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Optimal photon cloning
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We show that optimal universal cloning of the polarization state of photons can be achieved via stimulated
emission in three-level systems, both of theL and theV type. We establish the equivalence of our systems with
coupled harmonic oscillators, which permits us to analyze the structure of the cloning transformations realized.
These transformations are shown to be equivalent to the optimal cloning transformations for qubits discovered
by Bužek and Hillery and Gisin and Massar. The down-conversion cloner discovered previously by some of
the authors is obtained as a limiting case. We demonstrate an interesting equivalence between systems ofL
atoms and systems of pairwise entangled V atoms. Finally we discuss the physical differences between our
photon cloners and the qubit cloners considered previously and prove that the bounds on the fidelity of the
clones derived for qubits also apply in our situation.

PACS number~s!: 03.67.Lx, 03.65.Bz, 32.80.Qk
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I. INTRODUCTION

An ideal quantum cloning machine is a device that p
duces an arbitrary number of perfect copies of a given~un-
known! quantum system. Such a device would allow the
act determination of the quantum state of a system. It
been shown@1# that such a device would violate the lineari
of quantum mechanics and also relativistic locality becaus
would make superluminal communication possible@2,3#.

Nonperfect copying, though, can be realized in quant
mechanics. Since the seminal paper of Buzˇek and Hillery@4#,
quantum cloning has been extensively studied theoretica
Bruss et al. @5# derived bounds on the possible fidelity
quantum cloners, Gisin and Massar and Buzˇek and Hillery
@6# discovered optimal universal cloning transformation
and finally Werner and Keyl and Werner@7# discussed opti-
mal universal cloning in great generality.

While optimal cloning was previously discussed in term
of quantum networks, in a recent paper some of the auth
have shown that optimal universal cloning can be compa
tively easily realized via stimulated emission@8#. In this
scheme the general qubit to be cloned is represented by
polarization state of a photon. When cloning is realized
stimulated emission, the fidelity of the clones is limited
the unavoidable presence of spontaneous emission. It
shown that the bounds on the fidelity given by the abo
mentioned fundamental principles can nevertheless be s
rated.

In Sec. II of the present paper we present a scheme
optimal universal cloning based on stimulated emission
three-level systems of theL type. Our main analytic tool is
the formal equivalence between systems ofL atoms and
coupled harmonic oscillators, which is established in S
II B. In Sec. II C, this equivalence is used to analyze t
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structure of the transformations realized in detail and
prove their optimality. More specifically, we explicitly dem
onstrate their equivalence to the optimal cloning transform
tions for qubits discovered before@4,6#. In particular, it will
become clear that the atomic states play the double rol
photon source and ancilla, and that the universal NOT op
tion is realized in the ancilla states. In the same way,
show that the down-conversion cloner presented in Ref.@8#
is obtained from the present schemes as a limiting case
Sec. III we demonstrate that optimal cloning can also
achieved with pairwise entangled V atoms, using an inter
ing equivalence between the two systems. In Sec. IV
discuss the physical differences that exist between our sti
lated emission cloners and the qubit cloners considered
viously, and we give an explicit proof that the bounds d
rived for qubit cloning indeed apply to our situation as we
Section V gives our conclusions.

II. CLONING VIA STIMULATED EMISSION IN L ATOMS

The general principles of universal cloning via stimulat
emission are the following. Consider an inverted mediu
that can spontaneously emit photons of any polarization w
the same probability. If a photon~or several! of a given
polarization interacts with such a medium, it stimulates
emission of photons of the same polarization. In the fi
photonic state there will be a majority of photons polariz
parallel to the incoming photon, while some photons will
in the orthogonal polarization due to spontaneous emiss
In this way the photons in the final state can be considere
clones of the original incoming photon, where the fidelity
the clones is given by the relative frequency of photons
the correct polarization in the final state.

