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Scalable quantum computation with cavity QED systems
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We propose a scheme for quantum computing using high-Q cavities in which the qubits are represented by
single-cavity modes restricted in the space spanned by the two lowest Fock states. We show that single-qubit
operations and universal multiple qubit gates can be implemented using atoms sequentially crossing the
cavities.

PACS number~s!: 03.67.Lx, 42.50.Ar, 32.80.Rm
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I. INTRODUCTION

In recent years, numerous physical systems have b
proposed as possible candidates for the implementation
quantum computer. The desirable conditions that have to
satisfied are a reliable and easy way to prepare and detec
quantum states of the qubits, the possibility of engineer
highly entangled states, the scalability to a large numbe
qubits, and a very low decoherence rate@1#. Up until now,
experimental implementations have involved linear ion tra
@2#, liquid-state nuclear-magnetic resonance~NMR! @3#, and
cavity QED systems@4,5#. In the ion trap case, only th
controlled-NOT ~CNOT! gate between two internal states a
the vibrational level of a single ion has been realized@6#, and
quantum gates involving two or more ions have not yet b
realized experimentally. A promising step in this direction
the very recent generation of an entangled state of four io
even if only with 57% fidelity@7#. The status of liquid-state
NMR quantum computing is still debated@8#, but the fact
that the signal strength becomes exponentially small with
number of qubits makes it certain that this proposal is
scalable to more than about ten qubits. This explains why
research of new physical implementations of a quant
computer is so active~see@9# and references therein!. Here,
elaborating on the suggestions of Ref.@10#, we propose to
use the Fock’s statesu0& andu1& of a high-Q cavity mode as
the two logical states of a qubit. A quantum register ofN
qubits is therefore a collection ofN identical cavities in
which the state of an appropriately chosen cavity mode
within the space spanned by the vacuum and the one-ph
state. The register transformations are achieved by sen
off-resonant two-level atoms through the cavities and m
ing them mutually interactive by means of suitable class
fields. With this respect, the present proposal is similar
that of Refs.@11,12#; the important difference is that, in thes
papers, the logical qubits are represented by two circ
Rydberg levels of the atoms. In our proposal, the role
atoms and cavity modes are exchanged. In this way,
present scheme becomes scalable in principle. In practice
scalability can be limited by the spontaneous emission fr
the Rydberg levels or by other technical limitations, but t
present proposal has the advantage that the needed tec
ogy is essentially already available to realize some proof
principle demonstrations of quantum computation with f
1050-2947/2000/62~3!/032306~11!/$15.00 62 0323
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qubits. In fact, in the present paper we shall specialize to
case of microwave cavities, for which a high level of qua
tum state control and engineering has already been exp
mentally shown@5,13#. This is the reason why in our explici
calculations we shall consider microwave cavities operat
in low-order modes with angular frequencyv in the
102100 GHz range, and Rydberg atoms for which high v
ues of the coupling constant~of the order of 105 s21) are
possible. It is clear, however, that in principle, the meth
can be applied to optical cavities too, in which one can ha
a miniaturization of the scheme and therefore a faster op
tion.

Some preliminary results regarding the possibilities
fered by the present cavity QED scheme have been show
@14#, where some implementations of theCNOT gate between
two cavity modes have been presented. In order to giv
clear and exhaustive description, here we shall review
results of@14#, which will be extended and generalized in th
present paper.

The outline of the paper is as follows. In Sec. II we r
view the basic properties of the considered cavity QED s
tem. In Sec. III we show how to implement the univers
CNOT gate between two cavities, while in Sec. IV we sh
discuss a different scheme for the implementation of univ
sal two-qubit gates, using an arrangement based on
adopted in the experiment of Ref.@13#. In Sec. V we show
how single-qubit operations can be realized, while Sec. V
devoted to the implementation of useful many-qubit univ
sal quantum gates, such as the Toffoli gate and the enco
and decoding network for quantum error correction schem
Section VII is for concluding remarks, while the Append
shows the explicit implementation of the Deutsch proble
@15,16#.

II. THE SYSTEM

The interaction of a two-level atom quasiresonant with
high-Q cavity mode is well described by the time-depende
Hamiltonian@17#:

H~ t !5
\v

2
@b†b1bb†#1

\veg

2
@ ue&^eu2ug&^gu#

1\V~ t !@ ue&^gub1ug&^eub†#, ~2.1!
©2000 The American Physical Society06-1
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in which b andv are the annihilation operator and the ang
lar frequency of the cavity mode, respectively;ue& and ug&
are the excited and lower circular Rydberg states, and\veg
is their energy difference. Finally,V(t) is the atom-field
interaction Rabi frequency, which is time dependent beca
of the atomic motion through the cavity. In particular, for
Fabry-Pe´rot-type cavity, with a Gaussian transverse be
profile, we can assume the following continuous variation

V~ t !5V0e2(t/t)2
, ~2.2!
1
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where 2t is the atomic transit time, which depends of cour
on the inverse of the atomic velocity. Forutu@t, i.e., when
the atom is outside the cavity, the energy eigenvectors of
system areug& ^ un&[ug,n&, and ue,n&, with un& as the ge-
neric Fock state of the cavity mode. Apart from the grou
stateug,0&, which remains unchanged in the presence of
time-dependent interaction, these terms are coupled by p
ton emission or absorption, and the instantaneous en
eigenstates at fixed timet are the dressed states
uV 6
(n)~ t !&5

„d/26A~d/2!21V2~ t !~n11!…ue,n&1V~ t !An11ug,n11&

Ad2/212V2~ t !~n11!6dA~d/2!21V2~ t !~n11!
~2.3!
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with eigenvalues

E6
(n)~ t !5\v~n11!6\A~d/2!21V2~ t !~n11!, ~2.4!

where d5veg2v is the atom-cavity detuning. Figure
qualitatively shows the time dependence of the dressed
els of Eq.~2.4! in the cased.0. Now, if the atom velocity is
slow enough, and the system fort!2t is prepared in a
generic energy eigenstate, then in its time evolution it w
adiabatically follow this eigenstate, with negligible trans
tions toward other states@18#. The exact adiabatic conditio
can be obtained by writing the Schro¨dinger equation in the
basis of the vectorsuV 6

(n)(t)&, and then neglecting terms cou
pling the dressed states. The resulting condition is

V̇~ t ! d An

4@~d/2!21V2~ t !n#3/2
!1, ~2.5!

