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Gap to hinder the rotational excitation of the ground state of a 13-boson system
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A 13-boson system has been qualitatively studied based on symmetry consideration. The rotational excita-
tion of the ground state is found to be greatly hindered. The geometric feature and some specific modes of
internal oscillation of low-lying states have been predicted. An idea for the classification of states has been
proposed. A number of rotation bands have been suggested.

PACS number~s!: 36.40.Mr, 31.15.Hz
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Thirteen is a well known magic number definitely foun
in nature in the systems composed of various kinds of c
stituents, e.g., in atomic clusters@1,2#. Even in nuclear sys-
tems, the separation energy of a neutron separated from
13C nucleus was found to be considerably larger@3#. During
the past century the magic number has been accounted fo
hard-sphere-packing models@4#. However, as quantum
mechanical systems, the physics involved might be m
richer. A system with 36 internal degrees of freedom~if the
spins are not taken into account! is not able to be quantita
tively calculated without approximations at present. This
planned for a work in the future. Nonetheless, a qualitat
study might be useful because in this way the underly
physics can be more or less demonstrated, thereby the f
coming results from theoretical calculations and from exp
mental observations can be better understood. In this pap
qualitative analysis based on fundamental principles is p
formed to extract the feature of the low-lying spectrum o
13-body system of identical bosons with zero spin. The e
phasis is placed on the classification of low-lying states.

In coordinate space the wave functions of low-lying sta
are mainly distributed in the domains with lower potent
energy. For a 13-body system with the pairwise interacti
containing a repulsive core and an attractive tail, there
three such important domains:~i! the domain surrounding a
centered icosahedron~ICO! with an appropriate size a
shown in Fig. 1~a!, where 42 bonds can be optimized;~ii ! the
domain surrounding a centered cuboctahedron~CUBO! with
an appropriate size as shown in Fig. 1~b!, where 36 bonds
can be optimized; and~iii ! the domain of a shape with
sixfold axis as shown in Fig. 1~c!, where the twelve oute
particles form two hexagons, where also 36 bonds can
optimized. The other domains are much higher in total
tential energy, and therefore are not important.

For the above three important domains, the ICO is
most important~the total potential energy at the ICO is th
lowest!, and the CUBO is the second most important. F
example, for a 13-Ar system, when the pairwise interact
is taken from Ref.@6#, the resultant total potential energies
the ICO, CUBO, and the ‘‘sixfold’’ shape with optimal size
are20.465 eV,20.428 eV, and20.398 eV, respectively

Let us first investigate the behavior of wave functions
the domain of the ICO. It is noted that the existence of
m-fold axis implies that a rotation about the axis by 2p/m is
equivalent to a cyclic permutation of particles. It turns o
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that this equivalence will impose a constraint. For examp
let A denote a geometric configuration with anm-fold axis,
let O be an operator of rotation about the axis by the an
2p/m, and letC be a totally symmetric wave function o
spatial coordinates. We then have

OC~A!5C~O21A!5PcyclicC~A!5C~A!, ~1a!

wherePcyclic denotes the cyclic permutations of the particl
surrounding them-fold axis. The last equality holds only fo
totally symmetric functions of bosonic systems. Thus
have

~O21!C~A!50. ~1b!

When C is a basis function of a representation of t
rotation and inversion group, Eq.~1b! can be written in a
matrix form and appears as a set of homogeneous linea
gebra equations~as we shall see!. This set of equations mus
be fulfilled byC at A, thus the behavior ofC is constrained.
It is noted that the ICO is a highly symmetric shape rela
to the icosahedral group@5#. It contains six fivefold axes, ten
threefold axes, and fifteen twofold axes. Thus, wave fu
tions are definitely strongly constrained at the ICO.

