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Bell theorem for the nonclassical part of the quantum teleportation process

Marek Żukowski
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~Received 8 December 1999; published 3 August 2000!

The quantum teleportation process is composed of a joint measurement performed upon two uncorrelated
subsystemsA andB, followed by a unitary transformation~parameters of which depend on the outcome of the
measurement! performed upon a third subsystemC ~EPR correlated with systemB). The information about the
outcome of the measurement is transferred by classical means. It is shown that this measurement process, plus
possible measurements on subsystemC ~with the classical channel switched off!, cannot be described by a
local realistic theory.

PACS number~s!: 03.65.Bz, 42.50.Dv
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Quantum teleportation@1# is the operational protoco
which enables one to transfer the quantum state of one
tem, sayA, to another quantum system,C. The transfer can
be obtained by performing a joint~‘‘Bell-state’’ ! measure-
ment onA and a third systemB, originally EPR entangled
with C, and then unitarily transformingC according to the
outcome of this measurement. Teleportation separates
complete information inA into two parts: aclassical part
carried by the outcomec of the joint measurement onA and
B, and anonclassicalpart carried by the prior entangleme
betweenB andC.

Teleportation is strongly related to other effects, like
terferometric tests of against local realism involving ind
pendent sources of particles@2#, especially entanglemen
swapping@3#. In entanglement swapping, the particleA of
the quantum teleportation protocol is originally entang
with some particleD. If, as in the case of quantum telepo
tation, a full Bell-state measurement is performed onA and
B, and depending on the outcome, after a classical transfe
information a suitable unitary transformation is perform
uponC, the particlesD andC are in an entangled state. Thu
entanglement swapping can be interpreted asteleportation of
entanglement~from A to C). The final state ofD andC can
be used in an experiment in which Bell inequalities are v
lated. Since the classical information on the outcome of
Bell measurement is needed on one side only~in the present
example, in the vicinity of particleC), the measurement act
on D andC can easily satisfy the necessary requirement fo
Bell inequality test, namely, that of spatial separation. O
may arrange the experiment in such a way that no class
information on the result of the Bell measurement uponA
andB can reachD before the local measurement onD, in the
Bell inequality test, is done. In such a case, the teleporta
process can be treated as just a more involved scheme o
preparation of the entangled state ofD andC. This suggests
that there must be at least an element in the teleporta
procedure which defies local and realistic interpretation.

The problem of the link or lack of link between the vio
lations of local realism and the teleportation process w
addressed by many authors@4#. In this work the following
aspect of the problem will be discussed. As mentioned
fore, the teleportation process has its quantum and clas
parts. The classical part involves communication via st
dard classical methods, and thus cannot be suspected of
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ing anything interesting to the relation of the teleportati
process to the Bell theorem~except for the case of entangle
ment swapping, as discussed above!. Even worse, the classi
cal transfer of information from the Bell-state-measuring s
tion ~operated by Alice! to particleC makes it possible tha
the measurements uponC ~after the full teleportation proto-
col! can be causally linked with the events at Alice’s app
ratus. Thus a Bell-type analysis is absolutely excluded. N
ertheless, as will be argued below, the quantum part of
process cannot be described by a local realistic formalis

First one should define what is meant here by the quan
part of the process. Assume that the classical informa
link between Alice and Bob, which precludes a Bell-typ
analysis, is cut. However, both parties are still allowed
perform the usual laboratory tasks for an experiment tow
verification of the actuality of the teleportation process@5#.
That is, Alice herself~or, for purists, this can be done by he
friend Cecil! can prepare particleA in any pure state, and
subsequently she can make a Bell measurement onA andB.
Bob, not knowing the result on Alice’s side, nor the origin
state ofA, instead of being totally idle, performs on partic
C a measurement of a~generally randomly chosen! yes-no
observable.

