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Scalable quantum computation with cavity QED systems
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We propose a scheme for quantum computing using Qigtavities in which the qubits are represented by
single-cavity modes restricted in the space spanned by the two lowest Fock states. We show that single-qubit
operations and universal multiple qubit gates can be implemented using atoms sequentially crossing the
cavities.

PACS numbes): 03.67.Lx, 42.50.Ar, 32.80.Rm

[. INTRODUCTION qubits. In fact, in the present paper we shall specialize to the
case of microwave cavities, for which a high level of quan-
In recent years, numerous physical systems have bedhm state control and engineering has already been experi-
proposed as possible candidates for the implementation of @entally showr{5,13]. This is the reason why in our explicit
quantum computer. The desirable conditions that have to bealculations we shall consider microwave cavities operating
satisfied are a reliable and easy way to prepare and detect tie low-order modes with angular frequency in the
quantum states of the qubits, the possibility of engineering0—100 GHz range, and Rydberg atoms for which high val-
highly entangled states, the scalability to a large number ofies of the coupling constariof the order of 18 s™*) are
qubits, and a very low decoherence rat¢ Up until now, possible. It is clear, however, that in principle, the method
experimental implementations have involved linear ion trapgan be applied to optical cavities too, in which one can have
[2], liquid-state nuclear-magnetic resonafb#R) [3], and @ miniaturization of the scheme and therefore a faster opera-
cavity QED systemg4,5]. In the ion trap case, only the tion.
controlledNOT (CNOT) gate between two internal states and Some preliminary results regarding the possibilities of-
the vibrational level of a single ion has been realig@jand  fered by the present cavity QED scheme have been shown in
quantum gates involving two or more ions have not yet beeh14], where some implementations of theoT gate between
realized experimentally. A promising step in this direction istwo cavity modes have been presented. In order to give a
the very recent generation of an entangled state of four ionglear and exhaustive description, here we shall review the
even if only with 57% fidelity{7]. The status of liquid-state results off 14], which will be extended and generalized in the
NMR quantum computing is still debatd@®], but the fact present paper.
that the signal strength becomes exponentially small with the The outline of the paper is as follows. In Sec. Il we re-
number of qubits makes it certain that this proposal is noview the basic properties of the considered cavity QED sys-
scalable to more than about ten qubits. This explains why th&gém. In Sec. Il we show how to implement the universal
research of new physical implementations of a quantun€NOT gate between two cavities, while in Sec. IV we shall
computer is so activésee[9] and references thergirHere,  discuss a different scheme for the implementation of univer-
elaborating on the suggestions of REF0], we propose to sal two-qubit gates, using an arrangement based on that
use the Fock’s statd8) and|1) of a highQ cavity mode as adopted in the experiment of R¢fL3]. In Sec. V we show
the two logical states of a qubit. A quantum registerhof how single-qubit operations can be realized, while Sec. VI is
qubits is therefore a collection dfl identical cavities in devoted to the implementation of useful many-qubit univer-
which the state of an appropriately chosen cavity mode i$al quantum gates, such as the Toffoli gate and the encoding
within the space spanned by the vacuum and the one-photdid decoding network for quantum error correction schemes.
state. The register transformations are achieved by sendirigection VIl is for concluding remarks, while the Appendix
off-resonant two-level atoms through the cavities and makshows the explicit implementation of the Deutsch problem
ing them mutually interactive by means of suitable classical15,16l.
fields. With this respect, the present proposal is similar to
that of Refs[11,12]; the important difference is that, in these Il. THE SYSTEM
papers, the logical qubits are represented by two circular
Rydberg levels of the atoms. In our proposal, the role of The interaction of a two-level atom quasiresonant with a
atoms and cavity modes are exchanged. In this way, thBigh-Q cavity mode is well described by the time-dependent
present scheme becomes scalable in principle. In practice, itdamiltonian[17]:
scalability can be limited by the spontaneous emission from
the Rydberg levels or by other technical limitations, but the ho + + fiweg
present proposal has the advantage that the needed technol-  H(t)= —-[b'b+bb']+ T[|e>(e| —lg)(gl]
ogy is essentially already available to realize some proof-of-
principle demonstrations of quantum computation with few +2Q(t)[|e)glb+|g)(elb'], (2.2
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in which b andw are the annihilation operator and the angu-where 2r is the atomic transit time, which depends of course
lar frequency of the cavity mode, respectivelg) and|g)  on the inverse of the atomic velocity. Ffif> 7, i.e., when
are the excited and lower circular Rydberg states, /g,  the atom is outside the cavity, the energy eigenvectors of the
is their energy difference. Finally)(t) is the atom-field gystem ardg)®|n)=|g,n), and|e,n), with |n) as the ge-
interaction Rabi frequency, which is time dependent becausgeric Fock state of the cavity mode. Apart from the ground
of the atomic motion throu_gh the cavity. In particular, for astate|g,0>, which remains unchanged in the presence of the
Fabry-Peot-type cavity, with a Gaussian transverse beam[. d dent int tion. th i led by pho-
profile, we can assume the following continuous variation: 'me-gependent interaction, these terms are coupled by pho
ton emission or absorption, and the instantaneous energy
Q(t):QOe*(t/T)Z, (2.2 eigenstates at fixed tinteare the dressed states

