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Quantum simulation with natural decoherence
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A quantum system may be efficiently simulated by a quantum information processor as suggested by
Feynman and developed by Lloyd, Wiesner, and Zalka. Within the limits of the experimental implementation,
simulation permits the design and control of the kinematic and dynamic parameters of a quantum system.
Extension to the inclusion of the effects of decoherence, if approached from a full quantum-mechanical
treatment of the system and the environment, or from a semiclassical fluctuating field tredtaraggvin,
requires the difficult access to dynamics on the time scale of the environment correlation time. Alternatively,
a quantum-statistical approach may be taken which exploits the natural decoherence of the experimental
system, and requires a more modest control of the dynamics. This is illustrated for quantum simulations of a
four-level quantum system by a two-spin NMR ensemble quantum information processor.

PACS numbegs): 03.67—a, 76.60—k

I. INTRODUCTION tem by another, namely the simulation of the kinematics and
dynamics of a truncated undriven harmonic oscillator and a
In the study of quantum systems, the effect of coupling todriven anharmonic oscillator, has been demonstrated by an
an environment is inevitably encountered. The desire is ofteNMR quantum information processor. This paper aims to
to minimize this effect in order to address only the quantumextend that simulation method to include decoherence ef-
system, but sometimes one wishes to consider the entire syfects, and to illustrate the principles with a simple NMR
tem including the environment. Control of the environmentensemble quantum system. It is suggested here that some
has been achievefll], notably in quantum optics experi- degree of control of decoherence may be achieved in a simu-
ments, through modifying the mode density or symmetry ofiated system by varying the choice of mapping between the
the reservoir either through temperature or cavity manipulaphysica| and simulated systems. Similar approaches have
tions. Recently, engineered reservoirs have been constructgdean yilized in NMR[24,25. The natural decoherence be-
for quantum computational systerf3]. Decoherence due ayior is tied to the physical system, but is manifested in
to the environment places limits on the length and complexgitferent ways in the simulated system depending on the par-
ity of quantum simulations and computatiph-7]. To some  {jcyjar mapping. In the absence of natural decoherence, there
extent this can be avoided using methods of quantum errof.e many equivalent mappings that will create a particular
correction[8-16). Th(_ase methods require ancillary degreesgjmylation. If several appropriate mappings, exploiting spe-
of freedom upon which are deposited some of the entropyja| decoherence symmetries, were implemented in series,
arising from environmental interactions, thereby allowing theg,o may design the overall effective decoherence appearing
encoded degrees of freedom to be protected from decoheys the simulated system. Decoherence cannot be eliminated
ence. A complementary strategy is to shape a desired decgjih this method, and the available signal will decay expo-
herence behavior from the natural decoherence through apgntially with the length of the simulation, but the effective
propriate control[17,18. One can, in principle, control gecoherence as a deviation against a decaying background
decoherence in open systems using operatibasJ(t) that  may pe controlled, allowing the simulation to remain faithful
are fast compared to the correlation time of the bath ;i a scaling factor. These series are motivated in part by
~ 7 [19-21]. This time scale can, however, be prohibitively \yhat is possible using refocusing techniques in nuclear mag-
short in most accessible cases. In addition, the effect of thgetic resonance. In the average Hamiltonian sense, these se-

must be accounted for. A treatment of coupling to a coherent,gde structure.

external field is given if22].
The goal of this paper is to examine the unavoidable de-
coherenc_e effects when a quantum information processor is“_ QUANTUM SIMULATION WITHOUT RELAXATION
used to simulate another quantum system. There are two re-
lated questiondi) how is decoherence manifested in a quan- Using a classical device, the simulation of a quantum sys-
tum simulation, andii) how can decoherence effects as theytem in general is a difficult problem requiring time or
appear in the simulated system be manipulated? Ignoringnemory resources that scale exponentially with the size of
decoherence, an explicit simulatif23] of one quantum sys- the system. However, this is not the case for a universal
guantum simulatof26] which uses one quantum system to
simulate another quantum system. In particular, it has been
*Electronic address: dcory@mit.edu shown that an arbitrary local Hamiltonian may be efficiently
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approximated using a sparsely coupled array of two-staterhere the; are energy eigenvalués no particular order
systemq 27-30. and|y;) are the corresponding energy eigenstates. Under the
To simulate the evolution of a quantum syst&under a

