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Visibility is not a good measure of a well-defined relative phase
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In a recent paper Marburger and Ods H. Marburger 1l and K. K. Das, Phys. Rev. 39, 2213(1999]
considered an interference visibility experiment involving two weakly interacting Bose-Einstein condensates. It
was shown that condensate eigenstates of the Hermitian relative phase operator do not give interference fringes
with unit visibility in a Young’s double slit type of experiment. The authors concluded that ‘ these states
are not especially well suited to describe weakly interacting multiply occupied coherent bosonic systems.” In
this work we suggest a criterion for states with a well-defined relative phase. Subsequently we show that the
relative phase operator eigenstates satisfy this criterion. This suggests that the concept of interference visibility
can, and should, be generalized, since it is widely believed that interference visibility is a measure of the
relative phase properties. We therefore propose a broader, but still operational, definition of interference
visibility, which we call generalized visibility, and prove that the relative phase operator eigenstates indeed can
show unit generalized visibility. We also derive a simple, but general, criterion for states which can display a
unit generalized visibility. Somewhat surprisingly, this criterion is weaker than the criterion for a well-defined
relative phase. Finally, we discuss which two-mode states can displayoudiihary) visibility.

PACS numbgs): 42.50.Dv, 03.65.Bz, 03.75.Fi

[. INTRODUCTION is surprising, because one would expect this state to have a
well-defined relative phase and hence display unit visibility
The experimental observation of Bose-Einstein condensanterference fringes. In this paper we address the assertion
tion [1-4] and subsequent refinement of the associated exexpressed in the title of this paper. Marburger and Das, along
perimental techniques have led this field to a point where onwith many other workers in the field, implicitly assume that
can start to speak about an “atom laser,” a device emitting avisibility provide a good measure of relative phase. In this
beam or a pulse of atoms all belonging to a single bosonipaper we argue that this is not necessarily the case. Analysis
mode [5]. Recently, several groups have demonstrateaf the relative phase properties of quantum states allows, and
pulsed or continuous “atom laserd’6—8]. In this context requires, rather sophisticated experimental tools, while vis-
questions have been raised about the phase properties of tindlity and the measurement thereof is a classically defined
condensate and about relative phase properties between twoncept. Therefore it is not surprising that visibility says
condensate§9-14]. Observation of interference between little about the quantum phase properties of states. To say
two condensates has already been n{ddg something about the latter the concept of visibility must be
In a recent paper Marburger and D$]| analyzed the generalized. This is the aim of the present work.
interference pattern that would emerge if two condensates in However, our paper should not be taken as a critique of
two plane-wave modes were prepared in @mtangled  Marburger and Das’ and others work. Although we argue
eigenstate to the Hermitian relative phase operator derivethat visibility is not a good measure of the relative phase
by Luis and Sachez-Sotd17]. One reason this state is rel- between two bosonic modes, the interaction needed to dis-
evant in this context is that it is simultaneously a particleplay the relative phase properties between two médeen-
number eigenstate. Bose-Einstein condensates can be trappedlized visibility measurements rather complexin gen-
for long times and therefore can be measured repeatedly. leral it requires highly nonlinear mode interaction
this manner the particle number of condensates can be rel@herefore, we believe that experimentally one will have to
tively well determined. This is in contrast to electromagneticcontent oneself with visibility measurements both for con-
modes where it is notoriously difficult to prepare photondensates, as well as for photon states, for some time to come,
number states, or near number states, with any substantialthough recently some more elaborate measurements of
particle number. Therefore, two-mode states which are siweakly excited photon states have been mik#d. On the
multaneously particle number eigenstates are relevant in thether hand, the rapid progress of trapping technology, laser
context of Bose-Einstein condensation. pulse shaping and chirping technology, and magnetic field
The main result in Marburger and Das’ paper is the distechnology makes the long term prospect of custom made
covery that the interference pattern ensuing from a relativ@éonlinear interactions seem rather good for Bose-Einstein
phase operator eigenstate does not have unit visibility. Thisondensates. Still, until the prospects have become reality
visibility measurements are probably the best measurement
of relative phase properties that can be made. Marburger and
*Electronic address: gunnarb@ele.kth.se Das’ analysis is therefore highly relevant. At the end of this
"Permanent address: Quantum Optics Group, Atomic Energy Repaper we have therefore extended Marburger and Das’ analy-
search Institute, Nihon University, 1-8 Kanda-Surugadai, Chiyodasis and derived a criterion for when a two-mode state can
ku, Tokyo 101-8308, Japan. display unit visibility.
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The outline of the paper is as follows In Sec. Il we derivephasesg; or ¢, so that they(at least in principlg can be
a criterion for a two-mode state to have a well-defined relaread out with certainty, i.e., be projected onto orthogonal
tive phase. We subsequently show that the relative phasmeter eigenstates, the relation
operator eigenstates satisfy the criterion, in spite of display-
ing less than unity visibility. In Sec. Ill we review the vis- T % — /&) _ —
ibility of classical fields. In Sec. IV we take a quantum- (€lUpd $0)Upd d2)]6)=(elUpd 62 ¢1)[£)=0 (3
mechanical view of visibility, define what we call . . . .
“generalized visibility,” and derive a criterion for two-mode Must be fulfilled. That is, some relative phase skift ¢,
states to display unit generalized visibility. In Sec. V we — ¢1 must render the stat®lpq ¢)|£) orthogonal to|¢).
return to a quantum-mechanical analysis of the classical visThus, in our treatment, Eq3) constitutes the mathematical
|b|||ty and derive a genera| form of a state to d|sp|ay unit criterion for a state with a well-defined relative phase.
visibility. We show that the class is a particular subclass of Let us write the number-basis expansion of a two-mode
the states that can display unit generalized visibility. Finally,state as
we summarize our findings in Sec. VI.