FIG. 1. Energy level of the dressed states as a function of ti
v-

l

which, in the limit V(t)An/d!1, becomes equal to tha
given in Ref. @17#. The general adiabatic condition~2.5!
shows in particular that adiabaticity can be obtained e
whenV(t)An/d.1, provided thatV̇(t) is sufficiently small.
In the following we shall always work in this adiabatic re
gime.

III. THE CNOT GATE

Domokoset al. have shown in Ref.@12# that, using in-
duced transitions between the dressed states, it is possib
implement aCNOT gate in which a cavity containing at mos
one photon is the control qubit and the atom is the tar
qubit. This idea is the starting point for the implementati
of theCNOT gate between two cavities we propose here. R
erence@12# considers an atom adiabatically entering the c
ity so that the joint atom-cavity state is

c1ug,0&1c2ug,1&1c3ue,0&1c4ue,1&. ~3.1!

When the atom is just inside the cavity, a classical fieldSof
frequencyvS equal to the energy difference between t
dressed statesuV 1

(1)(t50)& ~originating from ue,1&) and
uV 2

(0)(t50)& ~originating from ug,1&) is switched on for a
time interval 2tS , so that the following driving Hamiltonian
is added toH(t) of Eq. ~2.1!:

HS~ t !52\J0 cos~vSt1wS!e2(t/tS)2
@ ue&^gu1ug&^eu#,

~3.2!

wherewS is the phase of the classical fieldS andJ0 is the
coupling costant, which depends on the dipole moment
the transitione↔g and on the intensity ofS. Appropriately
choosing the value oftS , it is now possible to selectively
coupleS with these dressed states, leaving the other com
nents of the vector state essentially unperturbed. Moreo
with a suitable choice of the intensityS, it is possible to
apply a Rabip pulse between the two states. In this wa
when the atom exits the cavity, the resulting state vecto
the interaction picture, apart for some phase terms, is gie.
6-2
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SCALABLE QUANTUM COMPUTATION WITH CAVITY . . . PHYSICAL REVIEW A 62 032306
by Eq.~3.1!, but with ue,1& andug,1& exchanged. In this way
one has realized aCNOT gate in which, when the cavity~the
control qubit! has one photon, the atom undergoes aNOT

operation, while when the cavity contains no photons,
atomic state remains unchanged. We shall refer to this
as theCNOT~cavity → atom!.

In a similar manner, we can also build aCNOT gate in
which the roles of the atom and the cavity are exchang
Let us in fact tune the frequencyvS to the transition between
the dressed stateuV 2

(0)(t50)& and the stateug,0&, and apply
again ap pulse inside the cavity as before. Now, when t
atom leaves the cavity, the termsug,0& and ug,1& in the vec-
tor state of the system are mutually exchanged with res
to the initial condition Eq.~3.1!. The ue,0& andue,1& compo-
nents are instead not affected by the interaction with
classical sourceS. This means having realized aCNOT gate in
which, when the atom is in the ground state, the cavity sta
u0& andu1& flip, while nothing happens to the cavity state f
the atom in the excited state. In analogy with the previo
case, we refer to this new gate asCNOT~atom→ cavity!.

It is important to note that, differently from theCNOT~cav-
ity → atom! case, in theCNOT~atom→ cavity! gate the Rabi
transition between the original states~i.e., ug,0& andug,1&) of
the dressed states involved is forbidden by selection ru

FIG. 2. Time evolution of the population of the dressed sta
ug,0& ~full line!, uV 2

(0)(t)& ~dashed line!, uV 1
(0)(t)& ~dotted-dashed

line! and uV 1
(1)(t)& ~dotted line! for the CNOT~atom→ cavity! gate

with V05420 kHz,d50.18V0 , t;100 ms, J05141.5 kHz,tS

519 ms, and initial conditionuc0&5ug,0&.

FIG. 3. Schematical description of theCNOT gate in which cav-
ity A is the control qubit and cavityB the target qubit.a1 anda2 are
the two atoms, andM is the auxiliary cavity, transferring the en
tanglement with the cavities from the first to the second atom.
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Nevertheless, this coupling is realizable when the atom i
the cavity because the vectoruV 2

(0)(t50)& also has aue,0&
component. However, since this dependence is mediate
a coefficient that decreases withV0 /d @see Eq.~2.3!#, we
have to choose a value of this parameter that is not too s
in order to have a significant coupling constant. In particu
in our calculations we have chosenV0 /d;1021. With such
values ford, it is also possible to have a sufficient frequen
separation between the transitions we are interested in an
the other ones. Actually, it is sufficient to set the duration
the classical pulse 2tS of the order of 20ms to discriminate
all the parasitic transitions and optimal results for the res
ing quantum operation that are achieved forV05420 kHz,
d50.18V0 , t;100 ms and with J05240 kHz, tS
514 ms for theCNOT~cavity → atom!, J05141.5 kHz,tS
519 ms for theCNOT~atom → cavity!. In Fig. 2 we show
the time evolution of the dressed state populations for
CNOT~atom→ cavity! for the above choice of parameter va
ues.