The inverted medium that we will use as a cloning dev
consists of an ensemble ofL atoms. These are three-lev
systems that have two degenerate ground statesug1& andug2&
and an excited levelue&. The ground states are coupled to t
excited state by two modes of the electromagnetic fielda1
and a2 , respectively. These two modes define the Hilb
space of our qubit to be cloned, i.e., we want to clone gen
©2000 The American Physical Society02-1
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superposition states (aa1
†1ba2

†)u0,0&5au1,0&1bu0,1&. We
can think ofa1 anda2 as being orthogonal polarizations o
one photon with a specific frequency, but we do not have
restrict ourselves to such a specific example, in fact we
think about other systems and other degrees of freedom
long as they are described by the same formalism, e.g.a1
and a2 could also refer to the center-of-mass moti
~phonons! in an ion trap. In the interaction picture, after th
usual dipole and rotating wave approximations, the inter
tion Hamiltonian between field and atoms has the follow
form:

H5gS a1(
k51

N

uek&^g1
ku1a2(

k51

N

uek&^g2
ku D 1H.c.

5gS a1(
k51

N

s1,1
k 1a2(

k51

N

s1,2
k D 1H.c. ~1!

The indexk refers to thekth atom. Note that in Eq.~1! the
atoms couple to only one single spatial mode of the elec
magnetic field. In particular this means that spontane
emission into all other modes is neglected. Situations wh
this is a good approximation can now be achieved in ca
QED @10#. We also assume that the coupling constantg is
the same for all atoms, which in a cavity QED setting mea
that they have to be in equivalent positions relative to
cavity mode. Trapping of atoms inside a cavity has recen
been achieved@11#. Finally note that our Hamiltonian has n
spatial dependence, which means that the effect of the
on the motion of the atoms is neglected, their spatial wa
function is assumed to be unchanged@12#.

The Hamiltonian~1! is invariant under simultaneous un
tary transformations of the vectors (a1 ,a2) and (ug1&,ug2&)
with the same matrixU. If one furthermore chooses an initia
state of the atoms that has the same invariance, then
system behaves equivalently for all incoming photon po
izations, i.e., universal cloning is achieved. This can be s
in the following way. Consider an incident photon in a ge
eral superposition state (aa1

†1ba2
†)u0,0&. Together with the

orthogonal one-photon state this defines a new basis in
larization space, which is connected to the original one b
unitary transformation. If the atomic states are now rewrit
in the basis that is connected to the original one by the s
unitary transformation, then under the above assumptions
interaction Hamiltonian and initial state of the atoms lo
exactly the same as in the original basis. The initial st
where all atoms are excited toue& has the required invariance
it is completely unaffected by the abovementioned trans
mations.

We can therefore, without loss of generality, restrict o
selves to the cloning of photons in modea1 . We consider an
initial state

uC in&5 ^ k51
N uek&

~a1
†!m

Am!
u0,0&, ~2!
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i.e., we are starting withm photons of a given polarization
and we want to produce a certain~larger! number n of
clones.

A. The simplest case

For illustrative purposes let us first consider the simpl
case of oneL atom and one photon polarized in direction

uC in&5ue&a1
†u0,0&5ue&u1,0&5..uF0&. ~3!

To study the time development, we expand the evolut
operatore2 iHt into a Taylor series and determine the acti
of powers ofH on the stateuC in&:

HuC in&5g~ ug1&a1
†u1,0&1ug2&a2

†u1,0&)

5g)
~&ug1&u2,0&1ug2&u1,1&)

)
5..g)uF1&,

H2uC in&5g2~ ue&a1&u2,0&1ue&a2u1,1&)

53g2ue&u1,0&53g2uF0&,... ~4!

The result is

e2 iHtuC in&5cos~g)t !ue&u1,0&

2 i sin~g)t !SA2

3
ug1&u2,0&1A1

3
ug2&u1,1& D

5cos~g)t !uF0&2 i sin~g)t !uF1&. ~5!

uF0& and uF1& denote the states of the system atom-phot
that lie in the subspace with 1 and 2 photons, respectiv
uF0& is in the subspace where no cloning has taken place
uF1& in the one where one additional photon has been em
ted, so that the two photons can now be viewed as clo
with a certain fidelity. This way of labeling the states w
turn out to be convenient below. The probability that t
system acts as a cloner isp(1)5sin2(g)t). The fidelity F1
of the cloning procedure can be defined as the relative
quency of photons in the correct polarization mode in
final stateuF1& ~see Sec. IV!. One finds

