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Consistent histories, the quantum Zeno effect, and time of arrival
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We present a decomposition of the general quantum-mechanical evolution operator that corresponds to the
path decomposition expansion, and interpret its constituents in terms of the quantum Zeno effect~QZE!. This
decomposition is applied to a finite-dimensional example and to the case of a free particle in the real line,
where the possibility of boundary conditions more general than those hitherto considered in the literature is
shown. We reinterpret the assignment of consistent probabilities to different regions of space-time in terms of
the QZE. The comparison of the approach of consistent histories to the problem of time of arrival with the
solution provided by the probability distribution of Kijowski shows the strength of the latter point of view.

PACS number~s!: 03.65.2w
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I. INTRODUCTION

The theoretical treatment of ‘‘time observables’’ is an im
portant loose end of quantum mechanics. An example of
problems encountered was formulated by Misra and Sud
han in the form of a paradox@1#. They sought the probability
that an unstable particle decays at some time during an
terval D5@0,t#. This has to be distinguished from, and
general differs from, the standard quantum probability t
the particle is found decayed at the instantt. More generally,
they also looked for the probability that a quantum syst
makes a transition from a preassigned subspace of stat
the orthonormal subspace during a given period of time,
ther examples being the dissociation of a diatomic molec
or the arrival of a particle at a region of space. Classica
we can ask whether a particle moving on a line is always
the same side of the pointx50, be it to the right or the left
~but always to the right or always to the left!, or if it crosses
the x50 point duringD5@0,t#. What are the probabilities
for the particle being always to the same side duringD or for
the particle crossing, according to quantum mechanics?

Since many experiments deal with such topics, and p
vide answers for them, we may expect that quantum mech
ics should provide an unambiguous recipe to compute th
probabilities. However, the standard formalism, as found
all textbooks, tells us only how to evaluate expectation v
ues and probabilities for a given instant of time, so the
questions seem to pose the need for some extension o
standard rules. Misra and Sudarsan attempted an appar
natural procedure: they modeled the continuous observa
implied in these issues by a repetition of ideal first kind
measurements in the limit of infinite frequency. The con
quence of such an interpretation of the continuous meas
ment, however, is that the system never abandons the o
nal subspace~the quantum Zeno effect!. Misra and
Sudarshan considered the contradiction between the the
ical prediction and actual experiments detecting time dis
butions ~of arrival, of decay, in general of occurrence
events! as paradoxical. For these authors such a mathem
cal result was physically inacceptable: it was merely an
dication that the assumed procedure was not adequate to
vide the probabilities they were looking for. Th
1050-2947/2000/62~3!/032103~6!/$15.00 62 0321
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completeness of the quantum theory was therefore pen
until a trustworthy algorithmcould be found. In fact, most o
the many publications on the Zeno effect have been devo
to the analysis or implementation of the repeated meas
ment scheme, overlooking the origin of the paradox, nam
the need to find a trustworthy algorithm for time distrib
tions.

Later on, the formulation of nonrelativistic quantum m
chanics in terms of sum-over-histories opened up the po
bility that some questions, even though lying outside
realm of the standard rules of quantum mechanics, could
sensibly posed. One such question, for example, is wheth
is possible to define probabilities for alternative regions
space-time from amplitudes built as sums over restric
classes of paths. This was indeed discussed by Feyn
himself @2#. Hartle @3# and Yamada and Takagi@4,5# studied
the possibility of defining a probability for crossing or n
crossingx50 in an intervalD for a free particle on a line.
Their conclusion was that it is not possible to define su
probabilities, because the interference term between the
sibilities ~the ‘‘decoherence functional’’ of the literature! ge-
nerically does not vanish. Yamada and Takagi, howev
pointed out that for antisymmetric initial wave functions
was indeed possible to define the probabilities with the re
that there was no crossing of the pointx50 whatsoever.
Another exception pointed out by Halliwell was the partic
coupled to a bath. However, the resulting probabilities
pend on the nature of the bath and the coupling, i.e., no id
distribution emerges.

