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Transfer of nonclassical features in quantum teleportation via a mixed quantum channel
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Quantum teleportation of a continuous-variable state is studied for the quantum channel of a two-mode
squeezed vacuum influenced by a thermal environment. Each mode of the squeezed vacuum is assumed to
undergo the same thermal influence. It is found that when the mixed two-mode squeezed vacuum for the
guantum channel is separable, any nonclassical features, which may be imposed in an original unknown state,
cannot be transferred to a receiving station. A two-mode Gaussian state, one of which is a mixed two-mode
squeezed vacuum, is separable if and only if a positive well-defthéghction can be assigned to it. The
fidelity of teleportation is considered in terms of the noise factor given by the imperfect channel. It is found
that quantum teleportation may give more noise than direct transmission of a field under the thermal environ-
ment, which is due to the fragile nature of quantum entanglement of the quantum channel.

PACS numbds): 03.67.Hk, 42.50.Dv, 03.65.Bz

[. INTRODUCTION pure squeezed state into mixture and deteriorates the en-
tanglement property. The environmental effect is unavoid-
Quantum teleportation is one of the important manifestaable for any type of teleportation and there have been sug-
tions of quantum mechanics. By quantum teleportation amestions to purify a mixed entangled state into a maximally
unknown quantum state is destroyed at a sending statioentangled singlet state for a discrete two-level sysféin
while its replica state appears at a remote receiving statioDuanet al. suggested a way to purify a Gaussian continuous-
via dual quantum and classical channels. The key to quantuwariable stat¢10]. However, their purification protocol may
teleportation is the entanglement of the quantum channetoncentrate entanglement only to a finite dimensional Hilbert
Quantum teleportation has been studied for various systengpace. In fact, it is impossible to purify a two-mode squeezed
including two-level systemgl], N-dimensional system£], state into a maximally entangled state as it is unphysical.
and continuous variabld8-5]. In particular, quantum tele- Opartny et al. showed that the problem of not having the
portation of continuous variable states has been a focus beaximally entangled squeezed vacuum can be overcome by
cause of a high detection efficiency and handy manipulatiowonditional measuremenfé1]. Entanglement quantification
of continuous-variable stat¢4,6]. and purification for continuous-variable states have been
Quantum teleportation of a continuous-variable state wastudied by Parkeet al. [12]. The imperfect detection effi-
first suggested by Vaidman employing the Einstein-ciency and the imperfect realization of unitary transforma-
Podolsky-RosefEPR state[7] for the quantum channel in tion at the receiving station can also lower the efficiency of
the framework of nonlocal measuremef8% Braunstein and teleportation.
Kimble made use of quadrature-phase entanglement in a In this paper, we are interested in the efficiency of quan-
two-mode squeezed vacuum to teleport the quadrature-phatgm teleportation in the real world. Nonclassical properties
variables. With the high detection efficiency of the homo-such as sub-Poissonicity and squeezing of the original state
dyne measurement and highly squeezed light, Ralph andan be very useful for communication purposes. As the
Lam [5] and Furusawat al.[6] realized quantum teleporta- quantum channel is not maximally entangled, some or all of
tion of continuous-variable states by experiments. Ralph anthe nonclassical properties can be lost during the teleporta-
Lam produced the required entangled state using two brighton. Braunstein and Kimble found that when the quantum
squeezed sources. A two-mode squeezed vacuum is eohannel is not squeezed, i.e., when the channel is merely a
tangled with respect not only to quadrature phases but also two-mode vacuum, no quantum features can be observed in
photon-number difference and phase sum. Based on thibe teleported statf4]. This is due to quantum tariffs of
number-phase entanglement, Milburn and Braunstein sugracuum noise, which arises at the sending and receiving sta-
gested another protocol to teleport a continuous-variabléions. The tariff was coinedquduty by Braunstein and
state[8]. Kimble. The pure two-mode squeezed state becomes mixed
There are a few problems in the quantum teleportation ofs the quantum channel is embedded in the environment.
guadrature-phase variables using the two-mode squeez€lliantum teleportation via the mixed channel can bear a dif-
vacuum. The perfect quantum teleportation is possible onlyerent nature. For example, one may ask “Does the classical
with a maximally entangled state which means infinitecorrelation play any role to transfer the nonclassical fea-
squeezing in the squeezed state. The mean energy of a twiowes?” It is not clear so far under which condition any non-
mode squeezed state increases exponentially as the squeelassical features implicit in an original unknown state can-
ing increases so that the maximally entangled squeezed statet be transferred by teleportation via a mixed channel. We
is unphysical. As the quantum channel is exposed to the reallso consider the fidelity of teleportation to measure how
world, it is influenced by the environment, which turns theclose the teleported state is to the original state when the
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quantum channel is mixed. Popescu studied quantum telavhere C}(¢) and CF(¢) are the characteristic functions for
portation of a discrete two-level system for a mixed quantunthe R andP functions, respectively. The family of two-mode
channel and found that even when the quantum channel iguasiprobability functions can be analogously defined as
not maximally entangled, it has better fidelity than any clas-

