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We analyze the entangling capabilities of unitary transformatidds acting on a bipartite
(d; X d,)-dimensional quantum system. To this aim we introduce an entangling power me@syrgiven by
the mean linear entropy produced acting withon a given distribution of pure product states. This measure
admits a natural interpretation in terms of quantum operations. For a uniform distribution explicit analytical
results are obtained using group-theoretic arguments. The behavior of the feata(eb) @fs the subsystem
dimensionsd, andd, are varied is studied both analytically and numerically. The two-qubit dased,
=2 is argued to be peculiar.

PACS numbgs): 03.67.Lx, 03.65.Fd

From the beginning it has been argued that entanglememower.(c) A single two-subsystem, e.g., two-qubits, gate in a
is one of the crucial ingredients for allowing quantum- quantum network. Now the entanglitjs are the two-qubit
information processingl] to outperform, for certain tasks, gates needed to get universal Q.
any classically operating device. In this sense entanglement To formalize our setting let us consider a bipartite quan-
represents a uniquely quantum resource whose production igm system with state spack="H;®H, where dinf
a sort of elementary prerequisite for any quantum computa=d; (i=1,2) andU e/(H)=U(d, d,). If E is an entangle-
tion (QC). Such a basic task is accomplished by unitaryment measure ovell we define theentangling poweiof U
transformationsU; i.e., quantum evolutions acting on the (with respect toE) as
state space of the multipartite system that describe nontrivial
interactions between the degrees of freedom of the different ep(U):=E(U [¢1)®| i) e (1)
subsystems. Even though almost all the unitaries satisfy this
latter requiremenf2], it is quite natural to ask how different where the bar denotes the average over alptiogluctstates
U’s are efficient, according to some criterion to be specified|#1) ®|,) distributed according to some probability density
as entanglers; and then by using such a criterion to analyze( ,,) over the manifold of product states.
the full manifold of bipartite quantum evolutions. We shall use as entanglement measurg¥f e H the

In this paper we address this issue by introducing over thénear entropy
space of bipartite unitaries a measure for thaitangling
power This is done by considering how much entanglement E(|¥)):=1—tr; p?,  pe=try|¥)(¥|. 2
is produced byJ on the averageacting on a given distribu- , , . )
tion of unentangled quantum states. The kind of situation wé NiS quantity measures the purity of the reduced density ma-
have in mind is a procedure for entanglement production ifffiX p. it can be regarded as a kind of “linearized” version of
which one randomly generates product statee “cheap”  the von Neumann entrop§(p) = —tr p In p, which is known
resource according to some probability distributignand O pr_owd(_e the essentially unique measure of entanglement
then applies the transformatidh The average entanglement for bipartite pure quantum states. One has that=g|V))
obtained with the above scheme will be our meamy@)) =1~ 1/d where the lowetuppe) bound is reached iffi)) is
of the quantum evolutiot. a product statemaximally entangled The measur¢2) has,

It is important to stress that thes#s can represent dif- With respect ta5(p), the definite advantage of beingpaly-
ferent objects, both from the logical and physical point ofnomialin |¢>; _
view. Some prototypical instances are given by the follow- Now we introduce some notations. We shall denote by
ing. (8 A guantum computation using a pair of quantum Tij. (i,j=1, ... ,4) thetransposition between théh and the
registers: Here the entangling power measure will quantify th factor of 7 ®2=(C%1e (%) (C"1@ C%2). Notice thatT,,
how the computatiot is efficient in making the firstsay ~and Ts, are well-defined elements @{(H “?) only when
memory and the secondsay computationalregisters en- d,=d,; in this latter case such operators will be referred to
tangled. This kind of entanglement, which represents mutuads swaps Moreover, whert;="H;, one defines the projec-
information between the two registers, has been recentljors P;;:=2"'(1=T;;) over the totally symmetri¢antisym-
proved to play a role in QC viewed as a communicationmetric) subspaces df;®H;, the latter being thought of as
process[3]. (b) The global evolution of a system plus its embedded irf{ ®2. The space EndH ©?) is endowed with
environment: In this case,(U) measures thelecohering the Hilbert-Schmidt scalar produ¢A, B) :=tr(A" B). Finally
power of the system-environment coupled evolutibnEn-  with S(H) we shall denote the space of density matrices over
gineering weak decoherence then amounts to designing &H.
optimal U with respect to the criterion ahinimal entangling Proposition 1.The entangling powefl) is given by
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1 r— Q,T13=0Q,. (iv) From the previous remarks it follows that