o0 N
= Cn nlN,N—n), 4
Il. THE RELATIVE PHASE-SHIFT OPERATOR AND |§) NZO n§=:O N’n| > @

STATES WITH A WELL-DEFINED RELATIVE PHASE

In order to derive a criterion for @wo-mode state witha  Where we have used the notatidkul)=[k)@|l), and we
well-defined relative phase, we start by considering theVrite the associated bra &k,l|=(k|®(l|. In this notation,
physical action of a relativéor differentia) phase shift, i.,e., we have n|k,1)=klk,I) and nplk,I)=I]k,1I). Since
letting the two condensates undergo free evolution for un0P5(¢)|o,o>=|o,o>, it is clear that we must havé0,d ¢)
equal times. The free evolution of a Bose-Einstein conden=0 in order to satisfy Eq(3).
sate for a timer is described byUy(7)=exp(=iHq7%), If one wishes to formalize and quantify the ability to dis-
where the Hamiltonian i$1,=%wn, and w and n is the tinguish between two relative phases, one can define the dis-
angular frequency and particle-number operator of the coninguishability D (in the maximum likelihood estimation
densate, respectively. As usual the gauge has here been ct§§nsd19,20) between the two relative phaség and ¢, on
sen such that the vacuum field energy is zero. Thus the evoé) as[20]
lution operator for two condensates undergoing free

evolution for timesr; and 7, respectively, becomes D= \/1_ 4p,1p,l(€| UPS( bo— ¢1)|§>|2, (5)
e 10(mNL T 7aN) = g i0(71+ ) (N +N2)2g (71— 72) (N ~Np) 2 wherep, and p, are thea priori probabilities of encoding
N Ri2ion the phase shiftsh; and ¢,, respectively. This distinguish-

=g lo(ntrINZgidni; (1) ability limit is referred to as the Helstrom boufi#ll] and is

well known in estimation theory. We see that for any non-
whereNEﬁlJrﬁz is the total particle number operata?rlz zeroa priori probabilitiesp; and p,, unit distinguishability

_ . . . . implies that Eq.(3) has to be fulfilled.
fgfgﬁtiavzgﬁzagsetgii?ta{ ;‘l;ﬂ:ej(lf;‘;eie:se %?ﬁégtc;;],ear;g;?aetgirlf Let us now turn to the specific state Marburger and Das

