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Visibility is not a good measure of a well-defined relative phase

Gunnar Björk,* Shuichiro Inoue,† and Jonas So¨derholm
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In a recent paper Marburger and Das@J. H. Marburger III and K. K. Das, Phys. Rev. A59, 2213~1999!#
considered an interference visibility experiment involving two weakly interacting Bose-Einstein condensates. It
was shown that condensate eigenstates of the Hermitian relative phase operator do not give interference fringes
with unit visibility in a Young’s double slit type of experiment. The authors concluded that ‘‘ . . . these states
are not especially well suited to describe weakly interacting multiply occupied coherent bosonic systems.’’ In
this work we suggest a criterion for states with a well-defined relative phase. Subsequently we show that the
relative phase operator eigenstates satisfy this criterion. This suggests that the concept of interference visibility
can, and should, be generalized, since it is widely believed that interference visibility is a measure of the
relative phase properties. We therefore propose a broader, but still operational, definition of interference
visibility, which we call generalized visibility, and prove that the relative phase operator eigenstates indeed can
show unit generalized visibility. We also derive a simple, but general, criterion for states which can display a
unit generalized visibility. Somewhat surprisingly, this criterion is weaker than the criterion for a well-defined
relative phase. Finally, we discuss which two-mode states can display unit~ordinary! visibility.

PACS number~s!: 42.50.Dv, 03.65.Bz, 03.75.Fi
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I. INTRODUCTION

The experimental observation of Bose-Einstein conden
tion @1–4# and subsequent refinement of the associated
perimental techniques have led this field to a point where
can start to speak about an ‘‘atom laser,’’ a device emittin
beam or a pulse of atoms all belonging to a single boso
mode @5#. Recently, several groups have demonstra
pulsed or continuous ‘‘atom lasers’’@6–8#. In this context
questions have been raised about the phase properties o
condensate and about relative phase properties between
condensates@9–14#. Observation of interference betwee
two condensates has already been made@15#.

In a recent paper Marburger and Das@16# analyzed the
interference pattern that would emerge if two condensate
two plane-wave modes were prepared in an~entangled!
eigenstate to the Hermitian relative phase operator der
by Luis and Sa´nchez-Soto@17#. One reason this state is re
evant in this context is that it is simultaneously a parti
number eigenstate. Bose-Einstein condensates can be tra
for long times and therefore can be measured repeatedl
this manner the particle number of condensates can be
tively well determined. This is in contrast to electromagne
modes where it is notoriously difficult to prepare phot
number states, or near number states, with any substa
particle number. Therefore, two-mode states which are
multaneously particle number eigenstates are relevant in
context of Bose-Einstein condensation.

The main result in Marburger and Das’ paper is the d
covery that the interference pattern ensuing from a rela
phase operator eigenstate does not have unit visibility. T
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is surprising, because one would expect this state to ha
well-defined relative phase and hence display unit visibi
interference fringes. In this paper we address the asse
expressed in the title of this paper. Marburger and Das, al
with many other workers in the field, implicitly assume th
visibility provide a good measure of relative phase. In th
paper we argue that this is not necessarily the case. Ana
of the relative phase properties of quantum states allows,
requires, rather sophisticated experimental tools, while
ibility and the measurement thereof is a classically defin
concept. Therefore it is not surprising that visibility sa
little about the quantum phase properties of states. To
something about the latter the concept of visibility must
generalized. This is the aim of the present work.

