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Estimation of the Buttiker-Landauer traversal time based on the visibility of transmission current
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We present a proposal for the estimation ofttiker-Landauer traversal time based on the visibility of
transmission current. We analyze the tunneling phenomena with a time-dependent potential and obtain the
time-dependent transmission current. We found that the visibility was directly connected to the traversal time.
Furthermore, this result is valid not only for rectangular potential barrier but also for general form of potential
to which the WKB approximation is applicable . We compared these results with the numerical values obtained
from the simulation of Nelson’s quantum mechanics. Both of them fit together and it shows that our method is
very effective in measuring experimentally the traversal time.

PACS numbgs): 03.65.Bz, 73.40.Gk

I. INTRODUCTION r=dm/tk, (1)

Soon after the advent of quantum mechanics, MacColivhered is the barrier length and « the magnitude of the
suggested that there is a time associated with the passageiofaginary momentum under the barrier. For a potential that
a particle under a tunneling barrier, i.e., a tunneling tile  allows the WKB approximation, it yields
Now the time has been measured in several experiments and
its qualitative results have been obtained. However, it is not _ f

) : . : = | dX5——,
clear whether a unique time exists or not, since we have no B Nhk(X)
univocal definition of tunneling time and no definite experi-
mental data. See Reff2,3] and references therein for re- whereB means the barrier region.
views of the problem. This gives a plausible estimation of traversal time based

_In this paper, we present a proposal for the estimation obn a theoretical background. However, if one wants to mea-
Buttiker-Landauer traversal time based on the visibility of sure the value of traversal time by an experiment, one has to
transmission current experimentally. tBker and Landauer draw it from the asymptotic behavior of transmission rate as
[4,5] invoked an oscillatory barrier to estimate a tunnelinga function of w. Generally its dependence am does not
time. The original static barrier was augmented by a smalthange so rapidly, that one cannot easily estimate the value
oscillation in the barrier height. The amplitude of the oscil- from experimental data. There is another type of experiment;
lation is kept small; the disturbance of the original kineticsone projects a stationary incident particle beam on the target
can be made small as desired. At very low modulation frewith oscillating barrier and measure the time dependence of
quencies the incident particle sees a particular part of theansmission current which may also oscillate with the same
modulation cycle. The particle sees an effectively static barfrequency. Here we show the visibility of oscillating current

rier, but later parts of the incident wave see a slightly differ-gives us a good information about traversal time.
ent barrier height. As one turns up the modulation frequency,

one eventually reaches a range where an incident particle no

longer sees a particular portion of the modulation cycle, but

is affected by a substantial part of the modulation cycle, or Following Refs.[4—6], we start by considering a Hamil-

several cycles. They claimed that the frequency at which thigonian

transition occurs, i.e., the frequency where one begins to de-

viate substantially from the adiabatic approximation, is an 2 d?

indication of the length of time that a particle interacts with H=-5 a2 +Vo(X) +Vi(x)coswt, ©)

the barrier. They made carefully several comments as fol- X

lows: It is, of course, an approximate indication of a time

scale. It is not the eigenvalue of a Hamiltonian, indicative of

a precisely measurable value. Moreover, this traversal tim

value may really be characteristic of a statistical distribution.
They showed that for an opaque rectangular barrier, th

modulated barrier approach yields

@

II. TIME-DEPENDENT BARRIER

whereVy(x) is static andv,(x) is the amplitude of a small
odulation. Incident particles with ener@yinteracting with
e perturbationv;coswt, will emit or absorb modulation
uantafiw. The Schrdinger equation of this Hamiltonian
as the solution in the barrier region

Y(x,tE")= ¢E,(x)ex;< —i %)HE_M J“(f\L/_:)) e inet
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FIG. 1. Particles transmitted or reflected at a barrier of heifght

0
and widthd interacting a small modulatiod;coswt can absorb or 01 02 03 04 05 06 07 08 09 I

: 2
emit modulation quantdw. The transmitted and reflected waves @ (units of ki)
gic()ar;tzlnlzmplltudes at the frequengy# and the sideband frequen- FIG. 2. The transmission probability taking a long time average.
nlt.