A R 3| g the entangling power is constant along the orbita/(ft{) of
u B the left action of the subgroup of the bilocal operations
L U;®U,. In particular,e vanishes on all the elements of such

a group. In the symmetric cask=d, the group is extended
) v by the swapT.

Different distributionsp (¢4, #») would result in very dif-

B 4 / N\ ferente(U). An extreme example of this obvious remark is

provided by any transformatiod that simply permutes ele-
FIG. 1. Scheme of the two-party protocol realizing the operationments of a given basis)®|j) of H. If p is supported just on

Dy this basis the associateg}(U) vanishes identically, while
we shall show later for a different probability distribution
e,(U)=21tr[U®2Q,UuT®2p], (3)  that suchU’s can even be maximally entangling. Another
example is given in the context of cad® mentioned in the
where introduction. Suppost admits a decoherence-free subspace

CCH, [5], if pis, for any|y,), supported irC, then again
0p= [ duun v (o lu (a2 s @ eV)=0. N
From now on we focus on the case in whiphis the
niformdistributionpy. With this term we refer to the unique
(dy) xU(d,)]-invariant probability distribution, i.e.,
p(1, ) =p(Ui¢,Usir,). When all the product states are
considered to be equally easy to prepare, this latter assump-
tion onp is quite natural from the physical point of vid\].
Moreover, in view of its symmetry, the uniformwill result
. in a great computational simplification that will allow for an
The result above expresses{U) ?gzth? expectation value oy ilicit analytical evaluation of the average over the
over (), of the p0§|t|ve operator 2 P;3U . ThIS latter product-state manifold that appears in Et).
operator can be viewed as tbﬁectassomateg 2\Nlth_the com- Let us begin by proving an easy group-theoretic lemma
pletely positive (CZP) [4; map @y on S(H ™) given by that will play an essential technical role in the following.
Dy Q—>2P U 0UT P ;. This remark allows us to Lemma.Q, =4Cq, Cqy P1sPsa, Cyl=d(d+1).
interpret the entangling powe#) as the probability of suc-
cess of a two-partyA andB) quantum protoco(see Fig. 1L
SupposeA (B) owns space®{; andH; (H, andH,). (8 A
andB generate pairs of statég,)®|y,) according the dis- on the second and the fourth factor Bf©2): then
tribution probab|I|typ(z/f1,¢,_/;2) (QP. Is prepare (t.)) Apply |Q¢2>=(w13 w,,. Let us first observe that in view of Zj’efinition
to each member of the pair the joint transformatidfaction Po . o en )
of U®?). (c) Perform a projective measurement (2P . (4) one has thaf), is supported irP 3P, %, i.e., p is
Equation (3) nicely displays several properties required Symmetric under the exchange of the fiisecond and the
for any entangling measure for bipartite unitary evolutions.third (fourth) factor. Moreover, since the uniform distribu-
(i) ep(U;®U,U)=ey(U) [U;eU(d)]. Indeed, from the tion is U(d;)xU(dp) invariant one has[U;? wy]

anddu denotes the measure over the product state manifol
induced by the probability distributiop( ¢ ,>).

Proof. Let us observe that Eq2) can be written in a
linear form using the identity f{A® B) T]=tr(AB) whereT
is the swap. ThelE(|W))=1—tr(|¥)(¥|®2T,5). From this
remark and the definitiofil), Eq. (3) follows immediately.