(812=(812)2+ Q(t)(n+1))|e,n) + Q(t) yn+1|g,n+1)
V()= 2.3
V82124 202(t)(n+ 1)+ 538122+ OX(1)(n+ 1)

with eigenvalues which, in the limit Q(t)/n/6<1, becomes equal to that
given in Ref.[17]. The general adiabatic conditiof2.5
EM(t)=%o(n+1)=A\(82)2+0Q%t)(n+1), (2.4  shows in particular that adiabaticity can be obtained even
- whenQ(t)/n/ =1, provided thaf)(t) is sufficiently small.
—w is the atom-cavity detuning. Figure 1 Iq the following we shall always work in this adiabatic re-

where 6= wqgq
qualitatively shows the time dependence of the dressed le\d'™®:

els of Eq.(2.4) in the case5>0. Now, if the atom velocity is

slow enough, and the system fo— 7 is prepared in a . THE cnoT GATE
generic energy eigenstate, then in its time evolution it will
adiabatically follow this eigenstate, with negligible transi-
tions toward_other state_{s_l.8]. The exact adiabatiq cor_1diti0n implement acNOT gate in which a cavity containing at most
can be obtained by z’r‘]’)”t'ng the Schitiager equation in the 5,5 hhoton is the control qubit and the atom is the target
basis of the vectors’%"(t)), and then neglecting terms cou- g it This idea is the starting point for the implementation

Domokoset al. have shown in Ref[12] that, using in-
duced transitions between the dressed states, it is possible to

pling the dressed states. The resulting condition is of the cNOT gate between two cavities we propose here. Ref-
_ erencq 12] considers an atom adiabatically entering the cav-
Q(t) 6 Jn 2.9 ity so that the joint atom-cavity state is
<1, 2.
4[(812)%+ Q3 (t)n]*? C1/9,0)+¢,|g,1) + c5e,0)+ c4le,1). (3.1
T V20> When the atom is just inside the cavity, a classical ftelaf
2,65 b frequency wg equal to the energy difference between the
— S——— 15 dressed state$)P(t=0)) (originating from |e,1)) and
32> ~——" |V ©(t=0)) (originating from|g,1)) is switched on for a
V0> time interval 2rg, so that the following driving Hamiltonian
1V P0> is added tagH(t) of Eq. (2.1):
|Le>
2 _ a2
S| e " He() = —hEgcot st + gsle” I le)(gl+g) (el
Lg A (3.2

where ¢g is the phase of the classical fieRland = is the
coupling costant, which depends on the dipole moment of
the transitione—g and on the intensity o Appropriately
AACY choosing the value ofg, it is now possible to selectively
ho coupleSwith these dressed states, leaving the other compo-
nents of the vector state essentially unperturbed. Moreover,
19,8 with a suitable choice of the intensit§ it is possible to
5 e apply a Rabim pulse between the two states. In this way,
when the atom exits the cavity, the resulting state vector in
FIG. 1. Energy level of the dressed states as a function of timethe interaction picture, apart for some phase terms, is given

0.e> V0>

|Lg>

hd
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\, FIG. 4. Logical scheme of thenoTInv gate of Fig. 3. The
o * dashed box denotes the “atomic mirrotSee Sec. Il
/l . ¢ Nevertheless, this coupling is realizable when the atom is in
-1 T the cavity because the vectr®)(t=0)) also has de,0)

i . . component. However, since this dependence is mediated by
FIG. 2. Time evolution of the population of the dressed statesa coefficient that decreases wifh, /5 [see Eq.(2.3)], we
19.0) (full line), [VOXt)) (dashed ling [VE(1)) (dotted-dashed have to choose a value of this pa?ameter that is II‘IO'[,IOO small
que) and| V(1)) (dotted ling for the CNOT(aLOm_’ cavity) gate in order to have a significant coupling constant. In particular,
V:V'tlgszos_grz]g :?Eizz;lﬁc_og-dlifi;?do;po;|1§%){Ls, Ro=l4LBKHZTs i our calculations we have choséhy/6~10"1. With such
' ’ values ford, it is also possible to have a sufficient frequency

. . separation between the transitions we are interested in and all
by Eq.(3.D), t.’Ut with e, 1) an(_j|g,1). exchanged. In th!s way thepother ones. Actually, it is sufficient to set the duration of
one has real'ZEd @noT gate in which, when the cavitithe the classical pulse 2 of the order of 20 us to discriminate
control_ qubit _has one photon,_the atom undergoesicr all the parasitic transitions and optimal results for the result-
operation, while when the cavity contains no photons, thffng quantum operation that are achieved fb§=420 kHz
atomic state remains unchanged. We shall refer to this gate_ 0.180,, 7~100 us and with =240 kHz, Ts'
as theCNQT(.C""V'ty — atom. . . =14 us for thecNnoOT(cavity — atom), E,=141.5 kHz, 75