¢
propagatorU, |s>£>|s(T)>, using a physical syster® (a mapping to a two-spin systeh,)—| binary expansion of

guantum computérand available operation§is related to

P by an invertible mapp which determines a correspondence é
between all the operators and stateSahd ofP. The propa- lo)—|11)
gator U maps toV:=¢U¢ 1, and must be implemented 0 '
using the available external interactiovis with intervening

¢
0
periods of natural evolutiore™"F'" in P so that V¢ [y —|T1),

:Hie*”‘gti(T)Vi. Any operator(in particular V) can be

composed of natural evolutions hand external interactions ¢

if a sufficient class of simple operatiorifogic gate$ are [p2)—111),
implementable in the physical systdi®1,32. This general

scheme for quantum simulation is represented by the com- ¢
mutative diagramwhere the simulated time flows from top [y =11 1). 2.3
to bottom:
Simulated(S) Physical(P) Hs maps to
s = -
Hp= 2, EE=ElTTY(TT+ETIN(T ]
U=e“HST/"l lVT k=0
-1 + + .
which may also be written, wher@}‘ is thejth bit of k,

For unitary mapsp, we may WriteVT:e*i;PT’ﬁ, where _ 2 ‘ ‘
_ o A o Hp= 2 ai(0)"(07) ",
Hp=¢Hs¢' can be identified with the average Hamiltonian e z z
of Waugh[33]. Many of the concepts of qguantum simulation
are implicit in the average Hamiltonian theory used to design =ag+ a 0r+ aoet agoto?, (2.5

NMR pulse sequences which implement a specific desired

effective Hamiltonian. After the computation in the physical where it follows from the definition of the Pauli matrices that
vt [36]

system |p)—|pr), the map ¢! identifies |pr)—|s(T))

thereby completing the simulatids)— |s(T)). Note that the

physical timeg;(T) are parametrized by the simulated time

T. Also, the dimension of the Hilbert space of the quantum

1
a0=Z(50+ 51+ 52"‘53),

computer must be at least as large as that of the simulated 1

system. In the case of an NMR quantum compuizt,35, a1=Z(50—51+ Er—E&3),

for example, the kinematics of any'2evel quantum system

may be simulated using a givéspin 3 molecule. In what 1 (2.6
follows, the simulation procedure is illustrated with{faur- a2:Z(50+ E—Ey—E3),

level) two-spin molecule. There are advantages and draw-

backs to an ensemble NMR quantum computer; nevertheless,

the scheme introduced here should be applicable to any re-

alization of a quantum computer. The NMR implementation

permits an initial investigation of the principles of quantum

computation and simulation. In general, the vectose may be expressed in terms of the
energiesE:

1
a3:Z(50_51_52+53)-

A. Basis mappings a=2""MTE. 2.7
The simulated quantum system is associated with the

physical quantum computer through a basis mapping, whicifhe matrixM T is called the Hadamard"X 2" matrix [37].

also dictates the associated operators in the two systems. For

the two-spin, four-level system the Hamiltonian can be writ- B. Truncated quantum harmonic oscillator

ten as
The above procedure may be applied to the simulation of

Hs= Eol o) ol + E| 1) (ipra| + Eo| ho ) ho| + E3| th3) 15, a truncated quantum harmonic oscillat@QHO). This is
(2.2 shown for two different mappingsp, and ¢,, introduced
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here, for which the simulation exhibits markedly different
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relaxation behavior; however, without decoherence, the map- AN T é “gg))
pings are equivalent. R A ¢

The Hamiltonian for a harmonic oscillator truncated to the s "\ - ()
first four energy eigenstatels, is Sol

3
Hs=hQ/2(]0)(0] +3|1)(1|+5[2)(2[+7[3)(3|). .
o) LA W )

Consider the ma, for the simulation of the truncated har- 0 °0 5 o
monic oscillator, Rabi periods

%0
In=0)—[11)=la),
%0
In=1)—[1])=[b),
b0
In=3)—[L1)=lc),
o
In=2)—|]1)=]d). (2.9
This maps the Hamiltonian to
3
p= > &Ex
k=0
=hQ/2(|a)(al+3|b)(b|+5[d)(d|+ 7|c)(c]), (2.10
which implies
Eo==hQ,
aOZZhQ,
E1=zhQ), a,;=0,
= a2=—ﬁQ, (21])
E==hQ, 1
a3=—§ﬁQ.
E3==hQ),

Equation (2.5 then becomesH=#Q)(2—o2—Loto?).

