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Optimal quantum teleportation with an arbitrary pure state
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We present an elementary derivation of the maximum fidelity attainable in teleportation using a single copy
of two d-level systems in an arbitrary pure state. This derivation provides a complete set of necessary and
sufficient conditions for optimal teleportation protocols. We also discuss the information on the teleported
particle that is revealed in course of the protocol using a nonmaximally entangled state.

PACS number~s!: 03.67.2a, 03.65.Bz
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Entanglement is a key ingredient of quantum techniq
for information processing. One of the striking consequen
of quantum entanglement is the existence of the proced
called quantum teleportation@1#. This procedure allows two
distant parties, traditionally called Alice and Bob, to transm
faithfully the quantum state of a particle. The resourc
needed for this purpose is a pair of particles in a maxima
entangled state shared by Alice and Bob, and the possib
to transmit classical messages from Alice to Bob. The te
portation procedure is an extremely useful tool for und
standing many properties of quantum entanglement@2#.

An important aspect of quantum-information theory is t
characterization of the entanglement exhibited by gen
quantum states of bipartite systems, and the evaluatio
their capability to perform various quantum-information pr
cessing tasks. In this paper, we consider the following pr
lem. Suppose that Alice wants to teleport to Bob an unkno
pure stateuc&1 of a d-level particle. Alice and Bob share
single pair ofd-level particles in a pure stateut&23. What is
the maximum fidelity of teleportation using such a state, a
what conditions have to be satisfied by a teleportation pro
col to achieve this limit?

The first of these questions has been recently answere
@3# using rather intricate reasoning. The argument was ba
on the analysis of approximate transformations of bipar
states. This analysis, employing the concept of entanglem
monotones@4#, yielded in particular the singlet fraction for
partially entangled pure state. This result was subseque
combined with the earlier work of Horodecki, Horodeck
and Horodecki@5#, who derived a simple algebraic link be
tween the singlet fraction and the maximum teleportat
fidelity. They also described an optimal protocol involvin
the so-called twirling operation followed by the standa
teleportation procedure.

In this paper, we present an elementary derivation of
maximum fidelity for teleportation with an arbitrary pur
state. This derivation provides also a complete set of ne
sary and sufficient conditions for a given protocol to be o
timal. Furthermore, full characterization of optimal protoco
allows us to point out an interesting issue of the informat
balance in teleportation. Of course, use of a nonmaxim
entangled state makes the teleportation procedure imper
Nevertheless, we demonstrate that one can find a silver
ing in such a case: namely, that the teleportation proced
reveals some information on the teleported quantum st
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This information can be converted into an estimate of
quantum state of the particle initially possessed by Alice. W
derive here an upper bound for the mean estimation fide
@6#, and provide an explicit recipe for constructing the qua
tum state estimate that saturates this bound.

In order to optimize the teleportation procedure, we sh
consider a general strategy consisting of an arbitrary m
surement performed on Alice’s side, followed by a gene
transformation of Bob’s particle. In the most general ca
Alice’s measurement is described by a certain posit
operator-valued measure. Such a measure can be de
posed into rank one operators, which are represented by
jections on not necessarily normalized statesuF r&12̂ F r u,
where the indexr runs over all possible outcomes of Alice
measurement. The unnormalized state vector of the par
owned by Bob, after Alice has measured the outcomer, is
given by

ubr&35 12̂ F r u~ uc&1^ ut&23). ~1!

After having received from Alice the outcome of her me
surement, Bob performs a general transformation of his p
ticle, described by

ubr&3^br u→(
s

B̂rsubr&3^br uB̂rs
† , ~2!

where the operatorsB̂rs satisfy (sB̂rs
† B̂rs5 1̂ for eachr. In

order to simplify the notation, we shall not write explicitl
the range of the parameters, which can be different for vari-
ous values ofr.

We shall quantify the quality of teleportation with th
help of the mean fidelity. The probability that Alice obtain
from her measurement the outcomer is given by the scalar
product 3^br ubr&3. The normalized state held by the Bob
this case isubr&3 /A 3^br ubr&3. After the transformation of
this state described by Eq.~2!, its overlap with the original
state vectoruc& is given by (sz3^cuB̂rsubr&3z2/ 3^br ubr&3.
Summation of this expression overr with the weights
3^br ubr&3, and integration over all possible input statesuc&,
yields the complete expression for the mean fidelity

f̄ 5E dc(
rs

z~12̂ F r u ^ 3^cu!B̂rs~ uc&1^ ut&23!z2, ~3!
©2000 The American Physical Society01-1
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where the integral*dc over the space of pure states is pe
formed using the canonical measure invariant with respec
unitary transformations of the statesuc&.