I_n a similar manner, we can also bu'l.d(mOT gate in =19 us for thecNnoT(atom — cavity). In Fig. 2 we show
which Fhe roles of the atom and the cavity are exchanged[he time evolution of the dressed state populations for the
Let us in fact tune the frequeneys to the transition between cNOT(atom— cavity) for the above choice of parameter val-
the dressed sta{@’”)(t=0)) and the statég,0), and apply ues
again am pulse inside the cavity as before. Now, when the " o qyantum information processing, one needs to control
atom leaves the cavity, the terfgs0) and|g,1) in the vec- ot only the level populations, but also the relative phases. In
tor state of the system are mutually exchanged with respegfeneral, during the adiabatic evolution, different dynamical
to the initial condition Eq(3.1). The|e,0) and|e,1) compo- phases for the different components of the vector state are
nents are instead not affected by the interaction with th%enerated. However, it is always possible to correct these
cIa;sicaI sourc& This means having realizedcaioT gate in phases by an appropriate choice of the field phasand by
which, When- the a.tom is in the ground state, thelcaV'W St<'J‘teéventu;;1||y acting outside the cavity on the atom with suitable
|0) and|1) flip, while nothing happens to the cavity state for giark electric fields.
the atom in the excited state. In analogy with the previous \ye now have all the elements to realize teoT gate
case, we refer to this new gate @soT(atom — cavity). between two distinct but identical cavitiésand B, with the
_ Itisimportant to note that, differently from t@vot(cav-  first one acting as the control qubit and the second one as the
ity — atom case, in theenoT(atom— cavity) gate the Rabi  (4rget qubit. The apparatus is sketched in Fig. 3 and it is
transition between the original staté®.,|g,0) and|g,1)) of  essentially a physical realization of the logical network
the dressed states involved is forbidden by selection ruleghown in Fig. 4. Suppose that the initial states of the two
cavities are, respectivelyp)a= aa|0)a+ Ball)a and|¢)g
= ag|0)g+ Bg|1)g. The following occurs{i) A first atom,
a,, prepared in the ground stdt), enters cavityA, where it
undergoes theNoT(cavity — atom) transformation realized
with the classical field sourc8,, and described above.

(iil) Thena, leavesA and enters cavit: here the classi-
cal field Sg is switched on in order to obtain@voTt(atom—
cavity) transformation. In the interaction picture and neglect-
ing all the parasitic but controllable phase terms, the state of
the total system at this stage is then

FIG. 3. Schematical description of timioT gate in which cav- apl0)a®|)e®[9) + Bal)a®|P)e®le), (3.3
ity Ais the control qubit and cavit the target qubita; anda, are -
the two atoms, and\ is the auxiliary cavity, transferring the en- where |#)g is the NOT-conjugate vector of¢)g, that is,
tanglement with the cavities from the first to the second atom.  Bg|0)g+ ag|1)s.
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(iii) and(iv) The atom again enteds where it undergoes off-resonance condition prevents that, apart from the dy-
the cNoT(cavity — atom) transformation, so that the state of namical phase factors, the state could change during the tran-

the system becomes sit of a, within B. The action of thecNOT gate has been
_ explicitly described for the factorized state just to simplify
apl0)a®|)e®|9) + Bal1)a®| ¥)s®]|Q) the presentation. It is clear that all the steps can be repeated
— for a generic entangled state of the two cavities.
={@al0)a®|¥)s+ Bal1)a®|¥)s}®(9). (3.4) Assuming the optimal values for the system parameters

written above, we have solved numerically the time evolu-

Ir;}t(lalrm? of thi.notations given in the preceding ;ection, W&ion of the total system. We describe the resulting effective
shall refer to this gate as tH@NOTINV(A—B) gate, in order 51 gate in the form of a matrix written in the basis of the
to underline thaB transforms to aoT transformation when £ “states of the two cavitieg]0,0):/0,1);|1,0);| 1,1}

Alis in the|0) 4 state, while nothing happens whairis in the where|n,m)=|n),®|m)s. The matrix has been “cleaned

1)a stlate. This facthis lllustrated in Figf. 4, where in the ,,» of the spurious phase factors that may appear during the
equivalent gate(ll) there is anoT transformation acting  gyo|ytion, and which, using the phase of the classical field

on B. Sg and also appropriate Stark shift electrical fields, can al-

The prﬁcu?al realization of Stdﬁ')’ i.e., the retlgrn ogthﬁ ways be suitably adjusted. Within a 0.1% error, the opti-
atom in the first cavity, is actually more complicated than .- >, (= s o

what it looks like in Figs. 3 and 4. The inversion of the
motion of atoma, could be realized in principle with an

atomic fountain configuration. However, this implies having 0 e 0 0

free-fall velocities, which are too slow for the necessary in- N 0 0

teraction times to occur within the cavities. For this reason i , (3.7
we propose transferring the quantum information from this 0 0 € 0

atom onto a second one of the same type, but traveling in the 0 0 0 e

opposite direction. With this respect, the scheme adopts the
“quantum memory” scheme experimentally verified in Ref.
[19]. This quantum information transfer is implemented by
introducing a third cavity, the auxiliary cavityl of Fig. 3,
which, differently fromA andB, is resonant with the—g
transition. IfM is prepared in the vacuum sta@®,, , and the
transit time ofa, is appropriately chosen, then the atomic
state componene) releases one photon M through a reso-
nants Rabi oscillation. After that, the state of the total sys-
tem (the three cavities and;), using the same notations of
Eq. (3.3), will be

where the nontrivial phase=0.07. The overall transforma-
tion takes place in a time of the order of 1 ms, which has to
be compared with the typical decoherence time scales, that
is, the atomic radiative lifetimes and the cavity relaxation
times. For circular Rydberg atoms with=50, the atomic
radiative lifetime is of the order of 30 ms and therefore it
does not represent a serious problem. The cavity damping
times currently realized for microwaves have instead the
same order of magnitudessome mg However, relaxation
times of the order of 10 ms will hopefully be achieved in the
TN near future, and in this case, one would have a perfectly
apl0)a®[¥)p@[9)@[0)y+ Bal1)a® ) p@[9) @[ 1)\ . working CNOT gate between two cavities. It is clear therefore
3.9 that, for the present implementation of quantum information