The formal description of the above runs as follows~as in
Ref. @1# we assume all particles involved to be two-sta
systems!. ~i! The initial three particle state is

~sinbuA1&1cosbe2 ifuA2&)A1
2 ~ uB1&uC1&1uB2&uC2&),

~1!

where Ai , Bi , and Ci denote the states of the three su
systems~the letter stands for the subsystem~particle!, and i
51 and 2 is the index of two orthogonal states!. The param-
etersf andb are determined by the state preparation pro
dure of Cecil.

Alice performs a measurement which collapses theA-B
system into the four Bell states:

A 1
2 ~ uB1&uA1&2uB2&uA2&)5u00&, ~2!

A 1
2 ~ uB1&uA2&1uB2&uA1&)5u01&, ~3!

A 1
2 ~ uB1&uA2&2uB2&uA1&)5u10&, ~4!
©2000 The American Physical Society01-1
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A 1
2 ~ uB1&uA1&1uB2&uA2&)5u11&. ~5!

Note that the names of the states are binary expansion
0,1,2, and 3. They could be the content of the classical m
sages of Alice, informing Bob about her results~however,
this link is cut!. Alice’s measurement projects particleC into
certain four states. Bob, cut off from Alice, in desperati
performs an experiment of a dichotomic~yes-no! nature,
which results in the projections into the two following o
thogonal states:

cosb8uC1&1sinb8exp~ if8!uC2&5u0& ~6!

and

2sinb8uC1&1cosb8exp~ if8!uC2&5u1&. ~7!

The probabilities of all possible eight global results~two
results of Bob times four results of Alice!, are

P~00,0!51/42P~00,1!

5 1
8 @11cos 2b cos 2b8

2sin 2b sin 2b8cos~f2f8!#, ~8!

P~01,0!51/42P~01,1!

5 1
8 @12cos 2b cos 2b8

1sin 2b sin 2b8 cos~f1f8!#, ~9!

P~10,0!51/42P~10,1!

5 1
8 @12cos 2b cos 2b8

2sin 2b sin 2b8 cos~f1f8!#, ~10!

P~11,0!51/42P~11,1!

5 1
8 @11cos 2b cos 2b8

1sin 2b sin 2b8 cos~f2f8!#. ~11!

Let us assign to the four possible results of Alice’s measu
ment, 00,01,10, and 11: four two-dimensional vectors~for
some other nonconventional value assignments for exp
mental results, see Ref.@6#!

AW ~00!5~21,21!, AW ~01!5~21,1!, ~12!

AW ~10!5~1,21!, AW ~11!5~1,1!.

The link between the vectors and binary numbers is obvio
The digit 0 has been replaced by21. This trick makes the
subsequent derivation of a Bell inequality much eas
Please note that this procedure differs from the usual
~i.e., the assignment of certain real numbers, ‘‘eigenvalue
to certain projectors! by the fact that we ascribe more com
plicated objects to the projectors. The results of Bob’s m
surements 0 and 1 will be described is a similar fashi
namely, by numbersI B(0)521 andI B(1)51.
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To simplify the description of the global measureme
results, one can introduce a suitably defined correlation fu
tion. One can consider such a function as the average
products of the results on each side~here vectors times num
bers!. That is, the result~00,0!, i.e., a detection of the firs
Bell state, 00, by Alice, and simultaneous detection of sta
by Bob, can be ascribed21(21,21)5(1,1), etc. With such
definitions of the values assigned to the possible pairs of
outcomes, the correlation function

E~b,f;b8,f8!5 (
c500

11

(
i 50,1

I B~ i !AW ~c!P~c,i ! ~13!

acquires the form of a two-dimensional vector, and for t
explicit form of the quantum prediction reads

E~b,f;b8,f8!QM

5sin 2b sin 2b8~cosf cosf8,sinf sinf8!.

~14!

Let us now simplify the problem a bit. Assume that Alic
prepares states ofA with b545°, and Bob fixes his appara
tus atb8545° as well, The correlation function is then sim
plified to

E~f;f8!QM5~cosf cosf8,sinf sinf8!. ~15!

It will be shown that this correlation function cannot be mo
eled by local hidden variable theories.