For quantum information processing, one needs to con
not only the level populations, but also the relative phases
general, during the adiabatic evolution, different dynami
phases for the different components of the vector state
generated. However, it is always possible to correct th
phases by an appropriate choice of the field phasewS and by
eventually acting outside the cavity on the atom with suita
Stark electric fields.

We now have all the elements to realize theCNOT gate
between two distinct but identical cavitiesA andB, with the
first one acting as the control qubit and the second one as
target qubit. The apparatus is sketched in Fig. 3 and i
essentially a physical realization of the logical netwo
shown in Fig. 4. Suppose that the initial states of the t
cavities are, respectively,uf&A5aAu0&A1bAu1&A and uc&B
5aBu0&B1bBu1&B . The following occurs:~i! A first atom,
a1, prepared in the ground stateug&, enters cavityA, where it
undergoes theCNOT~cavity → atom! transformation realized
with the classical field sourceSA , and described above.

~ii ! Thena1 leavesA and enters cavityB: here the classi-
cal fieldSB is switched on in order to obtain aCNOT~atom→
cavity! transformation. In the interaction picture and negle
ing all the parasitic but controllable phase terms, the stat
the total system at this stage is then

aAu0&A^ uc&B^ ug&1bAu1&A^ uc&B^ ue&, ~3.3!

where uc&B is the NOT-conjugate vector ofuc&B , that is,
bBu0&B1aBu1&B .

s

FIG. 4. Logical scheme of theCNOTINV gate of Fig. 3. The
dashed box denotes the ‘‘atomic mirror’’~see Sec. III!.
6-3
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~iii ! and~iv! The atom again entersA, where it undergoes
theCNOT~cavity → atom! transformation, so that the state
the system becomes

aAu0&A^ uc&B^ ug&1bAu1&A^ uc&B^ ug&

5$aAu0&A^ uc&B1bAu1&A^ uc&B% ^ ug&. ~3.4!

In terms of the notations given in the preceding section,
shall refer to this gate as theCNOTINV(A→B) gate, in order
to underline thatB transforms to aNOT transformation when
A is in theu0&A state, while nothing happens whenA is in the
u1&A state. This fact is illustrated in Fig. 4, where in th
equivalent gate„II … there is aNOT transformation acting
on B.

The practical realization of step~iii !, i.e., the return of the
atom in the first cavity, is actually more complicated th
what it looks like in Figs. 3 and 4. The inversion of th
motion of atoma1 could be realized in principle with an
atomic fountain configuration. However, this implies havi
free-fall velocities, which are too slow for the necessary
teraction times to occur within the cavities. For this reas
we propose transferring the quantum information from t
atom onto a second one of the same type, but traveling in
opposite direction. With this respect, the scheme adopts
‘‘quantum memory’’ scheme experimentally verified in Re
@19#. This quantum information transfer is implemented
introducing a third cavity, the auxiliary cavityM of Fig. 3,
which, differently fromA andB, is resonant with thee→g
transition. IfM is prepared in the vacuum stateu0&M , and the
transit time ofa1 is appropriately chosen, then the atom
state componentue& releases one photon inM through a reso-
nantp Rabi oscillation. After that, the state of the total sy
tem ~the three cavities anda1), using the same notations o
Eq. ~3.3!, will be

aAu0&A^ uc&B^ ug& ^ u0&M1bAu1&A^ uc&B^ ug& ^ u1&M .

~3.5!

Notice that the entanglement ofa1 with A and B is now
transferred to the auxiliary cavityM: the state of the atoma1
is factorized and it can be neglected from now on. At t
stage, a second atoma2 is prepared in the ground stateug&
and injected into the apparatus with the same absolute v
of the velocity ofa1, but with the opposite direction. Ente
ing M, it absorbs the photon left by the first atom through
similar p Rabi oscillation, and the entanglement with t
cavitiesA andB is transferred fromM to a2:

aAu0&A^ uc&B^ ug& ^ u0&M1bAu1&A^ uc&B^ ue& ^ u0&M .

~3.6!

At this stage, the state of the cavityM is also factorized and
therefore the vector state~3.6! is quantum logically equiva-
lent to that of Eq.~3.3!. In practice, the apparatus describ
here is essentially anatomic mirror, which permits us to
reflect backthe atomic state. Finally, let us observe thata2
has to cross cavityB without interacting with it, before it can
reach the cavityA. This result is achieved simply by switch
ing off the classical sourceSB ; the adiabatic regime and th
03230
e
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he
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off-resonance condition prevents that, apart from the
namical phase factors, the state could change during the
sit of a2 within B. The action of theCNOT gate has been
explicitly described for the factorized state just to simpli
the presentation. It is clear that all the steps can be repe
for a generic entangled state of the two cavities.

