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Optimal photon cloning
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We show that optimal universal cloning of the polarization state of photons can be achieved via stimulated
emission in three-level systems, both of thend theV type. We establish the equivalence of our systems with
coupled harmonic oscillators, which permits us to analyze the structure of the cloning transformations realized.
These transformations are shown to be equivalent to the optimal cloning transformations for qubits discovered
by Buzek and Hillery and Gisin and Massar. The down-conversion cloner discovered previously by some of
the authors is obtained as a limiting case. We demonstrate an interesting equivalence between systems of
atoms and systems of pairwise entangled V atoms. Finally we discuss the physical differences between our
photon cloners and the qubit cloners considered previously and prove that the bounds on the fidelity of the
clones derived for qubits also apply in our situation.

PACS numbg(s): 03.67.Lx, 03.65.Bz, 32.80.Qk

[. INTRODUCTION structure of the transformations realized in detail and to
prove their optimality. More specifically, we explicitly dem-
An ideal quantum cloning machine is a device that pro-onstrate their equivalence to the optimal cloning transforma-
duces an arbitrary number of perfect copies of a giuam tions for qubits discovered befofd,6]. In particular, it will
known) guantum system. Such a device would allow the exbecome clear that the atomic states play the double role of
act determination of the quantum state of a system. It haghoton source and ancilla, and that the universal NOT opera-
been showii1] that such a device would violate the linearity tion is realized in the ancilla states. In the same way, we
of quantum mechanics and also relativistic locality because ighow that the down-conversion cloner presented in F3f.
would make superluminal communication possif2e3]. is obtained from the present schemes as a limiting case. In
Nonperfect Copying, though, can be realized in quantunsec. Il we demonstrate that optimal Cloning can also be
mechanics. Since the seminal paper of &uand Hillery[4],  achieved with pairwise entangled V atoms, using an interest-
quantum cloning has been extensively studied theoreticalljng equivalence between the two systems. In Sec. IV we
Bruss et al. [5] derived bounds on the possible fidelity of discuss the physical differences that exist between our stimu-
quantum cloners, Gisin and Massar and &uand Hillery lated emission cloners and the qubit cloners considered pre-
[6] discovered optimal universal cloning transformations,viously, and we give an explicit proof that the bounds de-
and finally Werner and Keyl and Werng#] discussed opti- rived for qubit cloning indeed apply to our situation as well.
mal universal cloning in great generality. Section V gives our conclusions.
While optimal cloning was previously discussed in terms
of quantum networks, in a recent paper some of the authorg ) o\ING VIA STIMULATED EMISSION IN A ATOMS
have shown that optimal universal cloning can be compara-
tively easily realized via stimulated emissi¢8]. In this The general principles of universal cloning via stimulated
scheme the general qubit to be cloned is represented by tlenission are the following. Consider an inverted medium
polarization state of a photon. When cloning is realized viathat can spontaneously emit photons of any polarization with
stimulated emission, the fidelity of the clones is limited bythe same probability. If a photofor several of a given
the unavoidable presence of spontaneous emission. It wamlarization interacts with such a medium, it stimulates the
shown that the bounds on the fidelity given by the aboveemission of photons of the same polarization. In the final
mentioned fundamental principles can nevertheless be satphotonic state there will be a majority of photons polarized
rated. parallel to the incoming photon, while some photons will be
In Sec. Il of the present paper we present a scheme fan the orthogonal polarization due to spontaneous emission.
optimal universal cloning based on stimulated emission inin this way the photons in the final state can be considered as
three-level systems of th& type. Our main analytic tool is clones of the original incoming photon, where the fidelity of
the formal equivalence between systemsAofatoms and the clones is given by the relative frequency of photons of
coupled harmonic oscillators, which is established in Secthe correct polarization in the final state.
[IB. In Sec. IIC, this equivalence is used to analyze the The inverted medium that we will use as a cloning device
consists of an ensemble of atoms. These are three-level
) systems that have two degenerate ground stgiesand|g,)
*Also at Ecole Nationale Superieure des |&@mmunications, and an excited levee). The ground states are coupled to the
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superposition statesv@! + Ba})|0,00=«|1,00+ B8/0,1). We i.e., we are starting witm photons of a given polarization,
can think ofa, anda, as being orthogonal polarizations of and we want to produce a certaitarge) numbern of
one photon with a specific frequency, but we do not have tglones.