Proof. Since the uniform distribution factorizes, we can
consider separately the average; with respect td ;) (on
the first and the third factor df ©2) and w,, with respect to

U(d,) invariance ofP; one finds =0, V U;eU(d)), and analogously forw,,. Since the
U$?'s act on the totally symmetric subspace irreducibly, it
ep(U;0U,U) =2 tr[U®2Q,UT®2(U; 0 U,) T2 follows from the above commutation relation and the Schur
X Pr(U,©U,)%2] lemma[7] that w,3=2CP;;. The normalization constant is
A found by the condition ;3= 1. Reasoning in the same way
=2 tr[U®ZQpUT®2(Ul)I3PIs(U1)13] for w,, One gets the desired result.
Proposition 2.The entangling powefl), with respect to
=ep(V). the uniform distribution, is given by

Where U,)13:=U®1®U,®1. (i) Whend,=d,, by denot-

ing with T the transposition between the two factors?ef €p,(U)=1-Cy,Cq, >, 14(U),
one hasey(TU)=ge,(U). This stems fromT®?P ;T%? a0l
=P,,. This leavesey(U) unchanged; indeed, this label
change amounts simply to the replacementttr, in Eq.

(2). Since, for pure states, the two reduced density matrices
are isospectral the linear entropy is unchanged. Moreover, Wheret(a) =t T_1+a,3+a- _

Qp is swap invariant, i_e_p(wl,lpz):p(lpz,d/l) one also Proof. It is ]USt a calculation. Inserlon=Cd1Cd2(]l
hase,(UT)=¢e,(U). (iii) One hase,(1)=0. This is simply ~ +T33)(1+ T,y in Eq. (3). Notice that one has T3
because),P1;=0. Indeed, from the definitio3) one has  =d,d3,tr Tp4=did,.
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Now we take the average with respect [¥), using
again the lemmal[d;d,(d;d,+1)] [ (1+ T15T20) Ty
=[d1d§+d§d2][dld2(dld2+ 1)]7 % This expression, in-
serted in the definition of the entanglement measure, proves
Eq. (6). |

For proving bounds on the entangling powey it is use-
ful to consider one of the states, sag), of the input prod-
uct as fixed. In this case a pair of CP maps associatedWvith
are naturally defined. Indeed, one hasplicit dependence
J on U and [¢) is omitted & S(H.)—>S(H,):

P32 Aip Al and®: S(Hy)—>S(Hp): p>2{2 A p Al

0 0.1 0.2 0.3 0.4 0.5 0.6 where A: Hyp—>M; and A;: Hy—>H, are given
e

. . Koy i\ .
FIG. 2. Distribution of the probability density(e) for d  PY Api=(ilUlg2) (1=1,...dp), A '_Eji1|1><l|_Ai (i
=23.4. =1,...d;). Therefore one can also define, for fixpt,)
e H, the (partia) entangling power ofU as Ep(CID)
From the relations [Tii43:4,(U1®U)®%]=0,(a  :=E(D |[4)(4])”. Notice that the equation above can also be
=0,1) it follows thatboththe functiond ; andl, are invari-  written in the form(3) with a special choice fop(yy,,),
ant under the two-sided, i.e., left and right, action of bilocali.e., with Q,= [du(1) (| 1)1 ®|2){¥])*2. The defi-
unitaries; e.g.1,(U) =1,(UU,®U,). Moreover, in the sym-  pjtion of e,(®) of course makes sense for general CP maps;
metric casal, =dy, it fOIIO.WS frpm the a_bove that th? entan- i this case the expression fa,(®), analogous to Eq.
gling power(5) can be written in a manifestly swap invariant . i ~ - p®2 -
form e, (U)=1-CiZ{_olq(T'U), where I4(U):=d? (3), is given b}ézep(q))_@% tr[@*(wp)P1s] where o,
+<U®2T U®2T > =fdﬂ(l//)|¢><llj| ES(,}—ll .
13 137 Proposition 4. The entangling power of the CP map