sical teleportation protocdl13]. In this paper, we restrict 4
ourselves to the situation in which the decoherence effectis R,(«,B)= z—f d?¢d?y
i (1-0)?
the same on each mode of the two-mode squeezed vacuum. ™
The continuous-variable state can be easily analyzed us- 2a—¢|2 2|8-
ing the quasiprobability functiongl4]. The description of a Xe ;{ — — P(¢,7).
guantum-mechanical state in phase space is not unique due 1-o 1-o

to the uncertainty principle; hence there is a family of qua- 3
siprobability functions of which th®, Q, and Wigner func-
tions are widely usefll5]. In particular, it is well-known that
the P function can be used as a measure of the nonclassica
ity of a given field[16]. A quantum state which shows non-
classical features is not represented by a well-defih&dc-
tion except a vacuum state. The nonclassical depth is defin
based on how much noise to put into the nonclassical state
have a positive well-defineR function.

When teleportation is imperfect, a noise-added replic

I_III. TELEPORTATION FOR CONTINUOUS VARIABLES
IN THERMAL ENVIRONMENTS

A continuous-variable sta’r:@,D can be teleported with use

a two-mode squeezed vacuum for a quantum chdriiel
Hwo modesb andc of the squeezed vacuum are distributed
separately to sending and receiving stations. The protocol

tate i duced at th S ati B Vzing th omprises two operations at the sending station and one op-
state IS produced at the receiving station. By analyzing e aton at the receiving station. At the sending station, the

added noise, we find the critical point for the quantum chan-original unknown state of modeis mixed with a modéd of

nel not to transfer any nonclassical features which may bg, o quantum channel by a 50/50 beam splitter. Two conju-
!mpgsed n ?nhorlgmal llmknown .Srt]atﬁ' We examlni the ﬁo'gate guadrature variables are measured, respectively, for the
inci ?nce (r)] t eI(k:)rltlca point wit blt engmerr:ttW er]l tdetwo output fields of the beam splitter. The measurement re-
quantum channel becomes separable. To do that, we fin "its are sent to the receiving station through the classical
necessary and sufficient condition of separability for any,,anne| The other modeof the squeezed vacuum is then
two-mode Gaussian stafd7], one of which is the mixed displaced at the receiving station according to the measure-

two—_mode squeezed state. .The fidelity, which is defined 4fent results. It is important to displace the photon of mode
the inner product of the original and teleported states, can bgntangled with the photon measured at the sending station.
represented by the overlap of their Wigner functi¢as].

