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Consistent histories, the quantum Zeno effect, and time of arrival
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We present a decomposition of the general quantum-mechanical evolution operator that corresponds to the
path decomposition expansion, and interpret its constituents in terms of the quantum Zen@&ftectThis
decomposition is applied to a finite-dimensional example and to the case of a free particle in the real line,
where the possibility of boundary conditions more general than those hitherto considered in the literature is
shown. We reinterpret the assignment of consistent probabilities to different regions of space-time in terms of
the QZE. The comparison of the approach of consistent histories to the problem of time of arrival with the
solution provided by the probability distribution of Kijowski shows the strength of the latter point of view.

PACS numbd(s): 03.65—w

[. INTRODUCTION completeness of the quantum theory was therefore pending
until atrustworthy algorithmcould be found. In fact, most of
The theoretical treatment of “time observables” is an im- the many publications on the Zeno effect have been devoted

portant loose end of quantum mechanics. An example of thi the analysis or implementation of the repeated measure-
problems encountered was formulated by Misra and SudaréP€nt scheme, overlooking the origin of the paradox, namely
han in the form of a paradds]. They sought the probability the need to find a trustworthy algorithm for time distribu-
that an unstable particle decays at some time during an intlorIfa.ter on, the formulation of nonrelativistic quantum me
terval A=[0,t]. This has to be distinguished from, and in o X hictar ) -
general differs from, the standard quantum probability tha hanics in terms of sum-over-histories opened up the possi

o X ility that some questions, even though lying outside the
the particle is found decayed at the instariore generally, real);n of the stangard rules of quantum mechanics, could be

they also Iook_e(_j for the probab|l|_ty that a quantum Sys’tenhensibly posed. One such question, for example, is whether it
makes a transition from a preassigned subspace of states;l0sssible to define probabilities for alternative regions of
the orthonormal subspace during a given period of time, furspace-time from amplitudes built as sums over restricted
ther examples being the dissociation of a diatomic molecul@|asses of paths. This was indeed discussed by Feynman
or the arrival of a particle at a region of space. Classically himself[2]. Hartle[3] and Yamada and Takaf,5] studied
we can ask whether a particle moving on a line is always tqhe possibility of defining a probability for crossing or not
the same side of the point=0, be it to the right or the left crossingx=0 in an intervalA for a free particle on a line.
(but always to the right or always to the lgfor if it crosses  Their conclusion was that it is not possible to define such
the x=0 point duringA=[0;t]. What are the probabilities probabilities, because the interference term between the pos-
for the particle being always to the same side dudngr for  sibilities (the “decoherence functional” of the literatyrge-
the particle crossing, according to quantum mechanics?  nerically does not vanish. Yamada and Takagi, however,
Since many experiments deal with such topics, and propointed out that for antisymmetric initial wave functions it
vide answers for them, we may expect that quantum mechanvas indeed possible to define the probabilities with the result
ics should provide an unambiguous recipe to compute thesat there was no crossing of the poixt0 whatsoever.
probabilities. However, the standard formalism, as found inAnother exception pointed out by Halliwell was the particle
all textbooks, tells us only how to evaluate expectation val-coupled to a bath. However, the resulting probabilities de-
ues and probabilities for a given instant of time, so theseyend on the nature of the bath and the coupling, i.e., no ideal
guestions seem to pose the need for some extension of thstribution emerges.
standard rules. Misra and Sudarsan attempted an apparently In this paper we shall show how the class of states that
natural procedure: they modeled the continuous observatioallows for a positive answer within the consistent histories
implied in these issues by a repetition of ideal first kind offramework can be considerably enlarged. This is done by
measurements in the limit of infinite frequency. The consemeans of a generalization of the POjath decomposition
guence of such an interpretation of the continuous measurexpansioi The idea of summing over classes(BEynman
ment, however, is that the system never abandons the origpaths is of course much more general than just its application
nal subspace(the quantum Zeno effect Misra and to the example mentioned, and leads to many different inter-
Sudarshan considered the contradiction between the theorassting aspects. One of particular interest to us, because of its
ical prediction and actual experiments detecting time distripossible relationship to the question of times of tunnelisig
butions (of arrival, of decay, in general of occurrence of or arrival [7], is the path decomposition expansitfPDX),
events as paradoxical. For these authors such a mathematiermulated by Auerbach and Kivels¢8] to study tunneling
cal result was physically inacceptable: it was merely an injproblems with several spatial dimensions. We find the rather
dication that the assumed procedure was not adequate to pretriking fact that, although hard-wall boundary conditions
vide the probabilittes they were looking for. The have been assumed in all derivations of the decomposition
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formulas for the propagators, which is the central result ob- n
tained so far from the PDX, other boundary conditions couldU(t,)=U(t,) P+ E StU(t,—te_1)
be imposed on the restricted propagator without impairing
the validity of the expression. .
We shall start with an operator derivation of the PDX XPU(t-1)Q(tk-1)Q(tk—2) - .. Q
which is a generalization of the ones proposed by Halliwell +U(t)Q(t)Q(t, 1) - . . Q+O(5t?). 3)
[9] and Muga and Leaverjd0]. As a simple illustration we (1) Q1) Qltn—s Q+0(
shall apply it to a two-state system. We shall then see thaiVe define the following “restricted” propagation operator
there is a set of exclusive alternatives for which the formal-