) P : ) i analyzed in their pap€rl6], namely, the eigenstate to the
exfl —iw(r+7)N/2] in Eq. (1) will only give all states with  rg|ative phase operator introduced by Luis and@ez-Soto

a particular particle number the same phase shift,(&ud-  [17]. The most general form of such an eigenstate in particle
modeg states with different particle number are orthogonal,anifold N can be writter{17,27]

and cannot interfere, this operator can be neglected in the
context of interference. Hence the unitary differential phase- N
shift operator is particle-number conserving and can be writ- |¢EN)>: E exp(ingbﬁ’\'))|n,N—n), 6)

ten YN+1 n=0

Upd @) =exp(i ¢pnyy). 2  where¢V=¢MN+27r/(N+1), r=0,1,...N.
Since the eigenstates are orthogonal, they will fulfill Eq.

We now turn our attention to what constitutes a state with(3) above forN+#0 and ¢=27k/(N+1), k=1,2,...N.
a well-defined relative phase. We take an operational aplhus, in spite of displaying nonunit visibility, as was shown
proach and assign this property to any two-mode state ot Ref. [16], these states have a well-defined relative phase.
which (at least two different relative phases can be encodedin Fig. 1 the scalar produ¢t¢™|Upg ¢)| ™)|? is plotted
and read out with certainty. This definition avoids all com-as a function of¢. The function is identical to the relative
plications with associating a well-defined relative phase withphase distribution function defined[i#2]. Since the smallest
some relative phase operator, or with the properties of thdifferential phase shift that can be resolved with certainty is
state’s relative phase statistical distribution. It is well known2#/(N+1), these states fulfill the Heisenberg limit in phase
that in order to be able to encode either of two relativemeasurements.
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1.0 ficiently generally described by
NT 0.8 E,(t)=E;coqwt+60) and E,(t)=E,coqwt), (7)
oun
D 06 where E; and E, are (real) electric field amplitudes. The
<§_ ) phase shifter transforms fiekd, (t) to
% 0.4} E.(t)=E; coq wt+ 6+ ¢). (8)
a&n 0.2 The beam splitter is described by the unitary transformation
0 SAIN coda) sin(a)
- 2 n e : 9
sin(a) coga)

Differential phase shift ¢ (rad)
The transformation assumes, without loss of generality, that
FIG. 1. The scalar product squarfd|Upq ¢)|£)|? as a func-  reference planes have been chosen so that all coefficients are
tion of the differential phase shifb. The solid curve represents the real. If the beam splitter transmittande= cos(x) is neither
scalar product for a relative phase eigenstate and the dashed curgero nor unity, the(time-averagedintensity | detected by
holds for a two-mode symmetric binomial state, both vtk 7. either the two detectors is a sinousoidally varying function of
the phase shifth. The visibility for each detector is defined
Ill. A SHORT REVIEW OF CLASSICAL VISIBILITY

In this section we will make a short review of the prop- V= M (10)

erties a classical field and an interferometer must have in  maxt ! min
order to display unit visibility. While Marburger and Das . - . .
wherel . andl i, are the maximum and minimum intensi-

considered a Young's double slit type of experiment, we,. ! .
shall consider a Ma?ch-Zehnder inte¥?erometefto avoid théIes measured by the detector as a function of the phase shift

unnecessary complication of taking the spatial evolution of‘ﬁ' Note that, in general, the visibility is not equal for the two

the wave function between the double slits and the Screeﬂetectors. To get unit visibility one must arrange so that

into account. A classical version of the experiment we con- min=0 whilelm_axaﬁo. Also note that the in_tensity dgtected in
sider is depicted in Fig.(@). Two fields interfere in a beam each detector is a second order correlation function. For the

splitter. The relative phase between the two fields can b&Pecial case wheftos()|=[sin(a)|=1/V2, the detector sig-
varied by the means of a phase shifter. After the beam spli nals provide a measure of the complex degree of coherence
ter the outgoing field intensities are monitored by two detecPetween the two fieldf23].