restrict ourselves to such a specific example, in fact we can

think about other systems and other degrees of freedom, as A. The simplest case

long as they are described by the same formalism, a.g.,
and a, could also refer to the center-of-mass motion
(phonong in an ion trap. In the interaction picture, after the

For illustrative purposes let us first consider the simplest
case of one\ atom and one photon polarized in direction 1:

usual dipole and rotating wave approximations, the interac- v V=le)all0.0)=e)|1.0 =|F 3
tion Hamiltonian between field and atoms has the following Vi) =[€)21]0.0 =l€}[1.0=7o). ®
form: To study the time development, we expand the evolution

operatore” """ into a Taylor series and determine the action
of powers ofH on the statéV;,):

N N
| S, 9 42, €90

+H.c. H|Wi) = y(lg1)aj|1,00+]g,)al|1,0)
N N - (V2]g1)[2,0+]g2)1,D)
= 7( alkzl ok 1+ azg,l o% | +H.c. (1) =73 7 = yV3|F),

H W) =y*(|e)a;v2[2,0) +]e)a,|1,1))

The indexk refers to thekth atom. Note that in Eq(l) the =372|e>|1,0)=3y2|}‘0),... (4)
atoms couple to only one single spatial mode of the electro-
magnetic field. In particular this means that spontaneous The result is
emission into all other modes is neglected. Situations where
this is a good approximation can now be achieved in cavitye | ¥;,) = cog yv3t)|e)|1,0)
QED [10]. We also assume that the coupling constars > I
the same for all atoms, which in a cavity QED setting means PN \ﬁ \ﬁ )
that they have to be in equivalent positions relative to the |S|n(y1/3t)( 3|gl>|2’0>+ 3'92>|1’l>
cavity mode. Trapping of atoms inside a cavity has recently I
been achieveflL1]. Finally note that our Hamiltonian has no = cog yV3t)| Fo) i sin(yv3t)| 7). (5
spatial dependence, which means that the effect of the fiel
on the motion of the atoms is neglected, their spatial wave
function is assumed to be unchandé@)].

The Hamiltonian(1) is invariant under simultaneous uni-

FJ:(,) and|F;) denote the states of the system atom-photons
that lie in the subspace with 1 and 2 photons, respectively.
| Fo) is in the subspace where no cloning has taken place and

tary transformations of the vectora{,a,) and ( | | 71) in the one where one additional photon has been emit-
.t)r/] h ' i), If Vf h 1(,32) h 91, gz.».t. | ted, so that the two photons can now be viewed as clones
Wi € same matrix’. 1 one furthermore chooses an Initial i 5 certain fidelity. This way of labeling the states will

state of the atoms that has the Same nvariance, then tr%Srn out to be convenient below. The probability that the
system behaves equivalently for all incoming photon polar-

A : : L . ; system acts as a cloner 1) = sir?(y3t). The fidelity F,
izations, I.e., universal cloning is achieved. This can be seepg o cloning procedure can be defined as the relative fre-
in the following way. Consider an incident photon in a gen-

eral superposition statev(aqﬂL Ba£)|0,0). Together with the ﬁﬁ;ngag[ jgr;o(tsoens éneéhtlavcgrrr;cftinp:jc;lanzatlon mode in the
orthogonal one-photon state this defines a new basis in po- ! e
larization space, which is connected to the original one by a 2 1 1 5
unitary transformation. If the atomic states are now rewritten Fi=3X1+3X5=5. (6)
in the basis that is connected to the original one by the same
unitary transformation, then under the above assumptions thghich is exactly the optimal fidelity for a 1-to-2 clongt,5).
interaction Hamiltonian and initial state of the atoms ook actyally, the state
exactly the same as in the original basis. The initial state
where all atoms are excited @ has the required invariance: 2 1
it is completely unaffected by the abovementioned transfor- | F1) = \/;|2'0>|91>+ \/;|1,1>|92> )
mations.