F15
2

3
311

1

3
3

1

2
5

5

6
, ~6!

which is exactly the optimal fidelity for a 1-to-2 cloner@4,5#.
Actually, the state

uF1&5A2

3
u2,0&ug1&1A1

3
u1,1&ug2& ~7!

is exactly equivalent to the three-qubit state

A2

3
u11&u↓&1A1

3 S 1

&
~ u01&1u10&!D u↑& ~8!

produced by the Buzˇek-Hillery cloner, see Ref.@4#, Eq.
~3.29b!. The equivalence is established, if the photonic sta
2-2
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in Eq. ~7! are identified with the correspondingsymmetrized
two-qubit states~both photons in mode 1 means both qub
in state u1&, one photon in each mode means one qubit
stateu1&, one in stateu0&! in Eq. ~8!, while the atomic states
ug1& and ug2& are identified with the statesu↓& and u↑& of the
ancillary qubit. This is another way of proving the optimali
of Eq. ~7!. Note that in our case theuniversality follows
directly from the symmetry of initial state and Hamiltonia
as explained above. In the following we show that a sim
equivalence holds between our cloning scheme and
Gisin-Massar cloners in the completely general case~arbi-
trary numbers of photons and atoms!.

B. Equivalence to coupled harmonic oscillators

We now turn to the discussion of the general case, i.e.,
consider the initial state~2!. We are going to show the
equivalence of our system defined by Eqs.~1! and ~2! to a
system of coupled harmonic oscillators. First note that b
the initial state~2! and the Hamiltonian~1! are invariant
under permutations of the atoms, which implies that the s
vector of the system will always be completely symmetr
Furthermore the Hamiltonian~1! can be rewritten as

H5g~a1J1,11a2J1,2!1H.c. ~9!

in terms of ‘‘total angular momentum’’ operators

J1,r5 (
k51

N

s1,r
k 5 (

k51

N

uek&^gr
ku ~r 51,2!. ~10!

By the above considerations one is led to use a Schwin
type representation@14# for the angular momentum operato

J1,r5brc
† ~r 51,2!, ~11!

wherec† is a harmonic-oscillator operator creating ‘‘e-type’’
excitations, whileb1 destroys ‘‘g1’’ excitations. Note that
J1,1 and J1,2 share the operatorc† because both groun
levelsg1 andg2 are connected to the same upper levele by
the Hamiltonian~1!, and correspondingly for the Hermitia
conjugates. In terms of these operators, Eq.~1! acquires the
form

Hosc5g~a1b11a2b2!c†1H.c., ~12!

while the initial state~2! is now given by

uc i&5
~a1

†!m

Am!

~c†!N

AN!
u0&

5uma1,0a2,0b1,0b2 ,Nc&

[um,0,0,0,N&. ~13!

Actually, for reasons that will become apparent below, it
slightly more convenient for our purposes to use the follo
ing Hamiltonian instead of Eq.~12!:

H5g~a1b22a2b1!c†1H.c., ~14!
03230
n

r
e

e

h

te
.

r-

-

which can be obtained from Eq.~12! by a simple unitary
transformation in modeb, corresponding to a simple redefi
nition of the atomic states in Eq.~1!. This is the Hamiltonian
that is going to be used in the rest of this paper. The inv
ance properties of Eq.~14! are linked to those of Eq.~1! or
equivalently Eq.~12! discussed above: Eq.~14! is invariant
under simultaneous identical SU~2! transformations in
modesa andb ~because the determinant of such a transf
mation is equal to unity!, while a phase transformation i
either mode can be absorbed intog. This ensures the univer
sality of the cloning procedure.

We are now dealing with five harmonic oscillator mod
defined by the operatorsc, b1 , b2 , a1 , and a2 . Action of
Eqs. ~14! on ~13! generates Fock basis states of the gene
form

u~m1 j !a1 ,i a2 ,i b1 , j b2 ,~N2 i 2 j !c&

5um1 j ,i &photonsu i , j ,N2 j &atoms. ~15!

