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Estimation of the Büttiker-Landauer traversal time based on the visibility of transmission current
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We present a proposal for the estimation of Bu¨ttiker-Landauer traversal time based on the visibility of
transmission current. We analyze the tunneling phenomena with a time-dependent potential and obtain the
time-dependent transmission current. We found that the visibility was directly connected to the traversal time.
Furthermore, this result is valid not only for rectangular potential barrier but also for general form of potential
to which the WKB approximation is applicable . We compared these results with the numerical values obtained
from the simulation of Nelson’s quantum mechanics. Both of them fit together and it shows that our method is
very effective in measuring experimentally the traversal time.

PACS number~s!: 03.65.Bz, 73.40.Gk
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I. INTRODUCTION

Soon after the advent of quantum mechanics, MacC
suggested that there is a time associated with the passa
a particle under a tunneling barrier, i.e., a tunneling time@1#.
Now the time has been measured in several experiments
its qualitative results have been obtained. However, it is
clear whether a unique time exists or not, since we have
univocal definition of tunneling time and no definite expe
mental data. See Refs.@2,3# and references therein for re
views of the problem.

In this paper, we present a proposal for the estimation
Büttiker-Landauer traversal time based on the visibility
transmission current experimentally. Bu¨ttiker and Landauer
@4,5# invoked an oscillatory barrier to estimate a tunneli
time. The original static barrier was augmented by a sm
oscillation in the barrier height. The amplitude of the osc
lation is kept small; the disturbance of the original kinet
can be made small as desired. At very low modulation f
quencies the incident particle sees a particular part of
modulation cycle. The particle sees an effectively static b
rier, but later parts of the incident wave see a slightly diff
ent barrier height. As one turns up the modulation frequen
one eventually reaches a range where an incident particl
longer sees a particular portion of the modulation cycle,
is affected by a substantial part of the modulation cycle,
several cycles. They claimed that the frequency at which
transition occurs, i.e., the frequency where one begins to
viate substantially from the adiabatic approximation, is
indication of the length of time that a particle interacts w
the barrier. They made carefully several comments as
lows: It is, of course, an approximate indication of a tim
scale. It is not the eigenvalue of a Hamiltonian, indicative
a precisely measurable value. Moreover, this traversal t
value may really be characteristic of a statistical distributi

They showed that for an opaque rectangular barrier,
modulated barrier approach yields
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t5dm/\k, ~1!

whered is the barrier length and\k the magnitude of the
imaginary momentum under the barrier. For a potential t
allows the WKB approximation, it yields

t5E
B
dx

m

\k~x!
, ~2!

whereB means the barrier region.
This gives a plausible estimation of traversal time bas

on a theoretical background. However, if one wants to m
sure the value of traversal time by an experiment, one ha
draw it from the asymptotic behavior of transmission rate
a function of v. Generally its dependence onv does not
change so rapidly, that one cannot easily estimate the v
from experimental data. There is another type of experime
one projects a stationary incident particle beam on the ta
with oscillating barrier and measure the time dependenc
transmission current which may also oscillate with the sa
frequency. Here we show the visibility of oscillating curre
gives us a good information about traversal time.

II. TIME-DEPENDENT BARRIER

Following Refs.@4–6#, we start by considering a Hamil
tonian

H52
\2

2m

d2

dx2
1V0~x!1V1~x!cosvt, ~3!

whereV0(x) is static andV1(x) is the amplitude of a smal
modulation. Incident particles with energyE interacting with
the perturbationV1cosvt, will emit or absorb modulation
quanta\v. The Schro¨dinger equation of this Hamiltonian
has the solution in the barrier region

C~x,t;E8!5fE8~x!expS 2 i
E8t

\ D (
n52`

n5`

JnS V1

\v De2 invt,

~4!
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where fE8(x) is an eigenfunction of the time-independe
Hamiltonian H052(\2/2m)d2/dx21V0 , H0fE85E8fE8
and Jn is a Bessel function. The time modulation of th
potential gives rise to sidebands describing particles wh
have absorbed (n.0) or emitted (n,0) modulation quanta
Therefore we have to take into account the many sideba
of which the Bessel functions are appreciable.