We can therefore, without loss of generality, restrict our-js exactly equivalent to the three-qubit state
selves to the cloning of photons in mode. We consider an

initial state \F \ﬁ 1
301D+ V3 5(|01>+|10>) 1) (8
N ok (a)" roduced by the Biek-Hillery cloner, see Ref[4], E
|Win) = @ -1/€") 0,0), 2 P y e ey cloner, S » B0
\/ﬁ (3.29h. The equivalence is established, if the photonic states
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in Eq. (7) are identified with the correspondimymmetrized which can be obtained from Eq12) by a simple unitary
two-qubit stategboth photons in mode 1 means both qubitstransformation in modé, corresponding to a simple redefi-
in state|1), one photon in each mode means one qubit imition of the atomic states in E¢L). This is the Hamiltonian
state|1), one in statd0)) in Eq. (8), while the atomic states that is going to be used in the rest of this paper. The invari-
|g;) and|g,) are identified with the statd$) and|1) of the  ance properties of Eq14) are linked to those of Eq1) or
ancillary qubit. This is another way of proving the optimality equivalently Eq.(12) discussed above: E¢l4) is invariant

of Eq. (7). Note that in our case thaniversality follows under simultaneous identical ®2) transformations in
directly from the symmetry of initial state and Hamiltonian, modesa andb (because the determinant of such a transfor-
as explained above. In the following we show that a similarmation is equal to unity while a phase transformation in
equivalence holds between our cloning scheme and theither mode can be absorbed intoThis ensures the univer-
Gisin-Massar cloners in the completely general casbi-  sality of the cloning procedure.

trary numbers of photons and atoms We are now dealing with five harmonic oscillator modes
defined by the operators b, b,, a;, anda,. Action of
B. Equivalence to coupled harmonic oscillators Egs.(14) on (13) generates Fock basis states of the general
We now turn to the discussion of the general case, i.e., erorm
consider the initial stat€2). We are going to show the [(M+j)atsiaz,ip1sip2,(N—i—j)c)
equivalence of our system defined by E¢b. and (2) to a o o )
system of coupled harmonic oscillators. First note that both =|m+],i) photondi ] s N = ) atoms: (15

the initial state(2) and the Hamiltonian(l) are invariant
under permutations of the atoms, which implies that the stat
vector of the system will always be completely symmetric.
Furthermore the Hamiltoniafll) can be rewritten as

Remember thaa, is now coupled tdd,, etc. Expressed in
ferms of individual atoms]i,j,N—i—j)aoms iS the com-
pletely symmetrized state withatoms in leveb,,j atoms in
level g,, andN—i—j atoms in levele. The correctness of

H=y(ayd, 1+a,], »)+H.c. (9) E_q. (11 can be checkgd by explicit application of left _hand_
’ ' side and right hand side to such a general state, written in
in terms of “total angular momentum” operators terms of the individual atoms and in terms of harmonic os-
cillator eigenstates respectivelgee Appendix A Note that
N N the use of the Schwinger representation is only convenient

Ji=2 0% =2 |egf (r=12. (10 because the initial state of the atomic system in €y.is
k=1 k=1 completely symmetric under permutation of the atoms.

Studying the Hamiltonian in the forr{l4) instead of Eq.

By the above considerations one is led to use a SChwingefy) s helpful in several respects. The number of atdfitbat
type representatiofi4] for the angular momentum operator. g explicit in the Hamiltoniar(1) now appears only as a part

of the initial conditions of our system, which makes it easy
to treat the general case bfatoms in one go. We will do
this in the next subsection.

Furthermore, the connection to cloning by parametric
down conversior(PDC) as proposed in Ref8] is now ob-
vious. The Hamiltonian14) can also be seen as a Hamil-
tonian for down conversion with a quantized pump mode
described by the operatay while a, andb, are the signal
and idler modes respectively, wharéabels the polarization
degree of freedom. There is only one difference between Eq.
(14) and the Hamiltonian used in R¢8] [see Eq(6) of that
referencg in Ref. [8] the operatorc of Eq. (14) is replaced
by ac number. In the context of down conversion, this cor-
responds to the limit of a classical pump field. Thus the PDC

J, =bch (r=1,22), (11

wherec! is a harmonic-oscillator operator creating-type”
excitations, whileb; destroys ‘g,” excitations. Note that
J., and J, , share the operatoc’ because both ground
levelsg; andg, are connected to the same upper levbly
the Hamiltonian(1), and correspondingly for the Hermitian
conjugates. In terms of these operators, @g.acquires the
form