ism of consistent historigd1—15 cannot generically givea ~ Ur(D):=lim  U(nst)Q(nst)Q[(n—1)6t]...Q

set of probabilities. This will be understood in terms of the n—o, At=tin

guantum Zeno effect for the two-state systémhich is ac- (4)
tually the one that pertains to the proposal of C¢b6] and Taking the limit st— 0 in expressior(3) we arrive at the

ample corresponds to a finite- dimensional Hilbert space, th@xpressmr(z 19],

derivation of the PDX holds formally for infinite-
dimensional Hilbert spaces as well. However, topological t .

considerations come into play, and we show the need to U(t)=U(t)P+f0dSU(I—S)PUr(S)+U,(t). (5)
specify boundary conditions for the restricted propagator.

We then analyze the Yes/No question formulated by Hartle Notice that it can be further generalized without compli-
and Yamada and Takagi, and show that it is possible to decation to time-dependent Hamiltonians.

fine probabilities consistently for a much wider class of ini-
tial conditions than the antisymmetric one put forward by

. . A. Two-state example
Yamada and Takagi. We explain the result by analogy to the

finite-dimensional example given previously. Consider the two-state Hamiltonian
This extension, however, falls short of the broad general- 0 1

ity that can be attributed to other conventional approaches, in H= ﬁw( ) _

particular to the definition of probabilities by means of posi- 10

tive operator valued measures: the time of arrival d|str|but|on
of Kijowski is perfectly well defined for free particles on the
line. Our aim in the final discussion is to solve this apparent 1 0
contradiction. P= ( 0 O) ,

Il. OPERATOR DERIVATION OF THE PDX and Q=1—P. The unitary evolution matrix is easily com-

Halliwell [9] obtained an operator derivation of the PDX Puted to be

which is closely related to the point of view of consistent or cogwt)  —isin(wt)
decoherent historiddl1-15. Let P be a projector an€) its U ( @ @ )

complementary  projector, Q=1—P. Define P(t) —isinwt) coqwt) (6)
= exp(Ht/%)Pexp(iHt/z)=UT(t)PU(t), and similarlyQ(t).
It follows that if H is self-adjoint,P(t) + Q(t)=1 for every It follows that U, (t)=Q. Since
real t. There exists a generalized decomposition of unity, ' '
given by Liop coq wt) o)
t)yP= .
n ® —isin(wt) O
1=P+ 2 P(t)Q(t-)Q(tk—2) - Q(t1)Q
k=1 and
+Q(1)Q(ty—1) - - Q(t1)Q () : 0 —i
P=eli o)
for any set of real numberkt,,t,, ... t,_1,t,}. Assume
thatt,=kat, with 6t small. RewriteP(t,) as we see that each of the terms in H§) is different from
) zero: the operator form of the PDX is not a trivial identity.
P(ty)=P(t_1)+ &P(tk,l)+0(é‘t2) To interpret each of these terms, observe thgit), the

