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Bell theorem for the nonclassical part of the quantum teleportation process
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The quantum teleportation process is composed of a joint measurement performed upon two uncorrelated
subsystem# andB, followed by a unitary transformatiofparameters of which depend on the outcome of the
measuremeniperformed upon a third subsysté21EPR correlated with syste®). The information about the
outcome of the measurement is transferred by classical means. It is shown that this measurement process, plus
possible measurements on subsysterwith the classical channel switched pftannot be described by a
local realistic theory.

PACS numbegs): 03.65.Bz, 42.50.Dv

Quantum teleportatiorf1] is the operational protocol ing anything interesting to the relation of the teleportation
which enables one to transfer the quantum state of one sygrocess to the Bell theorefexcept for the case of entangle-
tem, sayA, to another quantum systei@, The transfer can ment swapping, as discussed abowven worse, the classi-
be obtained by performing a joirit Bell-state”) measure- cal transfer of information from the Bell-state-measuring sta-
ment onA and a third systenB, originally EPR entangled tion (operated by Alicgto particleC makes it possible that
with C, and then unitarily transformin@ according to the the measurements up@ (after the full teleportation proto-
outcome of this measurement. Teleportation separates @) can be causally linked with the events at Alice’s appa-
complete information inA into two parts: aclassicalpart ~ ratus. Thus a Bell-type analysis is absolutely excluded. Nev-
carried by the outcome of the joint measurement ohand  ertheless, as will be argued below, the quantum part of the
B, and anonclassicalpart carried by the prior entanglement process cannot be described by a local realistic formalism.
betweenB andC. First one should define what is meant here by the quantum

Teleportation is strongly related to other effects, like in-part of the process. Assume that the classical information
terferometric tests of against local realism involving inde-link between Alice and Bob, which precludes a Bell-type
pendent sources of partic|d§], especia”y entang|ement analysis, is cut. However, both parties are still allowed to
swapping[3]. In entanglement swapping, the partideof  perform the usual laboratory tasks for an experiment toward
the quantum teleportation protocol is originally entangledverification of the actuality of the teleportation proc¢ss
with some particleD. If, as in the case of quantum telepor- Thatis, Alice herselfor, for purists, this can be done by her
tation, a full Bell-state measurement is performedfoand  friend Ceci) can prepare particlé in any pure state, and
B, and depending on the outcome, after a classical transfer gubsequently she can make a Bell measurement and B.
information a suitable unitary transformation is performedBob, not knowing the result on Alice’s side, nor the original
uponC, the particleD andC are in an entangled state. Thus state ofA, instead of being totally idle, performs on particle
entanglement swapping can be interpretetefeportation of C a measurement of generally randomly chosgryes-no
entanglementfrom A to C). The final state oD andC can  observable.
be used in an experiment in which Bell inequalities are vio- The formal description of the above runs as folloas in
lated. Since the classical information on the outcome of thdRef. [1] we assume all particles involved to be two-state
Bell measurement is needed on one side dimythe present Systems (i) The initial three particle state is
example, in the vicinity of particl€), the measurement acts _
onD andC can easily satisfy the necessary requirement for a (sin|A,)+cosge '?|A,)) \/g(|Bl)|Cl>+|Bz)|C2>),

Bell inequality test, namely, that of spatial separation. One (1)
may arrange the experiment in such a way that no classical

information on the result of the Bell measurement ugon WhereA;, B;, and C; denote the states of the three sub-
andB can reaclD before the local measurement bnin the ~ systems(the letter stands for the subsystéparticle, andi

Bell inequality test, is done. In such a case, the teleportatiorr 1 and 2 is the index of two orthogonal stat€he param-
process can be treated as just a more involved scheme of tieéers¢ and g are determined by the state preparation proce-
preparation of the entangled statedfandC. This suggests dure of Cecil.

that there must be at least an element in the teleportation Alice performs a measurement which collapses AR8
procedure which defies local and realistic interpretation. ~ system into the four Bell states:

The problem of the link or lack of link between the vio-
lations of local realism and the teleportation process was VE(BY)IAL) -~ |B2)|A2) =00, 2
addressed by many authde]. In this work the following

aspect of the problem will be discussed. As mentioned be- 1 _

fore, the teleportation process has its quantum and classical \/:(|Bl>|A2>+|BZ>|A1>)_|01>’ ®)
parts. The classical part involves communication via stan-

dard classical methods, and thus cannot be suspected of add- \/g(lBl)|A2)—|Bz>|A1>)=|10), (4)
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1 _ To simplify the description of the global measurement
\/;(lBl>|A1>+|BZ>|A2>) 11D). ®) results, one can introduce a suitably defined correlation func-

pn. One can consider such a function as the average of
roducts of the results on each sidhere vectors times num-
er9. That is, the resulf00,0), i.e., a detection of the first
Bell state, 00, by Alice, and simultaneous detection of state 0
by Bob, can be ascribed 1(—1,—1)=(1,1), etc. With such
definitions of the values assigned to the possible pairs of the
outcomes, the correlation function