Remember thata1 is now coupled tob2 , etc. Expressed in
terms of individual atoms,u i , j ,N2 i 2 j &atoms is the com-
pletely symmetrized state withi atoms in levelg1 , j atoms in
level g2 , andN2 i 2 j atoms in levele. The correctness o
Eq. ~11! can be checked by explicit application of left han
side and right hand side to such a general state, writte
terms of the individual atoms and in terms of harmonic o
cillator eigenstates respectively~see Appendix A!. Note that
the use of the Schwinger representation is only conven
because the initial state of the atomic system in Eq.~2! is
completely symmetric under permutation of the atoms.

Studying the Hamiltonian in the form~14! instead of Eq.
~1! is helpful in several respects. The number of atomsN that
is explicit in the Hamiltonian~1! now appears only as a pa
of the initial conditions of our system, which makes it ea
to treat the general case ofN atoms in one go. We will do
this in the next subsection.

Furthermore, the connection to cloning by paramet
down conversion~PDC! as proposed in Ref.@8# is now ob-
vious. The Hamiltonian~14! can also be seen as a Ham
tonian for down conversion with a quantized pump mo
described by the operatorc, while ar and br are the signal
and idler modes respectively, wherer labels the polarization
degree of freedom. There is only one difference between
~14! and the Hamiltonian used in Ref.@8# @see Eq.~6! of that
reference#: in Ref. @8# the operatorc of Eq. ~14! is replaced
by a c number. In the context of down conversion, this co
responds to the limit of a classical pump field. Thus the P
scheme, which was shown to achieve optimal universal cl
ing in Ref. @8#, is obtained as a limiting case from th
schemes discussed here.

In passing we note that the above dynamical equivale
generalizes to atoms with more than two ground statesugn&
that are coupled each to a different degree of freedom
photonsan . By similar arguments a system ofN identical
atoms with r ground states$ug1&,...,ugr&% governed by a
Hamiltonian

Hr5g(
k51

N

(
n51

r

uek&^gn
kuan1H.c. ~16!
2-3
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is equivalent to a system ofr 11 coupled harmonic oscilla
tors with lowering operatorsc andb1 ,...,br governed by the
interaction Hamiltonian

Hosc
r 5g (

n51

r

cbn
†an

†1H.c. ~17!

C. Cloning of m photons with N L atoms: Proof of optimality

We are now going to show that the system defined
Eqs. ~13! and ~14! indeed realizes optimal cloning for arb
trary N andm. The idea of the proof is the following. Afte
evolution in time the system that started with a certain p
ton numberm will be in a superposition of states with dif
ferent total photon numbers, where total means coun
photons in modea1 and a2 , i.e., both ‘‘good’’ and ‘‘bad’’
copies. We will show that the general form of the state vec
after a time intervalt is

uC~ t !&5e2 iHtuC in&5(
l 50

N

f l~ t !uFl&, ~18!

wherel denotes the number ofadditional photons that have
been emitted and

uFl&ªS m1 l 11
l D 1/2

(
i 50

l

~21! iAS m1 l 2 i
m D

3u~m1 l 2 i !a1 ,i a2 ,i b1 ,~ l 2 i !b2 ,~N2 l !c&. ~19!

Note that the number of photons can never become sm
thanm since all the atoms start out in the excited state.uFl&
is a normalized state of the system withm1 l photons in
total. To see thatuFl& is properly normalized note tha
S i 50

l ( m
m1 i)5( l

m1 l 11).
The statesuFl& are formally identical to the states ob

tained in Ref.@9#, which have been shown to realize optim
universal cloning and the optimal universal NOT simul
neously. The ideal universal NOT is an operation that p
duces the orthogonal complement of an arbitrary qubit.
with perfect cloning, it is prohibited by quantum mechani
The transformation in@9# links universal cloning and univer
sal NOT ~anticloning!: the ancilla qubits of the cloning trans
formation are the anticlones. In our case, the clones are
photons in thea modes and the anticlones are the atoms
the b modes~atomic ground statesg1 and g2). From the
Hamiltonian~14! and ~19! it is clear that for every ‘‘good’’
emitted photon-clone~in modea1) there is an excitation in
modeb2 which corresponds to an anticlone~atomic ground
stateug2&). The only difference to the states in Ref.@9# is the
presence of the fifth harmonic oscillator modec, describing
the ‘‘e-type’’ excitations, which counts the total number
clones that have been produced~equal to the number of at
oms having gone to one of the ground states! and does not
affect any of the conclusions.