In this paper we shall show how the class of states t
allows for a positive answer within the consistent histor
framework can be considerably enlarged. This is done
means of a generalization of the PDX~path decomposition
expansion!. The idea of summing over classes of~Feynman!
paths is of course much more general than just its applica
to the example mentioned, and leads to many different in
esting aspects. One of particular interest to us, because o
possible relationship to the question of times of tunneling@6#
or arrival @7#, is the path decomposition expansion~PDX!,
formulated by Auerbach and Kivelson@8# to study tunneling
problems with several spatial dimensions. We find the rat
striking fact that, although hard-wall boundary conditio
have been assumed in all derivations of the decomposi
©2000 The American Physical Society03-1
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I. L. EGUSQUIZA AND J. G. MUGA PHYSICAL REVIEW A62 032103
formulas for the propagators, which is the central result
tained so far from the PDX, other boundary conditions co
be imposed on the restricted propagator without impair
the validity of the expression.

We shall start with an operator derivation of the PD
which is a generalization of the ones proposed by Halliw
@9# and Muga and Leavens@10#. As a simple illustration we
shall apply it to a two-state system. We shall then see
there is a set of exclusive alternatives for which the form
ism of consistent histories@11–15# cannot generically give a
set of probabilities. This will be understood in terms of t
quantum Zeno effect for the two-state system~which is ac-
tually the one that pertains to the proposal of Cook@16# and
has been realized experimentally@17#!. Even though the ex-
ample corresponds to a finite-dimensional Hilbert space,
derivation of the PDX holds formally for infinite
dimensional Hilbert spaces as well. However, topologi
considerations come into play, and we show the need
specify boundary conditions for the restricted propaga
We then analyze the Yes/No question formulated by Ha
and Yamada and Takagi, and show that it is possible to
fine probabilities consistently for a much wider class of i
tial conditions than the antisymmetric one put forward
Yamada and Takagi. We explain the result by analogy to
finite-dimensional example given previously.

This extension, however, falls short of the broad gene
ity that can be attributed to other conventional approache
particular to the definition of probabilities by means of po
tive operator valued measures: the time of arrival distribut
of Kijowski is perfectly well defined for free particles on th
line. Our aim in the final discussion is to solve this appar
contradiction.

II. OPERATOR DERIVATION OF THE PDX

Halliwell @9# obtained an operator derivation of the PD
which is closely related to the point of view of consistent
decoherent histories@11–15#. Let P be a projector andQ its
complementary projector, Q512P. Define P(t)
5exp(iHt/\)Pexp(2iHt/\)5U†(t)PU(t), and similarlyQ(t).
It follows that if H is self-adjoint,P(t)1Q(t)51 for every
real t. There exists a generalized decomposition of un
given by

15P1 (
k51

n

P~ tk!Q~ tk21!Q~ tk22!•••Q~ t1!Q

1Q~ tn!Q~ tn21!•••Q~ t1!Q ~1!

for any set of real numbers$t1 ,t2 , . . . ,tn21 ,tn%. Assume
that tk5kdt, with dt small. RewriteP(tk) as

P~ tk!5P~ tk21!1dt Ṗ~ tk21!1O~dt2!

5P~ tk21!1dtU†~ tk21!ṖU~ tk21!1O~dt2!, ~2!

where Ṗ is simply (i /\)@H,P#. Multiply Eq. ~1! from the
left with U(tn), and use Eq.~2!. We obtain the following
decomposition of the propagation operator:
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U~ tn!5U~ tn!P1 (
k51

n

dtU~ tn2tk21!

3 ṖU~ tk21!Q~ tk21!Q~ tk22! . . . Q

1U~ tn!Q~ tn!Q~ tn21! . . . Q1O~dt2!. ~3!

We define the following ‘‘restricted’’ propagation operato

Ur~ t !ª lim
n→`,dt5t/n

U~ndt !Q~ndt !Q@~n21!dt# . . . Q.

~4!