Let us introduce a body framei 8-j 8-k8 as marked in Fig.
1~a!. Let a totally symmetric and translational invaria
eigenstate of a 13-boson system with a given total orb
angular momentumL and a given parityP be expanded as

CM~1, . . . ,13!5(
Q

DQM
L ~2g,2b,2a!CQ~18, . . . ,138!,

~2!

whereM andQ are the projections ofL along a fixedZ axis
and along thek8 axis, respectively;abg are the Euler angles
for the rotation of the body frame andDQM

L is the Wigner
function. The (1, . . . ,13) and (18, . . . ,138) specify that the
coordinates are relative to the fixed frame and to the b
frame, respectively.CQ is called aQ component. Togethe
they form a representation of the rotation, inversion, a
permutation groups.

When the particles form an ICO as in Fig. 1~a!, the k8
axis is a fivefold axis. Therefore, a rotation aboutk8 by 2p/5
is equivalent to p(3,4,5,6,7)p(8,9,10,11,12), where
p( i , j , . . . ) denotes a cyclic permutation which does n
cause a change in bosonic systems. Thus, Eq.~1b! for eachQ
component is now written as
©2000 The American Physical Society01-1
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~ei (2p/5)Q21!CQ~ ICO!50 ~Q is from 2L to L !, ~3!

where (ICO) denotes that the coordinates form an ICO.
Let B denote the c.m. of the particles 1, 5, and 6;B8

denotes the c.m. of the particles 2, 8, and 12. The stra
line BB8 is a threefold axis which goes through the total c.
and lies in thei 8-k8 plane. The angle betweenBB8 andk8 is

u15arcsin@A4 sin2~p/5!21/A3 sin~p/5!#. ~4!

Let the operator of a rotation about an axisnW by an angle

u be denoted asRu
nW . We have

R2p/3
BB8 5R2u1

j 8 R2p/3
k8 Ru1

j 8 . ~5!

Thus, for the rotation aboutBB8, Eq. ~1b! becomes

(
Q8

S (
K

dQ8K
L

~2u1!ei (2p/3)KdKQ
L ~u1!2dQQ8DCQ8~ICO!50,

~6!

wheredQ8K
L (u1)5DQ8K

L (0,u1,0).
Let D denote the c.m. of the particles 1 and 3;D8 denotes

the c.m. of the particles 2 and 10. The straight lineDD8 is a
twofold axis which goes through the total c.m. and lies a
in the i 8-k8 plane. The angle betweenDD8 andk8 is

u25arccos@1/2 sin~p/5!#. ~7!

Similarly, the rotation aboutDD8 leads to

(
Q8

S (
K

dQ8K
L

~u2!eipKdKQ
L ~2u2!2dQQ8DCQ8~ ICO!50.

~8!

Equations~3!, ~6!, and~8! are the equations of constrain
from a fivefold, threefold, and twofold axis, respectively.
is noted that the ICO has total of 31m-fold axes (m
55, 3, or 2). Each of them will contribute a set of equ

FIG. 1. A regular icosahedron~a! where thei 8 axis lies on the
plane of the particles 1, 3, 2, and 10; a cuboctahedron~b!; and a
hexagon-pontoon with a sixfold axis~c!.
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tions of constraint. Fortunately, these equations of constr
are not all independent. For an example, the axis connec
particles 6 and 8 is a fivefold axis denoted asEE8. Since

R2p/5
EE8 5R22p/3

BB8 R2p/5
k8 R2p/3

BB8 , ~9!

since the constraint caused by the rotations at the right-h
side of Eq.~9! has already been taken into account, the o

eratorR2p/5
EE8 does not cause a new constraint. Consequen

Eqs.~3!, ~6!, and~8! are found to be sufficient to embody th
constraints arising from them-body axes.

Furthermore, the parity will cause an additional constra
on the wave function. When the particles form an ICO
space inversion is equivalent to particle interchanges. T
we have

~P21!CQ~ ICO!50. ~10!

Evidently, the Q componentsCQ depend also on the
choice of the body frame. When the body frame is adop
as in Fig. 1~a!, a rotation aboutj 8 by p is also equivalent to
particle interchanges. Thus we have

(
Q8

@~21!L1QdQ̄Q82dQQ8#CQ8~ ICO!50. ~11!