Let us now select in the Hilbert spaces of the particle
and 3 the orthonormal bases defined by the Schmidt dec
position of the shared stateut&23:

ut&235 (
k50

d21

lkuk&2^ uk&3 , ~4!

where the nonnegative real Schmidt coefficients are pu
decreasing order:l0>l1>•••>ld21>0. Using this basis,
we may write each of the vectorsuF r&12 as

uF r&125 (
k50

d21

uf r
k&1^ uk&2 , ~5!

where the vectorsuf r
k&1 are not necessarily normalized. Ap

plying this representation, the expression for the mean fi
ity takes the form

f̄ 5E dc(
rs

U(
k50

d21

lk^cuB̂rsuk&^f r
kuc&U2

, ~6!

where all scalar products are now taken in a single-part
Hilbert space. This allows us to drop the indexes labeling
particles. The fact that the operatorsuF r&12̂ F r u form a de-
composition of unity implies the following conditions o
uf r

k&:

(
r

uf r
k&^f r

l u5dkl1̂. ~7!

Our task is now to optimize the expression for the me
fidelity f̄ over all possible measurements on Alice’s side, a
transformations performed by Bob.

We shall start by deriving an upper bound on the me
fidelity of teleportation using the stateut&23. For this pur-
pose, let us define the vectorsuur

k& such that

(
k50

d21

lkuk&^f r
ku5 (

k50

d21

uur
k&^ku. ~8!

The vectorsuur
k& are uniquely defined by decomposing^f r

ku
in the basiŝ ku and collecting all the terms multiplying eac
of the ^ku ’s. The mean fidelity can be now represented a

f̄ 5(
rs

E dcU(
k50

d21

^cuB̂rsuur
k&^kuc&U2

5(
rs

(
k,l 50

d21

^ur
kuB̂rs

† M̂klB̂rsuur
l &, ~9!

where the operatorsM̂ i j are given by the following integrals
over the space of pure statesuc&:

M̂ kl5E dc^cuk&^ l uc&uc&^cu5
1

d~d11!
~dkl1̂1uk&^ l u!.

~10!
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The second explicit form ofM̂ kl is derived in the Appendix.
Inserting this representation for the operatorsM̂ kl into Eq.
~9!, we can reduce the expression forf̄ to the form

f̄ 5
1

d~d11! (
r

S (
k50

d21

^ur
kuur

k&1(
s
U(

k50

d21

^kuB̂rsuur
k&U2D .

~11!

The first sum overk can be transformed with the help of Eq
~8! multiplied by its Hermitian conjugate

(
k50

d21

^ur
kuur

k&5TrS (
k,l 50

d21

uk&^ur
kuur

l &^ l u D
5TrS (

k,l 50

d21

lkl l uf r
k&^ku l &^f r

l u D
5(

k
lk

2^f r
kuf r

k&. ~12!

Furthermore, with the help of the same identity given in E
~8!, we may convert the expression in the squared modu
in Eq. ~11! to the form

(
k50

d21

^kuB̂rsuur
k&5TrS B̂rs(

k50

d21

uur
k&^ku D

5TrS B̂rs(
k50

d21

lkuk&^f r
ku D

5 (
k50

d21

lk^f r
kuB̂rsuk&. ~13!

Thus we have

f̄ 5
1

d~d11! S (r
(
k50

d21

lk
2^f r

kuf r
k&

1(
rs

U(
k50

d21

lk^f r
kuB̂rsuk&U2D . ~14!

The first term in the above expression can be easily ca
lated using the condition defined in Eq.~7!, which implies
that

(
r

^f r
kuf r

k&5TrS (
r

uf r
k&^f r

ku D 5Tr 1̂5d, ~15!

and consequently the double sum overr and k yields
d(k50

d21lk
25d. In order to estimate the second term in E

~14!, we will use the inequality

(
a51

N U(
k51

M

xkaU2

<S (
k51

M A(
a51

N

uxkau2D 2

~16!

valid for arbitrary complex numbersxka . This is simply the
triangle inequality forM complexN-dimensional vectorsxk
5(xk1 , . . . ,xkN) with the standard quadratic normuuxkuu2

5(a51
N uxkau2. When all the vectorsxkÞ0, the equality sign

in Eq. ~16! holds if and only if there existM strictly positive
numbersa1 , . . . ,aM such thatalxk5akxl for every pairk,l .
1-2
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With the help of the triangle inequality, we can easily fin
an upper bound for the sum overrs in Eq. ~14!:

(
rs

U(
k50

d21

lk^f r
kuB̂rsuk&U2

<S (
k50

d21

lkA(
rs

z^f r
kuB̂rsuk& z2D 2

.