HOSC: 'y(alb1+ a2b2)CT+ H.C., (12)

while the initial state(2) is now given by

(ahm (chHN scheme, which was shown to achieve optimal universal clon-
| i>=;_|o> ing in Ref. [8], is obtained as a limiting case from the
Jm!JNE schemes discussed here.
_ 0 N In passing we note that the above dynamical equivalence
=Ma1,052,051,052,Ne) generalizes to atoms with more than two ground stidgs
=|m,0,0,0N). (13)  that are coupled each to a different degree of freedom of

photonsa, . By similar arguments a system o&f identical

Actually, for reasons that will become apparent below, it isatoms withr ground stateg|g;),...,/g;)} governed by a
slightly more convenient for our purposes to use the follow-Hamiltonian
ing Hamiltonian instead of Eq12):

N r
= Ky (gX|a,+H.c.
H=y(a,b,—ayb,)c+H.c., (14) H=y2, 2 le)glantHe (16
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is equivalent to a system oft+ 1 coupled harmonic oscilla- produced copies can be realized by measuring the number of
tors with lowering operators andb,...,b, governed by the atoms in the excited state) (corresponding to mode) and
interaction Hamiltonian post-selection.
To see that théF,) are indeed the output of an optimal
' cloner, let us calculate the fidelity of the cloning, given by

Hos= v 2, Chlal+H.c. (17)  the mean relative frequency of photons in the correct mode
=t (a; in our casg In the statgm-+| —1,i) photons the relative
frequency of correct photons isn+1—i)/(m+1). There-
C. Cloning of m photons with N A atoms: Proof of optimality fore

We are now going to show that the system defined by Ml 4101 (el =il mel—i
Egs.(13) and(14) indeed realizes optimal cloning for arbi- Flz( ) 2 ( )_
trary N andm. The idea of the proof is the following. After | =0 m m-+I
evolution in time the system that started with a certain pho-
ton numberm will be in a superposition of states with dif- - m(m+2)+l(m+1)
ferent total photon numbers, where total means counting (m+1)(m+2)
photons in mode; anda,, i.e., both “good” and “bad”

copies. We will show that the general form of the state vectotvhich corresponds to the fidelity of an optimal universal
after a time intervat is —m-+| cloner[5]. Note again that the universality in our

case follows from the symmetry of the Hamiltonian and the
. N initial atomic state.
[w()=e W)= f()]F), (18 To prove that the system is indeed always in a superposi-
=0 tion of the state$.F}) as in Eq.(19) we use induction. The
initial state of the system is¥;,) =|F,). Now we will show
that if |®) is a superposition of statés) thenH|®) is so,
too. Then, sincg¥ (t))=e ""| W, )=3 (—iHt)P/p!|¥;,)
this implies thaf W (t)) will be a superposition ofF). Ex-

P .
m+|+1)lzz (—1)' /(m+l—|) plicit calculation shows that
I ) m

H|Fy=y(NI+D(N=DH(Mm+1+2)|F )

(20

wherel denotes the number @fdditional photons that have
been emitted and

=

X|(m+|_i)alria2aiblr(|_i)va(N_l)c>- (19)

+VIIN=T+1)(m+1+1)|F_1)), 1=<I<N,
Note that the number of photons can never become smaller

thanm since all the atoms start out in the excited staf) H| Fo)=yVN(mM+2)| Fp), (21)
is a normalized state of the system with+1 photons in
total. To see thaf{/) is properly normalized note that H| Fny=yIN(m+N+1)| Fy_y),

S1oo( )=,

The stateg;) are formally identical to the states ob- which completes the proof.
tained in Ref[9], which have been shown to realize optimal  Note that the form of the coefficienfs(t) did not play
universal cloning and the optimal universal NOT simulta-any role in our proof. Actually, thé, are in general hard to
neously. The ideal universal NOT is an operation that pro-determine exactly. Solutions have been found in limiting
duces the orthogonal complement of an arbitrary qubit. Agases. For the limit of a classical pump fiétdreplaced by a
with perfect cloning, it is prohibited by quantum mechanics.c numbey, the solution can be found by standard methods
The transformation ifi9] links universal cloning and univer- and is given in Ref[8]. The solution in the case of large
salNOT (anticloning: the ancilla qubits of the cloning trans- incoming photon numbersy(>N) is presented in Appendix
formation are the anticlones. In our case, the clones are thg.
photons in thea modes and the anticlones are the atoms in Let us pause here for a moment and summarize what we
the b modes(atomic ground stateg; and g,). From the have found. Our system consisting of an ensembld ait-
Hamiltonian(14) and (19) it is clear that for every “good” oms in the excited state is indeed equivalent to a superposi-
emitted photon-clong¢in modea;) there is an excitation in tion of optimal cloning machines in the manner of Bkzand
modeb, which corresponds to an anticloi@tomic ground Hillery or Gisin and Massar, producing various numbers of
state|g,)). The only difference to the states in REd] isthe  clones. The atoms play the double role of photon source and
presence of the fifth harmonic oscillator mocedescribing  of ancilla, the atomic ground states can be identified with the
the “e-type” excitations, which counts the total number of ancilla states in the qubit cloners. As for the corresponding
clones that have been producesjual to the number of at- qubit cloners, those ancillary atoms can also be seen as the
oms having gone to one of the ground statsd does not output of a universal NOT gate. On the other hand, the atoms
affect any of the conclusions. that end up in the excited state provide information about the