Taking the limitdt→0 in expression~3! we arrive at the
generalized form of the PDX proposed by Halliwell@see@9#,
expression~2.19!#,

U~ t !5U~ t !P1E
0

t

ds U~ t2s!ṖUr~s!1Ur~ t !. ~5!

Notice that it can be further generalized without comp
cation to time-dependent Hamiltonians.

A. Two-state example

Consider the two-state Hamiltonian

H5\vS 0 1

1 0D .

Let

P5S 1 0

0 0D ,

and Q512P. The unitary evolution matrix is easily com
puted to be

U~ t !5S cos~vt ! 2 i sin~vt !

2 i sin~vt ! cos~vt ! D . ~6!

It follows that Ur(t)5Q. Since

U~ t !P5S cos~vt ! 0

2 i sin~vt ! 0D
and

Ṗ5vS 0 2 i

i 0 D ,

we see that each of the terms in Eq.~5! is different from
zero: the operator form of the PDX is not a trivial identity

To interpret each of these terms, observe thatUr(t), the
restricted propagation operator, corresponds to the cont
ous limit of a series of preparations of the system in
subspace of states invariant underQ. These preparations ar
equally spaced in time, and are von Neumann collapses
the eigenspace ofQ. It is to be expected, therefore, that th
term is the propagator for a system that is continuously
3-2
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CONSISTENT HISTORIES, THE QUANTUM ZENO . . . PHYSICAL REVIEW A62 032103
served in the eigenspace ofQ, and this is, in fact, the purpor
of the analysis of Misra and Sudarshan@1# of the quantum
Zeno effect.

B. Quantum Zeno effect

If the initial state were in the eigenspace ofQ, the term
U(t)P would not contribute to the later evolution of th
system. We understand therefore that the convolution i
gral is the term required to retain a probability that the init
quantum state in the eigenspace ofQ does indeed jump a
some point in time to the eigenspace ofP. It is immediate to
observe that the sum of the convolution integral and the
stricted propagator preserves the norm of a state initially
the eigenspace ofQ. The quantum Zeno effect can be unde
stood in this case, therefore, as the decomposition of
unitary evolution in the whole Hilbert space of an eigenst
of Q in two terms: on the one hand, the restricted propaga
which is unitary in the eigenspace ofQ, but nonunitary over
the whole Hilbert space, and on the other hand, the cros
term, necessary to recover unitarity over the Hilbert spa
and which accounts for transitions out of the initial eigen
pace.

Let us now pose the following questions: given a tim
interval t and a particle initially prepared with spin dow
@i.e., in the stateu↓&5(1

0)#, what is the probability that it has
always stayed with spin down in the interval? What is t
probability that it has switched spin at some instant? We
answer the first one by looking at the restricted propaga
Ur(t): the probability amplitude that it has always stay
with spin down is ^↓uUr(t)u↓&51. However, notice tha

^↑u*0
t ds U(t2s) ṖUr(s)u↓&52 isin(vt) and ^↓u*0

t ds U(t

2s) ṖUr(s)u↓&5cos(vt)21. It follows that we cannot as
sign probabilities consistently to the exclusive events~i!
staying with spin down during the whole intervalt and ~ii !
having flipped spin at some instant of the interval. The h
tories into which we have decomposed theunitary evolution
of the particle with initial spin down are not consistent h
tories.

In terms of operators, the operator associated with
continuous measurement of being in the eigenspace ofQ and
the operator associated with, at some point, jumping to
eigenspace ofP do not commute and give rise to a crossi
term: they cannot be measured simultaneously.

More explicitly, the history operator associated with t
particle always being in the eigenspace ofQ is C1
5 lim

n→`,dt5t/n
Q(ndt)Q@(n21)dt#•••Q, i.e., a product of

succeeding projectors. The complementary operator isC2
512C1. The decoherence functional isd( i , j )
5Tr(CirCj

†), and the inconsistency of probability assig
ments is reflected in the fact that, in the case portra
above, Re@d(1,2)#Þ0. Notice that the history operatorC1 is
related to the restricted propagator defined above through
following expression:C15U†(t)Ur(t).