Notice that the entanglement af, with A and B is now processing,. the_main source of decoherenc_e in th.e. micro-
transferred to the auxiliary cavityl: the state of the atora, ~ Wave domain is just the cavity leakage. If optical cavities are
is factorized and it can be neglected from now on. At thisinstéad considered, atomic spontaneous emission may also
stage, a second atoay is prepared in the ground stafg) ~ éPresent an important source of decoherence.

and injected into the apparatus with the same absolute value_The matrix of Eq.(3.7) is not a purecNOTINV gate, even

of the velocity ofay, but with the opposite direction. Enter- f it s still a universal two-qubit gatg20]; in particular it can

ing M, it absorbs the photon left by the first atom through aP€ transformed into a standazdoT gate by adding a single-
similar 7 Rabi oscillation, and the entanglement with the 9uPit operation orB, similar to those we shall present in Sec.

cavitiesA andB is transferred fronM to a,: V. Moreov_er, it is also-poss?ble to implement tlealoT(A
—B) gate(i.e., the one in which the vector componéh}
ap|0)a® ) e®]9)© [0+ Bal L)a® | ) e®|€)®|0)y . causes thevoT transformation orB) simply preparing the

(3.6) first atom entering the apparatus|/@ rather than ifg), and

' then proceeding with the same identical steps oftheTINV
At this stage, the state of the cavity is also factorized and case.
therefore the vector stat8.6) is quantum logically equiva- The above scheme assumes the possibility of injecting in
lent to that of Eq.(3.3). In practice, the apparatus describedthe apparatus atomic pulses with exactly one atom. However,
here is essentially aatomic mirror, which permits us to as shown in Ref.21], a control of the atom number could be
reflect backthe atomic state. Finally, let us observe that achieved by a modification of the Rydberg-atom preparation
has to cross caviti without interacting with it, before it can technique. The idea is to use an “atom counter” before the
reach the cavityA. This result is achieved simply by switch- circular Rydberg-state preparation, so that the preparation of
ing off the classical sourc8g ; the adiabatic regime and the the statde) (which can have an efficiency near to 100%) is

032306-4



SCALABLE QUANTUM COMPUTATION WITH CAVITY ... PHYSICAL REVIEW A 62 032306

applied only when one is sure to have exactly one atom. The A i
atom counter is realized by driving a strong transition and

tional to the number of atoms. When the beam section con-
tains zero, two, or more atoms, it is discarded: the system
then waits for a time of the order of a fews to 20 us |i>—
(depending upon the atomic velocity and the precise length --
of the atomic-beam sectipnintil a fresh section of the beam .
- - .. FIG. 5. Logical scheme of the quantum phase d&FQG be-

\(,:v(;meiisl?eégeo]lasreer :reir?madrg\r/]lggn:hneur?]%%rre;f:nciiérl]nti:;]?ween two cavities. The vertical lines denote the QPG, whkile

Y prep ifing a - tag denotes the Hadamard gaigée., #/2 pulse$ applied on the atom.
one thus prepares with a high probability a Smgl? qut?er he dashed box denotes the “atomic mirraisee Sec. Il
atom after a random delay. The average delay is minimal
when thg probablllty t_o have exactly one atom is m"’D('rmzed'range, by slightly detuning the cavity mode from the-e
With Poissonian statistics, the optimal mean number of at; o ) .

. t{ansmon, has been shown, but we shall not consider this

oms is 1. The average random delay could be of the order g

25 ups in a realistic experimental condition. This is short po%;f”r:g/whgﬁw that this atom-cavity QPG can be used to
enough at the scale of the cavity-field lifetime to play no y

major role in the proposed scheme realize a QPG betw_ee_n two cavity modes, by consideri_ng an
' arrangement very similar to that of tleaioT gate shown in
Fig. 3. The cavitieA andB are again the two qubits, while
M is again the auxiliary cavity needed to “reflect” the atom
and disentangle it. The two classical sources inside the cavi-
In the preceding section, we have seen how to implemerties S, andSg are no longer needed, while we consider the
a universal two-qubit gate, theNoT gate, between two cav- possibility of applying Stark shift electric fields inside the
ity modes, using induced transitions between dressed statezvities, in order to tune thg—e transition in and out of
However, it is possible to realize another universal two-qubitesonance from the cavity mode. The scheme of the QPG
gate, the quantum phase ga@PQG [4,22], between the two implementation is shown in Fig. 5 and involves only two
cavities, slightly elaborating on the quantum phase gate opatom crossings, as in tl@oT gate of the preceding section,
erating on qubits carried by the Rydberg atom and the twand threew/2 pulses between thieand g levels (the Had-
lowest Fock states of a cavity mode, recently demonstratedmard gate$d of Fig. 5, which can be realized with reso-
experimentally{5]. Of course, since both thenoT and the  nant classical microwave sources applied between the high-
QPG are universal quantum gates, it is always possible t@ cavities.
implement one of them, by simply supplementing the other Let us assume a generic state of the two cavity qubits
one with appropriate one-qubit operations. However, the in-
teresting experimental result of R¢&] suggests an alterna- |y =ay|00) +a,|01) +a,|10) + a3 11), (4.2
tive physical implementation of quantum logic operations
between cavity qubits, which does not involve induced tranand that a first atom, initially prepared in statés subject to
sitions between dressed states, and extends the schéble of 3 /2 pulse, so to enter caviti in state {i)+|g))/v2. The
to a directly scalable model. cavity mode is perfectly resonant with tlie—e transition
The QPG transformation reads and the atom velocity is selected so that the atom undergoes
a 27 Rabi pulse if it is in statg and the cavity contains one
photon(the QPG of Ref[5]). The resulting state at the exit

