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Optimal quantum teleportation with an arbitrary pure state
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We present an elementary derivation of the maximum fidelity attainable in teleportation using a single copy
of two d-level systems in an arbitrary pure state. This derivation provides a complete set of necessary and
sufficient conditions for optimal teleportation protocols. We also discuss the information on the teleported
particle that is revealed in course of the protocol using a nonmaximally entangled state.

PACS numbes): 03.67—a, 03.65.Bz

Entanglement is a key ingredient of quantum techniguedhis information can be converted into an estimate of the
for information processing. One of the striking consequenceguantum state of the particle initially possessed by Alice. We
of quantum entanglement is the existence of the procedurderive here an upper bound for the mean estimation fidelity
called quantum teleportatidri]. This procedure allows two [6], and provide an explicit recipe for constructing the quan-
distant parties, traditionally called Alice and Bob, to transmittum state estimate that saturates this bound.
faithfully the quantum state of a particle. The resources In order to optimize the teleportation procedure, we shall
needed for this purpose is a pair of particles in a maximallyconsider a general Strategy consisting of an arbitrary mea-
entangled state shared by Alice and Bob, and the possibilitgurement performed on Alice’s side, followed by a general
to transmit classical messages from Alice to Bob. The telefransformation of Bob’s particle. In the most general case,
portation procedure is an extremely useful tool for underAlice’s measurement is described by a certain positive
standing many properties of quantum entanglenizht operator-valued measure. Such a measure can be decom-

An important aspect of quantum-information theory is thePosed into rank one operators, which are represented by pro-
characterization of the entanglement exhibited by generdfctions on not necessarily normalized stajdg),®,|,
quantum states of bipartite systems, and the evaluation a¥here the index runs over all possible outcomes of Alice’s
their Capabmty to perform various quantum-informa‘tion pro- measurement. The unnormalized state vector of the partide
cessing tasks. In this paper, we consider the following probowned by Bob, after Alice has measured the outcomis
lem. Suppose that Alice wants to teleport to Bob an unknowr@iven by
pure statg ), of a d-level particle. Alice and Bob share a
single pair ofd-level particles in a pure staté),;. What is br)a= 1A Pe|(|#)1®[t)23). 1)
the maximum fidelity of teleportation using such a state, and ) . ]
what conditions have to be satisfied by a teleportation protoAfter having received from Alice the outcome of her mea-
col to achieve this limit? surement, Bob performs a general transformation of his par-

The first of these questions has been recently answered fifle, described by
[3] using rather intricate reasoning. The argument was based
on the analysis of approximate transformations of bipartite A &t
states. This analysis, employing the concept of entanglement |b’>3<b’|_>zs Brs|br)s(br[Brs, @
monotoneg4], yielded in particular the singlet fraction for a
partia_lly enta_lngled pure state. This result was subsequentb(,here the operatorB,, satisfy Eséjsérs:j for eachr. In
combined with the earlier work of Horodecki, Horodecki, o ger to simplify the notation, we shall not write explicitly

and Horodeck{5], who derived a simple algebraic link be- {he range of the parametsrwhich can be different for vari-
tween the singlet fraction and the maximum teleportation, s values of.

fidelity. They alsp 'described an optimal protocol involving  \ye shall quantify the quality of teleportation with the
the so-called twirling operation followed by the standardpg|y of the mean fidelity. The probability that Alice obtains

teleportation procedure. o from her measurement the outcomés given by the scalar
In this paper, we present an elementary derivation of th%roduct 5(b,|b,)s. The normalized state held by the Bob in

maximum fidelity for teleportation with an arbitrary pure ., . : rara-. :
state. This derivation provides also a complete set of nece%E:: ;:taai: éﬂg&iféed3<bt;|2$)' ﬁ‘;tirvé?lzptrxﬂzf?ggf:%?ngr
sary and sufficient conditions for a given protocol to be op- . ' N 2
timal. Furthermore, full characterization of optimal protocols State vector|) is given by S[s(y|Bs|b)s|* 5(br|br)s.
allows us to point out an interesting issue of the informationoUmmation of this expression over with the weights
balance in teleportation. Of course, use of a nonmaximally3_<br|br>3' and integration over all possible input stalgs,
entangled state makes the teleportation procedure imperfed€!ds the complete expression for the mean fidelity
Nevertheless, we demonstrate that one can find a silver lin-

ing in such a case: namely, that the teleportation procedure f_:f d & |® B ®1t)) 12 3
reveals some information on the teleported quantum state. ll/% AP @ KUDBrs([)18 029 (3)
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where the integral dy over the space of pure states is per-The second explicit form offl,, is derived in the Appendix.