culationsee the Appendix A we have the transmission and

where ¢g/(X) is an eigenfunction of the time-independent reflection coefficients in the leading order,

Hamiltonian Hy= — (22/2m)d?/dx?*+V,, Hode =E' ¢g:
and J, is a Bessel function. The time modulation of the In(Vy/Hw) 2D e k- kndi2
potential gives rise to sidebands describing particles WhiCth=J YA detk

have absorbedn(>0) or emitted (<0) modulation quanta. oVi/how)  detky,xy)
Therefore we have to take into account the many sidebands  x {(x2—k,ko)sinhx,d— (%~ kuKo) (kn/xo)Sinhxod
of which the Bessel functions are appreciable.

To the left of the barrier, we allow an incident wave at +ikn(k,+Kkg)(coshkyd—coshk,d)} (8)
energy E and reflected waves at energids =E,=E
+nfow, and
) . ) B Jn(Vy/hw) Dye'k—knd2
I — aikxa—i(E/A)t —ikpXa—i(Ep /A)t =
W(x,t)=elkxg I(EMty E> T N ) " Io(Viltw) delk,, k)

2 .
wherek,=2mE, /%%, E,=E andky,=k, see Fig. 1. We XAk~ knko)sinfcyd cosficod
consider only the positive energy solutions. In the barrier — (K2+Knko) (kn! ko) cOshk,d sinhkod
region, in addition to the solutiof#) with E’ =E, there exist .
other evanesceriand oscillating, in a certain casenodes + i xn(Ko— k) (1—coshk,d coshkd)
corresponding to the reflected wave with eneigy=E,. —i[(Ko?/ ko) — knkolsinhk,d sinhkod},  (9)
Here we also consider only positive energy solutions. Taking
account of these points, we have a solution in the barriejynere detk, ,«,) is defined by

region
(kn+ik )e"‘nd —(ky—iky)
| Netf B Neff de( kn 1Kn)E " " knd _ n+ 'kn
Plix,t)= >, e (EMY (B, exm¥ (kn—ikp)e (rntikp)
E,>0 . .
" =2(Kﬁ—kﬁ)smhxnd—4|anncoshKnd.
_ \Z!
+Cme KmX)Jn_m(%>, (6) (10)

From these results we can obtain the transmission prob-
wherex,=2m(Vy— )/h2 For the transmitted wave, we ability defined by the ratio of transmitted currgnt and the
have incident currenf;,.=7%k/m. It depends on the time as well as
the position of measurement due to the interference among
different energies waves. However, if we take a time average

1l — ik —i(E,/h)t
b (X’t)_EZO Detne ™ (En/mt, (7} of the ratio, its dependence will disappear,
n
n
For smallV,, J, is proportional to ¥/,/24 )" and thus, only T= Eeﬁ |D 2. (11)
the small numbers of terms in the summation of ). ko' "

contribute effectively. Correspondingly the numbers of terms

in the summations of Eq$5) and(7) are suppressed. To find We show an example of numerical result of the time-
the solution for the Schdinger equation, we match a super- averaged transmission probability in Fig. 2.

position of incident and reflected wavés), and also trans- Now we will discuss the traversal time. As following to
mitted waveq7), at each energf,, to solutions within the Buttiker and Landauer, we assume thab<E, so that the
barrier(6). As a result of somewhat tedious but straight cal-wave numbers of the side bands are
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kin: kainﬁ, (12) 1.02 Tmax
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and assumé w<Vy—E, so that &\[3 .
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In the case of opaque barrier, taking account of the ¢ (units of 1/k3)
asymptotic forms of transmitted wave amplitudes