tors. The visibility is defined in terms of the ensemble aver- YSiNg EQs.(7), (8), and(9), it is straightforward to show

aged modulation of the measured intensities as a function dfat!min=0 for either detector implies a phase shftulfill-

the relative phase shift. Classically, the visibility gives ani"d ¢+ ¢=0 or 6+ ¢=. In the first case it is possible to
indication of the relative phase properties of the two fields9€t the intensity falling onto detectdd, to be zero if
Specifically, if the two field’s respective phases are randomt@n(@) = —E1/E,. To make the intensity falling onto detec-
the visibility is zero. tor D, be zero, one must require tai(=E,/E;. If the
To make a quantitative analysis of classical visibility we Phases is instead set ter— 6, then detectoD, “sees” zero

shall consider the interference of two harmonic watead-  intensity for tanq)=E;/E, and D, “sees” zero intensity
for tan(a)= —E,/E;. In both cases we can only get the

visibility to equal unity in both beam splitter output modes if

(a) Phase shift Detectors E,=+E, and|cos@)|=|sin(a)|=1/\/§.
L} ¢ D_ Dy To get a situation similar to a unit visibility in a Young’s
double slit experimeniwhich simultaneously probes all rela-
*Beam splitter tive phases, usually over a severat nterva) it is neces-
5 sary to obtain unit visibility in both outputs, that is, a com-
D_ e plete transfer of the intensity from one beam splitter output

mode to the other ag is varied over somer interval.
Therefore, this is what we will require in the following and

(b) Phase shift Detectors when we henceforth refer to unit visibility we shall always
—> D; D, assume that it holds for both output modes. In summary,
. from the classical viewpoint, in order to be able to get unit
E> 0 bGe“erahZ.ed visibility in the sense just defined, the field amplitudes must
eam splitter . .
_ be equal and the beam splitter needs to have equal transmis-
D* D2 sion and reflection. To simplify the notation in the following

we shall refer to the visibility of an ideal measurement of the
FIG. 2. (a) A schematic setup of a visibility experimerib) A type just described, withcos()|=|sin(a)|=1/\/2, simply as
guantum-mechanical generalized visibility experiment. the visibility of the two-mode state.
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IV. VISIBILITY FROM A QUANTUM-MECHANICAL 0|o 0 =expi)|0,0 (13)
POINT OF VIEW ’ e

Now let us examine the quantum mechanical situationvhere ¢ is a real number. In order to get unit generalized
depicted in Fig. &). One mode of the two-mode std@® is visibility in the measurement depicted in Figb2it is nec-
phase shifted by a relative amoutto the other. Subse- €SS&ry that if the statgz is differentially phase shifted by an
quently the state is transformed by a generalized beam spligppropriate amounp, U must transform this new state to a

ter, described by the unitary transformationwhose essen- State of the form0)@|¢). Hence,

tial properties will be defined belgwand finally the output R

modes of the generalized beam splitter are detected by two UUpd 4)[€)=]0)®| ). (14
particle counting detectors. The generalized visibility is, in

analogy with the classical definition of visibility, defined in Equations(12) and (14) together with the requirement that

d§)#10,0 are, by the operational definition, sufficient and
ecessary conditions to get unit generalized visibility in the

particle number in the respective particle detectors. The maifl i .
tput modes of a generalized beam splitter.

difference between the quantum and the classical setups ‘R%JT hat ; s th i imolv for th
that the generalized beam splitter is typically not a linear 0 see what requirements these equations imply for the

beam splitter but a nonlinear beam splitter that has to matchtatel€). et us compute the scalar product between the final

the impinging two-mode state. Different two-mode states re_states(lZ) and (14):

quire different generalized beam splitters. If, by a proper _
choice of the generalized beam splitter, it is possible to find (120D (|0)e] ) =(#/0){0[4). (15

two relative phase shift settings such that for one setting a'bsing the left hand sides of Eq&l2) and (14), the scalar
the particles of statg) impinge on detectob,, and for the product can be rewritten as ’
other setting all the particles impinge on detediy, then

we definethe state|¢) to have unit generalized visibility. 0)0l &)= (£10.0/(0 —(el0T00
Comparing this operational definition with our operational (#10)(01¢)=(£]0,0(0.06)=(¢l P4 )16
definition of a state with a well-defined relative phase, one :<§|0PS( )€, (16)

has reason to suspect that the two definitions are interrelated.