A distinguishing feature of our cloner is that the outp
state ~19! is a superposition of states with different tot
numbers of clones. Cloning with a certain fixed number
03230
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produced copies can be realized by measuring the numb
atoms in the excited stateue& ~corresponding to modec! and
post-selection.

To see that theuFl& are indeed the output of an optima
cloner, let us calculate the fidelity of the cloning, given
the mean relative frequency of photons in the correct m
(a1 in our case!. In the stateum1 l 2 i ,i &photons the relative
frequency of correct photons is (m1 l 2 i )/(m1 l ). There-
fore

Fl5S m1 l 11
l D 21

(
i 50

l S m1 l 2 i
m D m1 l 2 i

m1 l

5
m~m12!1 l ~m11!

~m1 l !~m12!
~20!

which corresponds to the fidelity of an optimal universalm
→m1 l cloner @5#. Note again that the universality in ou
case follows from the symmetry of the Hamiltonian and t
initial atomic state.

To prove that the system is indeed always in a superp
tion of the statesuFl& as in Eq.~19! we use induction. The
initial state of the system isuC in&5uF0&. Now we will show
that if uF& is a superposition of statesuFl& thenHuF& is so,
too. Then, sinceuC(t)&5e2 iHtuC in&5Sp(2 iHt)p/p! uC in&
this implies thatuC(t)& will be a superposition ofuFl&. Ex-
plicit calculation shows that

HuFi&5g~A~ l 11!~N2 l !~m1 l 12!uFl 11&

1Al ~N2 l 11!~m1 l 11!uFl 21&), 1< l ,N,

HuF0&5gAN~m12!uF1&, ~21!

HuFN&5gAN~m1N11!uFN21&,

which completes the proof.
Note that the form of the coefficientsf l(t) did not play

any role in our proof. Actually, thef l are in general hard to
determine exactly. Solutions have been found in limiti
cases. For the limit of a classical pump field~c replaced by a
c number!, the solution can be found by standard metho
and is given in Ref.@8#. The solution in the case of larg
incoming photon numbers (m@N) is presented in Appendix
B.

Let us pause here for a moment and summarize what
have found. Our system consisting of an ensemble ofL at-
oms in the excited state is indeed equivalent to a superp
tion of optimal cloning machines in the manner of Buzˇek and
Hillery or Gisin and Massar, producing various numbers
clones. The atoms play the double role of photon source
of ancilla, the atomic ground states can be identified with
ancilla states in the qubit cloners. As for the correspond
qubit cloners, those ancillary atoms can also be seen as
output of a universal NOT gate. On the other hand, the ato
that end up in the excited state provide information about
number of clones that has actually been produced. This
be used to realize cloning with a fixed number of outp
clones by postselection.
2-4
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III. THE EQUIVALENCE BETWEEN PAIRS OF V ATOMS
AND L ATOMS

In this section we present an alternative~but similar! way
of realizing optimal universal cloning that uses entang
pairs of V atoms instead ofL atoms. We prove optimality by
showing that the system can be exactly mapped onto
system with Lambda atoms that we discussed above.

The two degenerate upper levels of each V atom,ue1& and
ue2&, are coupled to the ground stateug& via the two orthogo-
nal modesa1 anda2 , respectively. The Hamiltonian describ
ing the interaction of atom and field is

HV5gS a1
†(

k51

N

ugk&^e1
ku1a2

†(
k51

N

ugk&^e2
ku D 1H.c.

5gS a1
†(

k51

N

s2,1
k 1a2

†(
k51

N

s2,2
k D 1H.c. ~22!

It arises from similar assumptions as in Eq.~1!. In contrast to
before we now choose an entangled state of the atoms a
initial state. This is motivated by the fact that the initi
atomic state has to be asinglet under polarization transfor
mations in order for our cloning device to be again univers

Let us first examine the simplest case of two entangle
atomsA andB, and one incoming photon. The initial state
the system is

uC in&5
1

&
~ ue1

Ae2
B&2ue2

Ae1
B&) ^ u1,0&. ~23!