A distinguishing feature of our cloner is that the outputnumber of clones that has actually been produced. This can
state (19) is a superposition of states with different total be used to realize cloning with a fixed number of output
numbers of clones. Cloning with a certain fixed number ofclones by postselection.
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ll. THE EQUIVALENCE BETWEEN PAIRS OF V ATOMS the statg24) has exactly the same form as the corresponding
AND A ATOMS state (5) for one Lambda-atom, which implies that it also

. . . - implements optimal universal-%2 cloning.

In this section we present an alternatieit similap way A v th d h further. Consid
of realizing optimal universal cloning that uses entangled \ctually, the correspondence goes much further. Consider
. . ST an initial atomic state consisting dfi pairs of V atoms,

pairs of V atoms instead of atoms. We prove optimality by L ) )
. where each pair is in a singlet state:
showing that the system can be exactly mapped onto the
system with Lambda atoms that we discussed above. N =k
The two degenerate upper levels of each V ati@y), and |1} = @1=1[E)
|e,), are coupled to the ground stat via the two orthogo-

nal modesa, anda,, respectively. The Hamiltonian describ- With [€) as defined in Eq(25). _
ing the interaction of atom and field is It is easy to see that the action of the Hamilton{ag) on

each pair only generates one of the three antisymmetric

atomic states in Eq(25). Because of the invariance of the
+HcC. Hamiltonian under permutations, and in particular under the
exchange of two atoms belonging to the same pair, transi-
tions between states with different symmetry properties are
impossible. In fact, with the identificatio(25) the Hamil-
tonian(22) has exactly the same form as the Hamiltonian for
A atoms(1). The analysis made fok atoms in Sec. Il now

It arises from similar assumptions as in E#). In contrastto  90€s through unchanged and we obtain the same cloning

before we now choose an entangled state of the atoms as tRECPerties of a system of pairwise entangled V atoms as we
initial state. This is motivated by the fact that the initial Nad before forA atoms, i.e., we have found another way of

atomic state has to besingletunder polarization transfor- "@lizing optimal universal cloning. Although this scheme
mations in order for our cloning device to be again universalWould without doubt be more difficult to realize experimen-

Let us first examine the simplest case of two entangled \ally, we belleye _that the_ underlying equwalence_ between the
atomsA andB, and one incoming photon. The initial state of (WO Systems is interesting and may be useful in other con-
the system is texts as well.

(26)

N N
o] S, (el oL, e

=1

N

N
= y( aIkZl 0'11’1+ a£g1 O'k_’z +H.c. (22

1 IV. CLONING OF PHOTONS VERSUS CLONING
|Win) = E(|ele2>_ leyer))®|1,0). (23 OF QUBITS

In this section we are going to discuss the physical differ-
series, one easily finds: above between our photon cloners based on stimulated emis-
sion and the qubit cloners as usually considelé]. In
AeB) [ eheB particular, we will show that the claim that optimal cloning is
e "MW, ) =cog yV3t) 1=2 271 11,00~ sin(yV3t) ;?]zillezse.d by our devices is justified in spite of these differ-
In most of the previous work cloning was discussed in
\F |ghed)—|e5gB) terms of quantum networks. In general, the situation consid-
3 TMO) ered in these papers is the following: one has a certain num-
ber of qubits that are localized in different positions, which
1 |e/lAgB>_ |gAe?> ) makes them perfgctly distinguishable. At the beginning,
\ﬁ —|1,1 . (24)  some of those qubits are the systems to be cloned, the others
3 V2 play the role of ancillas. After the cloning procedure, which
consists of several joint operations on the qubits that can be
With the substitution expressed in terms of quantum gates, some of the qubits are
the clones, the rest are ancillas, which for a specific form of
the optimal cloning transformation can also be seen as out-
—[®), puts of the universal NOT operation. As a consequence of
V2 localization, it is possible to address individual clones.