FIG. 3. The time dependence of the transmitted currents at a
v fixed pointx=750 (units of 1k,). The potential frequency is 0.1
D.,= i—lDO(et‘”— 1)e*ien2 (14) (units ofk3). Other parameterstatic potential height, small modu-
B 2hw lation amplitude, etg.are the same values in Fig. 2. In this figure,
Ty is the transmission probability in the static potential case, that is,
Buttiker and Landauer included first order corrections to thev,=0.
static barrier and obtained the intensity for the transmitted

sidebands, for the case of sm¥l, 1 | |
T=i Re{ (koD o' (Kot ~Eo) 4k, D, ei (K1t ~Exd)
0

kil Vl 2 + T 2 .
:lzk_o % (e=“"™=1)Ty, (15 +k71D71e'(k—1L*E—1t))*

X (Dgelkot~Eol) 4 D gl kil ~Ext) 4 p @itk 1L-E-10)1
wherer=md/% «. From this expression they found that there
exists the crossover from the low frequency behavior 1
~|D0|2+ k_0|D0|[(k0+k+1)|D+1|
k+1 Vl’T 2

0>

T”:k_o(ﬁ (16) +(kot+k-1)[D_s[]codwt—(L)], (20

) . . where (L) is a phase which is independent on tite
where the two intensities of the sidebands are equal, to the

high frequency behavior

D,
¢<L)=¢+1<L)=arg( 5| (kea—kolL
—kH( Vi )Zez“”‘r (17

+17 7, |97 0>

Ko \2fie =—¢_i(L)=— arg{% +(k1—ko)L}.

0

koaf Vi )2

T_lzk—:(ﬁ) To, (18) (22)

Here the asymptotic formd.4) were used. Now we show the
where the two intensities differ strongly. This transition to numerical result of the time dependence of transmitted cur-

imbalance is best described by rent at a fixed point in Fig. 3. If a detector has a good time
resolution, one may measure this visibility of the transmitted
K 1 Tiq—keq To wave
" 1T+l+k+1T ! —tanhor. (19
-1'+1 +1'-1 _:Tmax_Tmin
Thus they claimed the crossover from the low frequency be- " Tinaxt Tmin
havior to the high frequency behavior yields the traversal D, D,
time. “ke (Kotkyy) Dy +(kotk-1)| 5= (22)
IIl. VISIBILITY AND TRAVERSAL TIME In the case of a small perturbatiafy, and an opaque static

Their claim is a very interesting idea to estimate a certaifPot€ntial, Eq.(22) is approximated by

kind of tunneling time, but it is rather difficult to determine
its value from experiments. Now let us consider the time | ~%sinh

. Vis wT, (23)
dependence of the transmitted currents. If one observes the ho
currents at a fixed point=L, one may see the interference
effect between the different frequency waves in the first orfrom which the traversal time is expressed by the visibility as
der approximation follows:
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FIG. 4. Schematical illustration of one-dimensional tunneling in P(X)= dx’. (30
the general potential case. The small modulakignoswt exists in xfiKo(X")

the region of li(illustrated with the dashed line
Therefore the visibility is given by

1 hw
_ —sinh‘l(—l . ) . 24 (Vi)
7 & 2Vl vis ( ) lViSIZJo(Vllﬁw) (2*1_21)
If one can choose an experimental setup satisfying the con- Vi . [Mo(x 1
dition w7<1, this expression becomes ~ 7 a2 Sinh— Ll Ko(X) dx |, (31)
h and Eq.(25) is replaced by the following expression:
T _IViS' (25)
2V, L
m (%2

=—| ——=dx~ 57 lys- 32
For the case of general potential shown in Fig. 4, which TWKe ﬁfxl Ko(X) A (32