formed using the canonical measure invariant with respect t

unitary transformations of the statpg).
Let us now select in the Hilbert spaces of the particles

and 3 the orthonormal bases defined by the Schmidt decom- 1

position of the shared staf€) ,3:
d-1

|t)25= I(ZO M K)2® k)3, (4)

where the nonnegative real Schmidt coefficients are put in

decreasing ordeiky=\;=---=\4_1=0. Using this basis,
we may write each of the vectof®, ), as
d-1

|®\) 1= kzo |6K) 1@ 1K)2, 5

where the vectorisgbf)l are not necessarily normalized. Ap-
plying this representation, the expression for the mean fidel-

ity takes the form

. d—1 2
f= J d@ go MW Bys[ K)okl )| (6)

where all scalar products are now taken in a single-particle
Hilbert space. This allows us to drop the indexes labeling the

particles. The fact that the operatdrB, ), ®,| form a de-
composition of unity implies the following conditions on

|pF):

2 165 6il= dul. @)

ﬂwserting this representation for the operat&g into Eq.
2(9), we can reduce the expression foto the form

f_=

|
(11)

The first sum ovek can be transformed with the help of Eq.
(8) multiplied by its Hermitian conjugate

d-1 d-1
S @ity =To 3, 00kl

k,I=0

=Tr(
k

d-1
> (kIBglul)
k=0

d-1
S |3 wies

d(d+1)

d-1
3, gk el |

=§ NE( DK ). (12)

Furthermore, with the help of the same identity given in Eq.
(8), we may convert the expression in the squared modulus

in Eqg. (11) to the form
d-1

d-1
S By =T 8.3, iy

Our task is now to optimize the expression for the meanlhus we have

fidelityf_over all possible measurements on Alice’s side, and

transformations performed by Bob.

We shall start by deriving an upper bound on the mean

fidelity of teleportation using the staf¢),;. For this pur-

pose, let us define the vectdis) such that
d-1 d-1

2 Mkl = 2 ury(K. ®

k=0 k=0

The vectorgu) are uniquely defined by decompositg|
in the basigk| and collecting all the terms multiplying each
of the (k|'s. The mean fidelity can be now represented as

d-1 2
=3 de S (WIBu(Kl)

d-1
=2 > (ufIBMBslup), 9)
rs k,I=0

where the operatorl@lij are given by the following integrals
over the space of pure statgs):

~ 1 A
= f Ay 9= Grgary (Gl + kX |()i0)

d-1
=TI’( érsz Ak|k><¢lr(|)
k=0
d—-1
=k20 N By BrslK). (13
1 d—-1
T 2 PLS
- d(d+1) Z kzo }\k<¢)r|¢r>
d-1 2
3wl | s

The first term in the above expression can be easily calcu-

lated using the condition defined in E(), which implies
that

2 <¢F|¢F>=Tr(2 |¢F><¢$|)=Trﬂ=d, (19

and consequently the double sum owverand k yields
d=J-2\2=d. In order to estimate the second term in Eq.
(14), we will use the inequality

2 M [N 2
$< 2 |Xka|2) (16)
k=1 a=1

valid for arbitrary complex numbers,, . This is simply the
triangle inequality forM complexN-dimensional vectors,
=(X1, - - - Xgn) With the standard quadratic norfix,||?
=3N_|X|?. When all the vectors, #0, the equality sign
in Eq. (16) holds if and only if there exis¥ strictly positive
numbersay, . .. ,ay such thatx,=ax, for every pairk,|.