S . ; Braunstein and Kimble considered the teleportation protocol
We show that the fidelity is a function of the added noise. for the pure state of the quantum chanriel] pln this ngper

_ The added noise by teleportation is compared with that by, o i, estigate the teleportation via the mixed quantum chan-
direct transmission of the original state. It is found that thenel to consider the influence of a thermal environment. We
nonclassical nature of the original state can be more eas'lé{ssume that the thermal environment gives the same effect

lost by teleporta’gion thgn by direct transmission. This is be'on each mode of the quantum channel and the original state
cause teleportation relies on the entanglement of the quans

h | which i fraqil iS prepared in a pure state.
tum channel, which is very fragile. The two-mode squeezed vacuum of the quantum channel

is entangled and represented by the Wigner fundtich
Il. QUASIPROBABILITY FUNCTIONS

4
Before considering quantum teleportation, we briefly in-  Wed ap,ac)= —exd —2(|ap|*+ | ac|?) cosh Z4

troduce the quasiprobability functions. The family of qua- m

siprobability functions is obtained by the following convolu- +2(apact af af)sinh 25,4, (4)

tion relation:

where s, is the degree of squeezing and the complex
2 2|a— BJ? quadrature phase variablg .= ay, . +iayp .. Whens,c—»,
R(r(a):j d%[—_exp{ - f) P(B), (1)  the state(4) manifests the maximum entanglement and be-
m(l—o) l1-0o

comes an EPR state. However, the mean photon number,

which is 2 sinR Ssq» becomes infinity in this limit.
where theo-_parametrizecRo_(a) function becomes th@ Before the action of the beam Splitter, the total state is a
function for o= — 1, the Wigner(W) function fore=0, and  Product of the original state and the state of the quantum
the P function for o=1. By the Fourier transform, we find Cchannel, which is represented by the total Wigner function
the relation between their characteristic functions Wi(aa, ap,ac) =Wo(aa) Wod ap, ac), whereWy(a,) is the
Wigner function of the original state, . The product state of
the original field and quantum channel becomes entangled at
the beam splitter. Considering the unitary action of the beam
splitter, the quadrature variableg  of the output fields are

(1-0)|€)?
2

CR(e)= exp{ - }cp(a, )
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related to those of the input fielday = (a,* a,)/\2. The
Wigner functionWtB(ad ,aq,ac) for the total field after the
beam splitter is

FZ—A2(|ab|2+|aC|2)

Wod ap ;T)ZNEX;{ -

2A

e 9

* _*
et oy aeg— ay (apactapag)

V2 2
where N is the normalization factor and the two parameters

which exhibits entanglement between the modesdb. [=T(1+2n)+(1—T)cosh %, A=(1-T)sinhX,. The

Setting homodyne detectors at the output ports of theime evolution of nonlocality for a two-mode squeezed state
beam splitter, the imaginary part af; and the real part oke  in a thermal environment is discussed 20]. The renormal-
are simultaneously measured by appropriately choosing thged timeT(t) = 1— exp(~ ). The relative strength of to
phases of reference fields for the homodyne detectors. Eagh determines how much the mixed channel is entangled.
measurement result is transmitted to the receiving station tuhen A is zero forT— 1, the channel loses any correlation
displace the quadrature variables of the field modé&Ve 55 to have neither classical nor quantum correlationTAt
have to make sure that the displacement operation is done Qn0, the mixed squeezed stat®) is simply the squeezed
the photon of mode entangled with the photon measured aty5cyum(4).
the sending station. After the displacemeXay,a;), the When the quantum channel is embedded in thermal envi-
field of modec comes to be represented by the Wigner func-ronments, the teleported state is still represented by the
tion W, (), Wigner function(6) with the quantum channé®). However,
a question remains in the unitary operation at the receiving
station when the channel is a mixed state. According to the
philosophy of the faithful teleportation, the displacement has
to be determined to maximize the fidelity of teleportation.
Braunstein and Kimblé4] found that the displacement of The fidelity 7, which measures how close the teleported state
A(aly,al) = —2(a’—ial) maximizes the fidelity when the S O the original state, is the projection of the original pure
channel is a pure two-mode squeezed state. The probabili§fate|¥o) onto the teleported state of the density operator
P(ay,at) of measuringaly and o, at the sending station is pr: F=(Wo|p;|V,). The fidelity is also represented by the