Developing the time evolution operatore2 iHt into a power
series, one easily finds:

e2 iHtuC in&5cos~g)t !
ue1

Ae2
B&2ue2

Ae1
B&

&
u1,0&2 i sin~g)t !

3SA2

3

ugAe2
B&2ue2

AgB&

&
u2,0&

1A1

3

ue1
AgB&2ugAe1

B&

&
u1,1& D . ~24!

With the substitution

ue1
Ae2

B&2ue2
Ae1

B&

&
→uẽ&,

ugAe2
B&2ue2

AgB&

&
→ug̃1&, ~25!

ue1
AgB&2ugAe1

B&

&
→ug̃2&.
03230
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the state~24! has exactly the same form as the correspond
state ~5! for one Lambda-atom, which implies that it als
implements optimal universal 1→2 cloning.

Actually, the correspondence goes much further. Cons
an initial atomic state consisting ofN pairs of V atoms,
where each pair is in a singlet state:

uc i&5 ^ k51
N uẽk& ~26!

with uẽ& as defined in Eq.~25!.
It is easy to see that the action of the Hamiltonian~22! on

each pair only generates one of the three antisymme
atomic states in Eq.~25!. Because of the invariance of th
Hamiltonian under permutations, and in particular under
exchange of two atoms belonging to the same pair, tra
tions between states with different symmetry properties
impossible. In fact, with the identification~25! the Hamil-
tonian~22! has exactly the same form as the Hamiltonian
L atoms~1!. The analysis made forL atoms in Sec. II now
goes through unchanged and we obtain the same clo
properties of a system of pairwise entangled V atoms as
had before forL atoms, i.e., we have found another way
realizing optimal universal cloning. Although this schem
would without doubt be more difficult to realize experime
tally, we believe that the underlying equivalence between
two systems is interesting and may be useful in other c
texts as well.

IV. CLONING OF PHOTONS VERSUS CLONING
OF QUBITS

In this section we are going to discuss the physical diff
ences that exist in spite of the formal equivalence prov
above between our photon cloners based on stimulated e
sion and the qubit cloners as usually considered@4,6#. In
particular, we will show that the claim that optimal cloning
realized by our devices is justified in spite of these diffe
ences.

In most of the previous work cloning was discussed
terms of quantum networks. In general, the situation con
ered in these papers is the following: one has a certain n
ber of qubits that are localized in different positions, whi
makes them perfectly distinguishable. At the beginnin
some of those qubits are the systems to be cloned, the o
play the role of ancillas. After the cloning procedure, whi
consists of several joint operations on the qubits that can
expressed in terms of quantum gates, some of the qubits
the clones, the rest are ancillas, which for a specific form
the optimal cloning transformation can also be seen as
puts of the universal NOT operation. As a consequence
localization, it is possible to address individual clones.

In our stimulated emission cloners, the situation is diffe
ent. All input systems~photons! are in the same spatial mod
~called modea in this paper!, and, even more importantly, a
clones are produced into that mode. Note that this is co
pletely unavoidable if stimulated emission is to be used. O
can say that this is the price one has to pay for the g
conceptual simplicity of the cloning procedure itself.

However, having all clones in the same spatial mode
2-5
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not necessarily an important disadvantage. For exampl
perfect cloning of that kind were possible, one could s
determine the polarization of the original photon to arbitra
precision by performing measurements on the clones. T
would still make superluminal communication possible@13#.
If one wants to distribute the clones to different location
this can for example be achieved using an array of be
splitters. However, this does not lead to a situation wh
one can be sure to have exactly one photon in each mod
one wants to have at most one photon in each mode,
array has to have many more output modes than there
photons.

Another distinguishing feature of our cloners compared
the usual qubit cloners is the fact that the same procedu
used to produce different numbers of clones. While in
qubit case the network to be used depends on the numb
desired clones, in our case the final state is a superpositio
states with different numbers of clones. Of course, the a
age number of clones produced depends on the numbe
atoms present in the system and the interaction time.
discussed in Sec. II cloning with a fixed number of outp
clones can be achieved by post selection based on a mea
ment of the number of excited atoms in the final state.