Let us next cast generalized visibility in a mathematicalwhere we have used the fact that vacuum is unaffected by a
framework. We begin by defining the quantum-mechanicaphase shift and Eq13) to arrive at the second of the four
visibility of the setup in Fig. &) in analogy with the classi- expressions in Eq(16). A rearrangement now gives us our
cal visibility final result, delineating a necessary and sufficient condition

A R to achieve unit generalized visibility as
_ <n>max_<n>min

(M) manct (M 19 (0pd $)8)~{0.08)]2=0. 17

wheren is the number operator associated with the ertinenThis is our central result. That the condition is sufficient
P P follows from that any state fulfilling Eq(17) can also fulfill

detector. In order to get unit gerAleraIized vifsibiIiAty in one of both Eqs.(12) and (14), which is necessary and sufficient to
the output modes, we must ha{®) =0 while (N)ma#0.  get unit generalized visibility. That the condition is necessary
This implies that for some suitable differential phase skift  follows from the fact that any state that does not fulfill the
the vacuum statf)) must impinge on the detector, since this condition(17) can fulfill only one of Eqs(12) and(14), not
is the only single-mode state witm)=0. both. We see that in order to get unit generalized visibility
Now consider a two-mode quantum stage, which in  there must exist a differential phase shiftsuch that all the
general is partially entangled. It is always possible to l‘ind dexcited particle number manifolds of the statgq ¢)|£) are
unitary and particle number conserving transformation rendered orthogonal to the excited particle number manifolds

such that of the initial state|¢).
R Comparing Eqs(3) and (17), one sees that the former
U|é)=|y)®]|0), (120  condition is stronger than the latter in that every state fulfill-

ing Eq.(3) will also fulfill Eq. (17), but a state satisfying Eq.
i.e., the staté¢) is transformed to a factorizable state with no (17) does not necessarily satisfy H8). Why then are these
excitation in one of the modesge., all particles are found in  conditions different? The physical reason is that since vis-
the other modg In a classical visibility measurement, is ibility (both the classical and the generalizésdan ensemble
assumed to describe the action of a 50/50 beam splitter, buiyeraged quantity the fact thek-g ) does nothing to the
for a generalized visibility measurement we must only re-state|0,0) is not important to the generalized visibility. Null
quire thatU is unitary and particle number conserving. The particle counts will contribute neither to the minima nor to
latter requirement is reasonable as we want interferencéhe maxima(as ¢ is varied of the particle counter interfer-
rather than particle loss, to determine the generalized inteence pattern. As long as the st&e contains excitation in
ference. A consequence of the particle number conservatidmgher manifolds, and each of these excited manifold states
is that are simultaneously rotated to an orthogonal state for some
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differential phase shifip, an interference pattern with unit 1.0

generalized visibility can be observed. On the contrary, in

order to predict a phase shift with certairitye., for each and NK 0.8

every individual detected stat¢he state must not contain ©

any component of the vacuum state, since every time the <§ 0.6

stateUpd 1) &) or Upd #,)|€) collapses into the vacuum =

state it leads to an inconclusive result of which phase shift 2 04

¢, or ¢, was used. Hence, the relati@®) is sharper than the ,,%

requirement of unit generalized visibilitjl7) in that every N 02

state fulfilling Eq.(3) can also display unit generalized vis-

ibility, while a perfect generalized visibility does not ensure 0

that the relative phase of the state is precisely defined. T W2 0 ™2 T
Visibility and coherence are intimately connected. Let us Differential phase shift ¢ (rad)

therefore briefly discuss the connection between generalized R )

visibility and coherence. In terms of coherence theory, the FIG. 3. The scalar product squarf@|Up<(¢)|£)|* as a func-
. . - . N The curve is independent df as long as\=3. For any suciN the

correlation functions. The explicit choice &f will deter-

. ) o ) function i tric with t to th t.
mine the particular superpositiofThe fact that particle de- unction IS symmetric with respect fo the argumen
tectors are quadratic in the incident fields assures that no odd

order coherence functions are measurdéfdthe two-mode Das raised in their papdd6]: What visibility can one ob-

state Is in a particle number eigenstate with a _totall\bf serve from atwo-modg eigenstate to the relative phase op-
particles, only the even ordered correlation functions up Y rator introduced by Luis and Behez-Sotd17]? Marburger
order 2\ are measured. This is due to the fact that the inter-, y y 9