WF(ad,ae,ac)=Wt( ’QC)' ©)

Wr(ac):fdzaddzaeWP(adyaeyac_A(aid:a;))- (6)

the same as the marginal Wigner function
P(aid ,arg) = j da[jdaiedzc)zCWF'( aq,qe, Q). (7)

A. Two-mode squeezed vacuum in thermal environments

The quantum channel initially in the two-mode squeeze
vacuum results in a mixed state by the interaction with th

thermal environment. Assuming that two thermal modes ar
independently coupled with the quantum channel, the dy-

namics of the squeezed field is described by a Fokker-Plan
equation in the interaction picture,

IWqd ap,ac;t) vy d Ja
—_—— == —ait ——a;
ot 2i5pc | da; daf
o 2
+(1+2n) ch(abaac;t)a
&ai&ai*

8

€ ; . - i
éhe unitary operation at the receiving station may depend on

C

overlap between the Wigner functions for the original and
teleported statefl 8],

]-":n-J d2a W,y(a)W,(a). (10

For a maximally entangled quantum channel, the original

Jure state is reproduced at the receiving station and the fi-

delity is unity. For an impure or partially entangled channel,

original states to maximize the fidelity, which has been
%own for the teleportation of a two-level stdf3,21]. For

the infinite dimensional Hilbert space, a formal study is very
complicated. However, we have found that even when the
channel is mixed, the displacement®fay, ag) = — V2(al,
—iay) maximizes the fidelity for a coherent projector
|u){(v*|, where|u) and|v*) are coherent-state bases. An
unknown state can be written as a weighted integral of the
coherent projection operators

Po= (11

f 0 PPy )| (v,

wheren is the average photon number of the thermal enviwhere P(u,v) is proportional to the positivé- function

ronment. The two thermal modes are assumed to have th@2]. The unitary operation, which maximizes the fidelity at
same average energy and coupled with the channel in th@e receiving station, is thus independent of the original state.
same strength. This assumption is reasonable as the two
modes of the squeezed state are in the same frequency and
the temperature of the environment is normally the same. By
solving the Fokker-Planck equatidB), the time-dependent
Wigner function is obtained as

B. Separability of the quantum channel

A discrete bipartite system of modbsandc is separable
when its density operator is represented b=, P,pp

032305-3



JINHYOUNG LEE, M. S. KIM, AND HYUNSEOK JEONG PHYSICAL REVIEW A62 032305

®,30,r. Separability and measures of entanglement for con- _ 2

tinuous variable states have been studig?|17]. In particu- Wi(a)= | d°BP(a—B)Wo(B), (14)

lar, Duanet al.found a criterion to determine separability of

a two-mode Gaussian state. Here, we have a somewhat dihere the functior . characterizes the teleportation process,
ferent approach to finding when a two-mode squeezed

vacuum in thermal environments is separable and not quan- P.(a—pB)= exp{ ——|a—ﬁ|2) (15)
tum mechanically entangled. Our analysis of separability for 7 ™, n- ’

the mixed squeezed vacuum is extended and fully described ) ) ) .

for any two-mode Gaussian state in the Appendix. and the noise facton,, defined in Eq.13), is completely

As shown in the Appendix, the mixed two-mode Squeezedjetermi'ned by the characteristics of the quantum channel.
vacuum in the thermal environment is separable when a posi.N€ NOise factor increases monotonously as the interaction
tive definite P function can be assigned to it. The mixed ime T increases. The larger the initial squeezing, the less
two-mode squeezed vacuum serving the quantum chann¥plnerable the quantum channel is. The noise factois

can then be written by a statistical mixture of the direct-1dentical to the covariance introduced 6] except for a
product states factor of 4. Ralphet al. found that the covariance measures

the noise added to the transmitted fi€hdi].

