator stateu0&1 i u2&
when simulated underf1 corresponds to a double quantu
coherence state which decays quickly compared to a sim
tion of the same harmonic-oscillator state underf0 corre-
sponding to a zero quantum coherence state.

A pseudopure stateu↓↓& @34# was prepared from a therma
equilibrium state using magnetic-field gradient techniqu
and then converted to a superposition state correspondin

FIG. 2. NMR peak signals from 2,3-dibromothiophene demo
strating a quantum simulation of theu0&1 i u2& state of a truncated
harmonic oscillator as implemented by the two mappingsf0 and
f1 displaying different effective relaxation:~a! the double quantum
coherence stateu↑↑&1u↓↓& decays quickly~lifetime 4.7 sec, 13.6
periods! compared to~b! the zero quantum coherence stateu↑↓&
1u↓↑& ~lifetime 94 sec, 271 periods!. 70 periods of simulated os
cillation correspond to a physical time of 24.2 sec. The solid lin
are exponentially damped sinusoids. The power spectra of~a! and
~b! scaled to the same height are shown in~c! and ~d!. The line-
width of ~d! is limited by the simulation sampling bandwidth; th
spectra for longer simulations would be much sharper.
9-5
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C. H. TSENGet al. PHYSICAL REVIEW A 62 032309
the harmonic-oscillator stateu0&1 i u2&. Specifically, a
pseudopure state was made using the following pulse
quence: @p/4x

1,221/4J2py
1,221/4J2p/6ȳ

1,22Gy2py
12Gx

2Gy2px
22Gx#, where G refers to the application of a

magnetic-field gradient along a given axis which with a sp
selectivep pulse dephases the transverse magnetization
cluding the zero quantum coherences. The pulse sequ
@p/2y

1,221/4J2py
1,221/4J2p/2y

1,2# then results in the initial
superposition stateu0&1 i u2&. Other initial states were simi
larly prepared.

Next the pulse sequenceVT enforces the desired Hami

tonian H̄P . The two proton spins of 2,3-dibromothiophen
have a resonance frequency of 400 MHz in the 9.4 Te
spectrometer~Bruker Instruments, AMX400! used here. The
difference in frequencies of the two protons due to th
chemical shifts is 227.2 Hz, with each resonance split by
Hz due to a scalar~J! coupling. The longitudinal magnetiza
tion relaxation time, measured using a standard invers
recovery sequence, isT1;39 s. The transverse magnetiz
tion relaxation time, measured using a standard Carr-Pur
Meibloom-Gill sequence, isT2;24 s, while that using a
Hahn echo sequence isT2;16 s. The experimental sequen
VT makes the system sensitive to long time scale beha
such as molecular diffusion through magnetic-field inhom
geneity. Since a correlated error decoherence model is
evant to our molecular sample, the double quantum re
ation is expected to be about a fourth of the Hahn echoT2 .
This demonstrates that even within a given physical syst
different pulse sequences can be sensitive to different d
herence processes.

IV. CONCLUSIONS

The flexibility in designing an effective decoherence b
havior in the simulated system, perhaps in conjunction w
some experimental control of the physical decoherence,
gests a broad method to approach the quantum simulatio
open systems. First, it is possible to characterize comple
how decoherence will effect a simulation. Second, appro
ate choices of simulation mappings may take advantag
natural symmetries in order to modify by design the effect
decoherence in the simulated system. Third, it should be
sible to simplify decoherence effects in a simulation with
certain subspaces. Future investigations may address th
terplay of decoherence with ancilla degrees of freedom
noiseless subspaces@39,40# for quantum simulation.
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APPENDIX A: REDFIELD MATRIX

The matrix representation of the relaxation superopera
is called the Redfield matrix@41#. For the two-spin example
there are four energy eigenstates,

~A1!

The 434 reduced density matrix is obtained after traci
over the environment variables:r5trRr0 . The diagonal ele-
ments are the populations of the states, and the off-diag
elements are the zero-, single-, or double-quantum trans
operators. These 16 elements can be arranged in the L
ville space column vector,

r5S r11

r12

]

r44

D . ~A2!

Evolution is governed by the Liouville–von Neuman
master equation:

ṙ~ t !52 i @H0 ,r~ t !#1G$r~ t !2req%. ~A3!

The req refers to the thermal equilibrium density matri
which for two spin-12 particles with gyromagnetic ratio
g I ,gS is

req5
1

4
11~\B/8kT!diag@g I1gS ,g I2gS ,

2g I1gS ,2g I2gS], ~A4!

in the $u↑↑&, u↑↓&, u↓↑&, u↓↓&% basis in the approximation o
largeT and smallJ coupling. The relaxation superoperatorG
maps density operators to density operators, and is in gen
not invertible. Superoperators effect a mapping among
algebra of operators that act in Liouville space, whereas
erators effect a mapping among the state vectors in Hilb
space. In the interaction picture,

ḊrP52GPDrP , ~A5!

whereDrP5rP2req. In the secular approximation, this i
the block-diagonal ‘‘Redfield kite’’ matrix. For two spins
the 16316 Redfield matrix,G, is

G5F W 0 0 0

0 G0 0 0

0 0 G1 0

0 0 0 G2

G . ~A6!

This is composed of the following.
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~i! A 434 block of transformations among the popul
tions with Wii 52S iÞ jWi j and Wi j 5Ji j i j (v i j ), whereJ is
the power spectral density andv i i 50:

$u↑↑&^↑↑u, u↑↓&^↑↓u, u↓↑&^↓↑u, u↓↓&^↑↑u%,

W5F Ga G I GS G~2!

