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Experimental demonstration of a three-qubit quantum computation algorithm
using a single photon and linear optics
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Mitsubishi Electric Corporation, Advanced Technology Research and Development Center, Amagasaki, Hyogo 661-8661, Ja

~Received 17 February 1999; published 3 August 2000!

A quantum computer that gives us the result of a single quantum computation has been constructed. The
quantum register was realized by modes and polarization of photons, and the unitary transformation was
implemented with linear optics. For each quantum computation, the answer to the Deutsch Jozsa problem for
any four-bit digit is given by a single-photon detection signal with a small error rate of less than 4%.

PACS number~s!: 03.67.Lx, 42.30.2d
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1Quantum computation is a new concept that utiliz
quantum superposition states for ultrafast parallel proces
@1–3#. Deutsch and Jozsa found that quantum computers
segregate arrays of digits exponentially faster than class
computers@4#, and the discovery was followed by Shor
famous factoring algorithm@5#. There have been several pr
posals for the actual realization of quantum computers@6–8#.
Demonstrations of a quantum logic gate using single qua
have been performed@9,10#. However, the demonstration o
algorithms has not been performed using a single-quan
system.

Nuclear magnetic resonance quantum computa
~NMR-QC! was invented as a promising idea to reali
quantum algorithms. The nuclear spins of a molecule in
lution were adopted as qubits. Each of the molecules in
solution works as an individual quantum computer. So
only NMR-QC has played the role of a test bed for the
algorithms @11–14#. However, this test bed has the we
point that the results are always given by an average ov
huge number of quantum systems, so ‘‘projection meas
ment’’ phenomena cannot be demonstrated by NMR-QC

Projection measurement plays an important role in qu
tum computation. For the Deutsch-Jozsa algorithm, the st
ture was carefully selected so that the answer can be g
by a single quantum computation@15#. In this sense, the
experiment performed by NMR@13# did not demonstrate the
heart of the algorithm sufficiently. As is pointed out in Re
@14#, the famous scheme of quantum error correction@16#
based on projection measurement cannot be tested by N
QC.

In addition, the input qubits were prepared in ‘‘hot mixe
states’’ in the NMR-QC experiments performed. Because
these two problems, there is a class of quantum algorith
that cannot be solved efficiently by NMR-QC@17#.

Quantum computation using linear optics is an alterna
important test bed for quantum computing. If we use a sin
photon for computation, the result is given not by an aver
but by a single quantum computation. In quantum alg
rithms, appropriate unitary transformations are applied
quantum registers. Recket al. @18# found that linear optics

*Present address: RIES, Hokkaido University, Sapporo 060-0
Japan.
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can be used to realize any unitary transformation. A theo
ical proposal for quantum computation using linear opt
was given by Takeuchi@19#, and later a similar idea wa
suggested independently@20#.

Here we report an experimental demonstration of
Deutsch-Jozsa quantum computation algorithm using lin
optics and a single photon. In the experiment, the initial st
was pure and the answer is given by single-photon detec
so that the key aspect of the Deutsch-Jozsa algorithm of
taining the answer witha single quantum computationis
fully demonstrated. The experiment is equivalent to th
qubits, which is the largest size of today’s quantum comp
ers. Our results also imply that quantum computation us
linear optics is as practical as NMR-QC.

First, let us introduce the problem of the Deutsch-Jo
algorithm. Suppose we are given an array of 2N digits. We
call the arrays ‘‘even’’ when they include as many 1’s as 0
~e.g., $1,0,1,0% for N52), and ‘‘uniform’’ when they are
filled with only ‘0’s or ‘1’s ~e.g.,$1,1,1,1%). The problem for
the Deutsch-Jozsa algorithm is to find the correct ans
between ‘‘the given array is not even’’ and ‘‘the given arra
is not uniform.’’ When the array satisfies both cases, eit
of them can be the answer. A classical computer needN
11 steps in the worst case. However, a quantum comp
can find the answer withO„log(N)… steps@4#.1

Our quantum computer solves the problem with four-
inputs, for which three qubits are required in the Deuts
Jozsa algorithm; two qubits are used as the address reg
and one as the accumulator for the given oracle. In our co
puter, four optical paths are used for the address register
the polarization of the photon is used for the accumula
Our quantum computer is used as follows. First, the co
puter is initialized for the computation. Second, the oracle~a
four-bit digit! is given to the computer and is converted
the appropriate voltage applied to the E/O~electro-optic!
modulators in the system. Then we put a single photon w
vertical polarization into the input port of this quantum com
puter, and observe the detector at the output port to
whether it detects the photon or not. If the photon is detec

2,1O is the Landau symbol:h(x)5O„g(x)… meansh(x)/g(x) is
bounded forx→`.
©2000 The American Physical Society01-1
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the answer is that the given oracle$ f ( j )% is not even. If the
photon is not detected, the answer is that the given or
$ f ( j )% is not uniform.

