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Entangling power of quantum evolutions
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We analyze the entangling capabilities of unitary transformationsU acting on a bipartite
(d13d2)-dimensional quantum system. To this aim we introduce an entangling power measuree(U) given by
the mean linear entropy produced acting withU on a given distribution of pure product states. This measure
admits a natural interpretation in terms of quantum operations. For a uniform distribution explicit analytical
results are obtained using group-theoretic arguments. The behavior of the features ofe(U) as the subsystem
dimensionsd1 and d2 are varied is studied both analytically and numerically. The two-qubit cased15d2

52 is argued to be peculiar.

PACS number~s!: 03.67.Lx, 03.65.Fd
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From the beginning it has been argued that entanglem
is one of the crucial ingredients for allowing quantum
information processing@1# to outperform, for certain tasks
any classically operating device. In this sense entanglem
represents a uniquely quantum resource whose productio
a sort of elementary prerequisite for any quantum comp
tion ~QC!. Such a basic task is accomplished by unita
transformationsU; i.e., quantum evolutions acting on th
state space of the multipartite system that describe nontr
interactions between the degrees of freedom of the diffe
subsystems. Even though almost all the unitaries satisfy
latter requirement@2#, it is quite natural to ask how differen
U ’s are efficient, according to some criterion to be specifi
as entanglers; and then by using such a criterion to ana
the full manifold of bipartite quantum evolutions.

In this paper we address this issue by introducing over
space of bipartite unitaries a measure for theirentangling
power. This is done by considering how much entanglem
is produced byU on the average, acting on a given distribu-
tion of unentangled quantum states. The kind of situation
have in mind is a procedure for entanglement production
which one randomly generates product states~the ‘‘cheap’’
resource! according to some probability distributionp and
then applies the transformationU. The average entangleme
obtained with the above scheme will be our measureep(U)
of the quantum evolutionU.

It is important to stress that theseU ’s can represent dif-
ferent objects, both from the logical and physical point
view. Some prototypical instances are given by the follo
ing. ~a! A quantum computation using a pair of quantu
registers: Here the entangling power measure will quan
how the computationU is efficient in making the first~say
memory! and the second~say computational! registers en-
tangled. This kind of entanglement, which represents mu
information between the two registers, has been rece
proved to play a role in QC viewed as a communicat
process@3#. ~b! The global evolution of a system plus i
environment: In this caseep(U) measures thedecohering
power of the system-environment coupled evolutionU. En-
gineering weak decoherence then amounts to designin
optimalU with respect to the criterion ofminimalentangling
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nt

nt
is

a-
y

al
nt
is

,
ze

e

t

e
n

f
-

y

al
ly

an

power.~c! A single two-subsystem, e.g., two-qubits, gate in
quantum network. Now the entanglingU ’s are the two-qubit
gates needed to get universal QC@2#.

To formalize our setting let us consider a bipartite qua
tum system with state spaceH5H1^ H2 where dimHi
5di ( i 51,2) andUPU(H)>U(d1 d2). If E is an entangle-
ment measure overH we define theentangling powerof U
~with respect toE) as

ep~U !ªE~U uc1& ^ uc2&)
c1 ,c2, ~1!

where the bar denotes the average over all theproductstates
uc1& ^ uc2& distributed according to some probability dens
p(c1 ,c2) over the manifold of product states.

We shall use as entanglement measure ofuC&PH the
linear entropy

E~ uC&)ª12tr1 r2, rªtr2uC&^Cu. ~2!

This quantity measures the purity of the reduced density
trix r, it can be regarded as a kind of ‘‘linearized’’ version
the von Neumann entropyS(r)52tr r ln r, which is known
to provide the essentially unique measure of entanglem
for bipartite pure quantum states. One has that 0<E(uC&)
<121/d where the lower~upper! bound is reached iffuc& is
a product state~maximally entangled!. The measure~2! has,
with respect toS(r), the definite advantage of being apoly-
nomial in uc&.