L)
'
)
measuring the fluorescence, whose intensity will be propor- B .
'
]

[}
1
L]
1
1
[}
[l
1
[}
1
-4

IV. QUANTUM PHASE GATE

|a,b)—exp(i ¢ 8, 165.1)|a,b), 4.1

of cavity A is
where|a) and |b) describe the basis staté®) and|1) of Yoy |9)
two generic qubits. This means that the QPG leaves the ini- T+_®(ao|00>+al|01>_az|10)‘aa|11>)-
tial state unchanged except when both qubits are in ktate 2 2
In Ref.[5], the QPG of Eq(4.1) did not involve levelg and (4.3

e, buti and g, wherei is a lower circular Rydberg level,

which is uncoupled with the higp- cavity. In this way, the | "€n the atom undergoes another resona@tpulse on the
gate of Eq.(4.1) in the casep=  can be realized by setting | —9 transition and the state of the system becomes

the atomic transitiorgy—e perfectly at resonance with the )

relevant cavity modeby appropriately Stark shifting the |i)®(a0|00)+a,|01)) +|g) ® (a,|10) + as|11)). (4.4)
atomic levels inside the cavityand by selecting the atomic

velocity so that the atom undergoes a complete Rabi ~ Then the atom crosses caviBy where it is subjected again
pulse when crossing the cavity. In fact, at resonance, suchtq the atom-cavity QPG as in cavify so that the state of the
pulse transforms the statg,1) into €'”|g,1), while nothing ~ System becomes

happens if the atoms is inor the cavity is in the vacuum

state. In[5], the possibility of tuning the phasg over a large li)®(ap|00)+a,|01)) +|g)® (a,|10) —a5|11)). (4.5
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At this point, as in theeNOT case of the preceding section, in sented beforg If on the other hand the atom inside the cav-
order to realize the final transformation and disentangle théty undergoes ar/2 instead of arr pulse, one realizes the
atom from the cavities, one has to “reflect” it. This is again “Hadamard-phase” gate
achieved with the “atomic mirror” scheme, i.e., using the _
auxiliary cavity M of Fig. 5, which acts as a quantum 1(1 e !
memory and is able to transfer the entanglement from the H(0")= E( o' 1 )
first atom to a second atom, which is crossing the apparatus €
with the same absolute velocity but in the opposite directioqNhere Py
[see, for example, Eq$3.5 and(3.6)].

The second atom is then subjected tar/2 pulse before
entering the cavities and the state of E4.5 becomes

(5.2

also depends linearly on the classical field phase
¢g and is therefore controllabléN(#) and H(#') can be
used to build the more general one-qubit operation and there-
fore, together withcNOTINV(A— B), form a universal set of

. gates.
|I—>®(a |00) +a,|01) + a,|10) — a| 11)) Note that thenoT-phase gate can also be used for an
V2 0 ! 2 3 alternative realization of theNOTINV(A— B) gate between
two cavities. In the scheme described in the preceding sec-
|g) tion, one needs the auxiliary caviiy and the second atom

®(a|00) +a4|01) — a,[10) +a5[11)). crossing in the opposite direction in order to disentangle the

first atom from the cavities. One could simplify this last
(4.6)  stagdstep(iii) and(iv) of the preceding sectidtby applying
an exactm/2 pulse when the atom has just left the second

The last step is the QPG between the atom and cavibe.,  cavity and the state of the system is that of E3). The
the atom has to cross caviB undisturbed(this is achieved (yt5] state becomes

by strongly detuning thg—e transition with a Stark shift

"2

field) and then has to undergo another full Rabi cycle in — |g)+le) l9)—|e)
cavity A. The final state is ap0)A® ® +Bal 1) a® ®
y Al0)a®[¥)B 2 BalL)a®|¢)e 2
i)+ B _
H%®(ao|00>+al|01>+az|10>—33|11>), @ ~{aal0)ae[¥a+ BalL)ac | W)e} ©|0)/ V2
+{an0)a® g~ Bal1)a®|¥)s} @ |€)/V2.
which is the desired result, corresponding to a QPG between (5.3
cavitiesA andB with conditional phase shitb= 7, and with
a disentangled atom. If now the atom is detected by a state-sensitive detector and
the |g) state is detected, the two cavities are projected on
V. ONE-QUBIT OPERATIONS ap|0)a®|¢)g+ Bal1)a®|#)g and one has implemented just

the desiredcNOTINV gate. On the contrary, if the atom is
One-qubit operations are straightforward to implement orfound in the excited statge), the state ofA and B becomes
qubits represented by two internal atomic states because gA|0>A®mB—BA|1>A®|¢>B and thecNOTINV gate is ob-
amounts to applying suitable Rabi pulses. This task is lesgyined once that cavity is subject to ar-phase shift, which
trivial for bosonic degrees of freedom such as our cavity.gn pe realized by means of twwmT-phase gatesl(6), the
modes, because the two lowest Fock states, for example, afes; with 9= /2 and the second with=0. In this way the

coupled to the more excited ones. The most practical solusiqm is disentangled by the measurement. However, the

tion is to implement one-qubit operations again sending ath actical application of this scheme is seriously limited by

oms through the cavity. To be more specific, one has to senhe quantum efficiency of atomic detectors, which is usually
an atom prepared in the ground stgge through the cavity, 4; from 100% .

with the classical field5 tuned at the frequency correspond-
ing to the transition between the statgs®(t=0)) and
|g,0). If one sets the time duration and the intensity of the
classical sourc8as in the case of thenoT(cavity — atom, A. The Toffoli gate
i.e., to realize such & pulse between the selected levels, one
implements a NoT-phase” gate, which, in the canonical
basis{|0),|1)}, is described by the following matrix:

