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Two-mode laser with excess noise
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In this paper we investigate how excess noise behaves in a two-mode laser below and above threshold. In
both cases the mode correlations of the stationary state modify the noise essentially. Our two-mode model
relates directly to experimental situations.

PACS numbd(s): 42.50.Lc, 42.55.Ah

[. INTRODUCTION posed to remain constant. We first analyze the linear case
below threshold. There the spectrum can be calculated ana-
In the usual lasers the linewidth is given by the lytically. In the nonlinear case above threshold, we only treat
Schawlow-Townes formul&l—3]. In certain systems, how- the case of small nonlinearities. We can make a prediction
ever, the noise can be enhanced by the so-called excess-nofgé the maximally possible excess noise and suggest how to
factor. This was predicted by Petermddi for gain-guided ~increase or decrease the noise in the corresponding experi-
semiconductor lasers. Later it was generalized for arbitrarynent of Ref.[9].
systems within a semiclassical thedB} and recently within
a complete quantum theofg]. Also many concrete models
have been analyzed theoretically in def&i]. On the other Il. LINEAR AMPLIFIER
hand, the essential parts of the theory have been confirmed ) o )
experimentally in various systems with large output coupling The genergl case of the linear amplifier is described by the
[8], coupled transverse polarizatiof@], or inserted small Master equatiof6]
aperture§ 10]. The measurement of an excess-noise factor
up to a few hundreds for geometrically unstable laser cavities d. 1 L
[11] is particularly remarkable. =2 > Lm,n{Zaﬁpam—amaﬁp—pamag}
In our earlier paper$6], we have discussed the excess nm
noise in the linear operation regime, that is, just around the 1 o
threshold for lasing. In this case of a linear attenuator or +5 > Tmnf2appal—alap—palan
guantum amplifier, the excess noise is determined by only a nm
few properties of the reservoirs, and the results emerging are o
of rather universal character. Unfortunately this general be- —iE wn[a;ﬂan,p] (1)
havior breaks down when saturation sets in. In an actual n
laser, the noise depends on the details of the physical con-

figuration, which gredat:y complrzga;esh the analyfls. In Ith'sﬁr the density operatgs wherea, anda/ denote the anni-
paper we treat & mo €l case which, however, re ates cloself|ation and creation operators of the field modes. The ma-
to experimentally realizable situations. trices

We analyze the case of a two-mode lajskt] which cor-
responds exactly to the experimental configuration of Ref.
[9]. Due to a non-Hermitian coupling between the two po- 1
larization modes of the laser, trFl)e I?newidth shows ech;)ess Lm,nZVJ d*XRLOO[Un()dL 0T Un(X)dL (0] (2)
noise. We consider the two transverse polarizations. Because
of the geometry of the cavity and of the reservoir, we can
neglect all other modes and the many-mode treatment of Refind
[6] reduces to two discrete modes. Using the Faraday effect,
the frequencies of the two circularly polarized modes are 1
split by an external magnetic field. Due to anisotropic losses, Fm,n=vf d*xRr()[Uy(X)dr () [um()dr(x)]  (3)
the two circularly polarized modes are coupled in a non-
Hermitian way. This leads to nonorthogonal eigenmodes—
the so-called quasimodes. In the theory of excess noise, sse determined by the parameters of the reservoirs: the am-
far, the enhancement factor only depends on the properties pfification rateR,_(x), the loss rat&R(x), and the directions
the quasimodes, in particular their scalar products or overef the dipole momentsl (x) anddp(x). In contrast to the
laps. We show that the amount of excess noise is modifietteatment in Ref{6], we have here made the assumption that
by the correlations between the quasimodes. These correltie spread between the frequencies is small relative to
tions are determined by the stationary state and may vartheir mean value.
strongly even in cases when the usual excess noise is sup- We consider the two transverse polarizations
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1 To solve the Fokker-Planck equation, we make the ansatz

0

0
1

) and

Pla,,a_,a% ,a* t)
of a cavity modeu(x). Using the Faraday effect, we assume

1 — _
that we can control the frequency splittingQ) between the = N(t)exp{ —= > [af - af (D16 (D[ ax— ay(t)]},
two circularly polarized modes, 2 %

1
ui(x>=(+i)u(x>/ﬁ,

by applying a magnetic field to the medium. In addition, the
field is assumed to experience an isotropic gaimnd aniso-

tropic losses with the ratés;, andC, in the directions of the N
horizontal and vertical polarizations, respectively. 2(G )k,|_<al ak) <a| ><ak> ©)