Assuming the optimal values for the system parame
written above, we have solved numerically the time evo
tion of the total system. We describe the resulting effect
CNOT gate in the form of a matrix written in the basis of th
Fock states of the two cavities,$u0,0&;u0,1&;u1,0&;u1,1&%
where un,m&5un&A^ um&B . The matrix has been ‘‘cleane
up’’ of the spurious phase factors that may appear during
evolution, and which, using the phase of the classical fi
SB and also appropriate Stark shift electrical fields, can
ways be suitably adjusted. Within a 0.1% error, the op
mizedCNOT matrix has the form

S 0 e2 il 0 0

eil 0 0 0

0 0 eil 0

0 0 0 e2 il

D , ~3.7!

where the nontrivial phasel50.07. The overall transforma
tion takes place in a time of the order of 1 ms, which has
be compared with the typical decoherence time scales,
is, the atomic radiative lifetimes and the cavity relaxati
times. For circular Rydberg atoms withn.50, the atomic
radiative lifetime is of the order of 30 ms and therefore
does not represent a serious problem. The cavity damp
times currently realized for microwaves have instead
same order of magnitude~some ms!. However, relaxation
times of the order of 10 ms will hopefully be achieved in t
near future, and in this case, one would have a perfe
working CNOT gate between two cavities. It is clear therefo
that, for the present implementation of quantum informat
processing, the main source of decoherence in the mi
wave domain is just the cavity leakage. If optical cavities a
instead considered, atomic spontaneous emission may
represent an important source of decoherence.

The matrix of Eq.~3.7! is not a pureCNOTINV gate, even
if it is still a universal two-qubit gate@20#; in particular it can
be transformed into a standardCNOT gate by adding a single
qubit operation onB, similar to those we shall present in Se
IV. Moreover, it is also possible to implement theCNOT(A
→B) gate~i.e., the one in which the vector componentu1&A
causes theNOT transformation onB! simply preparing the
first atom entering the apparatus inue& rather than inug&, and
then proceeding with the same identical steps of theCNOTINV

case.
The above scheme assumes the possibility of injecting

the apparatus atomic pulses with exactly one atom. Howe
as shown in Ref.@21#, a control of the atom number could b
achieved by a modification of the Rydberg-atom preparat
technique. The idea is to use an ‘‘atom counter’’ before
circular Rydberg-state preparation, so that the preparatio
the stateue& ~which can have an efficiency near to 100%)
6-4
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SCALABLE QUANTUM COMPUTATION WITH CAVITY . . . PHYSICAL REVIEW A 62 032306
applied only when one is sure to have exactly one atom.
atom counter is realized by driving a strong transition a
measuring the fluorescence, whose intensity will be prop
tional to the number of atoms. When the beam section c
tains zero, two, or more atoms, it is discarded: the sys
then waits for a time of the order of a fewms to 20 ms
~depending upon the atomic velocity and the precise len
of the atomic-beam section! until a fresh section of the beam
comes in the laser beam driving the fluorescence. In
way, instead of preparing a random number at a given ti
one thus prepares with a high probability a single Rydb
atom after a random delay. The average delay is mini
when the probability to have exactly one atom is maximiz
With Poissonian statistics, the optimal mean number of
oms is 1. The average random delay could be of the orde
25 ms in a realistic experimental condition. This is sho
enough at the scale of the cavity-field lifetime to play
major role in the proposed scheme.

IV. QUANTUM PHASE GATE

In the preceding section, we have seen how to implem
a universal two-qubit gate, theCNOT gate, between two cav
ity modes, using induced transitions between dressed st
However, it is possible to realize another universal two-qu
gate, the quantum phase gate~QPG! @4,22#, between the two
cavities, slightly elaborating on the quantum phase gate
erating on qubits carried by the Rydberg atom and the
lowest Fock states of a cavity mode, recently demonstra
experimentally@5#. Of course, since both theCNOT and the
QPG are universal quantum gates, it is always possibl
implement one of them, by simply supplementing the ot
one with appropriate one-qubit operations. However, the
teresting experimental result of Ref.@5# suggests an alterna
tive physical implementation of quantum logic operatio
between cavity qubits, which does not involve induced tr
sitions between dressed states, and extends the scheme@5#
to a directly scalable model.

The QPG transformation reads

ua,b&→exp~ ifda,1db,1!ua,b&, ~4.1!

where ua& and ub& describe the basis statesu0& and u1& of
two generic qubits. This means that the QPG leaves the
tial state unchanged except when both qubits are in stateu1&.
In Ref. @5#, the QPG of Eq.~4.1! did not involve levelsg and
e, but i and g, where i is a lower circular Rydberg level
which is uncoupled with the high-Q cavity. In this way, the
gate of Eq.~4.1! in the casef5p can be realized by settin
the atomic transitiong→e perfectly at resonance with th
relevant cavity mode~by appropriately Stark shifting the
atomic levels inside the cavity!, and by selecting the atomi
velocity so that the atom undergoes a complete 2p Rabi
pulse when crossing the cavity. In fact, at resonance, su
pulse transforms the stateug,1& into eipug,1&, while nothing
happens if the atoms is ini or the cavity is in the vacuum
state. In@5#, the possibility of tuning the phasef over a large
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range, by slightly detuning the cavity mode from theg→e
transition, has been shown, but we shall not consider
possibility here.

We now show that this atom-cavity QPG can be used
realize a QPG between two cavity modes, by considering
arrangement very similar to that of theCNOT gate shown in
Fig. 3. The cavitiesA andB are again the two qubits, while
M is again the auxiliary cavity needed to ‘‘reflect’’ the ato
and disentangle it. The two classical sources inside the c
ties SA andSB are no longer needed, while we consider t
possibility of applying Stark shift electric fields inside th
cavities, in order to tune theg→e transition in and out of
resonance from the cavity mode. The scheme of the Q
implementation is shown in Fig. 5 and involves only tw
atom crossings, as in theCNOT gate of the preceding section
and threep/2 pulses between thei and g levels ~the Had-
amard gatesH of Fig. 5!, which can be realized with reso
nant classical microwave sources applied between the h
Q cavities.