It is relevant at this point to mention the ‘‘spectral deco
position’’ approach of Pascazio and Namiki@18#, similar to
the idea of the generalized PDX presented above. Addit
ally, notice that the models in the literature that attempt
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obtain the quantum Zeno effect as a consequence of d
herence are in fact canceling out the crossing term. In o
words, if the pointer basis for a decoherence process is
equately aligned with the eigenspaces ofP andQ, the quan-
tum Zeno effect will be immediately obtained as a con
quence of decoherence.

Insofar as the quantum Zeno effect is a paradox~see@19#
for a general discussion!, it is a paradox in that what seem t
be exclusive and consistent events for assignments of p
ability in classical mechanics cannot be assigned quant
mechanical probabilities in a consistent manner. It should
stressed, however, that this is no logical internal contrad
tion of quantum mechanics. Rather, this simply reflects
fact that statements about quantum events have to be m
more precisely enunciated, and that classical language
presuppositions do not always translate readily into the qu
tum world.

III. HISTORIES ON THE REAL LINE

The derivation of Eq.~5! presented above is formal, wit
no attention being paid to topological issues. In order
highlight the difficulties, consider the case of a free parti
of massm that moves on a line. By simple integration b
parts one can realize thatPHQ need not be zero, since

~PHQc!~x!5
2\2

2m
@12u~x!#]x

2@u~x!c~x!#. ~7!

It therefore behooves us to analyze the meaning ofUr(t).
It is obtained as a time-ordered limit of products ofQHQ
terms. The operatorQHQ, however, is not self-adjoint: it
admits a continuous one-parameter family of self-adjoint
tensions. Therefore, unless a particular self-adjoint exten
is chosen,Ur(t) will not be unitary in the eigenspace of th
projector Q. Imagine now that a particular extension h
been chosen. The meaning ofPHQ is subservient to the
extension chosen, since what we actually require isPHQ
1QHQ5HQ. If the meaning ofQHQ is modified, so
should the meaning ofPHQ be modified.

This observation can be strengthened by applying
theorem of Misra and Sudarshan concerning the quan
Zeno effect@1# to this case of the free particle. The Ham
tonian of the free particle is self-adjoint and semibound
~the first assumption of the theorem!, and there exists a time
reversal operator, which commutes with the projectors o
spatial regions~second assumption!. Suppose now that the
limit defining Ur(t) exists; actually assume that it exists
the strong topology. It is clear in our case that if it does,
limit when t→0 is Q. It follows from Theorem 1 of Ref.@1#
that Ur(t) then can be written asQexp(2iBt/\)Q, with B
self-adjoint, and such thatQB5BQ5B. The meaning of
this result is that theexistenceof Ur(t) implies the existence
of a self-adjoint operator to which it can be related, whi
can be understood as a self-adjoint Hamiltonian acting on
eigenspace ofQ. Therefore, the validity of the operator form
of the PDX hinges on choosing a specific self-adjoint ext
sion of the original Hamiltonian when restricted to theQ
3-3
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I. L. EGUSQUIZA AND J. G. MUGA PHYSICAL REVIEW A62 032103
eigenspace and considering the unitary evolution in that s
space with this new Hamiltonian.

Profiting from the simplicity of the example at hand, l
us be more specific. The self-adjoint extensions of the fr
particle Hamiltonian on the half-line are parametrized by
real parameterb, and the domain of the extensionHb is the
set of the square integrable, absolutely continuous funct
on the half-line, whose derivative is square integrable a
that fulfill the conditionc(0)5bc8(0).