To the left of the barrier, we allow an incident wave
energy E and reflected waves at energiesE85En[E
1n\v,

C I~x,t !5eikxe2 i (E/\)t1 (
En.0

Ane2 iknxe2 i (En /\)t, ~5!

where kn5A2mEn /\2, E05E and k05k, see Fig. 1. We
consider only the positive energy solutions. In the barr
region, in addition to the solution~4! with E85E, there exist
other evanescent~and oscillating, in a certain case! modes
corresponding to the reflected wave with energyE85En .
Here we also consider only positive energy solutions. Tak
account of these points, we have a solution in the bar
region

C II~x,t !5 (
En.0

neff

e2 i (En /\)t (
m

neff

~Bmekmx

1Cme2kmx!Jn2mS V1

\v D , ~6!

wherekn5A2m(V02En)/\2. For the transmitted wave, w
have

C III ~x,t !5 (
En.0

Dneiknxe2 i (En /\)t. ~7!

For smallV1 , Jn is proportional to (V1/2\v)n and thus, only
the small numbers of terms in the summation of Eq.~6!
contribute effectively. Correspondingly the numbers of ter
in the summations of Eqs.~5! and~7! are suppressed. To fin
the solution for the Schro¨dinger equation, we match a supe
position of incident and reflected waves~5!, and also trans-
mitted waves~7!, at each energyEn , to solutions within the
barrier~6!. As a result of somewhat tedious but straight c

FIG. 1. Particles transmitted or reflected at a barrier of heightV0

and widthd interacting a small modulationV1cosvt can absorb or
emit modulation quanta\v. The transmitted and reflected wave
contain amplitudes at the frequencyE/\ and the sideband frequen
ciesEn /\.
03210
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culation~see the Appendix A!, we have the transmission an
reflection coefficients in the leading order,

Dn5
Jn~V1 /\v!

J0~V1 /\v!

2D0ei (k2kn)d/2

det~kn ,kn!

3$~kn
22knk0!sinhknd2~k22knk0!~kn /k0!sinhk0d

1 ikn~kn1k0!~coshk0d2coshknd!% ~8!

and

An5
Jn~V1 /\v!

J0~V1 /\v!

D0ei (k2kn)d/2

det~kn ,kn!

3$~kn
22knk0!sinhknd coshk0d

2~k21knk0!~kn /k0!coshknd sinhk0d

1 ikn~k02kn!~12coshknd coshk0d!

2 i @~k0kn
2/k0!2knk0#sinhknd sinhk0d%, ~9!

where det(kn ,kn) is defined by

det~kn ,kn![U~kn1 ikn!e2knd 2~kn2 ikn!

~kn2 ikn!eknd 2~kn1 ikn!
U

52~kn
22kn

2!sinhknd24iknkncoshknd.

~10!

From these results we can obtain the transmission p
ability defined by the ratio of transmitted currentj III and the
incident currentj inc5\k/m. It depends on the time as well a
the position of measurement due to the interference am
different energies waves. However, if we take a time aver
of the ratio, its dependence will disappear,

T̄5 (
n50

neff kn

k0
uDnu2. ~11!

We show an example of numerical result of the tim
averaged transmission probability in Fig. 2.

Now we will discuss the traversal time. As following t
Büttiker and Landauer, we assume that\v!E, so that the
wave numbers of the side bands are

FIG. 2. The transmission probability taking a long time averag
4-2
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k6n5A2m~E6\v!

\
'k6n

mv

\k
, ~12!

and assume\v!V02E, so that

k6n5A2m~V02E7\v!

\
'k7n

mv

\k
. ~13!

In the case of opaque barrier, taking account of
asymptotic forms of transmitted wave amplitudes

D6156
V1

2\v
D0~e6vt21!e7 ivt/2, ~14!

Büttiker and Landauer included first order corrections to
static barrier and obtained the intensity for the transmit
sidebands, for the case of smallV1,

T615
k61

k0
S V1

2\v D 2

~e6vt21!2T0 , ~15!

wheret5md/\k. From this expression they found that the
exists the crossover from the low frequency behavior

T615
k61

k0
S V1t

2\ D 2

T0 , ~16!

where the two intensities of the sidebands are equal, to
high frequency behavior

T115
k11

k0
S V1

2\v D 2

e2vtT0 , ~17!