) restricted propagation operator, corresponds to the continu-
=P(ty_1)+8tUT(t,_)PU(t_1)+O0(8t%), (2 ous limit of a series of preparations of the system in the
) subspace of states invariant und@@rThese preparations are
where P is simply (i/#)[H,P]. Multiply Eq. (1) from the  equally spaced in time, and are von Neumann collapses onto
left with U(t,), and use Eq(2). We obtain the following the eigenspace d. It is to be expected, therefore, that this
decomposition of the propagation operator: term is the propagator for a system that is continuously ob-
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served in the eigenspace @f and this is, in fact, the purport obtain the quantum Zeno effect as a consequence of deco-
of the analysis of Misra and Sudarshidr of the quantum herence are in fact canceling out the crossing term. In other
Zeno effect. words, if the pointer basis for a decoherence process is ad-
equately aligned with the eigenspacedadnd Q, the quan-
tum Zeno effect will be immediately obtained as a conse-
B. Quantum Zeno effect quence of decoherence.

If the initial state were in the eigenspace @f the term Insofar as the quantum Zeno effect is a paratme[19]
U(t)P would not contribute to the later evolution of the for @ general discussignit is a paradox in that what seem to
system. We understand therefore that the convolution intéP€ exclusive and consistent events for assignments of prob-
gral is the term required to retain a probability that the initial @Pility in classical mechanics cannot be assigned quantum-
quantum state in the eigenspace®fdoes indeed jump at Mechanical probabilities in a consistent manner. It should be
some point in time to the eigenspacepofit is immediate to ;tressed, however, that t_hls iS no Ioglc.al ||_1ternal contradic-
observe that the sum of the convolution integral and the retion of quantum mechanics. Rather, this simply reflects the
stricted propagator preserves the norm of a state initially ifact that statements about quantum events have to be much
the eigenspace @. The quantum Zeno effect can be under-more precisely enunciated, and that classical language and
stood in this case, therefore, as the decomposition of thBresuppositions do not always translate readily into the quan-
unitary evolution in the whole Hilbert space of an eigenstatdum world.
of Q in two terms: on the one hand, the restricted propagator,
which is unitary in the eigenspace @ but nonunitary over Ill. HISTORIES ON THE REAL LINE
the whole Hilbert space, and on the other hand,_the Crossing . yerivation of Eq(5) presented above is formal, with
term, necessary to recover unitarity over the Hilbert space

) - L no attention being paid to topological issues. In order to
and which accounts for transitions out of the initial eigens- . . e O ) .
pace highlight the difficulties, consider the case of a free particle

Let us now pose the following questions: given a timeof massm that moves on a line. By simple integration by

interval t and a particle initially prepared with spin down parts one can realize thetHQ need not be zero, since
[i.e., in the stat¢|)=(9)], what is the probability that it has
always stayed with spin down in the interval? What is the —h )
probability that it has switched spin at some instant? We can (PHQY ()= 5 —[1=6() ][0 ¢(x)]. (D)
answer the first one by looking at the restricted propagator
U,(t): the probability amplitude that it has always stayed
with spin down is(||U,(t)||)=1. However, notice that I It thsfefms behooves USdtO agell_lyz_e t?e mganin%ﬁtg
t R i t t is obtained as a time-ordered limit of products