However, our paper should not be taken as a critique
Marburger and Das’ and others work. Although we arg
that visibility is not a good measure of the relative pha
between two bosonic modes, the interaction needed to
play the relative phase properties between two modes~a gen-
eralized visibility measurement! is rather complex~in gen-
eral it requires highly nonlinear mode interaction!.
Therefore, we believe that experimentally one will have
content oneself with visibility measurements both for co
densates, as well as for photon states, for some time to co
although recently some more elaborate measurement
weakly excited photon states have been made@18#. On the
other hand, the rapid progress of trapping technology, la
pulse shaping and chirping technology, and magnetic fi
technology makes the long term prospect of custom m
nonlinear interactions seem rather good for Bose-Eins
condensates. Still, until the prospects have become re
visibility measurements are probably the best measurem
of relative phase properties that can be made. Marburger
Das’ analysis is therefore highly relevant. At the end of th
paper we have therefore extended Marburger and Das’ an
sis and derived a criterion for when a two-mode state
display unit visibility.
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The outline of the paper is as follows In Sec. II we deri
a criterion for a two-mode state to have a well-defined re
tive phase. We subsequently show that the relative ph
operator eigenstates satisfy the criterion, in spite of disp
ing less than unity visibility. In Sec. III we review the vis
ibility of classical fields. In Sec. IV we take a quantum
mechanical view of visibility, define what we ca
‘‘generalized visibility,’’ and derive a criterion for two-mod
states to display unit generalized visibility. In Sec. V w
return to a quantum-mechanical analysis of the classical
ibility and derive a general form of a state to display u
visibility. We show that the class is a particular subclass
the states that can display unit generalized visibility. Fina
we summarize our findings in Sec. VI.

II. THE RELATIVE PHASE-SHIFT OPERATOR AND
STATES WITH A WELL-DEFINED RELATIVE PHASE

In order to derive a criterion for a~two-mode! state with a
well-defined relative phase, we start by considering
physical action of a relative~or differential! phase shift, i.e.,
letting the two condensates undergo free evolution for
equal times. The free evolution of a Bose-Einstein cond
sate for a timet is described byÛ0(t)5exp(2iĤ0t/\),
where the Hamiltonian isĤ05\vn̂, and v and n̂ is the
angular frequency and particle-number operator of the c
densate, respectively. As usual the gauge has here been
sen such that the vacuum field energy is zero. Thus the
lution operator for two condensates undergoing f
evolution for timest1 andt2, respectively, becomes

e2 iv(t1n̂11t2n̂2)5e2 iv(t11t2)(n̂11n̂2)/2e2 iv(t12t2)(n̂12n̂2)/2

5e2 iv(t11t2)N̂/2eifn̂12, ~1!

whereN̂[n̂11n̂2 is the total particle number operator,n̂12

[(n̂12n̂2)/2 is the particle difference operator, and the d
ferential phase shift isf5v(t22t1). Since the operato
exp@2iv(t11t2)N̂/2# in Eq. ~1! will only give all states with
a particular particle number the same phase shift, and~two-
mode! states with different particle number are orthogon
and cannot interfere, this operator can be neglected in
context of interference. Hence the unitary differential pha
shift operator is particle-number conserving and can be w
ten

ÛPS~f!5exp~ ifn̂12!. ~2!

We now turn our attention to what constitutes a state w
a well-defined relative phase. We take an operational
proach and assign this property to any two-mode state
which ~at least! two different relative phases can be encod
and read out with certainty. This definition avoids all com
plications with associating a well-defined relative phase w
some relative phase operator, or with the properties of
state’s relative phase statistical distribution. It is well know
that in order to be able to encode either of two relat
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phasesf1 or f2 so that they~at least in principle! can be
read out with certainty, i.e., be projected onto orthogo
meter eigenstates, the relation

^juÛPS
† ~f1!ÛPS~f2!uj&5^juÛPS~f22f1!uj&50 ~3!

must be fulfilled. That is, some relative phase shiftf5f2

2f1 must render the stateÛPS(f)uj& orthogonal touj&.
Thus, in our treatment, Eq.~3! constitutes the mathematica
criterion for a state with a well-defined relative phase.

Let us write the number-basis expansion of a two-mo
state as

uj&5 (
N50

`

(
n50

N

cN,nun,N2n&, ~4!

where we have used the notationuk,l &[uk& ^ u l &, and we
write the associated bra as^k,l u5^ku ^ ^ l u. In this notation,
we have n̂1uk,l &5kuk,l & and n̂2uk,l &5 l uk,l &. Since
ÛPS(f)u0,0&5u0,0&, it is clear that we must havê0,0uj&
50 in order to satisfy Eq.~3!.