The formal equivalence between the qubit cloners and
one-mode cloners can arise because the output state
duced by the optimal qubit cloners is completely symme
under the exchange of clones@4,6#. Because of the bosoni
nature of the photons there is a one-to-one-mapping betw
completely symmetric qubit states and photonic states. F
completely symmetric qubit state the two concepts of re
tive frequency of qubits in the ‘‘correct’’ basis state and
single-particle fidelity are equivalent. This can be seen in
following way. Let uc& denote the state that is to be copie
Then the usual definition of the~single-particle! cloning fi-
delity is

F5^cur reduc&, ~27!

wherer red is the reduced density matrix of one of the clone
say the first one, i.e.,

r red5Tr2,3, . . . ,N@r#. ~28!

ThenF can also be expressed as

F5Tr@ruc&^cu1^ I 2^¯^ I N#. ~29!

On the other hand, the relative frequency of qubits in
stateuc& can be written as

1

N
Tr@r~ uc&^cu1^ I 2^¯^ I N1I 1^ uc&^cu2^¯^ I N1¯

1I 1^¯^ uc&^cuN!#. ~30!

If r is invariant under exchange of any two clones, it
obvious that Eq.~30! is equal to Eq.~29!, i.e., for symmetric
cloners the two concepts are completely equivalent. This
tifies our definition of fidelity via the relative frequency i
the case of photon cloning~see Sec. II!.
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Let us finally address the issue of optimally in the conte
of stimulated emission cloners. In this paper we have sho
the formal equivalence of our scheme and the optim
schemes for qubit cloning. As a consequence, the fidelity
the clones saturates the bounds derived for the cloning
qubits. However, it is not entirely obvious that the boun
derived for the situation of distinct well-localized qubits al
apply to our situation. Could one maybe achieve even hig
fidelity in our one-mode case? The following argume
shows that the bounds indeed apply in our situation as w
i.e., that photon cloning is not allowed to be better than qu
cloning.

Let us assume that we had a single-mode cloning mac
that clones photons with a better fidelity than given by t
bounds for qubits. Consequently, the relative frequency
‘‘correct’’ photons has to exceed the bound for at least o
value of the final total photon numberM. This is obvious if
M has been fixed by postselection. Otherwise the fidelity
to be defined as the average of the relative frequencies
all final total photon numbers. This average can only exc
the bound for qubits if the bound is violated for at least o
particular valueM of the final photon number.

As a consequence, we have a universal map from
N-photon Hilbert space to theM-photon Hilbert space tha
achieves a relative frequency of correct photons in the fi
state that is higher than the qubit bound. But the existenc
such a map is equivalent to the existence of a universal m
from the totally symmetricN-qubit space to the totally sym
metric M-qubit space with a single-particle fidelity equal
the relative frequency. The existence of the latter map
excluded by the theorems on cloning of qubits@7#. This jus-
tifies our claim that the schemes presented in the prev
sections realizeoptimal cloning of photons.

V. CONCLUSIONS AND OUTLOOK

In this paper we have shown that optimal universal clo
ing can be realized via stimulated emission in three-le
systems. The permutation symmetry of the interaction
lowed to map our system onto bosonic modes independen
the number of atoms used. Furthermore, we have found
equivalence between singleL atoms and entangled pairs o
V systems, which might be fruitful in other contexts as we

The connection between stimulated emission and opti
cloning is remarkable. Our results show that a task pre
ously discussed in terms of rather complicated quantum
works can be realized in an elegant way using basic quan
systems and interactions. While it was clear from the beg
ning that perfect cloning is prohibited by fundamental pr
ciples, it is interesting to see how this impossibility arises
a concrete physical system. In our case, the physical pro
limiting the fidelity of the clones is spontaneous emission
is fascinating that in this way spontaneous emission ens
that there cannot be any superluminal communication.