The entangling powee defines a random variable over _ : . e
U(H) if the latter, endowed with the Haar measure, is con-.q) 'gifé?lgfs(Hl) with respect to the uniform distribution

sidered as a probability space. Therefore it makes sense B
consider the assqmated densﬁy of probgblllty distribution "ép (D)=1—Cy (tr, X2+1r; X2), @
g(e). Moreover, since the manifold of unitary transforma- 0 L

tions overH is compa_ct, the obV|0u§Iy_ contlnu_ous ma@mgwhereX:E?i A AiT and7(=:2?£1ﬂi 7‘\?-

U—e(U) must achieve extrema; in particulald U
eU(H): e(U)=max, ). Such maximally entangling
U’s will be referred to a®ptimal In Fig. 2 are reported the T .
g(e)’s obtained numerically for the casedxd with d i’jz:l tra (A ) AVA; [) (¢ A,
=2,3,4. While in the cased=2 the functionq(e) vanishes

on both the lower and the upper sides of the allowed range ahis last expression can be rewritten as

e, it is remarkable that the two-qubit cask=2 shows a
peculiar featureq(e) is a monotonicfunction of e. This . . 02
implies that most of the two-qubit gatd$ correspond to izl tra[ (A AD® (AT A)) [¢h1) (] *2].
nearly optimal ones. Moreover, as will be discussed later in !

detail, the entangling power of optimél’s does not corre-  now we perform the average with respect #g); using the

spond to an upper bound that is instead reached by all thg ,ma w0y, =Cq (1+T). Using again the identity fttA
; . . o .

other cases fod. In this sense the prototypical quantum in ©B)T]=1tr(AB) one gets

formation case of two qubits is quite singular. A first very

Prob d=2 d=3

Proof. One has that {rp? is gfven by

dp

dp

natural question is how on average an operator is entangling, dy d, 2
i.e., the mean of the(e). Caltryp2"= > |try(Al AYP+tr| > A, AJ) . (®
Proposition 3. The average of the entangling power ! ihj=1 =1

epO(U) overU(d,dy) is given by [Notice that the two terms in the equation above correspond

to thel,’s in Eqg. (5).] It is then straightforward algebra to

(d3—=1)(dp—1)
ep (U) Ueer—ldﬁsz- ©  checkthat the first term in the equation above can be written
0 ~
as tp X2. [ |
Proof. To prove Eq.(6) we first notice that, in view of defi- We now provide bounds on the entangling power. We

nition (1), to compute the mean of the entangling powerassume thatl;<d,.

amounts to computing the average of the entanglement Proposition 5.For anyU e 4(’H) one has

measure overall the states|¥)eH (not just over the

product states The trace of the square of the reduced den- 0=e (U)= dy—d,/d; ©
sity matrix of |¥) is given by tr(W)}{W|®2T;y). TP T dy+1
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Proof. The lower bound is obvious in view of the defini- and tried to find exact expressions for the optimal unitary
tion (4); it is achieved by all the unitaries obtained by com-transformations. Fod,=d,=d=o0dd we have found that
posing bilocal transformations ob)(d)xU(d) with the the following “classical” unitary transformatiot |i)®|j)
swap. Let us consider first the operatrin Eq. (7). By  =|i+j)®|i—j) wherei,j=0...d—1 and the sums are
denoting with® the CP map associated with the’s one  modd (which only permutes thd? bases statg¢ss optimal
has ®(1/d;)=X/d;, and then %tr, ®(1/d;)?><1—1/d; and reaches the boun@otice that the above expression for
(general bound on linear entropi follows thatd,<tr; X2. evend does not define a permutation of the basisHj
This latter inequality provides a bound on the second term oSimilarly a more complicated construction gives an optimal