In our stimulated emission cloners, the situation is differ-
|gAeB> _ |eAgB> ent. All input s_yste_m:éphotons) are in the same spatial mode
;—4@1% (25) (called modea in this pape), and, even more importantly, all

V2 clones are produced into that mode. Note that this is com-

pletely unavoidable if stimulated emission is to be used. One

e By | AeB> can say that_ this_ i_s the price one has to pay for the great
M_,|§Z>. conceptual simplicity of the cloning procedure itself.

V2 However, having all clones in the same spatial mode is

|e1€3) — |ehel)
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not necessarily an important disadvantage. For example, if Let us finally address the issue of optimally in the context

perfect cloning of that kind were possible, one could stillof stimulated emission cloners. In this paper we have shown
determine the polarization of the original photon to arbitrarythe formal equivalence of our scheme and the optimal
precision by performing measurements on the clones. Thischemes for qubit cloning. As a consequence, the fidelity of
would still make superluminal communication possidl8].  the clones saturates the bounds derived for the cloning of
If one wants to distribute the clones to different locations,qubits. However, it is not entirely obvious that the bounds

this can for example be achieved using an array of bearderived for the situation of distinct well-localized qubits also

splitters. However, this does not lead to a situation wherapply to our situation. Could one maybe achieve even higher
one can be sure to have exactly one photon in each mode. filelity in our one-mode case? The following argument

one wants to have at most one photon in each mode, thghows that the bounds indeed apply in our situation as well,
array has to have many more output modes than there aie., that photon cloning is not allowed to be better than qubit
photons. cloning.

Another distinguishing feature of our cloners compared to Let us assume that we had a single-mode cloning machine
the usual qubit cloners is the fact that the same procedure that clones photons with a better fidelity than given by the
used to produce different numbers of clones. While in thebounds for qubits. Consequently, the relative frequency of
gubit case the network to be used depends on the number t€orrect” photons has to exceed the bound for at least one
desired clones, in our case the final state is a superposition @&lue of the final total photon numbé&t. This is obvious if
states with different numbers of clones. Of course, the averM has been fixed by postselection. Otherwise the fidelity has
age number of clones produced depends on the number tf be defined as the average of the relative frequencies over
atoms present in the system and the interaction time. Aall final total photon numbers. This average can only exceed
discussed in Sec. Il cloning with a fixed number of outputthe bound for qubits if the bound is violated for at least one
clones can be achieved by post selection based on a measupadticular valueM of the final photon number.
ment of the number of excited atoms in the final state. As a consequence, we have a universal map from the

The formal equivalence between the qubit cloners and ouN-photon Hilbert space to th®l-photon Hilbert space that
one-mode cloners can arise because the output state prachieves a relative frequency of correct photons in the final
duced by the optimal qubit cloners is completely symmetricstate that is higher than the qubit bound. But the existence of
under the exchange of clong$,6]. Because of the bosonic such a map is equivalent to the existence of a universal map
nature of the photons there is a one-to-one-mapping betwedrom the totally symmetridN-qubit space to the totally sym-
completely symmetric qubit states and photonic states. For metric M-qubit space with a single-particle fidelity equal to
completely symmetric qubit state the two concepts of relathe relative frequency. The existence of the latter map is
tive frequency of qubits in the “correct” basis state and of excluded by the theorems on cloning of quiit$. This jus-
single-particle fidelity are equivalent. This can be seen in thdifies our claim that the schemes presented in the previous
following way. Let|y) denote the state that is to be copied. sections realiz@ptimal cloning of photons.