(Tl ods UWt=$)PU(s)]1)=~isin(w) and (l|/ods U(t terms. The operato@HQ, however, is not self-adjoint; it
admits a continuous one-parameter family of self-adjoint ex-
tensions. Therefore, unless a particular self-adjoint extension
is chosenU,(t) will not be unitary in the eigenspace of the
‘projector Q. Imagine now that a particular extension has
been chosen. The meaning BHQ is subservient to the
extension chosen, since what we actually requird®i$Q
+QHQ=HQ. If the meaning of QHQ is modified, so
Should the meaning d®HQ be modified.
This observation can be strengthened by applying the
eorem of Misra and Sudarshan concerning the quantum
eno effect{1] to this case of the free particle. The Hamil-
tonian of the free particle is self-adjoint and semibounded
(the first assumption of the theorgnand there exists a time-
v X reversal operator, which commutes with the projectors onto
=lim, . s-ynQ(NAYQL(N=1)ét]---Q, i.e., a product of spatial regiongsecond assumptignSuppose now that the
succeeding projectors. The complementary operatdC,s limit defining U, (t) exists; actually assume that it exists in
=1-C,. The decoherence functional isd(i,j) the strong topology. It is clear in our case that if it does, its
=Tr(CipCjT), and the inconsistency of probability assign- limit whent—0 is Q. It follows from Theorem 1 of Ref.1]
ments is reflected in the fact that, in the case portrayedhat U,(t) then can be written aQexp(—iBt/A)Q, with B
above, Red(1,2)]# 0. Notice that the history operat@; is  self-adjoint, and such tha)B=BQ=B. The meaning of
related to the restricted propagator defined above through thais result is that thexistenceof U, (t) implies the existence
following expressionC,;=UT(t)U,(t). of a self-adjoint operator to which it can be related, which

It is relevant at this point to mention the “spectral decom-can be understood as a self-adjoint Hamiltonian acting on the
position” approach of Pascazio and Namjki8], similar to  eigenspace of). Therefore, the validity of the operator form
the idea of the generalized PDX presented above. Additionef the PDX hinges on choosing a specific self-adjoint exten-
ally, notice that the models in the literature that attempt tosion of the original Hamiltonian when restricted to te

2

—s)PUr(s)|l):cos@t)—1. It follows that we cannot as-
sign probabilities consistently to the exclusive evefils
staying with spin down during the whole intervahnd (ii)
having flipped spin at some instant of the interval. The his
tories into which we have decomposed tirétary evolution

of the particle with initial spin down are not consistent his-
tories.

In terms of operators, the operator associated with th
continuous measurement of being in the eigenspacgaid
the operator associated with, at some point, jumping to th(leh
eigenspace oP do not commute and give rise to a crossingZ
term: they cannot be measured simultaneously.

More explicitly, the history operator associated with the
particle always being in the eigenspace & is C;
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eigenspace and considering the unitary evolution in that sub- Yet another derivation of the PDX is given by Hartkee
space with this new Hamiltonian. [3], subsection 6.c and note 2¥Who is rather cautious in his

Profiting from the simplicity of the example at hand, let analysis of Trotter’s formula, which is basically what under-
us be more specific. The self-adjoint extensions of the freelies the definition of the restricted propagator, but is misled
particle Hamiltonian on the half-line are parametrized by aby the uniqueness results available for the associated diffu-
real parameteB, and the domain of the extensiety, is the ~ Sion equation. Yamadgr] derives the PDX decomposition
set of the square integrable, absolutely continuous function@ut Of & postulated integral equation, and imposes a particu-
on the half-line, whose derivative is square integrable and@" choice of boundary conditions, also missing out the alter-
that fulfill the conditiony(0)= By’ (0). natives highlighted in the discussion above.