Imagine that a hidden variablel specifies the future re
sults of the experiments of Alice and Bob. The product
such predictions reads

I B~f8,l!AW ~f,l!, ~16!

where I B(f8,l)561 is the local hidden variable~LHV !
prediction for the result of the measurement by Bob~for the
given value of the hidden parameterl, and the local observ-
able defined byf8) and the vectorAW (f,l), which is the
LHV prediction for the Alice’s result, depends onl andf,
and takes one of the four values of Eqs.~12!. The local
hidden variable prediction for the correlation function is
average of Eq.~16! over a certain~properly normalized! dis-
tribution r(l), namely,

E~f;f8!LHV5E dlr~l!I B~f8,l!AW ~f,l!. ~17!

Now let us assume that Alice can set the values of phasef,
which prepares the state of particleA, at 0° or 90°, whereas
Bob can play withf8 at 245° and145°.

To show that E(f;f8)QM cannot be modeled by
E(f;f8)LHV , the geometric approach of Ref.@7# will be
used. It is based on the following simple observation. A
sume that one knows the components of a certain vectoq
~the knownvector! belonging to some vector space, where
for a second vectorh ~the test vector! one is only able to
establish that its scalar product withq satisfies the inequality
1-2
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^huq&,uuquu2. The immediate implication is that these tw
vectors cannot be equal:qÞh.

To form a vector for such an argument, one can take
values of the quantum correlation function at the 23254
pairs of the possible settings of the macroscopic parame
controlled by Alice and Bob (f,f8). In this way a ‘‘super-
vector’’ if VQM is built. The first component of the superve
tor, for the settings(0°,245°), reads

VW 1
QM5E~0;245!QM5~A1/2,0!, ~18!

the second, for~45,90!, reads

VW 2
QM5E~45;90!QM5~A1/2,0!, ~19!

the third, for (90,245), reads

VW 3
QM5E~90;245!QM5~0,2A1/2!, ~20!

and the fourth, for~90,45!, reads

VW 4
QM5E~90;45!QM5~0,A1/2!. ~21!

The square of the norm of such a supervectoriVQMi2 can
be defined as the sum of the squares of the norms of al
components, where the square of the norm of a compone
in turn the sum of the squares of its two components. The
fore, one has

iVQMi25(
i 51

4

uVW i
QMu252. ~22!

Let us estimate the scalar product of the quantum super
tor with analogous supervectorVHV, which has the structure
characteristic of~deterministic! local hidden variables. The
aforementioned scalar product is defined in a way com
ible with the norm~i.e. it is a sum of the products of th
respective components, and the product of two compon
is again the sum of the products of the respective elemen
the components!:

~VQM,VLHV !5(
i 51

4

VW i
QM

•VW i
LHV , ~23!

with VW i
LHV equal to the value ofE(f,f8)LHV for appropriate

pairs of settings. As is usual in proofs of the Bell theorem
is better first to consider the hidden variable prediction fo
single specifiedl, and only later to average this over th
distribution of the hidden variables.

Thus, what we should do@7# is to estimate the scala
product of a supervector constructed out of hidden-varia
predictions for the specifiedl with the quantum supervecto
~defined above!. The hidden variable supervector for a sp
cific l, which will be denoted byH(l), has the following
components:

H~l!15I B~245,l!„I A~0,l!1 ,I A~0,l!2…, ~24!

H~l!25I B~45,l!„I A~0,l!1 ,I A~0,l!2…, ~25!
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H~l!35I B~245,l!„I A~90,l!1 ,I A~90,l!2…, ~26!

H~l!45I B~1,45,l!„I A~90,l!1 ,I A~90,l!2…. ~27!

For the scalar productVQM,H(l), sinceI B(f8,l)561
and I A(f,l) i561, one obtains

22A1/2<„VQM,H~l!…

5A1/2$I A~0,l!1@ I B~245,l!1I B~45,l!#

1I A~90,l!2@ I B~45,l!2I B~245,l!#%

<2A1/2. ~28!