N

>

M
Xka
a=1 |k=1
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With the help of the triangle inequality, we can easily find Wherepusy are certain complex numbers. By taking the sca-

an upper bound for the sum oves in Eq. (14): lar product of this identity with ¢¥|, and making use of Eq.
(22) we see that the coefficienjs,s, are independent df:

d-1 2 d-1 2
- A =u.s. Then by taking the scalar product of E@3)
MBIk <[ S N/ KB Kk)[2| . Krsk Frse TTE . e
rzs kgo {drlBrlk) (I(EO K rES KrlBrlk)] with the Hermitian-conjugated identity|B,= (¢} 1%, and

a7 performing the summation ovarwe obtain

The sum overs under square root in the above expression

can be estimated by (Brl o0 2 |l =2 (KIBLBl) =00 (24
2 KB K)P=2 (o) > (KIBl———Bslk) As 3 us|?=0 would imply that for givenr all operators
" ' ° (¢rlr) Ersz 0, the above identity means that all the veclint are

Wk fp s mutually ortrjogonal fok=m. Consequently, the action of
gzr <¢r|¢r>25 (kIBrs1Byslk) the operatoB, in the subspace spanned [8), ..., |m) is

equivalent, up to a multiplicative constant, to the action of

=S (#Meh=d 18 M | #¥)(k|. Since for a giverr the vectorg ¢X) are mutu-

- rir ' ally orthogonal and have equal norm, the action of each of
. N K the operator®, is proportional to the same unitary trans-
In deriving Eq.(18), we have implicitly assumed thai:)  formation on the relevant subspace. Thus, in order to reach
#0, but of course the above inequalities hold also in the casg,e upper bound for fidelity, it is sufficient for Bob to per-
when| ¢{) is zero. Thus we finally obtain the following up- form a unitary transformation described by the following op-
per bound on the mean fidelity: eration on the subspace spanned®y; . .. ,|m):

d-1 2

1+ kZO xk) . (19)

_ 1 m
f<—— . 1

d+1 Bi=——=—=2 |#)KI. (25)

_ - y V(] ) k=0
We will now analyze necessary and sufficient conditions

for a given teleportation protocol to be an optimal one. ThisNecessary and sufficient conditions for Alice’s measurement
is the case if the inequality signs in Eq4.7) and(18) are  to be optimal are given by Eq7) and the requirement that
replaced by equalities. Let us denote bythe maximum  for k<m all vectors|¢X) have equal norm and are mutually
index for which\, is nonzero, i.e.\py1=---=Aq-1=0.  orthogonal. It is straightforward to check that these condi-
Of course, it is sufficient to characterize the vecdo#§> for  tions are fulfilled by the standard teleportation protolcdl
k<m, and the action of the operatoBs; on the subspace described by ¢r_ . oo =€*"*P'9|(k+q)modd)//d, where

spanned by the vectot®), . .. ,|m). p,q=0,...d—1 and the index runs from 0 tod*—1.

The inequality sign in Eq(17) becomes equality if and Consequently, the standard teleportation protocol with ap-
only if there existm+1 nonnegative numbers,, ... a, propriately adjusted bases saturates the upper bound on the
such that mean fidelity derived in Eq(19).

. . As expected, Eq(19) shows that use of a nonmaximally
ah i F|Brs| k) = ah i ¢} Bys|1) (200 entangled state makes the teleportation imperfect. However,

suppose that Alice would like to use the result of her mea-
surement to estimate the quantum state that has been tele-
ported. Thus, for each outcomreof her measurement, she
KA 2/ K kL BT B would like to assign a stai@/®%}, which is her guess for the
B s|K)[ = k|B/sBs|K). 21 ro/o
KrlBrall}"=Cbrl Sr)CK[BreBrsl i ) teleported state. This state can be represented as a result of a
Let us note that for a giverk, the scalar products ynitary transformationJ, performed on a reference state