G I Gb G~0! GS

GS G~0! Gb G I

G~2! GS G I Ga

G ; ~A7!

~ii ! a 232 diagonal block of transformations among t
zero-quantum transition operators withvaa85J and with
G0

15G0
2:

$u↑↓&^↓↑u, u↓↑&^↑↓u%,

G05FG0
1 0

0 G0
1G ; ~A8!

~iii ! an 838 diagonal block of transformations among t
single-quantum transition operators:

$u↑↑&^↑↓u, u↑↓&^↑↑u, u↑↑&^↓↑u, u↓↑&^↑↑u,

u↑↓&^↓↓u, u↓↓&^↑↓u, u↓↑&^↓↓u, u↓↓&^↓↑u%

with vaa85(v l2v0)6J/2 and withG1
ab5G1

cd ,G1
ac5G1

bd :

G15diag@G1
1, G1

1, G1
3, G1

3, G1
3, G1

3, G1
1, G1

1#; ~A9!

~iv! a 232 diagonal block of transformations among t
double-quantum transition operators:

$uu↑↑&^↑↑u, u↓↓&^↑↑u%
03230
with vaa85v11v2 with G2
15G2

2:

G25FG2
1 0

0 G2
2G . ~A10!

The correlation time of the bath should be much shor
than the evolution time or the longitudinal or transverse
laxation times. Fora5a8, raa8(t)5S iAa ie

2l i t, wherel i
are eigenvalues ofW„raa8(`)5raa8eq…. For aÞa8, raa8
5raa8(0)eivaa8te2Gaa8t. In the two-spin case, the popula
tions will relax according to the Solomon equations~see Ap-
pendix B!.

APPENDIX B: SOLUTION TO THE SOLOMON
EQUATIONS

The populations are governed by

Draa~ t !5e2WtDraa~0!. ~B1!

The population matrixW is block diagonal in the Cartesia
basis. The matrix Q transforms the Cartesian bas

$ 1
2 1,Sz ,I z,2I zSz% to the binary ordered Zeeman basis$ua&

3^au,ub&^bu,uc&^cu,ud&^du%.

Q5
1

2F 1 1 1 1

1 21 1 21

1 1 21 21

1 21 21 1

G , ~B2!

where it is easy to verify that

Q215Q.

This is just the 22322 Hadamard matrix@37#. In the Carte-
sian basis, the population block of the Redfield matrix is th
rm
2Q21WQ5F 0 0 0 0

0 22GS2~G~0!1G~2!! ~G~0!2G~2!! 0

0 ~G~0!2G~2!! 22G I2~G~0!1G~2!! 0

0 0 0 22~G I1GS!

G , ~B3!

where each matrix element is negative, andGS,I ,G (0,2).0. The upper left element is zero indicating that the1 component does
not decay. The middle 232 block is the Solomon matrixR. The evolution of the populations may be solved in closed fo
as follows. Define the autorelaxation elements

rS522GS2~G~0!1G~2!!,
~B4!

r I522G I2~G~0!1g~2!!,

and the cross-relaxation elements

r IS5~G~0!2G~2!!. ~B5!
9-7
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The exponential of the relaxation matrix is@42#

exp~ tQ21WQ!5F 1 0 0 0

0 eta@cosh~ tb!1d sinh~ tb!/b# eta@r IS sinh~ tb!/b# 0

0 eta@r IS sinh~ tb!/b# eta@cosh~ tb!2d sinh~ tb!/b# 0

0 0 0 e22~G I1GS!t

G
[F 1 0 0 0

0 etaA1 etaB 0

0 etaB etaA2 0

0 0 0 C

G , ~B6!

where

a5~rS1r I !/2,

b25d21r IS
2 , ~B7!

d5~rS2r I !/2,

and the parametersA,B depend on time. The relaxation of the deviation of the traceless part of the populations from e
rium after a timet is given by

DrP~0!5F paa

pbb

pcc

pdd

G ——→
Q21 F ~paa1pbb1pcc1pdd

1
2 ~paa2pbb1pcc2pdd!
1
2 ~paa1pbb2pcc2pdd!
1
2 ~paa2pbb2pcc1pdd!

G
——→
etQ21WQ F 1

1
2 @~paa2pbb1pcc2pdd!A

11~paa1pbb2pcc2pdd!B#eta

1
2 @~paa2pbb1pcc2pdd!B1~paa1pbb2pcc2pdd!A

2#eta

1
2 ~paa2pbb2pcc1pdd!C

G
→
Q

1
4F ~11eta@~paa2pbb1pcc2pdd!~1A11B!1~paa1pbb2pcc2pdd!~1A21B!#1~paa2pbb2pcc1pdd!C#)

~11eta@~paa2pbb1pcc2pdd!~2A11B!1~paa1pbb2pcc2pdd!~1A22B!#2~paa2pbb2pcc1pdd!C#)
~11eta@~paa2pbb1pcc2pdd!~1A12B!1~paa1pbb2pcc2pdd!~2A21B!#2~paa2pbb2pcc1pdd!C#)
~11eta@~paa2pbb1pcc2pdd!~2A12B!1~paa1pbb2pcc2pdd!~2A22B!#1~paa2pbb2pcc1pdd!C#)

G .

~B8!
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