Thus the termṖUr(t) can be understood in terms of in
tegration by parts, as follows. We define~formally! the
propagatorg(x,y,t)5^xuU(t)uy& and the restricted propaga
tor gr

b(x,y,t)5^xuUr
b(t)uy&, whereUr

b(t)5exp(2iHbt/\)Q.
The convolution integral in Eq.~5! is then written as

^xu E
0

t

dsU~ t2s!ṖUr
b~s!uy&

5E
0

t

dsE
2`

1`

djg~x,j,t2s!u~2j!S 2 i\

2m D ]j
2gr

b~j,y,s!

5S 2 i\

2m D E
0

t

dsg~x,j,t2s! ]Jjgr
b~j,y,s!u

j50

,

where f (j) ]Jjg(j)5 f (j)g8(j)2 f 8(j)g(j). It is important
to stress that this derivation is valid for all realb, not just for
b50, which is the case analyzed in the literature.

Using the formalism of path integrals, Auerbach and K
elson @8# arrive at this symmetric form~with ]Jj instead of
]j) from the consideration that there is a change of varia
in the path integral, tradingxs(s) for the times after which
the path is confined to one side ofx50, and that the Jaco
bian associated with this change of variables leads to
symmetric operation]Jj . However, they do not consider gen
eral boundary conditions of the form stated here beca
they do not seem to appear in their derivation of the PDX
terms of a skeletonization of the path. Other alternative d
vations@20,21# use Wick rotation and study the Wiener in
tegral associated with a diffusion process with a totally
flecting boundary for the restricted propagator. Howev
both in the quantum-mechanical and in the Brownian p
integral, restricted to the half-line, it is feasible to consid
alternative boundary conditions, as was shown by Cla
Mekinoff, and Sharp@22#. In this paper, they use an ‘‘elasti
barrier’’ at the boundary, that is to say, in the language o
diffusive process, that the Brownian particle has a proba
ity of being reflected and a probability of being absorbed
the boundary. This is translated, by analytic continuati
into the boundary conditions that preserve probability~no
absorption of probability! for the quantum-mechanical prob
lem, i.e., the boundary conditions that lead to self-adjo
restricted Hamiltonians. From the point of view of quantu
mechanical path integrals, the restriction that the particle
cross the boundary is not enough to describe completely
possible paths: how is it to be reflected? It is this freed
that leads to the possible alternatives.
03210
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Yet another derivation of the PDX is given by Hartle~see
@3#, subsection 6.c and note 27!, who is rather cautious in his
analysis of Trotter’s formula, which is basically what unde
lies the definition of the restricted propagator, but is mis
by the uniqueness results available for the associated d
sion equation. Yamada@7# derives the PDX decompositio
out of a postulated integral equation, and imposes a part
lar choice of boundary conditions, also missing out the alt
natives highlighted in the discussion above.

A. Consistent probabilities

Let us now ask the question posed by Hartle@3# and,
independently, Yamada and Takagi@4#. Is it possible to as-
sign consistently probabilities to the following exclusiv
events:~i! that a free particle moving on the line stays alwa
to the same side ofx50 during a time intervalt; ~ii ! that it
crossesx50 once or more during the same time interval?
make the discussion easier, imagine first an initial wa
function restricted to the positive half-line. Under the r
stricted evolutionUr

b(t), this wave-function stays always i
the positive half-line with no loss of probability:Ur

b(t) is
unitary when acting onL2(R1). However, when we try to
understandUr

b(t) as extended to an operator on the who
real line, it is no longer unitary: the convolution integral
required to guarantee the unitary evolution of the initial on
sided state in the whole Hilbert space. There is therefor
crossing term, and this prevents the consistent assignme
probabilities to the exclusive events mentioned. As we se
the requirement that a particle always has to be to one sid
the x50 point is, in a way, imposed by constantly monito
ing that the particle is to one side, thus preventing the c
sical exclusive events from being consistently exclusive a
from the quantum point of view. In other words, we aga
run into the quantum Zeno paradox.