Let us assume a generic state of the two cavity qubits

uc&5a0u00&1a1u01&1a2u10&1a3u11&, ~4.2!

and that a first atom, initially prepared in statei, is subject to
a p/2 pulse, so to enter cavityA in state (u i &1ug&)/A2. The
cavity mode is perfectly resonant with theg→e transition
and the atom velocity is selected so that the atom underg
a 2p Rabi pulse if it is in stateg and the cavity contains on
photon~the QPG of Ref.@5#!. The resulting state at the ex
of cavity A is

u i & ^ uc&

A2
1

ug&

A2
^ ~a0u00&1a1u01&2a2u10&2a3u11&).

~4.3!

Then the atom undergoes another resonantp/2 pulse on the
i→g transition and the state of the system becomes

u i & ^ ~a0u00&1a1u01&)1ug& ^ ~a2u10&1a3u11&). ~4.4!

Then the atom crosses cavityB, where it is subjected again
to the atom-cavity QPG as in cavityA, so that the state of the
system becomes

u i & ^ ~a0u00&1a1u01&)1ug& ^ ~a2u10&2a3u11&). ~4.5!

FIG. 5. Logical scheme of the quantum phase gate~QPG! be-
tween two cavities. The vertical lines denote the QPG, whileH
denotes the Hadamard gates~i.e., p/2 pulses! applied on the atom.
The dashed box denotes the ‘‘atomic mirror’’~see Sec. III!.
6-5
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At this point, as in theCNOT case of the preceding section,
order to realize the final transformation and disentangle
atom from the cavities, one has to ‘‘reflect’’ it. This is aga
achieved with the ‘‘atomic mirror’’ scheme, i.e., using th
auxiliary cavity M of Fig. 5, which acts as a quantum
memory and is able to transfer the entanglement from
first atom to a second atom, which is crossing the appar
with the same absolute velocity but in the opposite direct
@see, for example, Eqs.~3.5! and ~3.6!#.

The second atom is then subjected to ap/2 pulse before
entering the cavities and the state of Eq.~4.5! becomes

u i &
A2

^ ~a0u00&1a1u01&1a2u10&2a3u11&)

1
ug&

A2
^ ~a0u00&1a1u01&2a2u10&1a3u11&).

~4.6!

The last step is the QPG between the atom and cavityA, i.e.,
the atom has to cross cavityB undisturbed~this is achieved
by strongly detuning theg→e transition with a Stark shift
field! and then has to undergo another full Rabi cycle
cavity A. The final state is

u i &1ug&

A2
^ ~a0u00&1a1u01&1a2u10&2a3u11&), ~4.7!

which is the desired result, corresponding to a QPG betw
cavitiesA andB with conditional phase shiftf5p, and with
a disentangled atom.

V. ONE-QUBIT OPERATIONS

One-qubit operations are straightforward to implement
qubits represented by two internal atomic states becau
amounts to applying suitable Rabi pulses. This task is
trivial for bosonic degrees of freedom such as our cav
modes, because the two lowest Fock states, for example
coupled to the more excited ones. The most practical s
tion is to implement one-qubit operations again sending
oms through the cavity. To be more specific, one has to s
an atom prepared in the ground stateug& through the cavity,
with the classical fieldS tuned at the frequency correspon
ing to the transition between the statesuV 2

(0)(t50)& and
ug,0&. If one sets the time duration and the intensity of t
classical sourceSas in the case of theCNOT~cavity→ atom!,
i.e., to realize such ap pulse between the selected levels, o
implements a ‘‘NOT-phase’’ gate, which, in the canonica
basis$u0&,u1&%, is described by the following matrix:

N~u!5S 0 e2 iu

eiu 0 D , ~5.1!

where u depends linearly on the phasewS of the classical
field of Eq. ~3.2! and is therefore easily controllable@this
scheme is simply a part of theCNOTINV(A→B) gate pre-
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sented before#. If on the other hand the atom inside the ca
ity undergoes ap/2 instead of ap pulse, one realizes the
‘‘Hadamard-phase’’ gate

H~u8!5
1

A2
S 1 e2 iu8

eiu8 21
D , ~5.2!

whereu8 also depends linearly on the classical field pha
wS and is therefore controllable.N(u) and H(u8) can be
used to build the more general one-qubit operation and th
fore, together withCNOTINV(A→B), form a universal set of
gates.

Note that theNOT-phase gate can also be used for
alternative realization of theCNOTINV(A→B) gate between
two cavities. In the scheme described in the preceding s
tion, one needs the auxiliary cavityM and the second atom
crossing in the opposite direction in order to disentangle
first atom from the cavities. One could simplify this la
stage@step~iii ! and~iv! of the preceding section# by applying
an exactp/2 pulse when the atom has just left the seco
cavity and the state of the system is that of Eq.~3.3!. The
total state becomes

aAu0&A^ uc&B^
ug&1ue&

A2
1bAu1&A^ uc&B^

ug&2ue&

A2

5$aAu0&A^ uc&B1bAu1&A^ uc&B% ^ ug&/A2

1$aAu0&A^ uc&B2bAu1&A^ uc&B% ^ ue&/A2.

~5.3!

If now the atom is detected by a state-sensitive detector
the ug& state is detected, the two cavities are projected
aAu0&A^ uc&B1bAu1&A^ uc&B and one has implemented ju
the desiredCNOTINV gate. On the contrary, if the atom i
found in the excited stateue&, the state ofA andB becomes
aAu0&A^ uc&B2bAu1&A^ uc&B and theCNOTINV gate is ob-
tained once that cavityA is subject to ap-phase shift, which
can be realized by means of twoNOT-phase gatesN(u), the
first with u5p/2 and the second withu50. In this way the
atom is disentangled by the measurement. However,
practical application of this scheme is seriously limited
the quantum efficiency of atomic detectors, which is usua
far from 100%.