The experimental setup is shown in Fig. 1. The vertica
polarized 694 nm beam from a laser diode passes through
spatial filter and is attenuated by neutral density~ND! filters
to very weak light~up to 0.5 pW!. When such a weak beam
was used, the average number of photons present in the
tical system was 331023, and the probability of finding two
or more photons in the coherent length of 10 cm (; width of
a single photon wave packet! was less than 331024. In
addition, the number of incident photons was much less t
the saturation level of the photon detector. In this sense,
computation was performed using the quantum phenome
of single-photoninterference. All shutters in the optical sy
tem except the one for the reference light were open du
the computation.

The transformation of a 50:50 beam splitter is given
follows @21#:

1

A2
S 1 i

i 1D . ~1!

After passing through three beam splitters, the wave func
of a single photon is converted to a uniform superposition
the states passing through four optical paths. When the b
splitters are 50:50, the transformation of these three be
splitters is given using Eq.~1! as follows:

1

2 S 1 iA2 i 0

i A2 21 0

i 0 1 iA2

21 0 i A2

D . ~2!

Therefore, the wave function of the photon after pass
these beam splitters can be described as follows@19#:

I 15F a1

a2

a3

a4

G @p#5
1

2F 1

i

i

21

G @0#, ~3!

FIG. 1. Schematic diagram of the optical system for t
Deutsch-Jozsa algorithm with four-bit inputs.
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where ai describes the amplitude of the wave function
path i shown in Fig. 1, and@p# describes the state of th
polarization;@0# is the basis of the vertical polarization an
@1# is that of the horizontal polarization. The phase facto
according to the optical length of each path will be cons
ered later. We use E/O modulators~Gsenger PM0202s! to
embed the oracle$ f ( j )% in the system. The modulators rota
the polarization of photons when and only whenf ( j )51.
After the modulation, the wave function becomes

1

2 S F 1

0

0

0

G @ f ~1!#1 iF 0

1

0

0

G @ f ~2!#1 iF 0

0

1

0

G @ f ~3!#

2F 0

0

0

1

G @ f ~4!#D . ~4!

Next, quarter wave plates act as phase shifters, that ch
the phase of the wave function byp/2 only when the polar-
ization of the photons is vertical. After the phase shifters,
mirrors reflect back the wave function. The wave plates a
anotherp/2 phase shift according to the state of polarizatio
Then the E/O modulators rotate the polarization to the or
nal state again. The state of the photon after the E/O mo
lators is written as follows:

I 25
1

2F ~21! f (1)

i ~21! f (2)

i ~21! f (3)

2~21! f (4)

G @0#. ~5!

The transformation of three beam splitters can be written
follows:

1

2 S 1 i i 21

iA2 A2 0 0

i 21 1 i

0 0 iA2 A2

D . ~6!

After passing the three beam splitters again, the compon
c3,[0] of the wave function at output mode 3 with vertic
polarization~@0#! is written as

c3,[0]5 i ~21! f (1)2 i ~21! f (2)1 i ~21! f (3)2 i ~21! f (4)

~7!

5(
j 51

4

~21! f ( j )3exp~ if j !, ~8!

where f j is the phase corresponding to the optical pa
length of pathj and the additional phase factors due to t
reflection at the beam splitters.
1-2
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EXPERIMENTAL DEMONSTRATION OF A THREE-QUBIT . . . PHYSICAL REVIEW A 62 032301
Before the computation, we adjust the path length acco
ing to the following initialization procedure. Switching th
shutters in the paths, and settingf (1)5 f (4)51 and f (2)
5 f (3)50, the visibilities of the interference between path
and path 3 , path 1 and path 2, and path 3 and path 4
observed sequentially and the tilt angles of the mirrors
adjusted to obtain the maximum visibilities, which were
to 98%. Next, we control the length of path 1 to set t
interferometers to a dark condition~almost no photons ob
served at the output port! with 0.5 nm precision using piezo
actuators attached directly to each of the mirrors. Using
8, the output of the interference between path 1 and path
proportional to

u~21! f (1) exp~ if1!1~21! f (3) exp~ if3!u2

52@12cos~f12f3!#. ~9!