allows the WKB approximation, we have a transmitting

wave after the potential wall, IV. COMPARISON OF NUMERICAL RESULTS WITH

THE SIMULATION BASED ON THE NELSON'’S

‘I’”'(X =i 45y 1 QUANTUM MECHANICS
’ 4+ S5 Vko(X) Here we evaluate the tunneling time by the use of Nel-
< . son’s approach of quantum mechariésand compare them
xexp i Ka(x')dx' — — | | @ IEUA with numerical results of traversal time obtained from the
o(x") At T : : .
X2 4 visibility. Nelson’s quantum mechanics, using the real-time
stochastic process, enables us to describe individual experi-
Ji(Vi/hiw) [Ko(X) mental runs of a quantum system in terminology of the
Jo(Vilhw) Y Kkq(X) “analog” of classical mechanics, i.e., the ensemble of
sample paths. These sample paths are generated by the sto-
y P{fx mo ,}(1 S et chastic process
exp i —dx -2q.)e '?
xefiko(X") dx(t) =[ux(t), D+ o (x(t) Hldt+dw(t), (33
J,l(Vl/ﬁw) ko(X) . . . .
+ AL " wherex(t) is a stochastic variable corresponding to the co-
oVi/hw) -1(X) ordinate of the particle, and(x(t),t) andv(x(t),t) are the
< Mo osmotic velocity and the current velocity, respectively. The
Xexp{ _if dx’] (1_2_1)eiwt , dw(t) is the Gaussian white noise with the statistical prop-
xofiKo(X") erties of
(26) 5
(dw(t))=0, and{(dw(t)dw(t))= —dt. (34
where m
5 In principle the osmotic and the current velocities are given
S .= 4+ E @27) by solving coupled two equations, i.e., the kinetic equation
=144 2, S and the “Newton-Nelson equation.” The whole ensemble of

sample paths gives us the same results as quantum mechan-
. ics in the ordinary approach. Once the equivalence of Nel-
S, =ex _f 2Kn(X)dX _ (29) _sqn’s frameyvork and ordinary quantum mechanics is proved,
X1 it is convenient to use the relation

The detailed calculation is given in Appendix B. For an
opaque potential, the damping fact&sare so small that the
transmitted current becomes (35

=R i al dov=I h &I
u= eaa—xnw(x,t) an v—mﬁa—xnzp(x,t),
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FIG. 7. Comparison of numerical results of traversal times ver-

susV,/Eqy, whereE, is an incident energy andly is a potential
height. The inset is a magnified part of smd}.

FIG. 5. Typical transmission sample path calculated by (B§).

wherey is the solution of Schidinger equation. Since indi-
vidual sample path has its own history, we obtain informa-

tion on the time parameter, e.g., the traversal tji8\8]. . . . . . .
P g 8,6 tgive an imaginary wave number=1 in the unit ofky which

Now using the Nelson’s quantum mechanics, we estima d h al f hi
the traversal time crossing over a time-dependent potentigi®"€SPonds to the opaque potential except for very thin po-
tential barrier. Thus we can see thqj,son @and Tywkg agree

barrier shown in Fig. 1. Suppose a simulation of tunneling ith h oth ) ble that.. fits ol I with th
phenomena based on E&3), starting fromt= —o and end- wit eai othgr. gt |s.notahet aﬁs its also well wit tdg_m .
ing att=c0. As we treat a wave packet satisfying the time- except for thin barrier where the opaqueness condition is

dependent Schidinger equation, the wave packet is Iocatedb_rOken' The imaginary wave number dependence of traversal

in region | initially and turns finally into two spatially sepa- time is shown in Fig. 7 for a fixed and rather thick potential

rated wave packets which are in regions | and Ill. Figure gharrier W'dt_h' The val_ue ok becomes Iar_ger than 1 fafo
shows a typical transmission sample path calculated by EchEO and in this regionryeison agrees Withryeg . On the
(33) with “backward time evolution method{8,9]. The tra- ther hand, in the regiovlo<2E,, Twks be_CQme_S to dew_at_e
versal time using this approachyy.,, is defined as the av- from 7neison, Where the opaqueness condition is not satisfied.

eraged time interval in which the random variak(e) stays ~OWeverr,s can reproduce the value ofieisonfor aimost all
in the barrier region II. Thusyeedefined in this way has a €9ion. From these two figures, we see, in the opaque case,
character of statistical distribution as pointed in R&fs5],  that Tneison COINCide with 7y With respect to its depen-

since it is the value averaged over the ensemble of sampfé€nce on potential widtd and on the imaginary wave num-
paths having the transmitting wave packets. ber x. While there is an obvious reason why thgyg can