Given the internal Hamiltonian for the weakly coupled liquid

state NMR two-spin systerfin the rotating framewy),

h 1 2 1 2
Ho= 5 [((w1— wg)o,H(wr— wg)oy+ mIo,o%],

(2.12
ﬁp is implemented by the pulse sequence
V$= ( %2— 77';2— %24— 7T>1,2+ Tg (2.13
with wg= w4 and delays
0 1 2
= —QT(E— m) (2.14

FIG. 1. NMR peak signals from 2,3-dibromothiophene demon-
strating a quantum simulation of a truncated harmonic oscillator as
implemented by the mapping),. Various initial states will express
oscillations according to the energy differences between the eigen-
states involved. Evolution of the initial states expresses oscillations
according to the energy differences between the eigenstates in-
volved: () |0) (0Q)), (b) |0)+i]2) (2Q2), and|0)+|1)+]2)+]3)

[(c) © and(d) 3Q2 shown. The solid lines are to guide the eye.

0_ _ -

Here 7i?

y_» for example, refers to a radio-frequency pulse on
spins 1 and 2 with a rotation of angle about they axis.
Note that7!? is just (ad)(bc), the two cycle permutations
a—d andb«<c, and that it is possible to simulate negative
timesT for the unitary dynamics. The negative signsffgl)2
may be accommodated by considering the refocused phases
modulo 27. For short simulation times, the expected sinu-
soidal behavior of the populations of the harmonic oscillator
is verified for several different initial statésee Fig. L

Similarly, the map, #,, can be defined where up is
switched with down for spin 2:

#1
In=1)—=[11)=1a),
#1
In=0)—[11)=1b),
#1
In=2)—[11)=]c),
1
In=3)—[11)=[d). (2.19

This givesH:=#0(2+ o2+ 1/20202), and the pulse se-
guence

1 1
71 71
V%: ( 71-)2/— >~ 77')1/2— > + 7T§2+ 7'% , (2.19
with wg= w, and delays
=—QT ! + 2.1
= 7] (wy—wq))’ (217
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L certain symmetries, the final evolution of the simulated sys-
72=+20T((w_w))- tem may be modified to appear as if it occurred under a

2 different effective relaxation. In the same way that quantum

The map ¢, is related to ¢, through the permutation simulation without decoherence is an adaptation of AHT, the

(ab)(cd). Other related mappings may be obtained fromscheme described here is an adaptation of average Liouvil-
permutation considerations. These maps and others detdian theory[24,25. _ _
mine the subset of the control algebra over the physical sys- The goal is to simulate an evolution of a reduced density
tem V1, which will implement the desired unitary transfor- Matrix ps under a Hamiltoniarts and a relaxation superop-
mationU in the simulated system. eratorl’s,

Hg.T'g

ll. QUANTUM SIMULATION WITH RELAXATION p<(0) ps(To). 3.1)

The effect of relaxation in the physical system on the hi . . .
. . X . This may be implemented in several steps, where each step is

result as it appears in the simulated system can be stralgh;g simulation implemented using a particular mapping
forwardly calculated once the implementatidh is deter- '
mined. This assumes that the relaxation is completely char- Hg Hg
acterized. Since natural relaxation is tied to the physical ps(0)—=ps(T)=ps(T)—=pg(T+T")="--. (3.2
system, two otherwise equivalent simulation mappings can
yield different results. Furthermore, by combining such The general scheme for simulation with decoherence us-
simulation steps or blocas described by the commutative ing a physical system is given by the diagrdwhere the
diagram(2.1)] with different basis mappings, and exploiting simulated time flows from left to right

ps(0) 2 ps(T)  ——=  ps(T) 2 ps(T+T) =——

¢0J’ T%‘l ml %—1

#%.I% Uo1=(¢1607%)