If one wishes to formalize and quantify the ability to di
tinguish between two relative phases, one can define the
tinguishability D ~in the maximum likelihood estimation
sense@19,20#! between the two relative phasesf1 andf2 on
uj& as @20#

D5A124p1p2u^juÛPS~f22f1!uj&u2, ~5!

wherep1 and p2 are thea priori probabilities of encoding
the phase shiftsf1 and f2, respectively. This distinguish
ability limit is referred to as the Helstrom bound@21# and is
well known in estimation theory. We see that for any no
zeroa priori probabilitiesp1 and p2, unit distinguishability
implies that Eq.~3! has to be fulfilled.

Let us now turn to the specific state Marburger and D
analyzed in their paper@16#, namely, the eigenstate to th
relative phase operator introduced by Luis and Sa´nchez-Soto
@17#. The most general form of such an eigenstate in part
manifold N can be written@17,22#

uf r
(N)&5

1

AN11
(
n50

N

exp~ inf r
(N)!un,N2n&, ~6!

wheref r
(N)5f0

(N)12pr /(N11), r 50,1, . . . ,N.
Since the eigenstates are orthogonal, they will fulfill E

~3! above for NÞ0 and f52pk/(N11), k51,2, . . . ,N.
Thus, in spite of displaying nonunit visibility, as was show
in Ref. @16#, these states have a well-defined relative pha
In Fig. 1 the scalar productu^f (N)uÛPS(f)uf (N)&u2 is plotted
as a function off. The function is identical to the relative
phase distribution function defined in@22#. Since the smalles
differential phase shift that can be resolved with certainty
2p/(N11), these states fulfill the Heisenberg limit in pha
measurements.
7-2
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VISIBILITY IS NOT A GOOD MEASURE OF A WELL- . . . PHYSICAL REVIEW A 62 023817
III. A SHORT REVIEW OF CLASSICAL VISIBILITY

In this section we will make a short review of the pro
erties a classical field and an interferometer must have
order to display unit visibility. While Marburger and Da
considered a Young’s double slit type of experiment,
shall consider a Mach-Zehnder interferometer to avoid
unnecessary complication of taking the spatial evolution
the wave function between the double slits and the scr
into account. A classical version of the experiment we c
sider is depicted in Fig. 2~a!. Two fields interfere in a beam
splitter. The relative phase between the two fields can
varied by the means of a phase shifter. After the beam s
ter the outgoing field intensities are monitored by two det
tors. The visibility is defined in terms of the ensemble av
aged modulation of the measured intensities as a functio
the relative phase shift. Classically, the visibility gives
indication of the relative phase properties of the two fiel
Specifically, if the two field’s respective phases are rando
the visibility is zero.

To make a quantitative analysis of classical visibility w
shall consider the interference of two harmonic waves~suf-

FIG. 1. The scalar product squaredu^juÛPS(f)uj&u2 as a func-
tion of the differential phase shiftf. The solid curve represents th
scalar product for a relative phase eigenstate and the dashed
holds for a two-mode symmetric binomial state, both withN57.

FIG. 2. ~a! A schematic setup of a visibility experiment.~b! A
quantum-mechanical generalized visibility experiment.
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ficiently generally! described by

E1~ t !5E1 cos~vt1u! and E2~ t !5E2 cos~vt !, ~7!

where E1 and E2 are ~real! electric field amplitudes. The
phase shifter transforms fieldE1(t) to

E1~ t !5E1 cos~vt1u1f!. ~8!

The beam splitter is described by the unitary transformat

S cos~a! sin~a!

2sin~a! cos~a!
D . ~9!

The transformation assumes, without loss of generality,
reference planes have been chosen so that all coefficient
real. If the beam splitter transmittanceT5cos(a) is neither
zero nor unity, the~time-averaged! intensity I detected by
either the two detectors is a sinousoidally varying function
the phase shiftf. The visibility for each detector is define

V5
I max2I min

I max1I min
, ~10!

whereI max andI min are the maximum and minimum intens
ties measured by the detector as a function of the phase
f. Note that, in general, the visibility is not equal for the tw
detectors. To get unit visibility one must arrange so th
I min50 while I maxÞ0. Also note that the intensity detected
each detector is a second order correlation function. For
special case whenucos(a)u5usin(a)u51/A2, the detector sig-
nals provide a measure of the complex degree of cohere
between the two fields@23#.