Equations~3!, ~6!, ~8!, ~10!, and ~11! are the equations
thatCQ must fulfill at ICO configurations irrespective of th
sizes of the ICO. It is well known that homogeneous eq
tions do not always have nonzero solution. Therefore, i
very possible that the above five sets of equations do
have a common nonzero solution, depending on the co
cients of these equations. The coefficients depend onL and
P. For odd-parity states, it is obvious that all theCQ must
be zero at the ICO due to Eq.~10!. Thus the ICO is inacces
sible to odd parity states. For even parity states with spec
L, these sets of equations might have one~or more! common
nonzero solution~s!. These specific states are ICO-accessib
The other states are ICO-inaccessible, where all theCQ (Q
is from 2L to L) must be zero at the ICO, and therefo
CM(ICO) is zero irrespective of the size and orientation
the ICO @cf. Eq. ~2!#. Thus, all the ICO-inaccessible state
contain a nodal surface at ICO configurations. This surfac
called an inherent nodal surface@7,8#. Since in general the
appearance of a nodal surface implies an excitation of os
lation, the above nodal surface will cause an excited osc
tion back and forth around the ICO as an equilibrium sha
resulting in a great increase in energy.

Since the search of solutions of linear algebra equation
trivial, we shall give directly the results. Owing to Eq.~11!
the wave function as expanded in Eq.~2! can be rewritten at
the ICO as

CM~ ICO!5CH (
Q.0

@DQM
L 1~21!L1QD2Q,M

L # f Q1D0M
L f 0J ,

~12!

whereC is an unknown number andf Q and f 0 are numbers
obtained from solving the sets of equations. The argume
1-2
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abg contained inDQM
L are not explicitly written. It was

found that there are only five ICO-accessible states withL
<15; they are listed in Table I. Those states withL<15 but
not in the table are ICO-inaccessible.

Let Li
P denote thei th state of a series having the sameL

andP. TheL1
P is the lowest one of the series and is called

first state. Let the eigenenergy of a state be approxima
divided as

E5Eint1Erot , ~13!

whereEint is the internal oscillation energy andErot is the
energy of collective rotation. Obviously, if the wave functio
can peak at the ICO and be smoothly distributed surround
it, Eint would be minimized . Only ICO-accessible states a
allowed to make this favorable choice. Evidently, all the fi
states will do their best to lower theEint . Thus the ICO-
accessible first states, namely the 01

1 , 61
1 , 101

1 ,
121

1 , 151
1 , . . . , definitely will make this favorable choice

Consequently, they have the same kind of internal struc
~having the ICO as the most probable shape!, and thereby
constitute the lowest rotation band, the ICO band. Its ba
head, namely the 01

1 , is just the ground state. It is noted th
not only have the quantum numbers of each member of
band been determined, but also the wave functions at
ICO have been determined before solving the Schro¨dinger
equation~except the common numberC). This fact demon-
strates the decisive effect of symmetry. Since theL51 to 5
states are excluded from the band, the rotational excitatio
the ground state is greatly hindered.

Let us study the ICO-inaccessible states. Since they c
tain an inherent nodal surface at the ICO, their energies
in general much higher. Would this nodal surface exte
from the ICO to its neighborhood? When an ICO is pr
longed~or shortened! along a fivefold axis, let the deforme
shape be called a P5 shape. At this shape a wave functi
constrained only by Eqs.~3!, ~10!, and~11!, but not by Eqs.
~6! and ~8!. Therefore, an ICO-accessible state must be
accessible. However, an ICO-inaccessible state is either
accessible or P5-inaccessible. In the latter case the inhe
nodal surface extends from the ICO to the P5. The
accessibility can be easily identified as listed in the third r
of Table II.

TABLE I. The ICO-accessible states of a 13-boson system
their wave functions given in a body frame at the ICO@cf. Eq.~12!#.
The body frame is plotted in Fig. 1~a!. The values of thef Q not
listed in the table are zero.