Now we introduce some notations. We shall denote
Ti j , (i , j 51, . . . ,4) thetransposition between thei th and the
j th factor ofH ^ 2>(Cd1^ Cd2) ^ (Cd1^ Cd2). Notice thatT12
and T34 are well-defined elements ofU(H ^ 2) only when
d15d2; in this latter case such operators will be referred
asswaps. Moreover, whenHi>Hj , one defines the projec
tors Pi j

6
ª221(16Ti j ) over the totally symmetric~antisym-

metric! subspaces ofHi ^ Hj , the latter being thought of a
embedded inH ^ 2. The space End (H ^ 2) is endowed with
the Hilbert-Schmidt scalar product^A, B&ªtr(A† B). Finally
with S(H) we shall denote the space of density matrices o
H.

Proposition 1.The entangling power~1! is given by
©2000 The American Physical Society01-1
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ep~U !52 tr @U ^ 2VpU†^ 2P13
2 #, ~3!

where

VpªE dm~c1 ,c2!~ uc1&^c1u ^ uc2&^c2u! ^ 2PS~H ^ 2! ~4!

anddm denotes the measure over the product state man
induced by the probability distributionp(c1 ,c2).

Proof. Let us observe that Eq.~2! can be written in a
linear form using the identity tr@(A^ B)T#5tr(AB) whereT
is the swap. ThenE(uC&)512tr(uC&^Cu ^ 2T13). From this
remark and the definition~1!, Eq. ~3! follows immediately.

The result above expressesep(U) as the expectation valu
over Vp of the positive operator 2U†^ 2P13

2 U ^ 2. This latter
operator can be viewed as theeffectassociated with the com
pletely positive ~CP! @4# map FU on S(H ^ 2) given by
FU : V°2P13

2 U ^ 2VU†^ 2P13
2 . This remark allows us to

interpret the entangling power~4! as the probability of suc-
cess of a two-party (A andB) quantum protocol~see Fig. 1!.
SupposeA ~B! owns spacesH1 andH3 (H2 andH4). ~a! A
andB generate pairs of statesuc1& ^ uc2& according the dis-
tribution probabilityp(c1 ,c2) (Vp is prepared!. ~b! Apply
to each member of the pair the joint transformationU ~action
of U ^ 2). ~c! Perform a projective measurement ofA2P13

2 .
Equation ~3! nicely displays several properties requir

for any entangling measure for bipartite unitary evolution
~i! ep(U1^ U2U)5ep(U) @UiPU(di)#. Indeed, from the
U(d1) invariance ofP13

2 one finds

ep~U1^ U2U !52 tr @U ^ 2VpU†^ 2~U1^ U2!†^ 2

3P13
2 ~U1^ U2! ^ 2#

52 tr@U ^ 2VpU†^ 2~U1!13
† P13

2 ~U1!13#

5ep~U !.

Where (U1)13ªU1^ 1^ U1^ 1. ~ii ! Whend15d2, by denot-
ing with T the transposition between the two factors ofH,
one hasep(T U)5ep(U). This stems fromT^ 2P13

2 T^ 2

5P24
2 . This leavesep(U) unchanged; indeed, this labe

change amounts simply to the replacement tr1↔tr2 in Eq.
~2!. Since, for pure states, the two reduced density matr
are isospectral the linear entropy is unchanged. Moreove
Vp is swap invariant, i.e.,p(c1 ,c2)5p(c2 ,c1) one also
hasep(UT)5ep(U). ~iii ! One hasep(1)50. This is simply
becauseVpP13

2 50. Indeed, from the definition~3! one has

FIG. 1. Scheme of the two-party protocol realizing the operat
FU .
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VpT135Vp . ~iv! From the previous remarks it follows tha
the entangling power is constant along the orbits inU(H) of
the left action of the subgroup of the bilocal operatio
U1^ U2. In particular,e vanishes on all the elements of suc
a group. In the symmetric cased15d2 the group is extended
by the swapT.

Different distributionsp(c1 ,c2) would result in very dif-
ferente(U). An extreme example of this obvious remark
provided by any transformationU that simply permutes ele
ments of a given basisu i & ^ u j & of H. If p is supported just on
this basis the associatedep(U) vanishes identically, while
we shall show later for a different probability distributio
that suchU ’s can even be maximally entangling. Anoth
example is given in the context of case~b! mentioned in the
introduction. SupposeU admits a decoherence-free subspa
C,H1 @5#, if p is, for any uc2&, supported inC, then again
ep(U)50.