Using Eqs.~7!, ~8!, and~9!, it is straightforward to show
that I min50 for either detector implies a phase shiftf fulfill-
ing u1f50 or u1f5p. In the first case it is possible to
get the intensity falling onto detectorD1 to be zero if
tan(a)52E1 /E2. To make the intensity falling onto detec
tor D2 be zero, one must require tan(a)5E2 /E1. If the
phasef is instead set top2u, then detectorD1 ‘‘sees’’ zero
intensity for tan(a)5E1 /E2 and D2 ‘‘sees’’ zero intensity
for tan(a)52E2 /E1. In both cases we can only get th
visibility to equal unity in both beam splitter output modes
E156E2 and ucos(a)u5usin(a)u51/A2.

To get a situation similar to a unit visibility in a Young’
double slit experiment~which simultaneously probes all rela
tive phases, usually over a several 2p interval! it is neces-
sary to obtain unit visibility in both outputs, that is, a com
plete transfer of the intensity from one beam splitter out
mode to the other asf is varied over somep interval.
Therefore, this is what we will require in the following an
when we henceforth refer to unit visibility we shall alway
assume that it holds for both output modes. In summa
from the classical viewpoint, in order to be able to get u
visibility in the sense just defined, the field amplitudes m
be equal and the beam splitter needs to have equal trans
sion and reflection. To simplify the notation in the followin
we shall refer to the visibility of an ideal measurement of t
type just described, withucos(a)u5usin(a)u51/A2, simply as
the visibility of the two-mode state.

rve
7-3
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IV. VISIBILITY FROM A QUANTUM-MECHANICAL
POINT OF VIEW

Now let us examine the quantum mechanical situat
depicted in Fig. 2~b!. One mode of the two-mode stateuj& is
phase shifted by a relative amountf to the other. Subse
quently the state is transformed by a generalized beam s
ter, described by the unitary transformationÛ ~whose essen
tial properties will be defined below! and finally the output
modes of the generalized beam splitter are detected by
particle counting detectors. The generalized visibility is,
analogy with the classical definition of visibility, defined
terms of the ensemble averaged modulation of the dete
particle number in the respective particle detectors. The m
difference between the quantum and the classical setup
that the generalized beam splitter is typically not a line
beam splitter but a nonlinear beam splitter that has to ma
the impinging two-mode state. Different two-mode states
quire different generalized beam splitters. If, by a prop
choice of the generalized beam splitter, it is possible to fi
two relative phase shift settings such that for one setting
the particles of stateuj& impinge on detectorD1, and for the
other setting all the particles impinge on detectorD2, then
we define the stateuj& to have unit generalized visibility
Comparing this operational definition with our operation
definition of a state with a well-defined relative phase, o
has reason to suspect that the two definitions are interrela

Let us next cast generalized visibility in a mathemati
framework. We begin by defining the quantum-mechani
visibility of the setup in Fig. 2~b! in analogy with the classi-
cal visibility

V5
^n̂&max2^n̂&min

^n̂&max1^n̂&min

, ~11!

wheren̂ is the number operator associated with the pertin
detector. In order to get unit generalized visibility in one
the output modes, we must have^n̂&min50 while ^n̂&maxÞ0.
This implies that for some suitable differential phase shiftf
the vacuum stateu0& must impinge on the detector, since th
is the only single-mode state witĥn̂&50.

Now consider a two-mode quantum stateuj&, which in
general is partially entangled. It is always possible to fin
unitary and particle number conserving transformationÛ
such that

Ûuj&5uc& ^ u0&, ~12!

i.e., the stateuj& is transformed to a factorizable state with n
excitation in one of the modes~i.e., all particles are found in
the other mode!. In a classical visibility measurement,Û is
assumed to describe the action of a 50/50 beam splitter,
for a generalized visibility measurement we must only
quire thatÛ is unitary and particle number conserving. T
latter requirement is reasonable as we want interfere
rather than particle loss, to determine the generalized in
ference. A consequence of the particle number conserva
is that
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Ûu0,0&5exp~ i z!u0,0&, ~13!

where z is a real number. In order to get unit generaliz
visibility in the measurement depicted in Fig. 2~b! it is nec-
essary that if the stateuj& is differentially phase shifted by an
appropriate amountf, Û must transform this new state to
state of the formu0& ^ uf&. Hence,

ÛÛPS~f!uj&5u0& ^ uf&. ~14!