T215
k21

k0
S V1

2\v D 2

T0 , ~18!

where the two intensities differ strongly. This transition
imbalance is best described by

k21T112k11T21

k21T111k11T21
5tanhvt. ~19!

Thus they claimed the crossover from the low frequency
havior to the high frequency behavior yields the traver
time.

III. VISIBILITY AND TRAVERSAL TIME

Their claim is a very interesting idea to estimate a cert
kind of tunneling time, but it is rather difficult to determin
its value from experiments. Now let us consider the tim
dependence of the transmitted currents. If one observes
currents at a fixed pointx5L, one may see the interferenc
effect between the different frequency waves in the first
der approximation
03210
e
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T5
1

k0
Re$~k0D0ei (k0L2E0t)1k1D1ei (k1L2E1t)

1k21D21ei (k21L2E21t)!*

3~D0ei (k0L2E0t)1D1ei (k1L2E1t)1D21ei (k21L2E21t)!%

;uD0u21
1

k0
uD0u@~k01k11!uD11u

1~k01k21!uD21u#cos@vt2f~L !#, ~20!

wheref(L) is a phase which is independent on timet,

f~L !5f11~L !5argS D11

D0
D1~k112k0!L

52f21~L !52FargS D21

D0
D1~k212k0!LG .

~21!

Here the asymptotic forms~14! were used. Now we show th
numerical result of the time dependence of transmitted c
rent at a fixed point in Fig. 3. If a detector has a good tim
resolution, one may measure this visibility of the transmitt
wave

I vis[
Tmax2Tmin

Tmax1Tmin

5
1

k0
S ~k01k11!UD11

D0
U1~k01k21!UD21

D0
U D . ~22!

In the case of a small perturbationV1 and an opaque stati
potential, Eq.~22! is approximated by

I vis;
2V1

\v
sinhvt, ~23!

from which the traversal time is expressed by the visibility
follows:

FIG. 3. The time dependence of the transmitted currents
fixed pointx5750 ~units of 1/k0). The potential frequencyv is 0.1
~units ofk0

2). Other parameters~static potential height, small modu
lation amplitude, etc.! are the same values in Fig. 2. In this figur
T0 is the transmission probability in the static potential case, tha
V150.
4-3
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t5
1

v
sinh21S \v

2V1
I visD . ~24!

If one can choose an experimental setup satisfying the c
dition vt!1, this expression becomes

t;
\

2V1
I vis . ~25!

For the case of general potential shown in Fig. 4, wh
allows the WKB approximation, we have a transmittin
wave after the potential wall,

C III ~x,t !5 i
4S0

41S0
2

1

Ak0~x!

3expH i S E
x2

x

k0~x8!dx82
p

4 D J e2 iEt/\

3F11
J1~V1 /\v!

J0~V1 /\v!
Ak0~x!

k1~x!

3expH i E
x2

x mv

\k0~x8!
dx8J ~12S1!e2 ivt

1
J21~V1 /\v!

J0~V1 /\v!
A k0~x!

k21~x!

3expH 2 i E
x2

x mv

\k0~x8!
dx8J ~12S21!eivtG ,

~26!

where

S615
41S0

2

41S61
2

S61

S0
, ~27!

Sn5expS 2E
x1

x2
kn~x!dxD . ~28!

The detailed calculation is given in Appendix B. For a
opaque potential, the damping factorsSn are so small that the
transmitted current becomes

FIG. 4. Schematical illustration of one-dimensional tunneling
the general potential case. The small modulationV1cosvt exists in
the region of II~illustrated with the dashed line!.
03210
n-

h

T;S0
2H 112

J1~V1 /\v!

J0~V1 /\v!
~S212S1!cos@vt2f~x!#J ,

~29!

where

f~x!5E
x2

x mv

\k0~x8!
dx8. ~30!

Therefore the visibility is given by

I vis52
J1~V1 /\v!

J0~V1 /\v!
~S212S1!

;
V1

\v
2 sinhS mv

\ E
x1

x2 1

k0~x!
dxD , ~31!

and Eq.~25! is replaced by the following expression:

tWKB5
m

\ Ex1

x2 1

k0~x!
dx;

\

2V1
I vis . ~32!