~17!

The sum overrs under square root in the above express
can be estimated by

(
rs

z^f r
kuB̂rsuk& z25(

r
^f r

kuf r
k&(

s
^kuB̂rs

†
uf r

k&^f r
ku

^f r
kuf r

k&
B̂rsuk&

<(
r

^f r
kuf r

k&(
s

^kuB̂rs
† 1̂B̂rsuk&

5(
r

^f r
kuf r

k&5d. ~18!

In deriving Eq.~18!, we have implicitly assumed thatuf r
k&

Þ0, but of course the above inequalities hold also in the c
when uf r

k& is zero. Thus we finally obtain the following up
per bound on the mean fidelity:

f̄ <
1

d11 F11S (
k50

d21

lkD 2G . ~19!

We will now analyze necessary and sufficient conditio
for a given teleportation protocol to be an optimal one. T
is the case if the inequality signs in Eqs.~17! and ~18! are
replaced by equalities. Let us denote bym the maximum
index for whichlm is nonzero, i.e.,lm115•••5ld2150.
Of course, it is sufficient to characterize the vectorsuf r

k& for

k<m, and the action of the operatorsB̂rs on the subspace
spanned by the vectorsu0&, . . . ,um&.

The inequality sign in Eq.~17! becomes equality if and
only if there existm11 nonnegative numbersa0 , . . . ,am
such that

allk^f r
kuB̂rsuk&5akl l^f r

l uB̂rsu l & ~20!

for any pairk,l<m. Furthermore, equality in Eq.~18! takes
place if and only if

z^f r
kuB̂rsuk& z25^f r

kuf r
k&^kuB̂rs

† B̂rsuk&. ~21!

Let us note that for a givenk, the scalar products

^f r
kuB̂rsuk& cannot be identically equal to zero. Otherwis

Eq. ~21! implies a contradiction: 05( rsz^f r
kuB̂rsuk& z2

5( rs^f r
kuf r

k&^kuB̂rs
† B̂rsuk&5( r^f r

kuf r
k&5d. Consequently,

ak must be strictly positive fork<m, as discussed after Eq
~16!. By taking the squared modulus of Eq.~20!, making use
of Eq. ~21!, and performing the summation overs andr, we
find allk5akl l for each pairk,l . Thus we obtain

^f r
kuB̂rsuk&5^f r

l uB̂rsu l & and ^f r
kuf r

k&5^f r
l uf r

l & ~22!

for any k,l<m. Furthermore, Eq.~21! implies that

B̂rsuk&5m rskuf r
k&, ~23!
02430
n
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wherem rsk are certain complex numbers. By taking the sc
lar product of this identity witĥ f r

ku, and making use of Eq
~22! we see that the coefficientsm rsk are independent ofk:
m rsk5m rs . Then by taking the scalar product of Eq.~23!

with the Hermitian-conjugated identitŷl uB̂rs
† 5^f r

l um rs* , and
performing the summation overs we obtain

^f r
kuf r

l &(
s

um rsu25(
s

^kuB̂rs
† B̂rsu l &5dkl . ~24!

As (sum rsu250 would imply that for givenr all operators
B̂rs50, the above identity means that all the vectorsuf r

k& are
mutually orthogonal fork<m. Consequently, the action o
the operatorB̂rs in the subspace spanned byu0&, . . . ,um& is
equivalent, up to a multiplicative constant, to the action
(k50

m uf r
k&^ku. Since for a givenr the vectorsuf r

k& are mutu-
ally orthogonal and have equal norm, the action of each
the operatorsB̂rs is proportional to the same unitary tran
formation on the relevant subspace. Thus, in order to re
the upper bound for fidelity, it is sufficient for Bob to pe
form a unitary transformation described by the following o
eration on the subspace spanned byu0&, . . . ,um&:

B̂r5
1

A^f r
0uf r

0&
(
k50

m

uf r
k&^ku. ~25!

Necessary and sufficient conditions for Alice’s measurem
to be optimal are given by Eq.~7! and the requirement tha
for k<m all vectorsuf r

k& have equal norm and are mutual
orthogonal. It is straightforward to check that these con
tions are fulfilled by the standard teleportation protocol@1#
described byuf r 5p1qd

k &5e2p ikp/du(k1q)modd&/Ad, where
p,q50, . . . ,d21 and the indexr runs from 0 tod221.
Consequently, the standard teleportation protocol with
propriately adjusted bases saturates the upper bound on
mean fidelity derived in Eq.~19!.