VI. MANY-QUBIT GATES

We have shown how to implement a set of universal
guantum gates with the proposed cavity QED scheme.
Therefore in principle the most general quantum operation
involving n qubits can be realized in terms of the one- and
(5.1) two-qubit operations described above. This decomposition,
however, implies a degree of network complexity, and a
number of resources and steps that is rapidly increasing with

where # depends linearly on the phase, of the classical the number of qubits. One of the main advantages of the
field of Eq. (3.2 and is therefore easily controllabl¢his  present proposal is that it is particularly suited for the effi-
scheme is simply a part of theNoTINV(A—B) gate pre- cient implementation of many-qubit quantum gates, which,

efiﬁ

0
N(g):(eiﬂ 0
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in many cases, can be realized with the same number of stef@s contains two photons. Both problems can be solved by

as the two-qubitNoT gate of Sec. lIl. again using the auxiliary cavityl and a second atom cross-
A particularly clear example of the possibilities of the ing the apparatus in the opposite direction as in the “atomic
proposed scheme is provided by the Toffoli ge28] mirror” configuration of Sec. Ill. The caviti transfers the

entanglement with the cavities from the first to the second
1X)aly)el2)e— [X)alV)el[z+ (XAY) Imogc, (6. atom, which is not subject to any classical pulseCinThen
the second atom enteBs where it undergoes & pulse at the
frequencyw,, which simply inverts the transformation of Eq.
(6.4) (thanks to the fact that nfD)s®|g) term is present
correcting in this way the terms of E@6.6) in which the

— second cavity contains two photons. As a consequence, the
|‘~I,0> a1|000>+a2|00])+a3|010>+ a4|01]>+a5|100> y it p q
state of the atom-cavities system becomes

in which the target qubi€C is controlled by the first twoA
and B. The effect of the Toffoli gate on the generic three-
qubit state

+ |10 + a7| 110) + ag|112) 6.2
[ @1/000) + @5|002) + a5|010) + 4| 01D)] ® |€)

(In,m,1)=|n),®|m)g®|l)c are the tensor product of the
cavity mode Fock statgss to exchange the last two compo- +[as|100 + ag|10D) + a7|11D) + ag110] @ |g).
nents|110) and|111). The implementation of this gate needs 6.7
the same arrangement of aligned cavities crossed by Rydberg
atoms used for theNoT gate of Fig. 3, except that now one Finally, the atom entera, where it is subjected to & pulse
has three cavity qubits_(with the correspondir_lg classi_cal resonant with the transitiof)()(0))—|g,0), exchanging
sourcesS,, Sg, andSc) instead of two. The auxiliary cavity |0),®|g) with |0),®|e), so that the second atom is disen-

M is again needed for the atomic mirror scheme used tangled from the cavities and one gets the desired generic
disentangle the atom. The atom is initially prepared in statgy,tput of a Toffoli gate, i.e.,

|g), and when it is in the first cavity, it is subject to ar

pulse between the dressed stité®(0)) and|g,0). This [ @1/000) + 5| 001) + ar3|010) + 4| 011) + | 100)
pulse creates atom-cavity entanglement and the state of the
total system becomes + ag|10D) + 7|11 + ag|110] ®| Q). (6.9
[ @1]000) + a»|001) + 5| 010) + 4| 01 D] ® |€) Notice that in this way we have implemented the Toffoli gate
with two atoms only, as in theNOT gate of Sec. Ill. More-
+[ 5100 + ag| 10D + a7 110 + ag|11D] ®|g). over, this scheme can be easily extended to the case of

(6.3 =4 cavity qubits, for the implementation of timequbit gen-

eralization of the Toffoli gate. We need only two atoms
Then, when the atom reaches the second caity under-  crossing the aligned cavities in opposite directions in this
goes anothetr pulse, at the new frequenay, correspond- more general case. The pulse sequence is similar to that dis-
ing to the transition betweely,0) and|V(+2)(0)>, so that the cussed above: both atoms underga gulse resonant with
transformation the transition|V(0))—|g,0) in the first cavity, while in

the followingn—2 cavities they are submitted toma pulse

10)e®|g)—[2)g®]€) (6.4 at the frequencyw,. In the last cavity, the target qubit, the

is realized. This means temporarily leaving the logical sub—fIrSt atom experiences@noT(atom— cavity) while the sec-

space, even though this allows us to realize a significar%nd atom crosses it undisturbed. In the scheme proposed

simplification of the scheme. The state after this second ste ere, the target gub|t IS nepessarlly the last cavity. Howe_ver,
is therefore is always possible to realize tlmequbit generalized Toffoli

gate with the target qubit in a generic position of the string of

[ @1|000) + 5| 001) + 5| 010) + ar4| 011) + e 120) cavities by simply applying a two-qubit operation to the
above scheme. In our scheme this means using four atoms at
+agl12D] ®[e) +[a7|110 + ag11D] ®|g). most, and in any case this is much more convenient than
(6.5) realizir]g this generim-qubit gate from one- and two-qubit
operations.

When the atom enters i@, the classical field; is applied

so as to realize thenoT(atom — cavity C) of Sec. lll and g Encoding and decoding in quantum error correction codes

the state of Eq(6.5 becomes . )
Other examples for which the present cavity QED scheme

[ @1/000) + a,|001) + 5| 010) + 4| 011) + a5 120) offers the possibility of an efficient implementation of opera-
tions involving many qubits are the encoding and decoding
+agl12D] @ |e) +[a7]|11D) + ag|110] ®|9g). processes used in quantum error correction sch¢p#egs).