LP f 0 f 5 f 10 f 15

01 1
61 A 11

25 2A 7
25

101 A 247
1875 A 209

625 A 187
1875

121 A 1071
3125 2A 286

3125 A 741
3125

151
2A 667

2500 2A 957
6250 A 1001

12500
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When an ICO is twisted about a fivefold axis@e.g., when
the particles 3 to 7 in Fig. 1~a! rotate as a whole by the angl
p/10, while the particles 8 to 12 rotate as a whole
2p/10 about thek8 axis#, the deformed shape is called a T
shape. Similarly, P3 and T3 shapes can be likewise defin
where, instead of a fivefold axis, a threefold axis is co
tained. The P5, T5, P3, and T3 are regular shapes in
domain of the ICO. A slight deformation of the ICO wi
lead to these shapes. The accessibility of these shape
essential to ICO-inaccessible states and is summarize
Table II. When some of these shapes are accessible, the
function of an ICO-inaccessible state may peak at them.

It is quite often that the structure of a higher state wou
have a number of competing choices allowed by symme
For example, the ICO-inaccessible states may also pea
the CUBO and/or the ‘‘sixfold’’ shape. Since higher stat
are less constrained by symmetry, we shall neglect the g
eral discussion on them. Instead, some series of states
specific structures will be pointed out.

The accessibility of shapes is associated with the inhe
nodal structure of wave functions. For an example, the1

state is not only ICO-inaccessible, but also T5- and T
inaccessible. Thus, the inherent nodal surface existing at
ICO will extend to the T5 and T3. It is clear from Table
that each ICO-inaccessible state has its own inherent n
structure. This structure affects seriously the feature of
wave function, therefore it is an objective base for the cl
sification of states.

Based on the inherent nodal structure, the IC
inaccessible states can be further classified into four gro
The first group contains the 21, 41, 81, . . . states. They
all contain an inherent nodal surface at the ICO, but t
surface does not extend to the neighborhood. Thus, while
wave functions can be freely distributed in the neighborho
of the ICO, the node at the ICO~the minimum of the total
potential energy! would cause a number of modes of osc
lation back and forth around the ICO as an equilibrium sha

TABLE II. Accessibility of the regular shapes. A block with a
a implies that the associated shape is accessible to the assoc
states; an empty block denotes inaccessibility.

101 91 81 71 61 51 41 31 21 11 01

ICO a a a
P5 a a a a a a a a a
T5 a a a a a a
P3 a a a a a a a a a a
T3 a a a a a a a a
CUBO a a a a a a
sixfold a a a a a a

102 92 82 72 62 52 42 32 22 12 02

ICO
P5
T5 a a a a a a
P3
T3 a a a a a a a a
CUBO
six-fold a a a a a

d

1-3
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~e.g., a prolongation and shortening along one of itsm fold
axes!. Among these modes the softest mode~having the least
excitation energy! would be chosen by the first state
21

1 , 41
1 , 81

1 , . . . . When the rotation-oscillation couplin
is weak~this case is quite usual for atomic clusters beca
they have a large moment of inertia!, these first states domi
nated by the softest mode will be similar in structure. Th
they would form another rotation band, the ICO* band. He
the ICO* implies the specific excited oscillation with on
node.

The second group of ICO-inaccessible states contains
odd parity L2 states withL>5. They are T5- and T3-
accessible but P5- and P3-inaccessible. They may have
T5 and/or T3 as their most probable shape~s!. In addition to
the oscillation caused by the node at the ICO, the no
surface at the P5 and P3 would spoil greatly the stability
the T5 and T3, and cause an excitation of the twist mot
~e.g., the upper half and the lower half of an ICO wou
rotate back and forth in reverse directions about a fivefold
a threefold axis!. Thus, the excited twist mode as an inhere
mode exists in this group. The first states of this group wo
constitute a rotation band characterized by having the tw
motion. This band is called the odd parity twist band. Sin
more inherent nodal surfaces are contained in this band
internal energy is remarkably higher than the ICO* band

The third group of ICO-inaccessible states contains
51, 71, 91, . . . . Their first states might form an eve
parity twist band.