Equations~12! and ~14! together with the requirement tha
uj&Þu0,0& are, by the operational definition, sufficient an
necessary conditions to get unit generalized visibility in t
output modes of a generalized beam splitter.

To see what requirements these equations imply for
stateuj&, let us compute the scalar product between the fi
states~12! and ~14!:

~^cu ^ ^0u!~ u0& ^ uf&!5^cu0&^0uf&. ~15!

Using the left hand sides of Eqs.~12! and ~14!, the scalar
product can be rewritten as

^cu0&^0uf&5^ju0,0&^0,0uj&5^juÛ†ÛÛPS~f!uj&

5^juÛPS~f!uj&, ~16!

where we have used the fact that vacuum is unaffected b
phase shift and Eq.~13! to arrive at the second of the fou
expressions in Eq.~16!. A rearrangement now gives us ou
final result, delineating a necessary and sufficient condit
to achieve unit generalized visibility as

^juÛPS~f!uj&2u^0,0uj&u250. ~17!

This is our central result. That the condition is sufficie
follows from that any state fulfilling Eq.~17! can also fulfill
both Eqs.~12! and~14!, which is necessary and sufficient t
get unit generalized visibility. That the condition is necess
follows from the fact that any state that does not fulfill th
condition~17! can fulfill only one of Eqs.~12! and~14!, not
both. We see that in order to get unit generalized visibil
there must exist a differential phase shiftf such that all the
excited particle number manifolds of the stateÛPS(f)uj& are
rendered orthogonal to the excited particle number manifo
of the initial stateuj&.

Comparing Eqs.~3! and ~17!, one sees that the forme
condition is stronger than the latter in that every state fulfi
ing Eq.~3! will also fulfill Eq. ~17!, but a state satisfying Eq
~17! does not necessarily satisfy Eq.~3!. Why then are these
conditions different? The physical reason is that since v
ibility ~both the classical and the generalized! is an ensemble
averaged quantity the fact thatÛPS(f) does nothing to the
stateu0,0& is not important to the generalized visibility. Nu
particle counts will contribute neither to the minima nor
the maxima~asf is varied! of the particle counter interfer
ence pattern. As long as the stateuj& contains excitation in
higher manifolds, and each of these excited manifold sta
are simultaneously rotated to an orthogonal state for so
7-4
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VISIBILITY IS NOT A GOOD MEASURE OF A WELL- . . . PHYSICAL REVIEW A 62 023817
differential phase shiftf, an interference pattern with un
generalized visibility can be observed. On the contrary,
order to predict a phase shift with certainty~i.e., for each and
every individual detected state! the state must not contai
any component of the vacuum state, since every time
stateÛPS(f1)uj& or ÛPS(f2)uj& collapses into the vacuum
state it leads to an inconclusive result of which phase s
f1 or f2 was used. Hence, the relation~3! is sharper than the
requirement of unit generalized visibility~17! in that every
state fulfilling Eq.~3! can also display unit generalized vi
ibility, while a perfect generalized visibility does not ensu
that the relative phase of the state is precisely defined.

Visibility and coherence are intimately connected. Let
therefore briefly discuss the connection between general
visibility and coherence. In terms of coherence theory,
detectors in Fig. 2~b! measure a superposition of even ord
correlation functions. The explicit choice ofÛ will deter-
mine the particular superposition.~The fact that particle de
tectors are quadratic in the incident fields assures that no
order coherence functions are measured.! If the two-mode
state is in a particle number eigenstate with a total ofN
particles, only the even ordered correlation functions up
order 2N are measured. This is due to the fact that the in
action Hamiltonian realizing any particle number conservi
two-mode, unitary transformationÛ can be synthesized by
normally ordered polynomial of order 2N in the creation and
annihilation operators of the fields@24#. As discussed by
Mandel and Wolf, the coherent properties of aN particle
state is not simply given by the 2Nth order correlation func-
tion @25#. Yet, the criterion for when a two-mode state has
well-defined relative phase is surprisingly simple~3!. A clas-
sical visibility measurement is a special case of a general
visibility measurement whereÛ has a particular form~ex-
pressed in creation and annihilation operators it conta
only the linear term of each mode! so that no correlation
functions higher than of the second order are measured.