Therefore setting the interferometer to the dark condit
corresponds to having the conditionf15f3. In the same
way, we realize the conditionsf15f2 andf35f4 by set-
ting the interference between path 1 and path 2, and pa
and path 4, respectively, to the dark condition. The interf
ence of the reference light~632.8nm! was used for precise
control of the path lengths. The optical system was also p
sively stabilized against thermal drifts for at least 10 s wi
out active control.

Because the phase factorsf j in Eq. ~8! are set to be
identical in the initialization procedure, the probability of th
detection of the photon at the output port is

P„$ f ~ j !%…5
1

16U(j 51

4

~21! f ( j )U2

. ~10!

P50 for the even input and 1 for the uniform input.
We used a single-photon counting module~SPCM-AQ,

EG&G! as the photon detection device. The observed d
count in the experimental setup was less than 43103

counts/s.
For a given oracle, the photons were counted for 0.1 s.

running the initialization procedure at intervals of 10 s, w
succeeded in continuing computation for tens of minut
This initialization procedure was automatically performed
a personal computer, which also generates the four-bit d
and collects the data.

When the answer of our quantum computer is wrong
the given input, it is termed an ‘‘error.’’ The error rate can
calculated from the photon detection probabilityP„$ f ( j )%…
with the given oracle$ f ( j )%.

When we use weak light for the source of photons,
somehow have to know when a photon is not detected.
solution is to put three other photon detectors at the o
output of the beam splitters. When we observe a photon
tection signal from them, we regard the event as ‘‘not d
tected.’’ In this experiment we just set the detector at
output port. In order to derive the detection probability

P„$ f ~ j !%…5
N„$ f ~ j !%…

Ntotal
, ~11!
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whereN„$ f ( j )%… is the photon counting rate with the orac
$ f ( j )%, we have to estimateNtotal , which is the number of
total photon detection events of all detectors. In this pap
we estimatedNtotal by (Nmax1Nmin), where Nmax is the
maximum photon counting rate (5.703105 counts/s! ob-
served with oracles$ f ( j )%5$0,0,0,0% andNmin is the mini-
mum counting rate~6360 counts/s! at $ f ( i )%5$1,0,0,1%. The
experimental results are shown in Fig. 2. The vertical a
shows the four-bit digits given to the computer. The horizo
tal axis shows the probabilityP of photon observation at the
output port. The theoretical values given by Eq.~10! are
shown by the solid lines in Fig. 2. The experimental valu
plotted as the black dots are calculated by Eq.~11!.

This result shows that we can determine whether
statement ‘‘the given oracle$ f ( j )% is not even’’ or ‘‘the
given oracle$ f ( j )% is not uniform’’ is correct with the small
average error rates of 2.7% and 4.0%, respectively, by
observation of a single-photon. Recently, we succeede
analyzing the sources of errors quantitatively and found t
the imperfection of the path length adjustment in the initi
ization procedure was the main cause. The subtle differen
of the probabilities for intermediate cases~i.e., 1,0,1,1! from
the theoretically predicted value of 25% seemed to co
from the same source. The details of the analysis will
reported elsewhere@22#.

We emphasize that the answer to the Deutsch-Jozsa p
lem was given here by a single quantum computation. T
experiment thus exactly demonstrates the essence of
original Deutsch-Jozsa algorithm@15#. This is an important
feature of linear optics quantum computation when co
pared with the NMR-QC method. The observation of a s
bit of the quantum computer@23# and the quantum erro
correcting codes@16# are examples in which the projectio
measurement plays an important role. Although the imp
mentation using linear optics is not suitable for large-sc
computation because it requires 2N21 paths for the demon-
stration withN qubits, we believe it will become an impor
tant testing ground for quantum computation.

Let us briefly discuss the number of calculation steps.
quantum computation, the number of steps is regarded as
number of unitary transformations applied to the quant
register. Hence we should count the number of layers of

FIG. 2. The photon detection probability for the given four-b
digits f ( j ). The theoretical values with no errors are shown by
solid lines, and the experimental values are plotted as black do
1-3
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optics that the photon wave function was actually affec
by. In our system, the total number of steps was eight~two
for initial beam splitting, four for E/O modulators and wav
plates for a round trip, and two for final beam splitting!. It is
also interesting that the calculation of a four-bit digit can
performed using only a single photon. It is not the numbe
particles, but the number of the degrees of freedom of
particles, that is important for computation. After the su
mission of this paper, an experiment using Glover’s alg
on
r

e

.
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n-
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rithm with two qubits and a proposed system of three qub
were reported independently@24#.

I would like to thank Professor Oliver Wright and D
Toshiro Isu for their fruitful comments on this paper and t
members of the Quantum Devices Team at ATRC for th
help with the experiment. The author is affiliated with th
PRESTO project of the Japan Science and Technology C
poration.
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