IV. COMPARISON OF NUMERICAL RESULTS WITH
THE SIMULATION BASED ON THE NELSON’S

QUANTUM MECHANICS

Here we evaluate the tunneling time by the use of N
son’s approach of quantum mechanics@7# and compare them
with numerical results of traversal time obtained from t
visibility. Nelson’s quantum mechanics, using the real-tim
stochastic process, enables us to describe individual exp
mental runs of a quantum system in terminology of t
‘‘analog’’ of classical mechanics, i.e., the ensemble
sample paths. These sample paths are generated by the
chastic process

dx~ t !5†u„x~ t !,t…1v„x~ t !,t…‡dt1dw~ t !, ~33!

wherex(t) is a stochastic variable corresponding to the c
ordinate of the particle, andu„x(t),t… and v„x(t),t… are the
osmotic velocity and the current velocity, respectively. T
dw(t) is the Gaussian white noise with the statistical pro
erties of

^dw~ t !&50, and ^dw~ t !dw~ t !&5
\

m
dt. ~34!

In principle the osmotic and the current velocities are giv
by solving coupled two equations, i.e., the kinetic equat
and the ‘‘Newton-Nelson equation.’’ The whole ensemble
sample paths gives us the same results as quantum me
ics in the ordinary approach. Once the equivalence of N
son’s framework and ordinary quantum mechanics is prov
it is convenient to use the relation

u5Re
\

m

]

]x
ln c~x,t ! and v5Im

\

m

]

]x
ln c~x,t !,

~35!
4-4
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wherec is the solution of Schro¨dinger equation. Since indi
vidual sample path has its own history, we obtain inform
tion on the time parameter, e.g., the traversal time@8,9#.

Now using the Nelson’s quantum mechanics, we estim
the traversal time crossing over a time-dependent pote
barrier shown in Fig. 1. Suppose a simulation of tunnel
phenomena based on Eq.~33!, starting fromt52` and end-
ing at t5`. As we treat a wave packet satisfying the tim
dependent Schro¨dinger equation, the wave packet is locat
in region I initially and turns finally into two spatially sepa
rated wave packets which are in regions I and III. Figure
shows a typical transmission sample path calculated by
~33! with ‘‘backward time evolution method’’@8,9#. The tra-
versal time using this approachtNelson is defined as the av
eraged time interval in which the random variablex(t) stays
in the barrier region II. ThustNelsondefined in this way has a
character of statistical distribution as pointed in Refs.@4,5#,
since it is the value averaged over the ensemble of sam
paths having the transmitting wave packets.

We call the traversal time obtained by the visibility
transmission current,tvis . Let us comparetvis with tNelson
andtWKB in a rectangular potential barrier numerically. He
we take the unit withm5\51. Figure 6 shows these nu
merical results versus potential widthd and Fig. 7 shows
those versusV0 /E0, whereE0 is an incident energy andV0
is a potential height. It has been shown that, in the opa
case, the Fokker-Planck equation for the distribution for
samples can be solved analytically and givestNelson
;md/\k(5tWKB) @8,9#. The parameters adopted in Fig.

FIG. 5. Typical transmission sample path calculated by Eq.~33!.

FIG. 6. Comparison of numerical results of traversal times v
sus potential widthd in a rectangular potential barrier.
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give an imaginary wave numberk51 in the unit ofk0 which
corresponds to the opaque potential except for very thin
tential barrier. Thus we can see thattNelson and tWKB agree
with each other. It is notable thattvis fits also well with them
except for thin barrier where the opaqueness condition
broken. The imaginary wave number dependence of trave
time is shown in Fig. 7 for a fixed and rather thick potent
barrier width. The value ofk becomes larger than 1 forV0
.2E0 and in this regiontNelson agrees withtWKB . On the
other hand, in the regionV0,2E0 , tWKB becomes to deviate
from tNelson, where the opaqueness condition is not satisfi
Howevertvis can reproduce the value oftNelsonfor almost all
region. From these two figures, we see, in the opaque c
that tNelson coincide with tWKB with respect to its depen
dence on potential widthd and on the imaginary wave num
ber k. While there is an obvious reason why thetWKB can
only applicable to the opaque case, one needs not ass
any approximation to evaluatetNelson in principle. Therefore
the latter may represent a characteristic property of ti
scale for tunneling phenomena not only for the opaque c
but also for the translucent case. However, both of th
traversal times are defined only on the bases of theore
models, but cannot be checked by experiment so easily
should be noticed thattvis is connected to the experiment
data directly, and the theoretical estimation may be chec
by experiment rather easily. Thus we think thattvis can be a
good candidate presenting time scale of tunneling phen
ena both for the opaque case and for the translucent cas