As expected, Eq.~19! shows that use of a nonmaximall
entangled state makes the teleportation imperfect. Howe
suppose that Alice would like to use the result of her m
surement to estimate the quantum state that has been
ported. Thus, for each outcomer of her measurement, sh
would like to assign a stateuc r

est&, which is her guess for the
teleported state. This state can be represented as a resu
unitary transformationÛr performed on a reference sta
u0&: uc r

est&5Ûr u0&. Given the input stateuc&, the probability
that Alice’s measurement yields the outcomer equals
(k50

d21lk
2z^f r

kuc& z2. The fidelity of the corresponding estima

is then z^cuc r
est& z25 z^cuÛr u0& z2. Thus, the mean fidelity of

Alice’s estimate is given by

f̄ est5(
r
E dc z^cuÛr u0& z2(

k50

d21

lk
2z^f r

kuc& z2. ~26!

Using the invariance of the measuredc with respect to uni-
tary transformations, we may change the integration acco
ing to uc&→Ûr uc&. This yields
1-3
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f̄ est5(
r

(
k50

d21

lk
2z^cu0& z2z^f r

kuÛr uc& z2

5(
r

(
k50

d21

l i
2^f r

kuÛr M̂00Ûr
†uf r

k&, ~27!

where M̂00 is defined in Eq.~10!. By inserting its explicit
form, we obtain that

f̄ est5
1

d~d11! S (
k50

d21

lk
2(

r
^f r

kuf r
k&

1 (
k50

d21

lk
2(

r
z^f r

kuÛr u0& z2D . ~28!

The first double sum overk and r gives d, which follows
from Eq. ~15!. The second sum can be estimated using
fact that for a givenr, all the vectorsuf r

k& are orthogonal and
have equal norm fork<m. Thus, the second sum overk is
maximized if the operatorÛr maps the vectoru0& onto the
subspace spanned by the vectorsuf r

k& corresponding to the
maximumlk . As lk are ordered decreasingly, we obtain t
following upper bound on the estimation fidelity:

f̄ est<
1

d11 S 11
l0

2

d (
r

^f r
0uf r

0& D 5
11l0

2

d11
. ~29!

It is straightforward to see that the optimal estimation str
egy is given byuc r

est&5uf r
0&/A^f r

0uf r
0&. Of course, if severa

of lk have the same maximum value, then Alice can take
a guess any linear combination of the corresponding vec
uc r

k&.
It is interesting to compare two extreme cases: if the s

ut&23 is maximally entangled, the maximum estimation fid
ity is 1/d, which corresponds to making completely rando
guesses by Alice. This is clear, as perfect teleportation wi
maximally entangled state cannot reveal any information
the teleported state. On the other hand, if the stateut&23 is
completely disentangled, the maximum estimation fidelity
2/(d11), which corresponds to the optimal state estimat
of a d-level system from a single copy@7#. In this case, the
optimal teleportation strategy reduces to the optimal s
estimation procedure, with Bob generating on his side
imperfect copy according to the classical message obta
from Alice.
, a

A
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In conclusion, we have derived an upper bound for fid
ity of teleportation using an arbitrary pure bipartite syste
and characterized optimal teleportation protocols. We h
also presented an optimal strategy for estimating the qu
tum state given result of the measurement performed
course of teleportation.
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APPENDIX: Evaluation of integrals in Eq. „10…

Because of symmetry, it is sufficient to consider tw
cases:i 50,j 50, andi 50,j 51. We will use the following
parametrization of the state vectoruc& in the basisuk&:

uc&5S ei j cosu

sinu cosw

z3sinu sinw

A

zd sinu sinw

D , ~A1!

where 0<j<2p, 0<u, w<p/2, andz3 , . . . ,zd are com-
plex numbers satisfyinguz3u21•••1uzdu251. This param-
eterization is a straightforward generalization of the meth
used in@8#. Following @8#, the invariant volume element in
this parametrization is given by

dc5
~d21!!

4pd21
~sinu!2d23~sinw!2d25

3d~sinu!d~sinw!djdS2d25 , ~A2!

where dS2d25 is the volume element of the unit sphe
S2d25. For the casei 50,j 50 all the off-diagonal elements
vanish, and we need to calculate only two elemen

^0uM̂00u0&5*dc cos4 u52/@d(d11)#, and ^1uM̂00u1&
5*dc sin2 u cos2 u cos2 w51/@d(d11)#. Due to symmetry,
we have^kuM̂00uk&51/@d(d11)# for all kÞ0. For the op-
erator M̂01, the only nonvanishing element iŝ0uM̂01u1&
5*dc sin2 u cos2 u cos2 w51/@d(d11)#.
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