1 1 — -1
pp(0) ZEIE (i) D= gy BeTE ) ZeE T (3.3

The density operatagsg will evolve underHg andl'g deter-  spins as discussed $8]. In NMR where there is a strongly
mined by I's and the mappingsp;. For example,'s  quantizing field, the relaxation superoperator is
:2i¢irp¢i—1 for equal time blocks. Note that the simula- simplified—in this case dominated by four parametesese
tion is faithful only at the beginning and end of each block,Appendix A. The maps we considey, and ¢, yield ef-
and that the transformatiod;; = ¢;¢; * is required in order fective Hamiltonians involving{o2,0102}, while other
to match the output of one simulation block to the appropri-maps would yield effective Hamiltonians involvifg?, o2}
ate input state of the nexpp(t_)—U;;—pp(t;). Each or{cr%,a%aﬁ}. Any map will involve one or the other of the
block is a simulation as described in the preceding sectiorgombinations of’s and may be classified accordingly. The
but now generalized to include the effect of decoherence. IBame maps can also be considered for the unitary transfor-
the implementation oV, the free evolutions will be gov- mations used to alter the effective decoherence. For the two-
erned by a relaxation matrikp, while we assume that the spin case, there are fogplus conditional versiongransfor-
pulses inVy, are fast enough so that no relaxation takes placenations(corresponding tdJ;; = ¢; ¢j‘1) that are natural to
during them. The control available is limited by a time scaleconsider: (i) Swap spin t-spin 2, (bc) ZQT; (i) flip both
which is the time to implement each pulse sequence. Sincepins |[1)<|]) (ad) DQT, (cb) ZQT; (iii) flip spin
the quantum simulation scheme presented here incorporat@$l)«<||) (ab) 1QT, (cd) 1QT; (iv) flip spin 1T)«|l)
decoherence effects via a relaxation superoperator, it is a le¢ac) 1QT, (bd) 1QT; where ZQT, 1QT, and DQT refer to
restricted case than fast control processes which assume dbe zero, single, and double quantum transitions discussed in
cess to fast time scales. Furthermore, because of the codppendix A. Suppose spin 1 decoheres rapidly, whereas spin
trolled correspondence between physical and simulate@ does not decohere at all. Then any simulation under a map
times, long simulated time behavior may be explored. ¢ is equivalent to a simulation under a mépprovided that

Of particular interest here are those sequencespof Uij=¢i¢;1 flips only spin 2. Moreover, if by symmetry
whereU;; = ¢i¢j’l is a permutation that reflects a physical considerations a subspace that is invariant under its decoher-
symmetry. For example, the unitary mags among the ence operatorg39,4( is also preserved by a transformation,
eigenstates in the two-spin case are just the 24 permu- then mappings related by that transformation are equivalent
tation operations which are related to the logic gates for twdand noiselegsfor simulation within that subspace. Map-
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pings that are noninvariant are useful for constructing a
simulation with a modified decoherence behavior.

More generally, one would like to be able to homogenize
the relaxation superoperator such that all terms decay with
the same rate, allowing; one to create decoherence behavior
as a deviation from an overall attenuation. While homogeni-
zation is possible for matrices under permutations of basis

states, it is not fully possible for a superoperator. For an periods
arbitrary NXN matrix R with no assumed symmetry, the
sum over all possibleN!) permutations of the basis states = (c)
will average the off-diagonal elements with each other, and =
will average the diagonal elements with each other. For the @ /
off-diagonal elements (d)
2 3
Rij=2(N—2)! gl Ry (3.4) frequency [Hz]

FIG. 2. NMR peak signals from 2,3-dibromothiophene demon-
and for the diagonal elements strating a quantum simulation of th&)+i|2) state of a truncated
harmonic oscillator as implemented by the two mappiggsand
¢, displaying different effective relaxatiofa) the double quantum
Rii=(N—1)! Ek: Rk (3.5 coherence statg 1)+|||) decays quickly(lifetime 4.7 sec, 13.6
periods compared to(b) the zero quantum coherence stéte )
+]171) (lifetime 94 sec, 271 period)s70 periods of simulated os-
cillation correspond to a physical time of 24.2 sec. The solid lines
_ _ are exponentially damped sinusoids. The power spectfa) agind
(R)=G[1+e(J-1)] (36 (b) scaled to the same height are shown(@éh and (d). The line-
width of (d) is limited by the simulation sampling bandwidth; the
spectra for longer simulations would be much sharper.