. oo . . .~ and Das showed that fdd=2 the state displays less than
action Hamiltonian realizing anyApart|cIe number conserving, | . visibility. However, since the state fulfills Eq3), the
two-mode, unitary transformatidd can be synthesized by a gtate can display unit generalized visibility. To give a spe-

normally ordered polynomial of ordemRin the creation and  jfic example of a unitary transformation which gives any

annihilation operators of the field24]. As discussed by gtate of the typd6) a unit generalized visibility, consider the
Mandel and Wolf, the coherent properties of\aparticle  ypjtary transformation

state is not simply given by theNth order correlation func-

tion [25]. Yet, the criterion for when a two-mode state has a © N

well-defined relative phase is surprisingly simgs. A clas- 0= > [r,N=r)}{¢MN]. (19

sical visibility measurement is a special case of a generalized N=0r=0

visibility measurement wher® has a particular fornfex-

pressed in creation and annihilation operators it contain¥? €very particle manifold the state{") is transformed into

only the linear term of each mogso that no correlation the number difference SfatB:N—U- In Fig. 4 the expecta-

functions higher than of the second order are measured. tion values(n,)(¢) and(n,)(¢) of detectord, andD, are
Let us next show that unit generalized visibility does notplotted as a function of the differential phase shift The

require any symmetry of the staté) with the respect of two curves show unit generalized visibility. In order to ob-

permutation of modes. As demonstrated above this is neceserve these particular curves experimentally, the generalized

sary in a classical experiment. To show this we construct §eam splitter described Hy corresponds to a rather nonlin-
simple example, e.g., the state ear Hamiltonian, as pointed out in RE22]. Note that this is

Let us now turn to the specific question Marburger and

3 2
|6)= \/;)(|O,N>+|1,N—1>)+\/_1—O|3’N_3>' (18

B o oo =

where N=3. This state has no symmetry with respect of
permutation of modes, and its average excitation in the sec-
ond mode is much larger than its excitation in the first mode,
if N is large. Yet, for¢p= +arcsing/15/4)~ +0.427 rad Eq.

(3) is satisfied. Hence, the state has a well-defined relative
phase and can therefore display unit generalized visibility. In
Fig. 3 the scalar product(s|Upq#)|8)|? is plotted

as a function of ¢. The function has zeros atp
=+arcsing/15/4). Using the state(18), we can take FIG. 4. The particle number expectation value for deteEtor
(10,00+|8))/2 as an example of a state that does not havesolid) andD,, (dashedlas a function of the differential phase shift
a well-defined relative phase but still can attain unit general« for the state ¢{"). The particular implementation of a general-
ized visibility. ized beam splitter given by E419) has been used.

w
T

Mean detected particle number

Differential phase shift ¢ (rad)
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two-mode particle number eigenstates can yield unit visibil-
ity when they are mixed by an ordinary beam splitter? In
Refs.[14,2(Q it is shown that the N-coherent statesl(in the
language of Marburger and Dasave this property. In fact,
these are the only two-mode particle number eigenstates
which will exhibit unit visibility whenU represents a 50/50
beam splitter. This can easily be shown by noting thag)f

is a particle number eigenstate containiNgparticles or
quanta, then statgy) in Eq. (12) must be the single mode
state|N). Using equality(12), we get

F T - ]

w

- 2 0 2 x -
Differential phase shift ¢ (rad) |£)=UgdN.,0), (21)

Mean detected particle number

FIG. 5. The particle number expectation value for deteBtor ~ whereU g is the 50/50 beam splitter unitary transformation.
(solid) andD, (dashed as a function of the differential phase shift The states are found to be what we have called the symmet-