Eg. (7). Reasoning in the same way with the operg(mnd permutation that achieves the bound for the cdsed,

the associated CP maﬁ, one finds for the first term of Eq. =d=4n. Thus for equal dimensions the only case that re-

(7) the lower boundi?/d,. Putting these two results together, M2/"S 0 be solved isl;=d,=d=4n+2, e.g., 6<6. We
and in view of the assumptioti, <d,, invertingd, with d have also found unitary transformations satisfying the bound
142 1 2

one gets the desired res(@ for a very asymmetric case, namely=nm with n,m=d;.

Another issue is to understand whether the upper bound i |Q:1$fl?)frt1 fﬁ:ﬁflz:stoomgig;?efgCgtgtrf”_?geun;tee:% Sgig’;_
Eq. (9) is achieved by an optimal unitary transformation 9 Y ' b

. . structions for equal dimensions can be viewed as a concat-
As we shall show in the following, the answer seems to be q

affirmative ford>2. Let us stress that this is not obvious at ﬁgﬁggrr(;)lta it;vo|aSLétha|(tzgm;(:ill,eeo|l %pe(;ﬁgogst’hénsmzcgt etrr;es
all in that the upper boun¢®) has been obtained by provid- play y By Y '

ing separate bounds on the two terms appearing,ifU) It may also be interesting that for the cases@ld the bound

) - ot can be showmot to be reached by permutations.
Notice that the proof of Proposition 4 allows us to state the | gt ys finally discuss briefly the numerical evidence. First,
condition onU in order to saturate the bourtél) as: ior any  even for dimensions 23 the bound appears not to be
initial state| ) e H, the associated CP mags and® (de- reached, rather for optimé&l’s we get the value 1/8nstead
pending both on¢) and U) must map the totally mixed of 3/8). For all other cases that we have checked the bound
states onto totally mixed states. It might well be thatlhe  seems to be reached, namely foxk2 up to 2<7, and 3
yields unitarity for both CP maps at once. This in fact turnsx4 up to 3X6. In conclusion one might conjecture that the
out numerically to be the case fdr=2, in which one has only cases where the optimal transformations do not reach
that the optimall’s are such thatsee Fig. 2 epO(U)=2/9 the bound(8) are 2<2 and 2x< 3 [8].
<1/3. An optimal operator for qubits is givemot surpris- In this paper we introduced a measure for the entangling
ingly) by the controlledNoT U:=|0)(0|®1+|1)(1|eX,  Powere(U) of unitary transformationt) acting on the state
where X:=|0)(1|+|1)(0|. More interestingly the operators Space} of a bipartited; X d, quantum system. In terms of
providing a naturald-dimensional generalization of the this measure we moved a first step towards the analysis of

controllednOT gate are in generalot optimal. This is shown the manifold of bipartite unitary transformations. We ana-
by the following calculation. lyzed the induced probability distributiar(e) overi(H) as

Let us consider, ford,=d,, U =2ﬂ:1|a><a|®ua, d, andd, vqries, and we found an analytical form of _optimal
where the|a)'s are ad-dimensional orthonormal basis and transformations for some cases. Although we believe that
the U,’s are unitaries that, without any loss of generality, POth the questions addressed and the approach we adopted
can be taken to be orthogonal with respect to the Hilbert&re quite natural, and physically motivated, the role, if any,
Schmidt scalar product, i.§U,,U 5)=d3, 5. By using Eq. that the entangling power will play in quantum information
(5) it is easy to prove that for these unitarities one hadheory is still an issue for future work.
ep,(U)=d(d—1)/(d+1)? that is,d/(d+1) times smaller The authors thank M. Rasetti and J. Pachos for useful
than the bound9). discussions. Ch.Z. is supported by the EU Project IST-Q-

We also performed numerical maximization ef (U)  ACTA.
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