Thus the termPU,(t) can be understood in terms of in- A. Consistent probabilities
tegration by parts, as follows. We defiérmally) the
propagatog(x,y,t) =(x|U(t)|y) and the restricted propaga-
tor gP(x,y,t)=(x|UL(t)|y), whereU#(t) = exp(~iH 4/A)Q.
The convolution integral in Eq5) is then written as

Let us now ask the question posed by Haftd and,

independently, Yamada and Takadi. Is it possible to as-
sign consistently probabilities to the following exclusive
events{(i) that a free particle moving on the line stays always
to the same side of=0 during a time intervat; (ii) that it
¢ crossex=0 once or more during the same time interval? To
<X|J dsU(t—s)F’Uf(s)|y) make the discussion easier, imagine first an initial wave-
0 function restricted to the positive half-line. Under the re-
. i ik stricted evqutiorUf(t), this wave-function stays always in
:f dsf d§g(x,§,t—s)0(—§)<—) aégf(g,y,s) the positive half-line with no loss of probabilityd?(t) is
0 - 2m unitary when acting o.?(R™). However, when we try to
) understande(t) as extended to an operator on the whole
_ —ih td - 3 real line, it is no longer unitary: the convolution integral is
“\2m/Jo SYX.E,1=5) 9.0 (5,y,s)| ' required to guarantee the unitary evolution of the initial one-
€0 sided state in the whole Hilbert space. There is therefore a
crossing term, and this prevents the consistent assignment of
where f (&) 359(5): F(&)g'(&)—F'(£)g(&). It is important Fhrobabm_tles to :t:ﬁ (etxclu5|;/_eI eV(Ients mﬁntnzn%d. {As we s%e |t,f
to stress that this derivation is valid for all rg& not just for € requirement that a particie always nhas to be 1o one side o
B=0, which is the case analyzed in the literature. f[hex—O point is, in a way, |mppsed by constant_ly monitor-
Using the formalism of path integrals, Auerbach and Kiv—"’!g that the.part|cle Is to one §|de, thu_s preventing the clas-
T sical exclusive events from being consistently exclusive also
d¢) from the consideration that there is a change of variablgyn into the guantum Zeno paradox.
in the path integral, trading,(s) for the times after which Having said this, theris an example of initial conditions,
the path is confined to one side 0, and that the Jaco- zg pointed out by Yamada and Takddi, for which the
bian associated with this change of variables leads to thgrobability assignments are consistent: the antisymmetric
symmetric operatio@, . However, they do not consider gen- case. Antisymmetric wave functions preserve this character-
eral boundary conditions of the form stated here becausistic under evolution with the free-particle Hamiltonian, or,
they do not seem to appear in their derivation of the PDX inin other words, the parity operator commutes with the free-
terms of a skeletonization of the path. Other alternative deriparticle Hamiltonian. This can also be understood with re-
vations[20,21] use Wick rotation and study the Wiener in- gard to the restricted propagators as follows: the evolution of
tegral associated with a diffusion process with a totally re-an antisymmetric wave-function under the whole Hamil-
flecting boundary for the restricted propagator. Howevertonian is identical to the direct sum of the evolution in each
both in the quantum-mechanical and in the Brownian pattof the half-lines under the half-line free-particle propagator
integral, restricted to the half-line, it is feasible to considerwith hard-wall boundary conditions. There is no probability
alternative boundary conditions, as was shown by Clarkflow from one half-line to the other under free-particle evo-
Mekinoff, and Shar22]. In this paper, they use an “elastic lution if the initial condition is antisymmetric. This implies
barrier” at the boundary, that is to say, in the language of ahat in this case the interference term is zero, and that the
diffusive process, that the Brownian particle has a probabilprobability of always staying to the same side during any
ity of being reflected and a probability of being absorbed atime interval is unity: for any given instant there is no prob-
the boundary. This is translated, by analytic continuationability of crossingx=0.
into the boundary conditions that preserve probabi(ity Given this point of view, it is immediate to generalize the
absorption of probabilityfor the quantum-mechanical prob- example of Yamada and Takagi to other instances: the mean-
lem, i.e., the boundary conditions that lead to self-adjointing of the boundary conditions that correspond to self-adjoint
restricted Hamiltonians. From the point of view of quantum-extensions of the free-particle Hamiltonian when restricted to
mechanical path integrals, the restriction that the particle nathe half-line is that they prevent probability flowing out of
cross the boundary is not enough to describe completely athe half-line. So for each regB we see that the wave-
possible paths: how is it to be reflected? It is this freedonfunctions that fulfill/(0)= B¢’ (0) have no transfer of prob-
that leads to the possible alternatives. ability from one half-line to the other. Alternatively, the evo-
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lution under the whole Hamiltonian of a wave function IV. CONCLUSIONS
obeying this condition is identical to the independent evolu-