- ) - - The noise facton, is related to the fidelity. With use of
pqc:j d“BP(B)po(B) @ pe(B), (12 Egs.(10) and(14), the fidelity can be written as
whereP(B) is a probability density function. F= J' d2a d28 W P (a—B)W _ 16
With use of Egs(3) and(9), we find that the mixed two- Tr a d*BWo(@)P-(a=B)Wo(B) (16)

mode squeezed vacuum is separable wingnl, wheren

is defined as In the limit of n,—0, the functionP (a—B) in Eg. (15

becomes & function and the fidelity becomes unity. The
teleportation loses the original information completely with
F=0 in the limit of n,— .

The properties of the nonclassical states have been calcu-
lated and illustrated by quasiprobability functions. The non-
classical features are associated especially with negative val-
ues and singularity of the quasiprobability function

N,(NSqe, T)=T = A=(2n+1)T+(1—T)exp( — 25,0
(13

according to the conditiofA10). This is in agreement with
Duan et al’s separation criteriofi17]. The pure two-mode

squeezed vacuum far=0 is neyer separa@e unlesg=0. [16,25,268. Suppose an original state whd3éunction is not

For the zero-temperature environment, ifes 0'. the two- positive everywhere in phase space. When this state is tele-
mode squeezed state stays qgantu_m mechanically entanglﬁgrted, its nonclassical features are certainly transferred to
at any time. For the reasons given in Sec. IV, we refem{o yhe teleported state if the teleportation is perfect. If the tele-

as Eche noise r:actor. h | ) ortation is poor, the teleported state may hav@ifanction
If n,<1, the quantum channel state is entangled and thgositive definite and lose the nonclassical features.

teleportation is performed at the quantum level. Wimen By the Fourier transform of Eq14), the convolution re-

=1, the quantum channel is no longer quantum mechanipaiion is represented in terms of the characteristic functions
cally entangled. However, the intermode correlation is still;g

there asA #0 in Eq.(9). The following questions then arise.

Does this classical correlation influence the teleportation? CYV(§)=exq—nT|§|2)C‘(’)V(§). (17
Can any nonclassical properties imposed in an original state

be teleported by the classically correlated channel? BraurJsing the relation(2) between characteristic functions, Eq.
stein and Kimble found that when a pure two-mode squeezel?) is written as

state is separable, i.essq=0, observation of any nonclassi-

cal features in the teleported state is precluded. However, Cl(&)=exd —(n,—1)[£*ICF(9), (18
when a pure state is separable, there is no classical correla- ) o )
tion either. whereCQ(¢) is the characteristic function fd®,_ _;(«a) of

the original state. Th® function is not semipositive definite
if its characteristic functiorCrP (&) is not inverse-Fourier-
transformable. Even when it is inverse-Fourier-
An imperfect replica state is reproduced at the receivingransformable, there is a chance for théunction to become
station when the quantum channel is not maximally en-negative at some points of phase spaceakénhaus and Bar-
tangled. It is well known that any linear noise-addition pro-nett found that only wherr<—1 is the quasiprobability
cess, for example linear dissipation and amplification, can b& ,(«) for any state semipositive definite. We are sure that,
described by the convolution relation of the quasiprobabilityfor any original state, the left-hand side of E@L8) is
functions[23]. With use of the Wigner functions for an ar- inverse-Fourier-transformed to B function semipositive
bitrary original stat€11) and for an impure quantum channel definite only whem =1. This condition is the same as the
(9), we find that Eq.(6) leads to the following convolution separability conditiori13) for the quantum channel. We con-
relation: clude thatwhen a quantum channel is separable, i.e., not

IV. TRANSFER OF NONCLASSICAL FEATURES
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guantum mechanically entangled, no nonclassical features (1-n)m 1+4n2
implicit in an original state are transferred by teleportation = Tm+1 m ; , (23
In other words, nonclassical features are not teleported via a (1+n,) 1-n7

classically correlated channel. i )

There are two well-known nonclassical properties that &'"€réPm is a Legendre polynomial. Whem.=0,7,=1. In
continuous-variable state may have: sub-Poissonian photdf€ imit of n.=1, where the teleportation is classical, the
statistics and quadrature squeezing. The two nonclassichf€lity Fn=(1/4)" for m#0. The vacuum state has the fi-
properties have been studied for noiseless communicatio§€lity Fo="1/2 in the limit.