Note that the names of the states are binary expansions §
0,1,2, and 3. They could be the content of the classical me%
sages of Alice, informing Bob about her resu{towever,
this link is cud. Alice’s measurement projects particento
certain four states. Bob, cut off from Alice, in desperation
performs an experiment of a dichotomiges-ng nature,
which results in the projections into the two following or-

thogonal states: 1
: E(B.¢:8' ¢")= ls()A(C)P(c,i) (13
cosp'|Cy) +singlexgi#)[C)=[0)  (©) (B.#:8'. 0= 2 % 1e(DACIPE) (13
and acquires the form of a two-dimensional vector, and for the
) _ explicit form of the quantum prediction reads
—sinB’|Cy)+cosB’expi¢’)|C2)=]|1). (7)
E(B,¢;:8", ¢’
The probabilities of all possible eight global results/o (B BB & )qu
results of Bob times four results of Aligeare =sin 2B sin 2B’ (cos¢ cos¢’,sing sing’).
P(00,0 = 1/4— P(00,1) (14
=1[1+cos 28 cos 28’ Let us now simplif_y the problem a bit. A_ssumg that Alice
. _ prepares states @& with 8=45°, and Bob fixes his appara-
—sin2Bsin2B'cos ¢—¢')], (8)  tus atB’=45° as well, The correlation function is then sim-
plified to

P(01,0=1/4—P(01,1)
E(¢;¢')om=(c0s¢ cosd’,sing sing’). (15

9 It will be shown that this correlation function cannot be mod-
eled by local hidden variable theories.
Imagine that a hidden variabbe specifies the future re-
sults of the experiments of Alice and Bob. The product of

=3[1—cos 28 cos 28’
+sin2Bsin 2B’ cog ¢+ ¢')],

P(10,0 = 1/4— P(10,1)

=1[1-cos 28 cos 28’ such predictions reads
—sin2Bsin2B’ cog ¢+ ¢')], (10 la(d" NA(HN), (16)
P(11,0=1/4-P(11,) where Ig(¢' ,\)=*1 is the local hidden variabl¢.HV)
— 1[1+ cos 28 cos 28’ prediction for the result of the measurement by Rfuy the

given value of the hidden parameterand the local observ-

+sin28sin2B' cof¢p—¢')]. (11)  able defined byg') and the vectorA(¢,\), which is the
LHV prediction for the Alice’s result, depends anand ¢,
Let us assign to the four possible results of Alice’s measureand takes one of the four values of Eq42). The local
ment, 00,01,10, and 11: four two-dimensional vectdos  hidden variable prediction for the correlation function is an
some other nonconventional value assignments for experiaverage of Eq(16) over a certair(properly normalizeyidis-
mental results, see Rg6]) tribution p(\), namely,

ACO=(=L70, AD=(LD, (2 E(610 v | ONp(Is @ MAGA). (1D
A(100=(1,-1), A(11)=(1,D).

Now let us assume that Alice can set the values of plfase
The link between the vectors and binary numbers is obviousyhich prepares the state of partiddeat 0° or 90°, whereas
The digit 0 has been replaced byl. This trick makes the Bob can play with¢' at —45° and+45°.
subsequent derivation of a Bell inequality much easier. To show that E(¢;¢')qu cannot be modeled by
Please note that this procedure differs from the usual on&(¢;¢"') v, the geometric approach of Rdf7] will be
(i.e., the assignment of certain real numbers, “eigenvalues,’used. It is based on the following simple observation. As-
to certain projectonsby the fact that we ascribe more com- sume that one knows the components of a certain vegtor
plicated objects to the projectors. The results of Bob’s meaftthe knownvecton belonging to some vector space, whereas
surements 0 and 1 will be described is a similar fashionfor a second vectoh (the testvecto) one is only able to
namely, by numbersg(0)=—1 andlg(1)=1. establish that its scalar product wiffsatisfies the inequality
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(hlg)</[|q||?>. The immediate implication is that these two H(N)3=1g(—45N\) (1 5(90\) 1,1 A(90N),), (26)
vectors cannot be equaj= h.
To form a vector for such an argument, one can take the H(N)4=15(1,450) (1A(90N)1,1A(90N),).  (27)

values of the quantum correlation function at thg 2=4 oM . , N
pairs of the possible settings of the macroscopic parameters FOT the scalar produd?=",H()), sincelg(¢’,\)==1
controlled by Alice and Bob,¢'). In this way a “super- andla(#,A)i==1, one obtains

TR QM . . . _
vector” if V" is built. The first component of the supervec o [1lo< VM H(\))

tor, for the settingg0°,—45°), reads
= VL2{1 A(ON)a[ 15(—45)) +15(450)]

VEM=E(0;—45)qu=(1/1/2,0), (18)
+1A(90M ) o[ 15(450) —1g(—45)\)1}

the second, fof45,90, reads

<2\172. (28)
JQM _ . =(4/
V3" =E(45;90qu=(V1/2,0), (19 Thus, if one now averages this inequality over the distribu-
the third, for (90._45), reads tion of the hidden variablegp()\), the following relation
emerges:
VM= E(90;—45) qu=(0,~ V172), 20