From now on we focus on the case in whichp is the
uniformdistributionp0. With this term we refer to the unique
@U(d1)3U(d2)#-invariant probability distribution, i.e.,
p(c1 ,c2)5p(U1c1 ,U2c2). When all the product states ar
considered to be equally easy to prepare, this latter assu
tion onp is quite natural from the physical point of view@6#.
Moreover, in view of its symmetry, the uniformp will result
in a great computational simplification that will allow for a
explicit analytical evaluation of the average over t
product-state manifold that appears in Eq.~1!.

Let us begin by proving an easy group-theoretic lem
that will play an essential technical role in the following.

Lemma.Vp0
54Cd1

Cd2
P13

1 P24
1 , Cd

21
ªd(d11).

Proof. Since the uniform distribution factorizes, we ca
consider separately the averagev13 with respect touc1& ~on
the first and the third factor ofH ^ 2) andv24 with respect to
uc2& ~on the second and the fourth factor ofH ^ 2); then
Vp0

5v13v24. Let us first observe that in view of definitio

~4! one has thatVp0
is supported inP13

1 P24
1H ^ 2, i.e., Vp is

symmetric under the exchange of the first~second! and the
third ~fourth! factor. Moreover, since the uniform distribu
tion is U(d1)3U(d2) invariant one has @U1

^ 2 ,v13#
50, ; U1PU(d1), and analogously forv24. Since the
U1

^ 2’s act on the totally symmetric subspace irreducibly,
follows from the above commutation relation and the Sch
lemma@7# that v1352CP13

1 . The normalization constant i
found by the condition trv1351. Reasoning in the same wa
for v24 one gets the desired result.

Proposition 2.The entangling power~1!, with respect to
the uniform distribution, is given by

ep0
~U !512Cd1

Cd2 (
a50,1

I a~U !,

~5!
I a~U !5t~a!1^U ^ 2~T11a,31a!U†^ 2,T13&,

wheret(a)ªtr T11a,31a .
Proof. It is just a calculation. InsertVp0

5Cd1
Cd2

(1
1T13)(11T24) in Eq. ~3!. Notice that one has trT13

5d1d2
2 ,tr T245d1

2d2.

n
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From the relations @T11a,31a ,(U1^ U2) ^ 2#50,(a
50,1) it follows thatboth the functionsI 0 andI 1 are invari-
ant under the two-sided, i.e., left and right, action of biloc
unitaries; e.g.,I 1(U)5I 1(UU1^ U2). Moreover, in the sym-
metric cased15d2, it follows from the above that the entan
gling power~5! can be written in a manifestly swap invaria
form ep0

(U)512Cd
2( i 50

1 I d(TiU), where I d(U)ªd3

1^U ^ 2,T13U
^ 2 T13&.

The entangling powere defines a random variable ove
U(H) if the latter, endowed with the Haar measure, is co
sidered as a probability space. Therefore it makes sens
consider the associated density of probability distribut
q(e). Moreover, since the manifold of unitary transform
tions overH is compact, the obviously continuous mappi
U°e(U) must achieve extrema; in particular,' Ū

PU(H): e(Ū)5maxU e(U). Such maximally entangling
Ū ’s will be referred to asoptimal. In Fig. 2 are reported the
q(e)’s obtained numerically for the casesd3d with d
52,3,4. While in the casesd>2 the functionq(e) vanishes
on both the lower and the upper sides of the allowed rang
e, it is remarkable that the two-qubit cased52 shows a
peculiar feature:q(e) is a monotonic function of e. This
implies that most of the two-qubit gatesU correspond to
nearly optimal ones. Moreover, as will be discussed late
detail, the entangling power of optimalU ’s does not corre-
spond to an upper bound that is instead reached by all
other cases ford. In this sense the prototypical quantum i
formation case of two qubits is quite singular. A first ve
natural question is how on average an operator is entang
i.e., the mean of theq(e).