V. SUMMARY AND COMMENTS

In this paper, we present a proposal for the estimation
Büttiker-Landauer traversal time based on the visibility
transmission current. We analyzed the tunneling phenom
with a time-dependent potential described by Eq.~3!, and
obtained the time-dependent transmission current for a s
perturbationV1 and an opaque case. We found that the v
ibility is directly connected to the traversal time, while Bu¨tt-
iker and Landauer proposed that the crossover from the
frequency behavior to the high frequency behavior yields
traversal time. Furthermore, this result is valid not only f
rectangular potential barrier but also for general form of p
-

FIG. 7. Comparison of numerical results of traversal times v
susV0 /E0, whereE0 is an incident energy andV0 is a potential
height. The inset is a magnified part of smallV0.
4-5
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tential to which the WKB approximation is applicable. Afte
a brief review of Nelson’s quantum mechanics, by which
traversal time is calculated definitely, we compared th
results with the numerical values obtained from the simu
tion of Nelson’s framework. Both of them fit together n
only for the opaque case but also for the translucent case
it shows our method is very effective to measure experim
tally the traversal time.
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APPENDIX A: AMPLITUDES

In this appendix, we recapitulate briefly how to determi
the amplitudes of the sidebands atE6n\v from the match-
ing conditions@4–6#. It is convenient to define the following
quantities:

Wm
(n)~x![~Bmekx1Cme2kx!Jn2mS V1

\v D , ~A1!

Wm
(n)8~x![km~Bmekx2Cme2kx!Jn2mS V1

\v D , ~A2!

where the prime means a derivative with respect to the
ordinatex. At the energyEn , we have the matching cond
tions

dn0e2 ian1Aneian5(
m

Wm
(n)S 2

d

2D , ~A3!

i
2an

d
~dn0e2 ian2Aneian!5(

m
Wm

(n)8S 2
d

2D , ~A4!

Dn eian5(
m

Wm
(n)S d

2D , ~A5!

i
2an

d
Dneian5(

m
Wm

(n)8S d

2D , ~A6!

where an[knd/2. Noticing that Jn is proportional to
(V1/2\v)n and taking only the leading terms, we approx
mate Eqs.~A3!, ~A4!, ~A5!, and ~A6! and obtain the trans
mission coefficients and reflection coefficients. At the ene
E, we recover the results of static barrier, the reflection a
the transmission coefficients

A05
22~k21k2!sinhkd

det~k,k!
e2 ikd, ~A7!
03210
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D05
24ikk

det~k,k!
e2 ikd, ~A8!

where det(k,k) is defined by

det~k,k![U~k1 ik !e2kd 2~k2 ik !

~k2 ik !ekd 2~k1 ik !
U

52~k22k2!sinhkd24ikk coshkd. ~A9!

Similarly, at the energyEn , we have the transmission an
reflection coefficients in the leading order

Dn5
Jn~V1 /\v!

J0~V1 /\v!

2D0ei (k2kn)d/2

det~kn ,kn!

3$~kn
22knk0!sinhknd2~k22knk0!~kn /k0!sinhk0d

1 ikn~kn1k0!~coshk0d2coshknd!% ~A10!

and

An5
Jn~V1 /\v!

J0~V1 /\v!

D0ei (k2kn)d/2

det~kn ,kn!

3$~kn
22knk0!sinhknd coshk0d

2~k21knk0!~kn /k0!coshknd sinhk0d

1 ikn~k02kn!~12coshknd coshk0d!

2 i „~k0kn
2/k0!2knk0…sinhknd sinhk0d%,

~A11!

where det(kn ,kn) is defined by

det~kn ,kn![U~kn1 ikn!e2knd 2~kn2 ikn!

~kn2 ikn!eknd 2~kn1 ikn!
U

52~kn
22kn

2!sinhknd24iknkncoshknd.