We call the traversal time obtained by the visibility of ONly @pplicable to the opaque case, one needs not assume
transmission currentr,;. Let us comparers With myeson &Y approximation to evaluatgeison in p_r|n_C|pIe. Therefore_
and s in a rectangular potential barrier numerically. Here the 1atter may represent a characteristic property of time

we take the unit withm=7%=1. Figure 6 shows these nu- scale for tunneling phenomena not only for the opaque case
merical results versus potential widthand Fig. 7 shows but also for the translucent case. However, both of these

those versu¥/,/E,, whereE, is an incident energy and, traversal times are defined only on the bases of theoretical

is a potential height. It has been shown that, in the opaquB'©dels, but cannot be checked by experiment so easily. It

case, the Fokker-Planck equation for the distribution for the>nould be noticed that, is connected to the experimental
samples can be solved analytically and givefeson data directly, and the theoretical estimation may be checked

_ e by experiment rather easily. Thus we think that can be a
~mdhx(= 8,9]. The parameters adopted in Fig. 6 _ S )
«(=Twie) 189 P P ¢ good candidate presenting time scale of tunneling phenom-
ena both for the opaque case and for the translucent case.

[ | Vo/Ey=2.0

Vi/Ey,=0.002

F |w/E,=0.02
Tvetson —&—1

—
=]

V. SUMMARY AND COMMENTS

=]

In this paper, we present a proposal for the estimation of
Buttiker-Landauer traversal time based on the visibility of
------- transmission current. We analyzed the tunneling phenomena
] with a time-dependent potential described by ER), and
obtained the time-dependent transmission current for a small
perturbationV,; and an opaque case. We found that the vis-
L L ibility is directly connected to the traversal time, whiletBu
d(u‘;lits of 16/k0) iker and Landauer proposed that the crossover from the low

frequency behavior to the high frequency behavior yields the

FIG. 6. Comparison of numerical results of traversal times ver-traversal time. Furthermore, this result is valid not only for
sus potential widthd in a rectangular potential barrier. rectangular potential barrier but also for general form of po-

T (units of 1/k3)

N
T

%) 3
ook

10
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tential to which the WKB approximation is applicable. After —4ikk .
a brief review of Nelson’s quantum mechanics, by which the Do= detk. <) e 'k, (A8)
traversal time is calculated definitely, we compared those '
results with the numerical values obtained from the simula- _ )
tion of Nelson’s framework. Both of them fit together not Where detk, ) is defined by
only for the opaque case but also for the translucent case and
it shows our method is very effective to measure experimen- (k+ik)e ™ @  —(k—ik)
tally the traversal time. deik,x)= e .
(k—ik)e —(k+ik)

ACKNOWLEDGMENTS =2(x?—k?)sinhkd—4ikk coshkd. (A9)
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manaka.

_Jn(Vi/fhiw) 2Dge' k92

APPENDIX A: AMPLITUDES " 3o(Vqlhw) delk,, k)
In this appendix, we recapitulate briefly how to determine X {(k2—KkKo) Sinhi,d— (k2= K,Ko) (K / ko) Sinhxod
the amplitudes of the sidebandsEatn% » from the match- non " "
ing conditiong4—6]. It is convenient to define the following +ix,(kn+Kg) (coshkod—coshx,d)} (A10)
guantities:
and
W (x)=(Bne ™+ Cpe™)J (ﬁ) (A1)
m m m "MAw)’ A _Jn(Vllﬁw) Doei(k—kn)dIZ
" Jo(Viltiw) detky,xp)
, \%
W' (X)= k(B ™ —Cpe~ “X)Jn-m( ﬁ) . (A2) X {(k2—kpko)sinhx,d coshkqd

— (k?+Knko) (kn/ ko) cOShk,d sinhk,d
where the prime means a derivative with respect to the co-

ordinatex. At the energyE,, we have the matching condi- +ixn(ko—kn)(1—coshk,d coshkod)
tions —i((kok?/ ko) — Knkg)sinhi,d sinhxod?,
. . d (A11)
Snoe ™1+ Agel =2 vvﬁn“’( - 5), (A3)
" where detk,, k) is defined by
2 . : J d . .
i%((snoe*'an_Anelan):Z WST?) (_E)’ (A4) derk B (knt+ikp)e  nd  —(k,—ikp)
" S D= ke (ki rikn)
. d =2(k2—k2)sinhk,d— 4ik,kncoshxkd.
D,el%n= W“”(—), A5
ne'r=2 W| 5 (A5) AL2)