(¢r|Brs|k) cannot be identically equal to zero. Otherwise, |0): |46 =0, |0). Given the input stathy), the probability
Eq. (21) implies a contradiction: &3,4(#KB,o]k)> that Alice’s measurement yields the outcomeequals
=3, (M NKIBILB K =3 (¥ ok =d. Consequently, Si_oMil(e:|¥)°. The fidelity of the corresponding estimate
a, must be strictly positive fok<m, as discussed after Eq. is then|(#|#*)[?=|(|0,|0)]>. Thus, the mean fidelity of
(16). By taking the squared modulus of E&Q), making use  Alice’s estimate is given by

of Eq. (21), and performing the summation oveandr, we
find ayh=ay\, for each pailk,|I. Thus we obtain

(r1Bislk)=(1|Bsll) and (| dty=(er| o)) (22

for any pairk,|<m. Furthermore, equality in E418) takes
place if and only if

d-1

fur S [ auulOIOR S, NP, @0

for any k,I<m. Furthermore, Eq(21) implies that Using the invariance of the measuté with respect to uni-
R ) tary transformations, we may change the integration accord-
Brslk) = rrsil or), (23 ing to|y)—U,|4). This yields
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. d-1 . In conclusion, we have derived an upper bound for fidel-
fos= > > MOV O, )2 ity of teleportation using an arbitrary pure bipartite system,
rok=0 and characterized optimal teleportation protocols. We have

d-1 also presented an optimal strategy for estimating the quan-

=> > A MU MOl ok, (277 tum state given result of the measurement performed in

r k=0 course of teleportation.
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d-1
+k20 AﬁZ |(¢H0r|0>|2) (28) APPENDIX: Evaluation of integrals in Eq. (10)

Because of symmetry, it is sufficient to consider two
thé:ases:i =0,j=0, andi=0,j=1. We will use the following
parametrization of the state vecta¥) in the basigk):

The first double sum ovek andr gives d, which follows

from Eg. (15). The second sum can be estimated using

fact that for a giverm, all the vectors*,d)'r‘) are orthogonal and
have equal norm fok<m. Thus, the second sum ovkiis e€cosh
maximized if the operatot), maps the vectof0) onto the

subspace spanned by the vecthﬁé) corresponding to the ) )
maximum\ . As A, are ordered decreasingly, we obtain the lg)=| zssinbsing |, (A1)
following upper bound on the estimation fidelity: :

sin @ cose

— 1 ¥ 14\ zgsin@sing
fes= grp| 1t g 2 (Ao =g (29

where 0<é<2m, 0<6, ¢o<m/2, andzg, ... ,z4 are com-

It is straightforward to see that the optimal estimation stratlex numbers satisfyinggs|*+ - - - +|zq|*=1. This param-
egy is given by| ¢$s5:|¢9>/\/<_¢9|_¢$. Of course, if several eterization is a strgightforwarq generalization of the met.hod
of A have the same maximum value, then Alice can take a¥S€d in[8]. Following [8], the invariant volume element in

a guess any linear combination of the corresponding vector&!iS Parametrization is given by

| ). _1)1
It is interesting to compare two extreme cases: if the state dy= (d- Dt (sin 6)293(sin¢)2d-5
[t),3 is maximally entangled, the maximum estimation fidel- 47971
ity is 1/d, which corresponds to making completely random % d(sin6)d(sin@)d&dS, A2)
d—57

guesses by Alice. This is clear, as perfect teleportation with a

maximally entangled state cannot reveal any information ONvhere dS,_s is the volume element of the unit sphere
the teleported state. On the other hand, if the.shrs)tg, IS 5 . Forthe case=0,=0 all the off-diagonal elements
completely disentangled, the maximum estimation fidelity is, znish. and we need to calculate only two elements:
2/(d+1), which corresponds to the optimal state estimation<0||\7I ]0>—Id¢00§‘ o=20d(d+1)] and <1|I\7I 1)

00l - - ’ 00|

of a d-level system from a single cogd¥]. In this case, the - X -

optimal teleportation strategy reduces to the optimal state_fd"bSlnz 69052000§ ¢=1[d(d+1)]. Due to symmetry,
estimation procedure, with Bob generating on his side aive have(k|Mogk)=1/1d(d+1)] for all k#0. For the op-
imperfect copy according to the classical message obtainegfator My;, the only nonvanishing element i9|M,|1)

from Alice. = [dysirf 6co 0 cos e=1[d(d+1)].
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