Then the usual definition of thesingle-particle cloning fi-
delity is
V. CONCLUSIONS AND OUTLOOK

F={4lpred ). (27) In this paper we have shown that optimal universal clon-
ing can be realized via stimulated emission in three-level
systems. The permutation symmetry of the interaction al-
lowed to map our system onto bosonic modes independent of
(28) the number of atoms used. Furthermore, we have found an

equivalence between single atoms and entangled pairs of

wherep,.qis the reduced density matrix of one of the clones,
say the first one, i.e.,

Pred= TT23, .. nLpl-

ThenF can also be expressed as V systems, which might be fruitful in other contexts as well.
The connection between stimulated emission and optimal
F=Trp|y)¢] 101,01y (29) cloning is remarkable. Our results show that a task previ-

ously discussed in terms of rather complicated quantum net-
On the other hand, the relative frequency of qubits in thevorks can be realized in an elegant way using basic quantum
state|y) can be written as systems and interactions. While it was clear from the begin-

ning that perfect cloning is prohibited by fundamental prin-

1 ciples, it is interesting to see how this impossibility arises in
NTV[P(|¢><¢|1®|2®'"®|N+|1®|¢><¢|2®'"®|N+"' a concrete physical system. In our case, the physical process
limiting the fidelity of the clones is spontaneous emission. It
+1,@ @ ) |n)]- (30 is fascinating that in this way spontaneous emission ensures

that there cannot be any superluminal communication.
If p is invariant under exchange of any two clones, it is It might be interesting to investigate possible experimen-
obvious that Eq(30) is equal to Eq(29), i.e., for symmetric  tal realizations of our proposal, e.g., using a combination of
cloners the two concepts are completely equivalent. This juseavity QED and Bose-Einstein condensates. This would po-
tifies our definition of fidelity via the relative frequency in tentially allow the creation of macroscopic numbers of
the case of photon cloningee Sec. ) clones.
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Quantum cloners are often discussed in the context of = APPENDIX A: SCHWINGER REPRESENTATION
eavesdropping in quantum cryptography. Currently all cryp-
tography schemes rely on photons. Therefore devices bascﬁq
on the principles presented here could be useful to a futurgf

As noted above, the action of the Hamiltonidn on the
tial state(2) only generates completely symmetric states
the atomic system. These states have the general form

eavesdropper.
N —1/2 N N N
1 2 i
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:gl lg1)(e"] T; |91 850, 8 Ny®@ag|m+i, ) fieid

; PN =)t ay @ (A1 (X42 @ t i
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i — J(i+DII(N=i—j=1)! « o @ .
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:Vi+l\/N_i_j|i+1ajaN_i_j_1>atomég)aJlr|m+ivj>photons- (AZ)

Here the factor i(+1) arises from the number of different It is possible to diagonalize the “transfer” matrik acting
configurations that a given arrangementan be reached by. on the vector {y,...,f\) that corresponds to the action &f
This shows that this term acts exactly as a tedialc. Simi-  on |¥)=3" f||F): A 1=y /mJI+1)(N=T)=A 4.
lar calculations can be made for the other terms in the HamilThis allows to exponentiat& and to determine the final state
tonian. Together, they justify the Schwinger representatiorof the system after a time

(1D).
" N
APPENDIX B: LIMIT OF LARGE PHOTON NUMBER I‘I’(t)>=|26 (=) ‘\/( | | 08" (yymbsir (ymt)| 7).
Here we determine the coefficierft§t) of Eq.(19) in the (B2)
limit of large m (m>N, many incoming photons, small num-
ber of atomg For that case, the recursig@dl) becomes Differentiating Eq.(B2) and using Eq(B1) one can show
that this state fulfills Schidinger’s equation with the correct
H|F) =y ym(JA+ 1) (N=1)| F 4 1) initial condition.
In this bigm-limit the probability to observe the system
+VIIN=1+1)[F 1)), 1<I<N, as anm—m-+1 cloner(i.e., the probability that additional

(B1) photons are emitteds
H| Fo) = ymN|Fy),

N
H|‘7:N>:')’\/E\/N|fN—l>- p(l)=( |

032302-7
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This is a binomial distribution with a probability $ip/mt)  electromagnetic field, because the effect of the other atoms
for each atom to emit a photon. SettiNg=1 or comparison on the field is negligible. In the short-time limip(l)

with Eq. (5) shows that this is identical to the probability for =0(t?). Furthermore the expected average number of
the case of only one atom in the case of langeThis means ~ “clones” N=2" Ip(I)=Nsin’(yJ/mt) oscillates with an
that in this limit each atom interacts independently with them-dependent frequency.
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