VI. MANY-QUBIT GATES

A. The Toffoli gate

We have shown how to implement a set of univer
quantum gates with the proposed cavity QED schem
Therefore in principle the most general quantum operat
involving n qubits can be realized in terms of the one- a
two-qubit operations described above. This decomposit
however, implies a degree of network complexity, and
number of resources and steps that is rapidly increasing
the number of qubitsn. One of the main advantages of th
present proposal is that it is particularly suited for the e
cient implementation of many-qubit quantum gates, whi
6-6
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in many cases, can be realized with the same number of s
as the two-qubitCNOT gate of Sec. III.

A particularly clear example of the possibilities of th
proposed scheme is provided by the Toffoli gate@23#

ux&Auy&Buz&C→ux&Auy&Bu@z1~x`y!#mod2&C , ~6.1!

in which the target qubitC is controlled by the first two,A
and B. The effect of the Toffoli gate on the generic thre
qubit state

uC0&5a1u000&1a2u001&1a3u010&1a4u011&1a5u100&

1a6u101&1a7u110&1a8u111& ~6.2!

(un,m,l &5un&A^ um&B^ u l &C are the tensor product of th
cavity mode Fock states! is to exchange the last two compo
nentsu110& andu111&. The implementation of this gate need
the same arrangement of aligned cavities crossed by Ryd
atoms used for theCNOT gate of Fig. 3, except that now on
has three cavity qubits ~with the corresponding classica
sourcesSA , SB , andSC) instead of two. The auxiliary cavity
M is again needed for the atomic mirror scheme used
disentangle the atom. The atom is initially prepared in st
ug&, and when it is in the first cavityA, it is subject to ap
pulse between the dressed stateuV 1

(0)(0)& and ug,0&. This
pulse creates atom-cavity entanglement and the state o
total system becomes

@a1u000&1a2u001&1a3u010&1a4u011&] ^ ue&

1@a5u100&1a6u101&1a7u110&1a8u111&] ^ ug&.

~6.3!

Then, when the atom reaches the second cavityB, it under-
goes anotherp pulse, at the new frequencyv2 correspond-
ing to the transition betweenug,0& anduV 1

(2)(0)&, so that the
transformation

u0&B^ ug&→u2&B^ ue& ~6.4!

is realized. This means temporarily leaving the logical s
space, even though this allows us to realize a signific
simplification of the scheme. The state after this second
is therefore

@a1u000&1a2u001&1a3u010&1a4u011&1a5u120&

1a6u121&] ^ ue&1@a7u110&1a8u111&] ^ ug&.

~6.5!

When the atom enters inC, the classical fieldSC is applied
so as to realize theCNOT~atom→ cavity C) of Sec. III and
the state of Eq.~6.5! becomes

@a1u000&1a2u001&1a3u010&1a4u011&1a5u120&

1a6u121&] ^ ue&1@a7u111&1a8u110&] ^ ug&.

~6.6!

At this point one has to disentangle the atom from the th
cavities and adjust the state components in which the ca
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C contains two photons. Both problems can be solved
again using the auxiliary cavityM and a second atom cross
ing the apparatus in the opposite direction as in the ‘‘atom
mirror’’ configuration of Sec. III. The cavityM transfers the
entanglement with the cavities from the first to the seco
atom, which is not subject to any classical pulse inC. Then
the second atom entersB, where it undergoes ap pulse at the
frequencyv2, which simply inverts the transformation of Eq
~6.4! ~thanks to the fact that nou0&B^ ug& term is present!,
correcting in this way the terms of Eq.~6.6! in which the
second cavity contains two photons. As a consequence
state of the atom-cavities system becomes

@a1u000&1a2u001&1a3u010&1a4u011&] ^ ue&

1@a5u100&1a6u101&1a7u111&1a8u110&] ^ ug&.

~6.7!

Finally, the atom entersA, where it is subjected to ap pulse
resonant with the transitionuV 1

(0)(0)&→ug,0&, exchanging
u0&A^ ug& with u0&A^ ue&, so that the second atom is dise
tangled from the cavities and one gets the desired gen
output of a Toffoli gate, i.e.,

@a1u000&1a2u001&1a3u010&1a4u011&1a5u100&

1a6u101&1a7u111&1a8u110&] ^ ug&. ~6.8!

Notice that in this way we have implemented the Toffoli ga
with two atoms only, as in theCNOT gate of Sec. III. More-
over, this scheme can be easily extended to the casen
>4 cavity qubits, for the implementation of then-qubit gen-
eralization of the Toffoli gate. We need only two atom
crossing the aligned cavities in opposite directions in t
more general case. The pulse sequence is similar to that
cussed above: both atoms undergo ap pulse resonant with
the transitionuV 1

(0)(0)&→ug,0& in the first cavity, while in
the following n22 cavities they are submitted to ap pulse
at the frequencyv2. In the last cavity, the target qubit, th
first atom experiences aCNOT~atom→ cavity! while the sec-
ond atom crosses it undisturbed. In the scheme propo
here, the target qubit is necessarily the last cavity. Howe
it is always possible to realize then-qubit generalized Toffoli
gate with the target qubit in a generic position of the string
cavities by simply applying a two-qubit operation to th
above scheme. In our scheme this means using four atom
most, and in any case this is much more convenient t
realizing this genericn-qubit gate from one- and two-qub
operations.