We analyze the transfer of these properties by teleportation

in the following subsections. B. Quadrature squeezing and squeezed state
We examine the transfer of quadrature squeezing which
A. Sub-Poissonian statistics and Fock state an unknown original state may have. The quadrature-phase

A state is defined to be sub-Poissonian when its photon@Perator is defined as
number variance AN)? is smaller than its mean photon ~ e A
AN) P X(p)=e ?a+e'tal (24)

numberN. The expectation value of an observable for a state
can be obtained by use of the characteristic func@sifé)

i ; wherea(a’) is an annihilation(creation operator andp is
for its P function [15], (a') n( N op ap

related to the angle in phase space. A state is said to be

gm o squeezed if the quadrature-phase varignc¥(¢)]?<1 for
((@hma"y=— ———CP(¢) _ (190  an angleg. Substituting Eq.(18) into Eq. (19), the mean
g™ I(—&*)" =% =0 quadrature phask(¢) and variancd AX(¢)]? can be cal-
culated,
Substituting Eq.(18) into Eqg. (19), we find that the tele-
ported state is sub-Poissonian when the noise factor Z((;/,):YO(@, [AX () ]?=[AX,($)]?>+2n,, (25
n,< N2+ Ny—(ANg)?—N,, (200 whereX,(¢) and[AX,(¢)]? are the mean quadrature phase

_ and variance for the original state. It is interesting to realize
where N, and (AN,)? are the mean photon number and thatthe mean quadrature phase does not change at all dur-
photon-number variance for the original state. If the originaling teleportation This property holds regardless of the chan-
state is Poissonian or super-Poissonian, the right-hand side nél entanglement.
the inequality is either negative or imaginary so the tele- The teleported state exhibits quadrature squeezing if
ported state is never sub-Poissonian.

Assuming the largest sub-PoissonicitAN,)2=0, for
the original state, it is found that when the noise factor
<\NZ+ N,—N=<1/2, some sub-Poissonian property is - -
found in the teleported state. Thus, if the noise factor of the>UPPOSE that the original state has the absolute minimum

H "n12 — — g H
guantum channel is larger than or equal to 1/2, the transfer dfarlance[AXO(d) )_] =0 at¢=¢". Then Its teleported state
any sub-Poissonian property is precluded. Is also squeezed if the quantum channel is entangled enough

A Fock state|m) has a definite energy and its photon- to be represented by the noise factor 1/2. We note that

number variance is zero. When this extreme sub-Poissonidf€ conditionn,<1/2 applies to the survival of both quadra-

field is teleported, the mean photon number and mean varfiré squeezing and sub-Poissonian statistics. .
ance areN.—m-+n and AN?= (2m+1)n_+n? at the re- A squeezed vacuum with the degree of squeeznds
r T r T T

o . . ; . ) written in the Wigner representation as
ceiving station. The Fock staten) is written in the Wigner g P
representation as

1 ) <1
n,<5{1-[AXo(4)1%=3. (26)

W,(a)= %exp:— 2 exf2s,) a?—2 exg —2s,) ],
2
Wo(a,m)= ;(—1)mexr(—2|a|2)Lm(4la|2), (21) (27)

) ) ~ wherea, and «; are real and imaginary parts af Its tele-
wherelL, is a Laguerre polynomial. From the convolution ported state is represented by the Wigner function
relation (14), the teleported state is obtained as