—\2=s(VHV VM < 2<|lVM|P=2. (29
and the fourth, f0(90,43, reads This implies simply thav"" VM that is,no local hidden
variable correlation function can reproduce the quantum
prediction (we have a Bell theorem for the procgshlote

The square of the norm of such a superve™|2 can that the appropriate Bell inequality is given here by the first
fwo inequalities in Eq(29).

be defined as the sum of the squares of the norms of all th Thi thod il b ded t
components, where the square of the norm of a componentis .. IS method can st .e expanded 1o cover many more
in turn the sum of the squares of its two components. There§emngs of th_e var_lables, _here only the simplest case was
fore. one has pre_sented. Itis an interesting fact, that needs f_urth_er investi-
' gation, that the Bell inequality presented here is violated by
4 the same factoy/2 as the CHSH inequality for the usual Bell
[VeM[2= |[V_M|2=2. (22)  theorem involving a pair of particles in a maximally en-
=1 tangled state. This may imply that the quantum component
of the teleportation process cannot be described in a local

Gnd realistic way, as long as the initial statesBoind C

VM=E(90;49ou=(0,V1/2). (21)

12

Let us estimate the scalar product of the quantum superve
tor with analogous supervectdV, which has the structure admit no such models.

characteri;tic of(deterministig Iogal hi‘?'de” .variables. The The present result also explains why the current local hid-
aforementioned scalar product is defined in a way compatgen, yariable model explaining the low detection efficiency
ible with the norm(i.e. it is a sum of the products of the (gjenortation8] cannot be extended into the high efficiency

_respet_:tive components, and the product of two components,qe Simply, had this been possible, such a model would
is again the sum of the products of the respective elements Qi) <titute a LHV model of the process considered here

the componenis which by Eq.(29), is impossible. For the same reason, con-

4 siderations with toy models, like those in REJ], cannot be
(VQM,VLHV):E \'/’iQM.\']:_HV, 23) extended in such a way that they can fully rep_roduce the
i=1 guantum teleportation. Nevertheless, the conclusions reached

in Ref. [10], that one can model the teleportation process

with V-V equal to the value dE(¢, '), .4y for appropriate  with specific local hidden variables and a classical commu-
pairs of settings. As is usual in proofs of the Bell theorem, itnication channel, requiring the transfer of 2.19 bits on aver-
is better first to consider the hidden variable prediction for aage, are not in disagreement with the present result.
single specified\, and only later to average this over the Inequality(29) can also serve as a Bell-type inequality for
distribution of the hidden variables. the experiment of Bosclet al [11]. In this experiment only

Thus, what we should d§7] is to estimate the scalar two systemgphotons were used. Syster was replaced by
product of a supervector constructed out of hidden-variabléhe polarization degree of freedom of one of the photons of
predictions for the specified with the quantum supervector the EPR entangled pair. The EPR entanglement itself was
(defined above The hidden variable supervector for a spe-realized by a path entanglement of the two photons. In this

cific N, which will be denoted byH(\), has the following Wway a measurement discriminating between the four corre-
components: lated states of polarization and momentum direction of a

photon, which are formally equivalent to Eq®)—(5), can
H(N)1=1g(=45N) (I A(ON) 1,1 A(ON)5), (29 be performed with standard quantum interferometric tech-

nigues. Thus all observables involved in the present scheme
H(N)2=15(45N) (1 A(ON) 1,1 4(0N)5), (25 found their representation in the experiment. However, due
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to the measurement settings chosen, one cannot directly apndescribable by LHV theories. Unfortunately, the visibility
ply inequality (29). Nevertheless the very high visibility of in Ref.[13] was around 65%, i.e., within a zone for which
the two-particle fringes obtained is well above the thresholtbne can build explicit LHV modelgl5]. Thus a high visibil-
(71%) indicated by Eq29). This indirectly rules outa LHV ity realization of entanglement swapping would constitute an
model for the experimerfif one accepts the usual fair sam- important fact in the empirical knowledge on the nature of
pling assumptiop . _ _ quantum teleportation.

_ In the teleportation experiment involving all three par- - The presented results cannot be applied directly to a tele-
ticles (with A emitted independently of the emission of the yortation experiment involving continuous variables of Ref.
EPR pairB andC) [12], due to fundamental technical limi- [16]. However, perhaps the result of R§L7], concerning
tations one currently cannot distinguish between all four,[he Bell theorem for the original EPR state, may, after some
states{Egs. (2)—(5)]. Thus the inequality cannot be applied. o ;nsions. lead to the same conclusion ’ ’

However, the extension of the experiment to the teleportation ' '

of entanglement, i.e. entanglement swappiig,14, results The author acknowledges support from the University of
in entangling previously independent photons, on which inGdarsk, Grants No. BW-5400-5-0062-61995 and No.
turn a Bell-type experiment can be performed. Such an exg\w/5400-5-0264-9 (1999. The author thanks Anton

periment is possible on a subensemble of events for Whicﬁeilinger, Harald Weinfurter, and the Horodecki family for
only one of the states of Eq&)—(5) is measured, i.e., the discussions.

process does not need a full Bell-state measurement to be
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