B. Encoding and decoding in quantum error correction codes

Other examples for which the present cavity QED sche
offers the possibility of an efficient implementation of oper
tions involving many qubits are the encoding and decod
processes used in quantum error correction schemes@24,25#.
Errors in quantum information processing are due to the
teraction with uncontrolled degrees of freedom~the environ-
ment!, yielding an entanglement of the quantum state of
register with some environmental states. The main idea
6-7
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quantum error correction is to combat ‘‘bad’’ entangleme
with ‘‘good’’ entanglement, that is, to protect quantum info
mation by storing it not in a single qubit but in an entangl
state ofn qubits. This is the encoding process; if the err
rate is not too large, it is possible to recover the origin
quantum information by using a suitable decoding pro
dure, because the eventual data corruption can be reveale
a measurement on the auxiliary qubits and information
finally be restored with single-qubit operations. The mo
general one-qubit error~flip error, phase error, or a comb
nation of the two! can always be corrected using a five-qu
encoding and decoding procedure@24,25#. However, if one
considers one specific form of error only, three-qubit enc
ing is sufficient for the implementation of quantum err
correction codes. For simplicity, let us consider this lat
case.

Let us assume that we want to protect a generic s
au0&A1bu1&A of the cavityA. For the encoding process, on
needs two other ancilla qubits, cavityB andC, and one has
to realize the following transformation into a maximally e
tangled, Greenberger-Horne-Zeilinger state@26# of three
cavities:

@ au0&A1bu1&A ] ^ u0&B^ u0&C→au000&1bu111&.
~6.9!

This encoding process can be realized using a scheme a
gous to those discussed above for theCNOT and Toffoli
gates. Again, only two atoms are needed, with the sec
one crossing the aligned cavities in the opposite direct
which serves the purpose of disentangling the first ato
with the help of the auxiliary cavityM in the ‘‘atomic mir-
ror’’ scheme described in Sec. III.

The initial state of the system is

@ au0&A1bu1&A ] ^ u0&B^ u0&C^ ue&

[@ au000&1bu100& ] ue&. ~6.10!

When the atom entersA it undergoes theCNOT~cavity
A→atom!; when the atom arrives inB, the classical fieldSB
is switched on in order to realize theCNOT~atom → cavity
B) transformation~see Sec. III! and the sameCNOT~atom→
cavity C) operation is applied when the atom is inC. One
can show that the state of the total system becomes

@ au000&ue&1bu111&ug& ]. ~6.11!

Except for the entanglement with the atom, the state ofA, B,
and C is of the desired form, and therefore the situation
analogous to that of theCNOT gate of Sec. III@see Eq.~3.3!#.
Atom disentanglement can be obtained by again using
atomic mirror scheme of Sec. III, or eventually, the atom
detection scheme discussed in Sec. IV, which is, howe
seriously limited by detector inefficiencies. The logical tran
formations we have implemented in this section are sc
matically described in Fig. 6~the dotted line box represen
the atomic mirror!.

Decoding is obtained by repeating exactly the same p
cedure adopted for encoding the state and assuming a
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initial condition for the qubits set the encoded state~6.9!. It
is straightforward to check that this amounts to realizing
inverse transformation

au000&1bu111&→au000&1bu100&

5@ au0&A1bu1&A ] ^ u0&B^ u0&C . ~6.12!

It is also easy to see that the encoding scheme descr
here can be extended for the controlled preparation of m
mally entangled states ofn cavities. One has to considern
cavities ~plus the auxiliary cavityM ) and, as in then53
case, one needs only two atoms crossing then11 aligned
cavities in opposite directions. In analogy with the descr
tion above, in the first cavity the two atoms undergo t
CNOT~cavity A → atom! transformation, while in all the
other n21 cavities the first atom goes to aCNOT~atom →
cavity! gate and the second one crosses them with no cla
cal field applied. In this way, thanks to the disentanglem
action of the second atom, the following maximally e
tangled state ofn cavities is prepared:

@ au0&11bu1&1 ] u0&2 . . . u0&n→au00 . . . 0&1bu11 . . . 1&.
~6.13!

VII. CONCLUSIONS

In this paper we have presented a scheme for implem
ing quantum logic operations within a cavity QED config
ration. The quantum register is composed by a series of h
Q cavities and information is encoded in the two lowe
cavity Fock states. Both the preparation and the detectio
the quantum state of individual qubits, which is an essen
ingredient in quantum algorithms, can be easily perform
In particular, the detection of the two Fock states could ev
be performed in a quantum nondemolition way, as recen
demonstrated@13#. Both one- and two-qubit operations ca
be performed by sending appropriately prepared ato
through the cavities. An important advantage of the sche
is that it is particularly suitable for the direct implementatio
of some useful many-qubit quantum gates, such as, for
ample, the Toffoli gate and itsn-qubit generalization, or the
encoding-decoding network of quantum error correct
codes. The scheme could be implemented in a generic ca
QED scheme, even if here we have specialized to the cas
microwave cavities and circular Rydberg atoms, for whi
entanglement manipulation has already been demonstr