(6.6) Errors in quantum information processing are due to the in-

teraction with uncontrolled degrees of freedime environ-
At this point one has to disentangle the atom from the threenen, yielding an entanglement of the quantum state of the
cavities and adjust the state components in which the cavityegister with some environmental states. The main idea of
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guantum error correction is to combat “bad” entanglement Do i) ,"i'v)"} v
with “good” entanglement, that is, to protect quantum infor- A r r
mation by storing it not in a single qubit but in an entangled P : |
. .. . L B A L
state ofn qubits. This is the encoding process; if the error ' ! !
rate is not too large, it is possible to recover the original C aA— :
guantum information by using a suitable decoding proce- Y ! !

dure, because the eventual data corruption can be revealed by le> () L : ()
. )

a measurement on the auxiliary qubits and information can
finally be restored with single-qubit operations. The more
general one-qubit errafflip error, phase error, or a combi-  FIG. 6. Logical scheme of the encoding network of E89);
nation of the two can always be corrected using a five-qubit uPitsB andC are initially prepared in the vacuum state, wilés
encoding and decoding procedyg#,25. However, if one the qubit stonn_g th(_e initial mfgrmayon. The dashed hexrepre-
considers one specific form of error only, three-qubit encodSeNts the atomic mirror described in Sec. IIl.

ing is sufficient for the implementation of quantum error .

correction codes. For simplicity, let us consider this Iatter!mt"':1I condition for the qubits set the encoded steied). It

case is straightforward to check that this amounts to realizing the

Let us assume that we want to protect a generic statd'Vers€ transformation

a|0)a+ B|1)4 of the cavityA. For the encoding process, one  4|000)+8|111)— a|000)+ 3| 100)
needs two other ancilla qubits, caviB/andC, and one has

to realize the following transformation into a maximally en- =[ a|0)a+ B|1)a]®|0)g®|0)c. (6.12
tangled, Greenberger-Horne-Zeilinger std@6] of three ) ) )
cavities: It is also easy to see that the encoding scheme described

here can be extended for the controlled preparation of maxi-
[ @|0)a+ B|1)a] ®]0)g®[0)c— a|000)+ B]111). mally entangled states af cavities. One has to considar
(6.9 cavities (plus the auxiliary cavityM) and, as in then=3
case, one needs only two atoms crossingnhkel aligned
This encoding process can be realized using a scheme analgavities in opposite directions. In analogy with the descrip-
gous to those discussed above for ttreoT and Toffoli  tion above, in the first cavity the two atoms undergo the
gates. Again, only two atoms are needed, with the secondnoT(cavity A — atom) transformation, while in all the
one crossing the aligned cavities in the opposite directiongthern—1 cavities the first atom goes to@oT(atom —
which serves the purpose of disentangling the first atomgavity) gate and the second one crosses them with no classi-
with the help of the auxiliary cavity in the “atomic mir-  cal field applied. In this way, thanks to the disentanglement

ror” scheme described in Sec. IlI. action of the second atom, the following maximally en-
The initial state of the system is tangled state of cavities is prepared:
[ a|0)a+ Bl1)a] ®[0)s®[0)c®[€) [ @|0)1+8[1)11[0)2...|0),—a|00...0+4[11 ... D).
=[ «|000)+ B|100)] |e). 6.10 (6.13

. . VIl. CONCLUSIONS
When the atom enterd\ it undergoes thecNOT(cavity

A—atom); when the atom arrives iB, the classical fiel®g In this paper we have presented a scheme for implement-
is switched on in order to realize tlenoT(atom — cavity  ing quantum logic operations within a cavity QED configu-
B) transformation(see Sec. I)land the sameNoT(atom — ration. The quantum register is composed by a series of high-
cavity C) operation is applied when the atom is@ One Q cavities and information is encoded in the two lowest

can show that the state of the total system becomes cavity Fock states. Both the preparation and the detection of
the quantum state of individual qubits, which is an essential
[ «|000)|e)+B|11D)|g)]. (6.1  ingredient in quantum algorithms, can be easily performed.

In particular, the detection of the two Fock states could even

Except for the entanglement with the atom, the stata, @, be performed in a quantum nondemolition way, as recently
and C is of the desired form, and therefore the situation isdemonstrated13]. Both one- and two-qubit operations can
analogous to that of thenoT gate of Sec. ll[see Eq(3.3)]. be performed by sending appropriately prepared atoms
Atom disentanglement can be obtained by again using théhrough the cavities. An important advantage of the scheme
atomic mirror scheme of Sec. lll, or eventually, the atomicis that it is particularly suitable for the direct implementation
detection scheme discussed in Sec. IV, which is, howevegf some useful many-qubit quantum gates, such as, for ex-
seriously limited by detector inefficiencies. The logical trans-ample, the Toffoli gate and its-qubit generalization, or the
formations we have implemented in this section are scheencoding-decoding network of quantum error correction
matically described in Fig. €&the dotted line box represents codes. The scheme could be implemented in a generic cavity
the atomic mirroy. QED scheme, even if here we have specialized to the case of

Decoding is obtained by repeating exactly the same promicrowave cavities and circular Rydberg atoms, for which
cedure adopted for encoding the state and assuming as antanglement manipulation has already been demonstrated
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aj b) c) tanglement manipulation in this case has not been
'I'—’_' — '—’_: experimentally demonstrated yet.
' ' Recently, a similar proposal using the two lowest Fock
A=y — HO) HO) — . states of a high) cavity as a logical qubit has been pre-