The fourth group of ICO-inaccessible states contains
11 and 31 states, together with all theL2 states withL
<4. These states contain a number of inherent nodal
faces. Thus, very strong and complicated internal moti
are involved, and therefore their energies are very high.

Let us investigate the domain of the CUBO, which is a
important to higher states. The CUBO is also a highly sy
metric shape related to the octahedral group@5#. It has three

TABLE III. The CUBO-accessible states~refer to Table I!. The
body frame is given in Fig. 1~b!.

LP f 0 f 3 f 6 f 9

01 1
41 A 7

27 A 10
27

61 A 32
81 2A 35

243 A 77
486

81 A 11
243 A 140

729 A 208
729

91
2A 221

729 A 119
1458 A 28

243

101 A 8320
19683 A 44

6561 2A 1331
13122 A 3553

19683
le
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fourfold axes, four threefold axes, and six twofold axes.
using the above approach, the CUBO-accessible states
be identified as listed in Table III and summarized in Tab
II. They might form a rotation band, namely the CUB
band. TheLP states withL<10 not listed in Table III~in-
cluding all odd parity states! are CUBO-inaccessible.

Since the ‘‘sixfold’’ as plotted in Fig. 1~c! is also associ-
ated with a local minimum, the ‘‘sixfold’’-accessible state
namely the 01, 21, 41, 61, . . . states, together with th
L2 states withL>6 might also form rotation bands highe
than the CUBO band. The possible bands of a 13-boson
tem are summarized in Table IV.

Among the above suggested bands, the members of
ICO band are pure in structure, because their structur
superior and no other structures can compete with th
However, higher states usually have many compet
choices; we do not know how pure the other bands are.
probable that some members of the higher bands are not
defined, in which different structures are mixed up strong
How the mixing would be is an open problem.

Nonetheless, although the ‘‘sixfold’’ shape is higher
potential energy, it has a larger moment of inertia resulting
having a reduction inErot . WhenL is larger than a critical
value Lc , the reduction ofErot can overcompensate for th
increase in potential energy. In this case, the ‘‘sixfold
shape is more superior than the other shapes. Thus, theL1

P

states withL>Lc will be dominated by this shape; the
would constitute the higher members of the sixfold ba
pure in geometric feature. Since the moment of inertia a
the total potential energy associated with a shape can
evaluated, theLc can be thereby evaluated. It turns out th
Lc is a big number. In the case of the 13-He cluster,Lc is
about 45.

In summary, the analysis presented in this paper is ba
on the inherent nodal structure of wave functions associa
with the accessibility of regular shapes. This approach can
generalized to study other few-body systems@7,8#.

We acknowledge support by the NSFC of China.

TABLE IV. Possible rotation bands of 13-boson systems.

Band LP states

ICO band 01,61,101, . . .
ICO* band 21,41,81, . . .
twist-band~even! 51,71,91, . . .
twist-band~odd! 52,62,72, . . .
CUBO band 01,41,61,81, . . .
sixfold band~even! 01,21,41,61, . . .
sixfold band~odd! 62,72,82, . . .
@1# H. Haberland,Clusters of Atoms and Molecules I~Springer-
Verlag, Berlin, 1994!.

@2# O. Echt, K. Sattler, and E. Recknagel, Phys. Rev. Lett.47,
1121 ~1981!.

@3# F. Ajzenberg-Selove, Nucl. Phys. A523, 1 ~1991!.
@4# W. Barlow, Nature~London! 29, 186 ~1883!; 29, 205 ~1883!.
@5# P. H. Butler,Point Group Applications: Methods and Tab
~Plenum, New York, 1981!.
@6# M. Karplus and R. N. Porter,Atoms and Molecules~Benjamin,

New York, 1970!.
@7# C. G. Bao, Few-Body Syst.13, 41 ~1992!; Phys. Rev. Lett.79,

3475 ~1997!; Nucl. Phys. A637, 520 ~1998!; Phys. Lett. A
250, 123 ~1998!.

@8# C. G. Bao and Y. X. Liu, Phys. Rev. Lett.82, 61 ~1999!.
1-4