giving, after summing over all permutation mappings,

whereJ is the NXN matrix with all 1's. G represents an

overall attenuation factor, arglis the off-diagonal contribu-

tion. Permutation operations alone will not equilibrate the , , . .

diagonal with the off-diagonal values. Mappingshat take . Simulation blocks usingp, or ¢, for example, exhibit

a basis element to a linear combination of basis elements afifferent relaxation behaviors in the simulated system due to

needed to mix the diagonal with the nondiagonal terms. Fofh® choice of mapping. In the general case whetg

a relaxation superoperator, however, the permutations amori§ int» the effect of relaxation must be worked out for each

the basis states of the quantum system will not average aiulse sequencey. For the mappinggh, and ¢, the pulse

the transitions described by elements of the superopetator, Séquenced/y are particularly simple, and involve only

For example, no basis state permutation is able to Fajg pulses qnd d(_alays. A consequence of _thls is that the _popula-

to Ty (k#i). In the secular approximation the terris; tIOI’]S.WI” be.lndependent of the 9ﬁ—d|agonal terms in the

(Ty), Ty (nuclear Overhauser effoctand T';;; (T,) are density matrix. The harmonic-oscillator std@) +|2), for

allowed, whereas the ternt; , Tiij, Tiji» andTyy are example, when |mplement§d usigg and ¢, on a two-spin

not allowed. This means that by basis-state permutations orfg?monuclear molecule, will correspond ftb)+ ] 1) (<o)

may homogenize each of the above three types of relaxatiodd |1 T) |1 1)(#1). The state|17)+|| 1) is known as a

only among themselves. In any case, a simulation carried o@ouble quantum coheren¢BQC) state, and will rekl)ax with

using Eq. (3.3 appears as if evolution occurred under@ transverse magnetization relaxation rage-T5") .

Hs,I's, wherel's equals the averaged relaxatiofip). In  The state1])+|| 1) is known as a zero quantum coherence

practice, a smaller number of permutations may be enough t&ZQC) state, and will relax with a much slower rate

simplify Ts. [(~T&D)=1. These relaxation rates contain an adiabatic
In general, calculation of the complete evolutionpofin-  contribution caused by independent fluctuations that change

der Hp as implemented by1(¢;) involves free evolution the energy-level difference. Multiple quantum relaxation

under the internal Hamiltoniak,,, and external interactions rates such as<T) ! provide information not obtainable

such as radio-frequendRF) pulses in NMR, in addition to in general from single quantum relaxation measurements

relaxation which is characterized by a superoperftofFor  [41]. The experimental data verifying this behavior are

no relaxation, the evolution op should be equivalent to shown in Fig. 2. The harmonic-oscillator sta@)+i|2)

evolution underH;,, alone. The Liouville density operator when simulated undeg; corresponds to a double quantum

can be expanded in terms of basis operators where the apeherence state which decays quickly compared to a simula-

propriate choice of basis will be determined by the dynamicsion of the same harmonic-oscillator state undgy corre-

[41]. In this way, the final density matrix aft&/r may be  sponding to a zero quantum coherence state.

calculated. The Redfield matrik, for the case of two spins A pseudopure state | ) [34] was prepared from a thermal

is given in Appendix A, and an analytical solution for evo- equilibrium state using magnetic-field gradient techniques,

lution underT” is given in Appendix B. and then converted to a superposition state corresponding to
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the harmonic-oscillator statd0)+i|2). Specifically, a APPENDIX A: REDFIELD MATRIX

pseudopure Sﬁte was mfge using th(lezfollowmgl pulse se- The matrix representation of the relaxation superoperator
quence: [w/4—1/A)— 7"~ 1A~ 77/% —Gy—my—Gy