tion of the parts of the wave function in each of the half-lines The operator derivation of the PI.DX formula we .have pre-
under the half-line free-particle propagator with the Corre_sented here has allowed us to identify the paradoxical aspects

sponding boundary conditions. Thus we see that, for thes8 the quantum Zeno effect of Misra and Sudarshan as being
initial wave functions, the assignment of probability one todu€ to incompatible assignments of probability to inconsis-
always staying to one side of the origin, and zero probabilitt€nt histories. We have explicitly separated the crossing term
to crossing the origin once or more during a time interval, isthat leads to this inconsistency.

indeed a consistent assignment of quantum probabilites. ~ Feeding the well-known results of Misra and Sudarshan
back onto the PDX formula, it also obtains that in cases such
B. Arrival probabilities as that of a free-particle moving on the line, there are several

different PDX expressions, each one corresponding to a par-
Sftular partial isometry, i.e., to a particular self-adjoint exten-
ion of the restricted Hamiltonian. Furthermore, we have
palyzed for which cases the PDX probability assignments

As seen above, only in some rather special circumstanc
can we make consistent assignments of probability using
decomposition of possible paths for the alternatives consid-
ered. This does not mean, though, that there is no consiste ; . . .
prescription within the realm of standard quantum mechanic or th'e alternat|ves. of having or not crossed a given p0|.nt are
for the probability of having crossed a given poimt=0, _con5|stent, extending the re_s_ult of Yama_lda and T_akagl to all
say, in a particular time interval. Misra and Sudarshan, instances of boundary conditions for which there is no prob-
their seminal papefl], already point out that the existence gblllty flow_ through thz_it_ point. In spite of_ this extension, no
of such a probability would imply the existence of a gener-time-of-arrival probability could be assigned to the over-
alized resolution of the identit§in their language; a positive Whelming majority of possible states within the consistent
operator valued measure, or POVM, in modern parlafme ~ histories approach. _ . .

a time of arrival operator. In fact, we now have at our dis- e remark that there is a different, fully consistent pre-

posal such a POVM for the case of a free particle; the asscecription for the probability of having crossed a given point
ciated probability density is, for a pure state in a certain time interval, given by Kijowski’s distribution in

the free case. Notice that Kijowski's distribution is obtained
in the context of(almos) completely standard quantum me-
chanics, the only extension needed thereof being that
POVMs are accepted to describe observables. How is this
2 distribution compatible with the negative results obtained
; within the framework of consistent histories? The consistent
histories approach is actually much more demanding since it
requires the absence of interferences between the space-time
histories to attribute to them a classical-like status as alter-
fratives that actually occur with certain probabilities. Instead,
the distribution of Kijowski should be regarded, from the
perspective of the standard interpretation, as a “potential-
ity,” a distribution that a properly designed apparatus could
measure. Therefore no association with noninterfering histo-

. (_Sllven th'ts dl[_strlbutlolg,hltlcljsf setr;]slk;!e_ttodgsk w_hethler 3fies is claimed or required. The apparatus would actually be
simiiar construction could hold for the hinité-dimensional €X- y,o «pagt” one, in the sense of providing a covariant distri-

amplg given _above. Unfortunately, Fhe. answer Is Negativey, inn \yith minimum variance. Of course a less than perfect
Imagine that indeed there exists a distribution of probability