Let us next show that unit generalized visibility does n
require any symmetry of the stateuj& with the respect of
permutation of modes. As demonstrated above this is ne
sary in a classical experiment. To show this we constru
simple example, e.g., the state

ud&5A 3

10
~ u0,N&1u1,N21&)1

2

A10
u3,N23&, ~18!

where N>3. This state has no symmetry with respect
permutation of modes, and its average excitation in the s
ond mode is much larger than its excitation in the first mo
if N is large. Yet, forf56arcsin(A15/4)'60.42p rad Eq.
~3! is satisfied. Hence, the state has a well-defined rela
phase and can therefore display unit generalized visibility
Fig. 3 the scalar productu^duÛPS(f)ud&u2 is plotted
as a function of f. The function has zeros atf
56arcsin(A15/4). Using the state~18!, we can take
(u0,0&1ud&)/A2 as an example of a state that does not h
a well-defined relative phase but still can attain unit gene
ized visibility.
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Let us now turn to the specific question Marburger a
Das raised in their paper@16#: What visibility can one ob-
serve from a~two-mode! eigenstate to the relative phase o
erator introduced by Luis and Sa´nchez-Soto@17#? Marburger
and Das showed that forN>2 the state displays less tha
unit visibility. However, since the state fulfills Eq.~3!, the
state can display unit generalized visibility. To give a sp
cific example of a unitary transformation which gives a
state of the type~6! a unit generalized visibility, consider th
unitary transformation

Û5 (
N50

`

(
r 50

N

ur ,N2r &^f r
(N)u. ~19!

In every particle manifold the stateuf r
(N)& is transformed into

the number difference stateur ,N2r &. In Fig. 4 the expecta-
tion valueŝ n̂1&(f) and^n̂2&(f) of detectorsD1 andD2 are
plotted as a function of the differential phase shiftf. The
two curves show unit generalized visibility. In order to o
serve these particular curves experimentally, the general
beam splitter described byÛ corresponds to a rather nonlin
ear Hamiltonian, as pointed out in Ref.@22#. Note that this is

FIG. 3. The scalar product squaredu^juÛPS(f)uj&u2 as a func-
tion of the differential phase shiftf for the state given by Eq.~18!.
The curve is independent ofN as long asN>3. For any suchN the
function is symmetric with respect to the argument.

FIG. 4. The particle number expectation value for detectorD1

~solid! andD2 ~dashed! as a function of the differential phase shi
f for the stateuf0

(7)&. The particular implementation of a genera
ized beam splitter given by Eq.~19! has been used.
7-5
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not the only possible implementation ofÛ giving unit gen-
eralized visibility for this state. In Fig. 5 the same quantit
are plotted for the relevant unitary transformation

Û5u1,6&^f0
(7)u1u7,0&^f1

(7)u1u2,5&^f2
(7)u1u5,2&^f3

(7)u

1u3,4&^f4
(7)u1u4,3&^f5

(7)u1u0,7&^f6
(7)u1u6,1&^f7

(7)u.

~20!

The resulting curves look quite different from those in Fig
but the generalized visibility is still unity. If, however,
50/50 beam splitter is used, the result derived by Marbur
and Das holds, namely, the visibility is only unity for th
caseN51 and then decreases monotonically with increas
N to approach the limiting valueV5p/4 for largeN.

As should be clear by now, the generalized visibility d
pends critically on the choice of generalized beam split
Most generalized beam splitters will not give a unit gener
ized visibility even to states fulfilling Eq.~3!. As was dis-
cussed in Ref.@20#, optimal resolution of the relative phas
requires careful matching between the impinging states
the generalized beam splitter.

Before ending this section let us say something about
generalized visibility of mixed states. Mixed states can a
have unit generalized visibility provided that all the eige
states of the density operator fulfill Eq.~17! for the same
differential phase shiftf. To give one example, the stater̂
5Puf0

(2)&^f0
(2)u1(12P)uf0

(5)&^f0
(5)u has unit general-

ized visibility for any value 0,P,1, since, e.g.,

^f0
(2)uÛPS(2p/3)uf0

(2)&5^f0
(5)uÛPS(2p/3)uf0

(5)&50.