: sented, involving an engineered network of defects in a pho-
' tonic band-gap materidl29]. This proposal is promising

' with respect to scalability since, using atoms traveling along
' engineered waveguides in the photonic band-gap material,
|

[}

'

[}

spontaneous emission could be completely eliminated. How-
f ever, even if this proposal is promising in terms of the tech-
1/ nological realization, in this case, as in the silica microsphere
case, entanglement manipulation has not yet been experi-
FIG. 7. The Deutsch gate. The box with(6) performs a mentally demonstrated.
“Hadamard-phase” transformation on the qubit with pha#sksee From a general point of view, the scheme proposed here
Eg. (5.2)]. is analogous to the linear ion trap scheme, except that now
the highQ cavities play the role of the ions, and the atoms,
[5,13. For example, the same scheme could be adapted tand not the collective center-of-mass motion, play the role of
the optical frequency domain, by using higheptical cavi- the quantum bus. At first sight, it may seem unpratical to
ties, as for example the whispering gallery modes of silicaeverse the role of atoms and photons as we have done here,
microsphere$27], in which one can have a miniaturization since the common wisdom is that atoms and ions are suitable
of the scheme and, therefore, a faster gate operation. THer storing information while photons are best suited to
scheme proposed here is in principle scalable, even if inransferquantum information between different sites. How-
practice its scalability will be limited by various factors. In ever, the practical implementation of quantum algorithms on
the microwave case one is limited by the spontaneous emidinear ion traps is presently limited by the heating of the
sion from the circular Rydberg levels=30 m9 and by the center-of-mass motiof80]. On the contrary, in the case of
fact that all of the apparatus has to be cooled at cryogeniphotonic qubits discussed here, once the limitations due to
temperatures to avoid the thermal radiation. In the opticathe spontaneous emission are eliminatasl in the photonic
case, cooling is no longer needed and the limitations due tband-gap case and in the microsphere case with dark-state
the spontaneous emission could be avoided in principle byransitions, the scheme is then only limited by the decoher-
using atomicA transitions and adiabatic passage through ance due to the finit€ of the cavities, which could reach,
dark state[28]. However, in the microwave case, the pro- however, values of the order of ¥ allowing therefore a
posed quantum gates could be implemented using availabkufficient number of gate operations. Moreover, in view of
technology, and therefore proof-of-principle demonstrationghe fact that photons are in any case the best tools for quan-
of quantum computation with, say, ten qubits could betum information transport, it may nonetheless be useful to
achievable. Instead, even if whispering gallery modes in mihave schemes able to process and temporarily store quantum
crospheres witlQ=10° have already been realiz€27], en-  information using photons.

B=10>
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FIG. 8. Physical implementa-
tion of the Deutsch gateN(#)
andH(6") are the one-qubit trans-
formations of Egs(5.1) and(5.2);
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APPENDIX: A REALIZATION this means that nothing happens to the system; on the
OF THE DEUTSCH ALGORITHM contrary, fori=2 A remains unchanged but the second
As an example of a simple algorithm that can bequ_bit in cavityB_undergoe_s aloT transformation. Finally,
implemented with the quantum gates presented befordl IS €asy to verify that foi =3 and fori=4 thef gate of
we consider the Deutsch algorithfd5] in the improved Eq. (A1) is equivalent to thenoT gate and to theNoTIn
version of Ref.[16]. Consider a generic Boolean function 9at€, respectively. In the preceding sections we have

f(x) mapping{0,1} into {0,1}. There are four different pos- S€en how to impleme.nt all these transformations. At stage
sibilities, the two constant functionf;(x)=0, f,(x)=1, We have then to implement another Hadamard trans-

and the twobalancedfunctionsfz(x) =x, f4(x)=1—x. Us-  formation with the zero phase ok and measure the state
ing classical algorithms, the distinction between these twf this qubit. According to the logical network of Fig. 7,
different classes of functions necessarily requires bwh it is possible to show that if thef;j(x) of the f gate
values off(x) have to be evaluated. On the contrary, theis a constant function, then the cavity must be found
Deutsch quantum algorithm solves the problem in just onén |0),, otherwise, if fi(x) is a balanced function, the
step. We have to consider the quantum circuit of two cavitiegavity A will be in |1),: in this way, one can establish if
in Fig. 7. Initially both cavities are in the vacuum state; thenthe functionf; is constant or balanced using a single function
they are submitted to the Hadamard-phase transform of E@valuation. The physical implementation of the Deutsch
(5.2), with phases equal to 0 and respectively[step(a) of  problem in terms of the cavities is sketched in Fig. 8. In the
Fig. 7]. As shown in Sec. IV, this transformation can be case of the constant function it is possible to only use two
implemented with a single atom prepared in the ground statgtoms, because far=2 one atom is needed for theoT
|g) crossing bot_h cavities. At this point the system undergoegansformation on the caviti of stage(b) and another atom
the transformation of stepbf, namely, the following ‘f” s heeded for the Hadamard transform on the cafigt step
gate: (c). For the balanced functions, the number of atoms is
instead equal to four, because, besides the two atoms for the
%) alY)8— D) AllY + fi(X) Imod2’s » (A1) implementation of the Hadamard transformations, one has to
use two atoms for thecNOT (if i=3) or the CNOTINV

wheref;(x), i=1,2,3,4 are the four functions defined above,(if i)

and [y+f;(X) ]moqz Means addition modulo 2. Far=1,
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