) Ty is called the Redfield matripd1]. For the two-spin example,
—Gy—7—G,], where G refers to the application of a there are four energy eigenstates,
magnetic-field gradient along a given axis which with a spin-

selectiver pulse dephases the transverse magnetization in- a=|11)

cluding the zero quantum coherences. The pulse sequence

[ /252~ 1/4)— w12~ 1/4)— /247] then results in the initial b=11h e=lih
superposition statf0)+i|2). Other initial states were simi- d=|1}) (A1)

larly prepared. —_—
Next the pulse sequendg; enforces the desired Hamil-

tonian Hp. The two proton spins of 2,3-dibromothiophene The 4x 4 reduced density matrix is obtained after tracing
have a resonance frequency of 400 MHz in the 9.4 Teslaver the environment variables=trzp,. The diagonal ele-
spectromete(Bruker Instruments, AMX400used here. The ments are the populations of the states, and the off-diagonal
difference in frequencies of the two protons due to theirelements are the zero-, single-, or double-quantum transition
chemical shifts is 227.2 Hz, with each resonance split by 5.pperators. These 16 elements can be arranged in the Liou-
Hz due to a scalafJ)) coupling. The longitudinal magnetiza- Ville space column vector,

tion relaxation time, measured using a standard inversion

recovery sequence, i§;,~39s. The transverse magnetiza- P11

tion relaxation time, measured using a standard Carr-Purcell- p= P12 | (A2)
Meibloom-Gill sequence, isT,~24s, while that using a :

Hahn echo sequenceTs~ 16 s. The experimental sequence Paa

V1 makes the system sensitive to long time scale behavior o o

such as molecular diffusion through magnetic-field inhomo- EVvolution is governed by the Liouville—von Neumann
geneity. Since a correlated error decoherence model is ref@ster equation:

evant to our molecular sample, the double quantum relax- e

ation is expected to be abou?a fourth of the Ici|ahn eEho PO ==i[Ho,p(O]FT{p(1) = peg)- (A3)
This demonstrates that even within a given physical systemyy o poq refers to the thermal equilibrium density matrix
different pulse sequences can be sensitive to different dec%hiche?‘or two spini particles with gyromagnetic ratios1
herence processes. Yo ys IS

1 .
IV. CONCLUSIONS Peq=7 1+ (AB/8KT)diad v, + vs, 1~ ¥s:

The flexibility in designing an effective decoherence be-
havior in the simulated system, perhaps in conjunction with —n+vs,—vi—vd, (A4)
some experimental control of the physical decoherence, sug- o o
gests a broad method to approach the quantum simulation 81 the {{17), [T1), [L1), [L 1)} basis in the approximation of
open systems. First, it is possible to characterize completel{@rge T and smallJ coupling. The relaxation superoperator
how decoherence will effect a simulation. Second, appropriin@ps density operators to density operators, and is in general
ate choices of simulation mappings may take advantage dfot invertible. Superoperators effect a mapping among the
natural symmetries in order to modify by design the effectivedlgebra of operators that act in Liouville space, whereas op-
decoherence in the simulated system. Third, it should be po&rators effect a mapping among the state vectors in Hilbert
sible to simplify decoherence effects in a simulation withinSPace. In the interaction picture,
certain subspaces. Future investigations may address the in- :
terplay of decoherence with ancilla degrees of freedom, or App=—TpApp, (AS5)
noiseless subspacg39,4Q for quantum simulation.

where App=pp—peq. IN the secular approximation, this is
the block-diagonal “Redfield kite” matrix. For two spins,
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(i) A 4x4 block of transformations among the popula- with @, = w;+ w, with T3=T2:

tions W|thW||:_E|¢JW|] andWij=Jijij(wij), WhereJ iS 1
the power spectral density ang;=0: [Fz 0 (A10)
2 21
0o r
L TTDCTLL LT LT, 2
S
r, 0T Iz The correlation time of the bath should be much shorter
r' r, g TI°® than the evolution time or the longitudinal or transverse re-
W=l s t r.op | (A7) laxation times. Forr=a’, p,. (1)=3;Ae N, where\;
o 'I’ are eigenvalues oW(pM (%) =Paared- FOr a#a’, pog
o I'> I Ty =poa(0)€®a’le Taa’t |n the two-spin case, the popula-