Having said this, thereis an example of initial conditions
as pointed out by Yamada and Takagi@4#, for which the
probability assignments are consistent: the antisymme
case. Antisymmetric wave functions preserve this charac
istic under evolution with the free-particle Hamiltonian, o
in other words, the parity operator commutes with the fre
particle Hamiltonian. This can also be understood with
gard to the restricted propagators as follows: the evolution
an antisymmetric wave-function under the whole Ham
tonian is identical to the direct sum of the evolution in ea
of the half-lines under the half-line free-particle propaga
with hard-wall boundary conditions. There is no probabil
flow from one half-line to the other under free-particle ev
lution if the initial condition is antisymmetric. This implie
that in this case the interference term is zero, and that
probability of always staying to the same side during a
time interval is unity: for any given instant there is no pro
ability of crossingx50.

Given this point of view, it is immediate to generalize th
example of Yamada and Takagi to other instances: the m
ing of the boundary conditions that correspond to self-adjo
extensions of the free-particle Hamiltonian when restricted
the half-line is that they prevent probability flowing out o
the half-line. So for each realb we see that the wave
functions that fulfillc(0)5bc8(0) have no transfer of prob
ability from one half-line to the other. Alternatively, the evo
3-4
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CONSISTENT HISTORIES, THE QUANTUM ZENO . . . PHYSICAL REVIEW A62 032103
lution under the whole Hamiltonian of a wave functio
obeying this condition is identical to the independent evo
tion of the parts of the wave function in each of the half-lin
under the half-line free-particle propagator with the cor
sponding boundary conditions. Thus we see that, for th
initial wave functions, the assignment of probability one
always staying to one side of the origin, and zero probabi
to crossing the origin once or more during a time interval
indeed a consistent assignment of quantum probabilities

B. Arrival probabilities

As seen above, only in some rather special circumstan
can we make consistent assignments of probability usin
decomposition of possible paths for the alternatives con
ered. This does not mean, though, that there is no consis
prescription within the realm of standard quantum mechan
for the probability of having crossed a given point,x50,
say, in a particular time interval. Misra and Sudarshan,
their seminal paper@1#, already point out that the existenc
of such a probability would imply the existence of a gen
alized resolution of the identity~in their language; a positive
operator valued measure, or POVM, in modern parlance! for
a time of arrival operator. In fact, we now have at our d
posal such a POVM for the case of a free particle; the as
ciated probability density is, for a pure statec,

PK~ t,c!5U E
0

`

dpS p

2pm\ D 1/2

e2 ip2t/2m\c~p!U2

1U E
2`

0

dpS 2p

2pm\ D 1/2

e2 ip2t/2m\c~p!U2

,

where we have used the momentum representation. Th
actually the probability density proposed by Kijowski fro
an axiomatic point of view@23#, which is related to the time
of arrival operator of Aharonov and Bohm@24# ~see@25# for
details of the relationship between the two objects!.

Given this distribution, it is sensible to ask whether
similar construction could hold for the finite-dimensional e
ample given above. Unfortunately, the answer is negat
Imagine that indeed there exists a distribution of probabi
for the time of first shifting fromu↓& to u↑&. The existence of
this distribution would imply the existence of a POVM
@which in this finite-dimensional example would have to be
projection valued measure~PVM!#, whose first operator mo
ment T would be a self-adjoint operator~in this finite-
dimensional case, all symmetric operators are self-adjo!.
Since this operator would have a ‘‘time’’ interpretation,
would have to be canonically conjugate to the Hamiltoni
@H,T#5 i\. In the example at hand,H is proportional tos1,
and all operators, such asT, can be written asa1bW •sW ,
where thes i matrices are Pauli’s matrices. There are no fo
numbers (a,bW ) such that a canonically conjugateT can be
obtained. Therefore, there is no analog of Kijowski’s dist
bution for this finite-dimensional example, and, in fact, the
is no analog of Kijowski’s distribution for any finite
dimensional example.
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IV. CONCLUSIONS

The operator derivation of the PDX formula we have p
sented here has allowed us to identify the paradoxical asp
of the quantum Zeno effect of Misra and Sudarshan as be
due to incompatible assignments of probability to incons
tent histories. We have explicitly separated the crossing t
that leads to this inconsistency.