S S I T
Wiler=2 A(SO)A(—so)eXr{ Als) " ACs) M)

o= A (2l
T (2n,+1)™"1 2n.+1 (28)
Lm( B 4|al? ) 22) vv_here the parametex(s,) = 2n .+ exp(—2s,). The fidelity is
(2n,)%-1 given by
The fidelity for the Fock state is given by E(.6), F(so)=(n2+2n,cosh Z5,+1) "2 (29
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When the teleportation is classical with.=1,7(s,)=(2  The right-hand side is semipositive so that the noise given by
+2 cosh ) Y2 teleportation is more than that by direct transmission. If we
consider that this result is obtained for the case when the
other operations including detection and unitary transforma-
tion in the teleportation protocol are perfect, we conclude

Quantum te]eportation can be made more reliable by Sothatthe nonclassical field is more robust in direct transmis-
phisticated schemes such as purification of the impure opion than in teleportationThe reason is that the teleportation
partially entangled quantum chanrjéR,10], detection with relies on quantum entanglement of the quantum channel. The
perfect efficiency, and well-defined unitary operation. How-duantum entanglement based on intermode coherence is
ever, in the real world, the influence of noise cannot easily béhuch more fragile than the single-mode coherence. How-
disregarded. We have been interested in the influence &iver, the quantum teleportation can be made more faithful by
noise on the transfer of nonclassicalities which may be impurification of the quantum channel while the direct trans-
posed in an original unknown state. To make the probleninission does not have that possibility.
simple while honoring the real experimental situation, we
assumed that the same amount of noise affects the two ACKNOWLEDGMENT
modes of the quantum channel. We found that when the _ ) _
quantum channel is separable, the transfer of any nonclassi- This work was supported in part by the Brain Korea 21
cality is impossible: Nonclassical features cannot be teleGrant No. D-0055 of the Korean Ministry of Education.
ported via a classically correlated channel. The separability
of a two-mode Gaussian state is considered using the possi- APPENDIX: POSITIVITY OF THE P FUNCTION
bility of assigning a positive well-defineB function to the AND SEPARABILITY FOR A GAUSSIAN STATE
state after some local unitary operations. We have analyzed ~
the transfer of well-known nonclassical features such as sub- A two-mode Gaussian staje of modeb andc is sepa-
Poissonicity and quadrature squeezing. The teleportation gfible when it is represented by a statistical mixture of the
the two nonclassical features is ruled out under the samdirect-product states,
noise level. The faithfulness of the teleportation has also
been discussed and the fidelities have been found for the A A N
initial Fock state and squeezed state. Because one of the p=f d*BP(B)Po(B)€ pe(B), (A1)
important ingredients of teleportation is that the original state

is unknownat the sending station, our measure of noise fa_CWhere;A)b,c(ﬂ) are density matrices, respectively, for modes
tor n., which depends only on the quality of the channel, isy 5nq c, and P(B) is a probability density function with

important. Of course, to represent the quality of the telepor- - A .
tation by a fidelity we have to know the average fidelity for P(B)=0. The states obp(/5) andpc(B) can be n(_)nclassmal
and do not have to have thel functions positive well-

the teleportation, which is under investigation. defined. However, because they are Gaussian, it is possible
One question still arises: Is the teleportation better than ; ' : Y Ay > P
fo transform them to assign positive well-defirfeflnctions

the direct transmission to transfer a nonclassical field? % local unitary transformationf27]. The separable condi-
field may be deteriorated by the thermal environment durinqign Eq. (A1) gan then be written és P

the direct transmission. Solving a similar Fokker-Planck
equation to Eq(8) for a single-modedield, we find that, by
the direct transmission, the Wigner function at the receiving ’A),:J' dzabf dzaCJ' d2BP(B)P(ay;B)P(ac;B)
station can be represented by the same equation agl&q.

with the different noise factony [23]: X | ap)( ap| @ |ac)( e/, (A2)

V. REMARKS

nd=FT. (30 whereP,(«y;B) andP.(a.;B) are theP functions, respec-
tively, for the fields of mode® andc after some local uni-