¢ for the statd ¢{"). The unitary transformation of the generalized ric binomial two-mode statgsl 4,20]

beam splitter is given by Eq20). \

N! [n,N—n)
not the only possible implementation Of giving unit gen- &)= 2N2 m (22
eralized visibility for this state. In Fig. 5 the same quantities
are plotted for the relevant unitary transformation These are the states Castin and Dalibard call “phase states”
[14] and Marburger and Das callN-coherent states.” A
U=11,6)( 7| +]7,0( "] +]2,5( p5"| +|5,2( S| comprehensive treatment of these states in conjunction with
interferometry has been made by Campos, Saleh, and Teich
+13,8( 5" +4,3( 5| +10,7( | +16,1)( 7). [26]. Similar single mode states have been treated by Rad-

(20) cliffe, who referred to those as “coherent spin stat¢27],
and by Stoler, Saleh, and Teif28], who referred to them as

The resulting curves look quite different from those in Fig. 4 “binomial states.” The scalar produd{&|Upg ¢)|£)|? for
but the generalized visibility is still unity. If, however, a these states is also displayed in Fig. 1.
50/50 beam splitter is used, the result derived by Marburger Marburger and Das conclude their paper by stating that
and Das holds, namely, the visibility is only unity for the ... [the relative phase operator eigensth@® not espe-
caseN=1 and then decreases monotonically with increasingially well suited to describe weakly interacting multiply oc-
N to approach the limiting valu¥= /4 for largeN. cupied coherent bosonic systems. The coherent-state-like
As should be clear by now, the generalized visibility de-'N-coherent’ states appear to be the natural generalization of
pends critically on the choice of generalized beam splittercoherent states for this purpose.” If we interpret “weakly
Most generalized beam splitters will not give a unit generalinteracting” as linearly interacting, such as in an ordinary
ized visibility even to states fulfilling Eq(3). As was dis- linear beam splitter, then it is obvious from the analysis in
cussed in Ref[20], optimal resolution of the relative phase the preceeding paragraph why it is indeed so. A linear beam
requires careful matching between the impinging states angplitter is the appropriate generalized beam splitter for sym-
the generalized beam splitter. metric binomial two-mode states while the appropriate gen-
Before ending this section let us say something about theralized beam splitter for the two-mode relative phase states
generalized visibility of mixed states. Mixed states can alsds a nonlinear beam splitt¢22].
have unit generalized visibility provided that all the eigen- Going beyond particle number eigenstates one can ask the
states of the density operator fulfill E¢L7) for the same question: What two-mode states will display unit visibility if
differential phase shifts. To give one example, the sta,%e a 50/50 beam splitter is uged? To answer this qut_astior_1 we
=P oW |+ (1-P)| o) o has unit general- USe the observation made in Sec. Il that states having differ-
ized visibility for any value 6<P<1, since, eq., ent total particle number will not interfere. Therefore, using

(2) @)\ —/ 4(5) (5) the fact thatUBS is particle number conserving and the su-
|UPS(27T/3)|¢ )=(do lUPS{ZWB)|¢ perposition principle, we conclude thé purg such state

must have the general form
V. MEASURING GENERALIZED VISIBILITY

WITH A BEAM SPLITTER 2 2”: lk,n—k)
Since it is unlikely that arbitrary generalized beam split- 6= 2"E o Jkl(n—Kk)!'

ters can be experimentally realized in the near future one will

probably have to stick with “ordinary” beam splitters, or Wherec, are the respective particle number manifold’s prob-

Young’s double-slit type of experiments' for some time toab”ity amplitudes. That the condition is necessary follows

come. In light of this Marburger and Das’ analysis is highly from the fact that every state which can be expressed

relevant, but could be extended to answer the question: Whai ¢ #)®|0) will have the general form specified above.

(23
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That the condition is sufficient follows from Marburger and ential phase shift ofr/2. However, as already mentioned, a
Das’ analysislany state of the forn{22) can display unit linear beam splitter cannot project the st&®4) onto the
visibility ] and the superposition principle. Hence, it is pos-state|0,2) (nor onto|2,0)) due to the symmetry of the state.
sible to prepare any unit visibility two-mode Bose-Einstein Therefore an experiment of the type Rarity and Tapster per-
condensate by linearly and symmetrically splitting an approformed does not constitute a true measurement of general-
priate single-mode Bose-Einstein condensate. Converselized visibility although their experiment relies on the fact
any single-mode Bose-Einstein condensate split symmetrthat the state has a well-defined relative phase.