Feeding the well-known results of Misra and Sudarsh
back onto the PDX formula, it also obtains that in cases s
as that of a free-particle moving on the line, there are sev
different PDX expressions, each one corresponding to a
ticular partial isometry, i.e., to a particular self-adjoint exte
sion of the restricted Hamiltonian. Furthermore, we ha
analyzed for which cases the PDX probability assignme
for the alternatives of having or not crossed a given point
consistent, extending the result of Yamada and Takagi to
instances of boundary conditions for which there is no pr
ability flow through that point. In spite of this extension, n
time-of-arrival probability could be assigned to the ove
whelming majority of possible states within the consiste
histories approach.

We remark that there is a different, fully consistent pr
scription for the probability of having crossed a given po
in a certain time interval, given by Kijowski’s distribution in
the free case. Notice that Kijowski’s distribution is obtain
in the context of~almost! completely standard quantum me
chanics, the only extension needed thereof being
POVMs are accepted to describe observables. How is
distribution compatible with the negative results obtain
within the framework of consistent histories? The consist
histories approach is actually much more demanding sinc
requires the absence of interferences between the space
histories to attribute to them a classical-like status as al
natives that actually occur with certain probabilities. Inste
the distribution of Kijowski should be regarded, from th
perspective of the standard interpretation, as a ‘‘potent
ity,’’ a distribution that a properly designed apparatus cou
measure. Therefore no association with noninterfering his
ries is claimed or required. The apparatus would actually
the ‘‘best’’ one, in the sense of providing a covariant dist
bution with minimum variance. Of course a less than perf
apparatus would provide convolutions or deformed versi
of PK . Werner has described the family of covariant dist
butions, each representing a potentiality associated wit
different measurement device, for states with positive m
mentum components@26#. From a more technical point o
view, the difference can be associated with the fact that
jowski’s distribution at timet is the expectation value fo
c(t) of a certain operator, a quantum version of the posit
flux minus the negative flux@10#. It is thus not related to
expectation values of strings of operators that depend on
ferent instants of time. In a slightly facetious way, we mig
say that standard, old-fashioned quantum mechanics ha
upper hand on the consistent histories formalism for this p
ticular case. While Kijowski’s distribution is ‘‘ideal,’’ in the
sense of depending only on the state of the particle, there
other approaches in which additional degrees of freedom
the apparatus and or the environment are included, wh
3-5
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provide operational time-of-arrival distributions@10#. Again,
these results are found without demanding any noninter
ence condition. Halliwell in particular@27# has compared the
distribution derived from an irreversible detector model w
the one associated with consistent histories in the presen
a bath coupled to the particle, and has shown how in
decoherent histories approach the coupling with the envir
ment destroys far more interference than is really neede
order to define the arrival time with the irreversible detect

For most cases of practical interestPK is approximately
equal to the current densityJ. The challenge now is to per
form experiments able to realize the ‘‘potentiality’’ of Ki
jowski’s distribution in ‘‘quantum’’ regimes where it differs
significantly from the current density. In general one m
expect to obtain convolutions depending on the particu
apparatus response@28#, see@10# for a more detailed discus
sion of the interpretation ofPK .

One may wonder if Kijowski’s distribution is the key t
the ‘‘trustworthy algorithm’’ sought by Misra and Sudarsa
for arbitrary problems where a time distribution for the pa
d
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sage between complementary subspaces is required. Ind
the existence of Kijowski’s distribution opens up the pos
bility that similar constructions might be feasible for oth
situations where the histories analysis has not been ab
live up to its full promise. However, we have proved that
analog of Kijowski’s distribution can be constructed in th
case of finite-dimensional Hilbert spaces. The question a
the existence of ‘‘trustworthy’’ analogs of Kijowski’s distri
bution for infinite-dimensional situations remains an op
question, which we hope will be settled in the affirmative
the future~see@29# for an extension of Kijowski’s distribu-
tion in the case of one-dimensional motion with potential!.
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