Thus, if one now averages this inequality over the distrib
tion of the hidden variablesr(l), the following relation
emerges:

2A2<~VLHV ,VQM !<A2, zuVQMuz252. ~29!

This implies simply thatVLHV ÞVQM, that is,no local hidden
variable correlation function can reproduce the quantu
prediction ~we have a Bell theorem for the process!. Note
that the appropriate Bell inequality is given here by the fi
two inequalities in Eq.~29!.

This method can still be expanded to cover many m
settings of the variables; here only the simplest case
presented. It is an interesting fact, that needs further inve
gation, that the Bell inequality presented here is violated
the same factorA2 as the CHSH inequality for the usual Be
theorem involving a pair of particles in a maximally e
tangled state. This may imply that the quantum compon
of the teleportation process cannot be described in a lo
and realistic way, as long as the initial states ofB and C
admit no such models.

The present result also explains why the current local h
den variable model explaining the low detection efficien
teleportation@8# cannot be extended into the high efficien
case. Simply, had this been possible, such a model wo
constitute a LHV model of the process considered he
which by Eq.~29!, is impossible. For the same reason, co
siderations with toy models, like those in Ref.@9#, cannot be
extended in such a way that they can fully reproduce
quantum teleportation. Nevertheless, the conclusions rea
in Ref. @10#, that one can model the teleportation proce
with specific local hidden variables and a classical comm
nication channel, requiring the transfer of 2.19 bits on av
age, are not in disagreement with the present result.

Inequality~29! can also serve as a Bell-type inequality f
the experiment of Boschiet al @11#. In this experiment only
two systems~photons! were used. SystemA was replaced by
the polarization degree of freedom of one of the photons
the EPR entangled pair. The EPR entanglement itself
realized by a path entanglement of the two photons. In
way a measurement discriminating between the four co
lated states of polarization and momentum direction o
photon, which are formally equivalent to Eqs.~2!–~5!, can
be performed with standard quantum interferometric te
niques. Thus all observables involved in the present sch
found their representation in the experiment. However, d
1-3
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to the measurement settings chosen, one cannot directly
ply inequality ~29!. Nevertheless the very high visibility o
the two-particle fringes obtained is well above the thresh
(71%) indicated by Eq.~29!. This indirectly rules out a LHV
model for the experiment~if one accepts the usual fair sam
pling assumption!.

In the teleportation experiment involving all three pa
ticles ~with A emitted independently of the emission of th
EPR pairB andC) @12#, due to fundamental technical limi
tations one currently cannot distinguish between all fo
states@Eqs.~2!–~5!#. Thus the inequality cannot be applie
However, the extension of the experiment to the teleporta
of entanglement, i.e. entanglement swapping,@13,14#, results
in entangling previously independent photons, on which
turn a Bell-type experiment can be performed. Such an
periment is possible on a subensemble of events for wh
only one of the states of Eqs.~2!–~5! is measured, i.e., the
process does not need a full Bell-state measurement t
, a

,

n

an
ss
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undescribable by LHV theories. Unfortunately, the visibili
in Ref. @13# was around 65%, i.e., within a zone for whic
one can build explicit LHV models@15#. Thus a high visibil-
ity realization of entanglement swapping would constitute
important fact in the empirical knowledge on the nature
quantum teleportation.

The presented results cannot be applied directly to a t
portation experiment involving continuous variables of R
@16#. However, perhaps the result of Ref.@17#, concerning
the Bell theorem for the original EPR state, may, after so
extensions, lead to the same conclusion.
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Żukowski, A. Zeilinger, and H. Weinfurter, Ann.~N.Y.! Acad.
Sci. 755, 91 ~1995!.

@4# S. Popescu, Phys. Lett. A72, 797 ~1994!; L. Vaidman, Phys.
Rev. A 49, 1473~1994!; N. Linden and S. Popescu,ibid. 59,
137 ~1999!.

@5# In an experiment verifying the process of teleportation, o
must necessarily know the state ofA. However, such knowl-
edge is not required for a working quantum teleportation ch
nel ~this is one of the most appealing features of the proce!.
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