FIG. 6. Logical scheme of the encoding network of Eq.~6.9!;
qubitsB andC are initially prepared in the vacuum state, whileA is
the qubit storing the initial information. The dashed boxiv) repre-
sents the atomic mirror described in Sec. III.
6-8
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@5,13#. For example, the same scheme could be adapte
the optical frequency domain, by using high-Q optical cavi-
ties, as for example the whispering gallery modes of sil
microspheres@27#, in which one can have a miniaturizatio
of the scheme and, therefore, a faster gate operation.
scheme proposed here is in principle scalable, even i
practice its scalability will be limited by various factors. I
the microwave case one is limited by the spontaneous e
sion from the circular Rydberg levels (.30 ms! and by the
fact that all of the apparatus has to be cooled at cryoge
temperatures to avoid the thermal radiation. In the opt
case, cooling is no longer needed and the limitations du
the spontaneous emission could be avoided in principle
using atomicL transitions and adiabatic passage throug
dark state@28#. However, in the microwave case, the pr
posed quantum gates could be implemented using avail
technology, and therefore proof-of-principle demonstratio
of quantum computation with, say, ten qubits could
achievable. Instead, even if whispering gallery modes in
crospheres withQ.109 have already been realized@27#, en-

FIG. 7. The Deutsch gate. The box withH(u) performs a
‘‘Hadamard-phase’’ transformation on the qubit with phaseu @see
Eq. ~5.2!#.
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tanglement manipulation in this case has not be
experimentally demonstrated yet.

Recently, a similar proposal using the two lowest Fo
states of a high-Q cavity as a logical qubit has been pr
sented, involving an engineered network of defects in a p
tonic band-gap material@29#. This proposal is promising
with respect to scalability since, using atoms traveling alo
engineered waveguides in the photonic band-gap mate
spontaneous emission could be completely eliminated. H
ever, even if this proposal is promising in terms of the tec
nological realization, in this case, as in the silica microsph
case, entanglement manipulation has not yet been exp
mentally demonstrated.

From a general point of view, the scheme proposed h
is analogous to the linear ion trap scheme, except that n
the high-Q cavities play the role of the ions, and the atom
and not the collective center-of-mass motion, play the role
the quantum bus. At first sight, it may seem unpratical
reverse the role of atoms and photons as we have done
since the common wisdom is that atoms and ions are suit
for storing information while photons are best suited
transferquantum information between different sites. How
ever, the practical implementation of quantum algorithms
linear ion traps is presently limited by the heating of t
center-of-mass motion@30#. On the contrary, in the case o
photonic qubits discussed here, once the limitations due
the spontaneous emission are eliminated~as in the photonic
band-gap case and in the microsphere case with dark-
transitions!, the scheme is then only limited by the decohe
ence due to the finiteQ of the cavities, which could reach
however, values of the order of 1010, allowing therefore a
sufficient number of gate operations. Moreover, in view
the fact that photons are in any case the best tools for qu
tum information transport, it may nonetheless be usefu
have schemes able to process and temporarily store qua
information using photons.
-

t

FIG. 8. Physical implementa-
tion of the Deutsch gate:N(u)
andH(u8) are the one-qubit trans
formations of Eqs.~5.1! and~5.2!;
T1 ,T2 are theCNOT~atom→ cav-
ity! andCNOT~cavity → atom!, re-
spectively. The index i corre-
sponds to the four differen
functions f i(x).
6-9
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APPENDIX: A REALIZATION
OF THE DEUTSCH ALGORITHM

As an example of a simple algorithm that can
implemented with the quantum gates presented bef
we consider the Deutsch algorithm@15# in the improved
version of Ref.@16#. Consider a generic Boolean functio
f (x) mapping$0,1% into $0,1%. There are four different pos
sibilities, the two constant functionsf 1(x)50, f 2(x)51,
and the twobalancedfunctions f 3(x)5x, f 4(x)512x. Us-
ing classical algorithms, the distinction between these
different classes of functions necessarily requires thatboth
values of f (x) have to be evaluated. On the contrary, t
Deutsch quantum algorithm solves the problem in just o
step. We have to consider the quantum circuit of two cavi
in Fig. 7. Initially both cavities are in the vacuum state; th
they are submitted to the Hadamard-phase transform of
~5.2!, with phases equal to 0 andp, respectively,@step~a! of
Fig. 7#. As shown in Sec. IV, this transformation can b
implemented with a single atom prepared in the ground s
ug& crossing both cavities. At this point the system underg
the transformation of step (b), namely, the following ‘‘f ’’
gate:

ux&Auy&B→ux&Au@y1 f i~x!#mod2&B , ~A1!

wheref i(x), i 51,2,3,4 are the four functions defined abov
and @y1 f i(x)#mod2 means addition modulo 2. Fori 51,
d

.J

M

.

r,
-

e

y

.M
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this means that nothing happens to the system; on
contrary, for i 52 A remains unchanged but the seco
qubit in cavity B undergoes aNOT transformation. Finally,
it is easy to verify that fori 53 and for i 54 the f gate of
Eq. ~A1! is equivalent to theCNOT gate and to theCNOTINV

gate, respectively. In the preceding sections we h
seen how to implement all these transformations. At stage~c!
we have then to implement another Hadamard tra
formation with the zero phase onA and measure the stat
of this qubit. According to the logical network of Fig. 7
it is possible to show that if thef i(x) of the f gate
is a constant function, then the cavityA must be found
in u0&A , otherwise, if f i(x) is a balanced function, the
cavity A will be in u1&A : in this way, one can establish i
the functionf i is constant or balanced using a single functi
evaluation. The physical implementation of the Deuts
problem in terms of the cavities is sketched in Fig. 8. In t
case of the constant function it is possible to only use t
atoms, because fori 52 one atom is needed for theNOT

transformation on the cavityB of stage~b! and another atom
is needed for the Hadamard transform on the cavityA at step
(c). For the balanced functions, the number of atoms
instead equal to four, because, besides the two atoms fo
implementation of the Hadamard transformations, one ha
use two atoms for theCNOT ~if i 53) or the CNOTINV

~if i 54).
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