Proposition 3. The average of the entangling pow
ep0

(U) over U(d1d2) is given by

ep0
~U !

Uexp5
~d121!~d221!

d1d211 .
~6!

Proof. To prove Eq.~6! we first notice that, in view of defi-
nition ~1!, to compute the mean of the entangling pow
amounts to computing the average of the entanglem
measure overall the statesuC&PH ~not just over the
product states!. The trace of the square of the reduced de
sity matrix of uC& is given by tr(uC&^Cu ^ 2T13).

FIG. 2. Distribution of the probability densityq(e) for d
52,3,4.
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Now we take the average with respect touC&, using
again the lemma @d1d2(d1d211)#21tr@(11T13T24)T13#
5@d1d2

21d1
2d2#@d1d2(d1d211)#21. This expression, in-

serted in the definition of the entanglement measure, pro
Eq. ~6!. j

For proving bounds on the entangling power~1! it is use-
ful to consider one of the states, sayuc2&, of the input prod-
uct as fixed. In this case a pair of CP maps associated witU
are naturally defined. Indeed, one has~explicit dependence
on U and uc2& is omitted! F: S(H1)°S(H1):

r°( i 51
d2 Ai r Ai

† andF̃: S(H1)°S(H2): r°( i 51
d1 Ãi r Ãi

† ,

where Ai : H1°H1 and Ãj : H1°H2 are given
by Ajª^ j u U uc2& ( j 51, . . . ,d2), Ãiª( j 51

d2 u j &^ i u Aj ( i
51, . . . ,d1). Therefore one can also define, for fixeduc2&
PH2 the ~partial! entangling power of U as ẽp(F)
ªE(F uc&^cu)c. Notice that the equation above can also
written in the form~3! with a special choice forp(c1 ,c2),
i.e., with Vp5*dm(c1)(uc1&^c1u ^ uc2&^c2u) ^ 2. The defi-
nition of ẽp(F) of course makes sense for general CP ma
in this case the expression forẽp(F), analogous to Eq.
~3!, is given by ẽp(F)52 tr @F ^ 2(vp)P13

2 # where vp

ª*dm(c) uc&^cu ^ 2PS(H 1
^ 2).

Proposition 4. The entangling power of the CP ma
F: S(H1)°S(H1) with respect to the uniform distribution
is given by

ẽp0
~F!512Cd1

~ tr2 X̃21tr1 X2!, ~7!

whereXª( j 51
d1 Ai Ai

† and X̃ª( j 51
d1 Ãi Ãi

† .
Proof. One has that tr1 r2 is given by

(
i , j 51

d2

tr1~Ai uc1&^c1u Ai
†Aj uc1&^c1u Aj

†!;

this last expression can be rewritten as

(
i , j 51

d2

tr1@~Aj
† Ai ! ^ ~Ai

† Aj ! uc1&^c1u ^ 2#.

Now we perform the average with respect touc1&; using the
lemma vp0

5Cd1
(11T). Using again the identity tr@(A

^ B)T#5tr(AB) one gets

Cd1

21 tr1 r2 c15 (
i , j 51

d2

utr1~Aj
† Ai !u21tr1S (

j 51

d2

Ai Ai
†D 2

. ~8!

@Notice that the two terms in the equation above corresp
to the I a’s in Eq. ~5!.# It is then straightforward algebra t
check that the first term in the equation above can be wri
as tr2 X̃2. j

We now provide bounds on the entangling power. W
assume thatd1<d2.