2an (d APPENDIX B: THE VISIBILITY IN A GENERAL
. lay, — (n) _ .
i— Dnelr % Wiy (2) (A6) POTENTIAL CASE

B . . ) We give an expression for the visibility in a general po-
where a,=Kk,d/2. Noticing that J, is proportional 10 (antia| case by the use of the WKB approximation. A station-

(V1/2hw)" and taking only the leading terms, we approxi- 5ry solutionWe(x) with energyE satisfies the Schtnger
mate Eqs(A3), (A4), (A5), and (A6) and obtain the trans- equation

mission coefficients and reflection coefficients. At the energy
E, we recover the results of static barrier, the reflection and

the transmission coefficients h?
[—%v%vu) Ve(X)=EWg(X). (B1)
_—2(k2+ «?)sinhkd ~kd AT
o det’k, x) ¢ (A7) Stating from the outgoing wave solution in the region I,
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—k:tx) ex;{i(f:k(x')dx’—g”, (B2)

we have the evanescent wave solution in the region I,
i fx

——exp — x")ydx'
S W’ XiK( : ]
S X

+—exp[f K(x’)dx’} ,
2 X1

and then, the incoming and reflecting wave solutions

q,lll (X) —

\Ifll —
= Teoo

(B3)

v(x,t)=

\
For the case oh=0, we have the solution

expl’ —i( J’Xlk(x’)dx’—w/4
—exp{f k(x")dx’ }

PHYSICAL REVIEW A 62 032104

Yl(x)= ! (—|4+S2 p{ (f k(x' dx——)J
VK(x)
4= (o
+| =i 1S )exp{|(jx k(x )dX_Z)H’ (B4)
where

S= ex;:( — JXZK(X’)dx’>. (B5)

Using these stationary WKB solutions, we can write down a
time dependent solution in the case shown in Fig. 4,

)
; WE(x)e BV (x<xy),

2 \Z (x)E J( ) SIETROUE () <x<x,), (B6)

}E) T (x)e B (x,=<x).

_2 %
+ —i44sjo)exp{i(jx k

(x’)dx'—w/4)+

(X1SX<=X3),

( VAR ( 4+
DOJO(%) kool as
(X=X1),
‘I’EO(X):< (Vl) 1 p{
DoJo —K(X SOex f k(x")dx’
DO 0 ﬁw \/W p[ (f k(x") x——)] (X,=X),

whereS, is the damping factor of thath mode,

31=exp( — szxn(x)dx>. (B8)

The coefficients are fixed by the incoming wave normaliza-

tion

Vi) .
Dodo| 7— _'4+s§' (B9)

(B7)

p{ fx(x )dx}

\%
+D1JO(

el
DgJdq Fo) Jx00
+%exp{ J:lK(x’)dx’
——exp{ f k(X' )dx)
+?1exp[ fxlel(X,)dX,} ,

both of which should be matched to the reflecting and the
transmitting waves with enerdgs; and wave numbek;. A
similar relation holds fom= —1. Requiring the condition-

1

VK1(X)

-1
ho

(B10)

For the case oh=1, we have to consider the two types of that there are no incoming waves in these modes, we can

wave in the region I,

determine the coefficientd .., in the region lll,
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vV, 4+S5 S.y
D-1Jo ol T aic2 S.
® 4+5%, So

\1
X0

DOJ+1<—). (B11)

Considering the above results, we get the transmitting wave

upton==1,
4S5 1
vl —
0 I4+s§ Vko(X)

X a
xXexp i f ko(x")dX" — —
X2 4

J1(Vi/how) Ko(X)
X{” 3o(Valh@) Via(x)

o

where

PHYSICAL REVIEW A 62 032104

Xexp{ifx me dX’}(l—E yelet
xofiko(X') !

J_1(Vi/hw) Ko(X)
Jo(Vi/fiw) VN K_1(X)

X Mw .
Xexp{—if dx'](l—z—l)e“”t,
xofiKo(X")

4+S§ S,y

S =——— .
a2, S
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