! . e : apparatus would provide convolutions or deformed versions
Iﬁ.r th;z_ t[[ms f[).f first sh||1;t|n_g frlonjt#) to |T>t The eX]lSten;g\(;];VI of I1x . Werner has described the family of covariant distri-
IS distribution would 1mply [he existence of a butions, each representing a potentiality associated with a
[Wh.'Ch In this finite-dimensional example would have to be ajterent measurement device, for states with positive mo-
projection valued measu(é’VM)'], whose f'r.St op_erat_or. MO~ mentum componentg26]. From a more technical point of
ment T would be a self-ad10|_nt operatofin this f|n|te_- . view, the difference can be associated with the fact that Ki-
dimensional case, all symmetric operators are self-adjoint

. . A : .. jowski's distribution at timet is the expectation value for
Since this operator would have a “time” interpretation, it

) . - y(t) of a certain operator, a quantum version of the positive
would hgve to be canonically conjugate to th? Ham|lton|an,ﬂux minus the negative flux10]. It is thus not related to
[H,T]=i%. In the example at hand is proportional EO‘T}’ expectation values of strings of operators that depend on dif-
and all operators, such a can be written asx+B-0,  ferent instants of time. In a slightly facetious way, we might
where theo; matrices are Pauli’s matrices. There are no foursay that standard, old-fashioned quantum mechanics has the
numbers &,B) such that a canonically conjugalecan be upper hand on the consistent histories formalism for this par-
obtained. Therefore, there is no analog of Kijowski's distri- ticular case. While Kijowski’s distribution is “ideal,” in the
bution for this finite-dimensional example, and, in fact, theresense of depending only on the state of the particle, there are
is no analog of Kijowski's distribution for any finite- other approaches in which additional degrees of freedom for
dimensional example. the apparatus and or the environment are included, which

2

- D oo
et p=| | dp(%mﬁ) )

+

0 -p 1/2 -
J'Dodp(zﬂ-mh) e~ ip t/2mﬁw(p)

where we have used the momentum representation. This
actually the probability density proposed by Kijowski from
an axiomatic point of viey23], which is related to the time
of arrival operator of Aharonov and Bohf4] (see[25] for
details of the relationship between the two objgcts
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provide operational time-of-arrival distributioh$0]. Again, = sage between complementary subspaces is required. Indeed,
these results are found without demanding any noninterferthe existence of Kijowski’'s distribution opens up the possi-
ence condition. Halliwell in particuld27] has compared the bility that similar constructions might be feasible for other
distribution derived from an irreversible detector model with situations where the histories analysis has not been able to
the one associated with consistent histories in the presence lbfe up to its full promise. However, we have proved that no
a bath coupled to the particle, and has shown how in th@nalog of Kijowski's distribution can be constructed in the
decoherent histories approach the coupling with the environease of finite-dimensional Hilbert spaces. The question as to
ment destroys far more interference than is really needed ithe existence of “trustworthy” analogs of Kijowski’'s distri-
order to define the arrival time with the irreversible detector.bution for infinite-dimensional situations remains an open
For most cases of practical interd$f is approximately question, which we hope will be settled in the affirmative in
equal to the current density The challenge now is to per- the future(see[29] for an extension of Kijowski's distribu-
form experiments able to realize the “potentiality” of Ki- tion in the case of one-dimensional motion with potenjials
jowski's distribution in “quantum” regimes where it differs
significantly from the current density. In general one may
expect to obtain convolutions depending on the particular
apparatus respon$28], see[10] for a more detailed discus- We thank L.J. Garay, J.L. Mas, and M.A. Valle for
sion of the interpretation offl . useful discussions, and acknowledge support by the Ministe-
One may wonder if Kijowski’s distribution is the key to rio de Educacio y Cultura (Grant Nos. PB97-1482 and
the “trustworthy algorithm” sought by Misra and Sudarsan AEN99-0315, and The University of the Basque Country
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