Proposition 5.For anyUPU(H) one has

0<ep0
~U !<

d22d2 /d1

d211
. ~9!
1-3
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Proof. The lower bound is obvious in view of the defin
tion ~4!; it is achieved by all the unitaries obtained by com
posing bilocal transformations ofU(d)3U(d) with the
swap. Let us consider first the operatorX in Eq. ~7!. By
denoting withF the CP map associated with theAj ’s one
has F(1/d1)5X/d1, and then 12tr1 F(1/d1)2<121/d1
~general bound on linear entropy! it follows that d1<tr1 X2.
This latter inequality provides a bound on the second term
Eq. ~7!. Reasoning in the same way with the operatorX̃ and

the associated CP mapF̃, one finds for the first term of Eq
~7! the lower boundd1

2/d2. Putting these two results togethe
and in view of the assumptiond1<d2, invertingd1 with d2
one gets the desired result~9! j

Another issue is to understand whether the upper boun
Eq. ~9! is achieved by an optimal unitary transformationU.
As we shall show in the following, the answer seems to
affirmative ford.2. Let us stress that this is not obvious
all in that the upper bound~9! has been obtained by provid
ing separate bounds on the two terms appearing inep0

(U).
Notice that the proof of Proposition 4 allows us to state
condition onU in order to saturate the bound~9! as: for any

initial stateuc&PH1 the associated CP mapsF and F̃ ~de-
pending both onuc& and U) must map the totally mixed
states onto totally mixed states. It might well be that noU ’s
yields unitarity for both CP maps at once. This in fact tur
out numerically to be the case ford52, in which one has
that the optimalU ’s are such that~see Fig. 2! ep0

(U)52/9

,1/3. An optimal operator for qubits is given~not surpris-
ingly! by the controlled-NOT Uªu0&^0u ^ 11u1&^1u ^ X,
whereXªu0&^1u1u1&^0u. More interestingly the operator
providing a naturald-dimensional generalization of th
controlled-NOT gate are in generalnot optimal. This is shown
by the following calculation.

Let us consider, ford15d2 , U5(a51
d ua&^au ^ Ua ,

where theua& ’s are ad-dimensional orthonormal basis an
the Ua’s are unitaries that, without any loss of generali
can be taken to be orthogonal with respect to the Hilb
Schmidt scalar product, i.e.,^Ua ,Ub&5dda,b . By using Eq.
~5! it is easy to prove that for these unitarities one h
ep0

(U)5d(d21)/(d11)2, that is,d/(d11) times smaller
than the bound~9!.

We also performed numerical maximization ofep0
(U)
on

o
0
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and tried to find exact expressions for the optimal unita
transformations. Ford15d25d5odd we have found that
the following ‘‘classical’’ unitary transformationU u i & ^ u j &
5u i 1 j & ^ u i 2 j & where i , j 50 . . .d21 and the sums are
modd ~which only permutes thed2 bases states! is optimal
and reaches the bound.~Notice that the above expression fo
even d does not define a permutation of the basis ofH.!
Similarly a more complicated construction gives an optim
permutation that achieves the bound for the cased15d2
5d54n. Thus for equal dimensions the only case that
mains to be solved isd15d25d54n12, e.g., 636. We
have also found unitary transformations satisfying the bou
for a very asymmetric case, namelyd25nm with n,m>d1.
This last example is of the type of controlled unitary ope
tion from the larger to the smaller system. The previous c
structions for equal dimensions can be viewed as a con
enation of two such controlled operations, in which t
control role is played alternatively by one of the subsystem
It may also be interesting that for the cases 23odd the bound
can be shownnot to be reached by permutations.

Let us finally discuss briefly the numerical evidence. Fir
even for dimensions 233 the bound appears not to b
reached, rather for optimalU ’s we get the value 1/3~instead
of 3/8). For all other cases that we have checked the bo
seems to be reached, namely for 234 up to 237, and 3
34 up to 336. In conclusion one might conjecture that th
only cases where the optimal transformations do not re
the bound~8! are 232 and 233 @8#.

In this paper we introduced a measure for the entang
powere(U) of unitary transformationsU acting on the state
spaceH of a bipartited13d2 quantum system. In terms o
this measure we moved a first step towards the analysi
the manifold of bipartite unitary transformations. We an
lyzed the induced probability distributionq(e) overU(H) as
d1 andd2 varies, and we found an analytical form of optim
transformations for some cases. Although we believe t
both the questions addressed and the approach we ado
are quite natural, and physically motivated, the role, if a
that the entangling power will play in quantum informatio
theory is still an issue for future work.

The authors thank M. Rasetti and J. Pachos for us
discussions. Ch.Z. is supported by the EU Project IST
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