Assuming that the imperfect teleportation is caused only byary operationsp’ is for the two-mode Gaussian state after

the impure quantum channel embedded in the thermal envthe local operations.

ronment, we compare the two noise factu';sin Eq (13) We want to prOVe-in this appendix that if and Only- |f when

andng in Eq. (30). We have implicitly assumed in this paper @ two-mode Gaussian state is separable, a positive well-

that the two-mode squeezed stégeantum channggenera-  definedP function P(ay, ) is assigned to it after some

tor is located in the middle point between the sending andocal unitary transformations.

receiving Stations_ The Squeezed photons in the quantum ansidel’ the sufficient condition. If a two-mode Gaussian

channel, thus, travel only a half distance between the sendimgfatep is separable, it can be written as E§2) after some

and receiving stations. Bearing this in mind, we find that local operations. BotlR,(«ay; 8) andP¢(a;B) are positive
well-defined andP(B) is a probability density function, so

n(for time t/2) —ny(for timet)
(1 T-TP24+1- VI-T[1-exp —25,)]. (3D f d?BP(B)P(ap;B)P(ac;B) (A3)
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is a normalized positive function, which we can take as the DetN..

positive well-defined function P(ay ,ac). We have proved  P(ap,ac)=——; ”J’ d?Bexd — |B|>—Ep(ay,B)
that if a two-mode Gaussian state is separable, it has a posi- ™

tive well-definedP function after some local unitary opera- —Edag,B)] (A7)
tions. creil

Now let us prove the necessary condition. If the locallywhere
transformed two-mode Gaussian state is represented by a _ ) ) .
positive well-definedP function P(ay,a.), the separable Ep(ap,8)= (Npo+ [Nod %) | ap|*— apNp* — ag Ni B,
condition (A2) becomes (A8)

, Ec(ac,B)=(Nect+ )| acl*+ acB* +ag B (A9)
P(ap,ac)= | d“BP(B)P B)P iB). (A4 , i )

(ap, ac) f BP(BIPoab:B)Pc(ac ). (A4) The integrand in EqLA7) can now be decomposed into three
. . ... Gaussian functions each of which satisfies the normalization
Further, by some additional squeezing and rotation it is al-

. ; : : condition because
ways possible to have the rotationally symmetric variance

[Aa;(¢)]? for any angles. After these transformations, the N;;>0 and DeN;;>0 (Al10)

positive well-defined function P(«y,a.) can be written as . _ ) .
for positive well-definedP(ay,,a.) in Eq. (A5). Taking

P , =Ne — E N aF M
(ap,ac)=N XF{ S A Pb(ab;ﬁ)Z—WbeXF<—Mb|ab|2+abNch*
AF +ar N Npel®
+i:2b,c (ai\| + & M)}, (A5) +af gcﬁ_l Mb‘j |ﬂ|2)’ (A11)

whereNis the normalization constari¥;; a Hermitian ma- M 1
trix, and\; a complex number. The linear termsafare not P (a,;8)= —CeX;{ — M ad?—aB* —at B— —|8|?],
considered because they do not affect the proof. In fact, they 7T Me

can always be removed by some local displacement opera- (A12)
tions. EquationA5) can be written as M.
P(B)=—exp(—M¢|B|?), (AL3)
P _ Dty > aNjar|, (A6 "
(ap,ag)=—57exp = 2 aiNjay |, (A here  My=Nppt|Nod2 Mo=Nec+1, and M,

=DetN;;/(MpM,), the P function is finally obtained in the
where DelN;; is the determinant of the Hermitian matrix form of Eq.(A4). It is clear thatP(pB) is the positive prob-
N;j; . To find an expression in the form of EGA4), let us  ability density function and the two-mode Gaussian state is
introduce an auxiliary field 8,8*) enabling the function separable if it can be transformed to have a positive well-
P(ay,a) to be represented by a Gaussian integral, definedP function by some local unitary operations.
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