cally by a linear beam splitter can display unit visibility. The
latter conclusion is not surprising since, if one considers the
overall unitary transformation of, e.g., a Mach-Zehnder in-

terferometer with two beam splitters with transmittivity We have discussed measurements of the relative phase of
andT, and a relative phase shift in between, the transfor- two-mode bosonic states, especially in the context of Bose-
mation is equivalent to the unitary transformation of a singleginstein condensation where particle number eigenstates are
beam  splitter with  transmittivity T,+T,—2T1T>  of particular significance. The germinal hypothesis in our
+2\T,To(1-T;)(1-Ty)cosk). We see that ifT;=T,  paper was that visibility, in general, is not a good measure of
=T the total interferometer equivalent transmittivity be- how well defined the relative phase between the two modes
comes X (1—-T)[1+cos@)]. Therefore, ifT=1/2, chang- is. We suggested a criteriofwhich we believe is widely
ing the phase shift fromp=0 to ¢== will divert all the  acceptegldefining a state with a well-defined relative phase.
incident particles from total transmisside.g., to detector The relative phase operator eigenstates satisfy this criterion
D,) to total reflection(e.g., to detectoD,), giving unit vis- in spite of displaying less than unity visibility. This led us to
ibility. suggest that a generalization of a visibility measure is called
However, only a small fraction of all two-mode states thatfor, and we subsequently derived a criterion for when the
display a unit generalized visibility are of the forf23). To  generalized visibility can equal unity. We showed that all
give a simple counterexample consider the Sdimger cat  states with a well-defined relative phase can display unit gen-

VI. CONCLUSIONS

state eralized visibility, whereas the converse is not true. We also
showed that the unit-visibility statg®3) form only a small
1 subset of the two-mode states that fulfill the condition for
E(|N’O>+|O’N>)' (24) unit generalized visibility(17). Therefore we conclude that

visibility measurements made by a beam splitter, or equiva-

whereN>1. The state is of interest in interferometric appli- lently, with a Young’s double slit apparatus, do not, in gen-
cations since, for a given mean energy, it is the state that wilral, give a good measure of the relative phase properties of
be transformed into an orthogonal stated hence display @ two-mode state. Moreover, as we have shown above, un-
unit generalized visibility by the smallest relative phase less the state is void of any excitation amplitude of the
shift [29,30. It is also an energy eigenstate, so as to displayacuum state, not even a generalized visibility measurement
unit visibility the state must be projected by the beam splittewill provide a good measure of the relative phase. The rea-
to the statgN)®|0) for some setting of the relative phase son is that the vacuum state does not have a well-defined
shift ¢. However, as shown in Eq22) above, a symmetric relative phase and therefore any state containing some com-
two-mode binomial state is the only state that will be transPonent of the vacuum state will have some relative-phase
formed to this final state by a 50/50 beam splitter. Hence, th@mbiguity. (In the theory of Luis and Sechez-Sotd17] the
Schralinger cat statg24) will not display unit visibility al- ~ two-mode vacuum state is an eigenstate of the relative phase
though it fulfills Eq.(17) and even Eq(3). operator with a fixed associated eigenvalue. Although the

Some approximate generalized visibility measurementyacuum state’s relative phase hence is well defined in this
have already been performed on the st@4), above. In, theory, it cannot be made to change. Therefore the theory
e.g., an experiment by Rarity and Tapsi@t] such a state asserts that the vacuum state is inappropriate to use to dis-
with N=2 was transformed to the stdte1) by the use of an Play any relative phase properties.
ordinary beam splitter. The stalt&,1) was subsequently de-
tected by coincidence photodetection. If the state is differen-
tially phase-shifted by an amoudt= 7/2, the state becomes
orthogonal to the original state, and therefore a beam splitter This work was supported by grants from the Swedish Na-
(being lossless and unitarwill project the state onto a state tional Board for Industrial and Technical Development
orthogonal to|1,1). In this manner a unit-visibility fourth- through the QNANO program, the Swedish Technical Sci-
order correlation curve was obtained, proving that the statence Research Council, and the Swedish Natural Science Re-
(24) can be transformed into an orthogonal state by a differsearch Council.
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