~A12!

APPENDIX B: THE VISIBILITY IN A GENERAL
POTENTIAL CASE

We give an expression for the visibility in a general p
tential case by the use of the WKB approximation. A statio
ary solutionCE(x) with energyE satisfies the Schro¨dinger
equation

F2
\2

2m
¹21V~x!GCE~x!5ECE~x!. ~B1!

Stating from the outgoing wave solution in the region III,
4-6
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C III ~x!5
1

Ak~x!
expH i S E

x2

x

k~x8!dx82
p

4 D J , ~B2!

we have the evanescent wave solution in the region II,

C II~x!5
1

Ak~x!
F2

i

S
expH 2E

x1

x

k~x8!dx8J
1

S

2
expH E

x1

x

k~x8!dx8J G , ~B3!

and then, the incoming and reflecting wave solutions
za

of

03210
C I~x!5
1

Ak~x!
F S 2 i

41S2

4S DexpH 2 i S E
x

x1
k~x8!dx82

p

4 D J
1S 2 i

42S2

4S DexpH i S E
x

x1
k~x8!dx82

p

4 D J G , ~B4!

where

S5expS 2E
x1

x2

k~x8!dx8D . ~B5!

Using these stationary WKB solutions, we can write down
time dependent solution in the case shown in Fig. 4,
C~x,t !55
(
E

CE
I ~x!e2 iEt/\ ~x<x1!,

(
E

CE
II~x!(

n
JnS V1

\v De2 i (E1n\v)t/\ ~x1<x<x2!,

(
E

CE
III ~x!e2 iEt/\ ~x2<x!.

~B6!

For the case ofn50, we have the solution

CE0
~x!55

D0J0S V1

\v D 1

Ak~x!
F S 2 i

41S0
2

4S0
DexpH 2 i S E

x

x1
k~x8!dx82p/4D J 1S 2 i

42S0
2

4S0
DexpH i S E

x

x1
k~x8!dx82p/4D J G

~x<x1!,

D0J0S V1

\v D 1

Ak~x!
F2

i

S0
expH 2E

x1

x

k~x8!dx8J 1
S0

2
expH E

x1

x

k~x8!dx8J G ~x1<x<x2!,

D0J0S V1

\v D 1

Ak~x!
expH i S E

x2

x

k~x8!dx82
p

4 D J ~x2<x!,

~B7!
the

can
whereSn is the damping factor of thenth mode,

Sn5expS 2E
x1

x2
kn~x!dxD . ~B8!

The coefficients are fixed by the incoming wave normali
tion

D0J0S V1

\v D5 i
4S0

41S0
2

. ~B9!

For the case ofn51, we have to consider the two types
wave in the region II,
-

D0J1S V1

\v D 1

Ak~x!
F2

i

S0
expH 2E

x1

x

k~x8!dx8J
1

S0

2
expH E

x1

x

k~x8!dx8J G1D1J0S V1

\v D 1

Ak1~x!

3F2
i

S1
expH 2E

x1

x

k1~x8!dx8J
1

S1

2
expH E

x1

x

k1~x8!dx8J G , ~B10!

both of which should be matched to the reflecting and
transmitting waves with energyE1 and wave numberk1. A
similar relation holds forn521. Requiring the condition-
that there are no incoming waves in these modes, we
determine the coefficientsD61 in the region III,
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D61J0S V1

\v D52
41S0

2

41S61
2

S61

S0
D0J61S V1

\v D . ~B11!

Considering the above results, we get the transmitting w
up to n561,

C III ~x,t !5 i
4S0

41S0
2

1

Ak0~x!

3expH i S E
x2

x

k0~x8!dx82
p

4 D J e2 iEt/\

3F11
J1~V1 /\v!

J0~V1 /\v!
Ak0~x!

k1~x!
G

03210
e

3expH i E
x2

x mv

\k0~x8!
dx8J ~12S1!e2 ivt

1
J21~V1 /\v!

J0~V1 /\v!
A k0~x!

k21~x!

3expH 2 i E
x2

x mv

\k0~x8!
dx8J ~12S21!eivt, ~B12!

where

S615
41S0

2

41S61
2

S61

S0
. ~B13!
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