It might be interesting to investigate possible experime
tal realizations of our proposal, e.g., using a combination
cavity QED and Bose-Einstein condensates. This would
tentially allow the creation of macroscopic numbers
clones.
2-6
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Quantum cloners are often discussed in the contex
eavesdropping in quantum cryptography. Currently all cr
tography schemes rely on photons. Therefore devices b
on the principles presented here could be useful to a fu
eavesdropper.
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APPENDIX A: SCHWINGER REPRESENTATION

As noted above, the action of the Hamiltonian~1! on the
initial state ~2! only generates completely symmetric stat
of the atomic system. These states have the general form

S N
i , j D 21/2

(
a

ug1
a1,g1

a2,...,g1
a i,

g2
a i 11,...,g2

a i 1 j ,ea i 1 j 11,...,eaN&

5..u i , j ,N2 i 2 j &atoms, ~A1!

where the sum is over all arrangementsa of theN- i - j levels
ue&, thei levelsug1&, and thej levelsug2& on theN atoms, and
( i , j

N )5N!/ i ! j !(N2 i 2 j )! is the multinominal coefficient
giving the number of such arrangements.

Now study the action of a typical term in the Hamiltonia
~1! on the system whose state we will write asu i , j ,N2 i
2 j &atomŝ um1 i , j &photons:
S (
k51

N

ug1
k&^eku D a1

†u i , j ,N2 i 2 j &atomŝ um1 i , j &photons

5 (
k51

N

ug1
k&^ekuAi ! j ! ~N2 i 2 j !!

N! (
a

ug1
a1,...,g1

a i,g2
a i 11,...,eaN& ^ a1

†um1 i , j &field

5~ i 11!Ai ! j ! ~N2 i 2 j !!

N! (
a

ug1
a1,...,g1

a i,g1
a i 11,g2

a i 12,...,eaN& ^ a1
†um1 i , j &field

5Ai 11AN2 i 2 jA~ i 11!! j ! ~N2 i 2 j 21!!

N! (
a

ug1
a1,...,g1

a i,g1
a i 11,g2

a i 12,...,eaN& ^ a1
†um1 i , j &field

5Ai 11AN2 i 2 j u i 11,j ,N2 i 2 j 21&atomŝ a1
†um1 i , j &photons. ~A2!
e

t

Here the factor (i 11) arises from the number of differen
configurations that a given arrangementa can be reached by
This shows that this term acts exactly as a terma1

†b1
†c. Simi-

lar calculations can be made for the other terms in the Ha
tonian. Together, they justify the Schwinger representa
~11!.

APPENDIX B: LIMIT OF LARGE PHOTON NUMBER

Here we determine the coefficientsf l(t) of Eq. ~19! in the
limit of largem (m@N, many incoming photons, small num
ber of atoms!. For that case, the recursion~21! becomes

HuFl&5gAm„A~ l 11!~N2 l !uFl 11&

1Al ~N2 l 11!uFl 21&…, 1< l ,N,
~B1!

HuF0&5gAmANuF1&,

HuFN&5gAmANuFN21&.
il-
n

It is possible to diagonalize the ‘‘transfer’’ matrixA acting
on the vector (f 0 ,...,f N) that corresponds to the action ofH
on uC&5( l 50

N f l uFl&: Al ,l 115gAmA( l 11)(N2 l )5Al 11,l .
This allows to exponentiateA and to determine the final stat
of the system after a timet:

uC~ t !&5(
l 50

N

~2 i ! lAS N
l D cosN2 l~gAmt!sinl~gAmt!uFl&.

~B2!

Differentiating Eq.~B2! and using Eq.~B1! one can show
that this state fulfills Schro¨dinger’s equation with the correc
initial condition.

In this big-m-limit the probability to observe the system
as anm→m1 l cloner ~i.e., the probability thatl additional
photons are emitted! is

p~ l !5S N
l D cos2~N2 l !~gAmt!sin2l~gAmt!. ~B3!
2-7
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This is a binomial distribution with a probability sin2(gAmt)
for each atom to emit a photon. SettingN51 or comparison
with Eq. ~5! shows that this is identical to the probability fo
the case of only one atom in the case of largem. This means
that in this limit each atom interacts independently with t
t
pr

03230
electromagnetic field, because the effect of the other ato
on the field is negligible. In the short-time limitp( l )
5O(t2l). Furthermore the expected average number
‘‘clones’’ Nc5(

l 50

N lp( l )5N sin2(gAmt) oscillates with an
m-dependent frequency.
M.
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