. . . tions will relax accordln to the Solomon equatidsee Ap-
(ii) a 2x2 diagonal block of transformations among the pendix B ¢ quatia P
zero- quantum transition operators with,,.=J and with '

Io=Tg: APPENDIX B: SOLUTION TO THE SOLOMON
EQUATIONS
O] LT L, The populations are governed by
Apao(t)=e"""Ap,,(0). (B1)
1
_ To 0 . (A8) The population matrixV is block diagonal in the Cartesian
°lo rsl’ basis. The matrixQ transforms the Cartesian basis

. ) {31,S,,1,,21,S,} to the binary ordered Zeeman bagis)
(iii) an 8x 8 diagonal block of transformations among the x(al,|bY(b|.|c)(cl,|d)(d]}.
single-quantum transition operators:

1 1 1 1

QT [T IO LT, d1 211 4
T T UL 1Lt "2l 1 -1 —af (B2

1 -1 -1 1

With @, = (@, — wg) = J/2 and with['3P=T¢d ac=rbd.

A 1 1 3 3 3 3 1 1.
Py=diad 'y, Ty, T, T, T3, T3, Ty Tl (A9) where it is easy to verify that
(iv) a 2x2 diagonal block of transformations among the
double-quantum transition operators: Q 1=0Q.

This is just the 2x 22 Hadamard matrix37]. In the Carte-
sian basis, the population block of the Redfield matrix is then

0 0 0 0
0 0 0 —2(I'+TS)

where each matrix element is negative, ziﬁd,l“(o,z)> 0. The upper left element is zero indicating that theomponent does
not decay. The middle 22 block is the Solomon matri®. The evolution of the populations may be solved in closed form

as follows. Define the autorelaxation elements

ps=—2I%=(L(g+T ),
(B4)
py=—2I" —(Fo)+v2),
and the cross-relaxation elements
pis=T 0= T'(2). (B5)
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The exponential of the relaxation matrix[2]

PHYSICAL REVIEW A 62 032309

m 1 0 0 0
i 0 e'*[coshtp)+ dsinhtB)/B] e'“[ p;ssin(tB)/ 3] 0
eXpIQ TWQ=| &' p,s sinh(18)/ 8] e'[costit ) — ssinh(t)/ 8] 0
i 0 0 0 e72(1“'+1“5)t
r1 0 0 o0
0 e*A* el*B 0
“|o eB A o 0
(0 o0 0 C
where
a=(pstp))/2,
B%= 8+ p?, (B7)
o=(ps—p1)/2,

and the parametes,B depend on time. The relaxation of the deviation of the traceless part of the populations from equilib-
rium after a timet is given by

p (paa+ pbb+ pcc+ Pdd
aa . .
p Q E( Paa— Pbbt Pec— pdd)
App(0)=| | —— | |
Pce E( Paat Pob— Pec— pdd)
Pdd %( Paa= Pbb— Pect pdd)
1
etQile %[( Paa= Pbbt Pec— pdd)AJr + (paa+ Pob— Pec™ pdd) B]eta
%[(paa_ Pobt Pec™ pdd) B+ ( Paat Pob— Pec™ pdd)A_]eta
%(paa_ Pbb— PecT pdd)C
(1+ em[( Paa— Pobt Pec—™ pdd)( +A"T+ B)+( Paat Pob— Pec™ pdd)( +A + B)] + (paa_ Pob— Pect pdd)c])
E}; (1+ em[(paa_ Pobt Pec— pdd)( A"+ B) + (paa+ Pbb— Pcc™ pdd)( +A - B)] - (paa_ Pob— Pect pdd) C])
4

(1+€"[(Paa— Pobt Pec— Pad) (+ A" —B)+(Paat Pob— Pec— Paa) (— A~ +B)]—(Paa— Pob— Pect Paa)C1)
(1+ eta[(paa_ pbb+ Pcc— pdd)( - A+ - B) + (paa+ Pbob—=Pcc— pdd)( —A - B)] + ( Paa= Pob— pcc+ pdd) C])
(B8)
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