V. MEASURING GENERALIZED VISIBILITY
WITH A BEAM SPLITTER

Since it is unlikely that arbitrary generalized beam sp
ters can be experimentally realized in the near future one
probably have to stick with ‘‘ordinary’’ beam splitters, o
Young’s double-slit type of experiments, for some time
come. In light of this Marburger and Das’ analysis is high
relevant, but could be extended to answer the question: W

FIG. 5. The particle number expectation value for detectorD1

~solid! andD2 ~dashed! as a function of the differential phase sh
f for the stateuf0

(7)&. The unitary transformation of the generalize
beam splitter is given by Eq.~20!.
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two-mode particle number eigenstates can yield unit visi
ity when they are mixed by an ordinary beam splitter?
Refs.@14,20# it is shown that the ‘‘N-coherent states’’~in the
language of Marburger and Das! have this property. In fact
these are the only two-mode particle number eigenst
which will exhibit unit visibility whenÛ represents a 50/50
beam splitter. This can easily be shown by noting that ifuj&
is a particle number eigenstate containingN particles or
quanta, then stateuc& in Eq. ~12! must be the single mode
stateuN&. Using equality~12!, we get

uj&5ÛBS
† uN,0&, ~21!

whereÛBS is the 50/50 beam splitter unitary transformatio
The states are found to be what we have called the symm
ric binomial two-mode states@14,20#

uj&5AN!

2N (
n50

N un,N2n&

An! ~N2n!!
. ~22!

These are the states Castin and Dalibard call ‘‘phase sta
@14# and Marburger and Das call ‘‘N-coherent states.’’ A
comprehensive treatment of these states in conjunction
interferometry has been made by Campos, Saleh, and T
@26#. Similar single mode states have been treated by R
cliffe, who referred to those as ‘‘coherent spin states’’@27#,
and by Stoler, Saleh, and Teich@28#, who referred to them as
‘‘binomial states.’’ The scalar productu^juÛPS(f)uj&u2 for
these states is also displayed in Fig. 1.

Marburger and Das conclude their paper by stating t
‘‘ . . . @the relative phase operator eigenstates# are not espe-
cially well suited to describe weakly interacting multiply o
cupied coherent bosonic systems. The coherent-state
‘N-coherent’ states appear to be the natural generalizatio
coherent states for this purpose.’’ If we interpret ‘‘weak
interacting’’ as linearly interacting, such as in an ordina
linear beam splitter, then it is obvious from the analysis
the preceeding paragraph why it is indeed so. A linear be
splitter is the appropriate generalized beam splitter for sy
metric binomial two-mode states while the appropriate g
eralized beam splitter for the two-mode relative phase st
is a nonlinear beam splitter@22#.

Going beyond particle number eigenstates one can ask
question: What two-mode states will display unit visibility
a 50/50 beam splitter is used? To answer this question
use the observation made in Sec. II that states having dif
ent total particle number will not interfere. Therefore, usi
the fact thatÛBS is particle number conserving and the s
perposition principle, we conclude that~a pure! such state
must have the general form

uj&5 (
n50

`

cnAn!

2n(
k50

n uk,n2k&

Ak! ~n2k!!
, ~23!

wherecn are the respective particle number manifold’s pro
ability amplitudes. That the condition is necessary follo
from the fact that every state which can be expres
ÛBS

† uc& ^ u0& will have the general form specified abov
7-6
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That the condition is sufficient follows from Marburger an
Das’ analysis@any state of the form~22! can display unit
visibility # and the superposition principle. Hence, it is po
sible to prepare any unit visibility two-mode Bose-Einste
condensate by linearly and symmetrically splitting an app
priate single-mode Bose-Einstein condensate. Convers
any single-mode Bose-Einstein condensate split symm
cally by a linear beam splitter can display unit visibility. Th
latter conclusion is not surprising since, if one considers
overall unitary transformation of, e.g., a Mach-Zehnder
terferometer with two beam splitters with transmittivityT1
andT2, and a relative phase shiftf in between, the transfor
mation is equivalent to the unitary transformation of a sin
beam splitter with transmittivity T11T222T1T2

12AT1T2(12T1)(12T2)cos(f). We see that ifT15T2
5T the total interferometer equivalent transmittivity b
comes 2T(12T)@11cos(f)#. Therefore, ifT51/2, chang-
ing the phase shift fromf50 to f5p will divert all the
incident particles from total transmission~e.g., to detector
D1) to total reflection~e.g., to detectorD2), giving unit vis-
ibility.

However, only a small fraction of all two-mode states th
display a unit generalized visibility are of the form~23!. To
give a simple counterexample consider the Schro¨dinger cat
state

1

A2
~ uN,0&1u0,N&), ~24!

whereN.1. The state is of interest in interferometric app
cations since, for a given mean energy, it is the state that
be transformed into an orthogonal state~and hence display
unit generalized visibility! by the smallest relative phas
shift @29,30#. It is also an energy eigenstate, so as to disp
unit visibility the state must be projected by the beam spli
to the stateuN& ^ u0& for some setting of the relative phas
shift f. However, as shown in Eq.~22! above, a symmetric
two-mode binomial state is the only state that will be tra
formed to this final state by a 50/50 beam splitter. Hence,
Schrödinger cat state~24! will not display unit visibility al-
though it fulfills Eq.~17! and even Eq.~3!.

Some approximate generalized visibility measureme
have already been performed on the state~24!, above. In,
e.g., an experiment by Rarity and Tapster@31# such a state
with N52 was transformed to the stateu1,1& by the use of an
ordinary beam splitter. The stateu1,1& was subsequently de
tected by coincidence photodetection. If the state is differ
tially phase-shifted by an amountf5p/2, the state become
orthogonal to the original state, and therefore a beam spl
~being lossless and unitary! will project the state onto a stat
orthogonal tou1,1&. In this manner a unit-visibility fourth-
order correlation curve was obtained, proving that the s
~24! can be transformed into an orthogonal state by a dif
02381
-

-
ly,
ri-

e
-

e

t

ill

y
r

-
e

ts

-

er

te
r-

ential phase shift ofp/2. However, as already mentioned,
linear beam splitter cannot project the state~24! onto the
stateu0,2& ~nor ontou2,0&) due to the symmetry of the state
Therefore an experiment of the type Rarity and Tapster p
formed does not constitute a true measurement of gene
ized visibility although their experiment relies on the fa
that the state has a well-defined relative phase.

VI. CONCLUSIONS

We have discussed measurements of the relative phas
two-mode bosonic states, especially in the context of Bo
Einstein condensation where particle number eigenstates
of particular significance. The germinal hypothesis in o
paper was that visibility, in general, is not a good measure
how well defined the relative phase between the two mo
is. We suggested a criterion~which we believe is widely
accepted! defining a state with a well-defined relative phas
The relative phase operator eigenstates satisfy this crite
in spite of displaying less than unity visibility. This led us
suggest that a generalization of a visibility measure is ca
for, and we subsequently derived a criterion for when
generalized visibility can equal unity. We showed that
states with a well-defined relative phase can display unit g
eralized visibility, whereas the converse is not true. We a
showed that the unit-visibility states~23! form only a small
subset of the two-mode states that fulfill the condition
unit generalized visibility~17!. Therefore we conclude tha
visibility measurements made by a beam splitter, or equi
lently, with a Young’s double slit apparatus, do not, in ge
eral, give a good measure of the relative phase propertie
a two-mode state. Moreover, as we have shown above,
less the state is void of any excitation amplitude of t
vacuum state, not even a generalized visibility measurem
will provide a good measure of the relative phase. The r
son is that the vacuum state does not have a well-defi
relative phase and therefore any state containing some c
ponent of the vacuum state will have some relative-ph
ambiguity.~In the theory of Luis and Sa´nchez-Soto@17# the
two-mode vacuum state is an eigenstate of the relative ph
operator with a fixed associated eigenvalue. Although
vacuum state’s relative phase hence is well defined in
theory, it cannot be made to change. Therefore the the
asserts that the vacuum state is inappropriate to use to
play any relative phase properties.!
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