®

with the mean values of the amplituda_ﬁ(t)=(ék), the
Hermitian matrix G(t), and the normalization constant
N(t)=de{G(t)}/(27)?. The inverse of the matrig,

is the normally ordered correlation. Knowing the equations
of motion for (a,) and(a,a,) [6], we find the equations of
motion for &, andG~* to be given by

A. Fokker-Planck equation

Starting from the master equation, we arrive at the follow-
ing Fokker-Planck equation for tHe function:

o1 & J J d|a, a,
_ —|="|=bp|= 10
_E z an[z — a:—r“na’m]P dt(a_> (a_) (10

(9an(9aﬁq ﬁa’r;

1 P and
_ *
+2n’m:_ om *a”+(9 nam P d
—G '=DG +G" lDT+ L, (11)
| P P } dt 2
—i on ar— am P, (4)
ninzx 0 gak, " dan with D=(L-T)/2— i .
) ) ] The general solutions of Eg&l0) and(11) are given by
with the matrices defined as
Al1 O a () o @+ (0)
L= } (5 (Z w) a0 (12
2|10 1 - -

1[Cy+C, C,—C, and

=_ , 6
2|c,—C, Cp+C, ©

G Lt)=e®[GL0)—-G_eP+ G, Y, (19
and
where G_ ! is the stationary solution of Eq11) which is
unigue as long a¥"#L. For the Green functio of the
(@) Fokker-Planck equatiori4) we use the initial condition
G Y0)=0 so that G(a,;,a_,a,(0),a_(0),t=0)
The indices+ denote the two circularly polarized modes. = 6 (a, — a,(0))6®(a_— a_(0)). Here 5 denotes the
Here we are working in a frame rotating with the mean fre-two-dimensional delta function.

QO 0
0 —-Qf

w=

quency of the two modes. For our particular example, we find
1 A
1 2Ch+C,—A (Ch+C,—A)2+1602 (Ch—C,)(Cr+C,—A+4iQ)
s = 14
Gs (Ch+C,—A)2+1602—(C,—C,)2(Ch—C,)(Ch+C,—A—4iQ) (Ch+C,—A)2+1602 (14)
and
H 2__ _ 2 —i —
eDt:e(Ch+Cv_A)t/4 SII’](\/Q (Ch CU) 16y 10 (Ch Cv)/4 + COS{\/QZ -C )2/1&]
JQ?—(C,—C,)%16 [(C,—C,)/4 iQ 01
(15
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Lh(i:s itgtionary state is valid for the case below threstold vIM(Du=([v*al (t+n+v*al (t+7)][v.a,(t)
h v
+v_a (t)])s. 17
B. Spectrum
The spectrum of the electromagnetic field is defined as th@_ccordmg to the quantum regression theord, M(7) is

Fourier transform of the two-time correlation function 9"V€" by

(EC)(t+ 1)E((1) ), in the stationary statet ). In order X
to obtain the spectrum for a certain polarization orientation, M(T):J d4aJ d4a’( a:)
we have first to project the field onto the normalized veotor -
of this orientation. To do so, it is convenient to calculate first X(a! @ )G(as a_a, a’ ,HPJa’)

@ (t+na.(t)s <éi<t+r>é_<t>>s] o —2(GS1eP™)T, (19

M(7)=| . - ~ -
t T
a_(t+7ra,(t a_(t+7ra_(t
(= 12+ (1) (a=( Ja-(V)s whered*a denotes the integration over the whole two-mode
and then to project onto the particular direction phase space arf; is the stationary state function.
Particularly interesting are now the polarization directions
Uy of the quasimodes which are given by the normalized eigen-
V=, vectorsv*) of the matrixD. Those can be selected by ad-
justing the polarization of the detector accordingly. For the
using case 4Q|>|C,—C,|, we find
M(t)(T):erd(t)*v(t)‘res—l*v(:)
A 2 2 2
m[(CthCU—A) + 160 +(Ch_Cv) ]
_=hT™v e~ (CntC,~A)T/47i{Q?~ (C\—C,) /167 (19)
(Ch+C,—A)2+1602—(C,—C,)?
|
Here regime above threshold in the next section. As we see from

Eqg. (19), the excess noise factor depends on the stationary
d*)=—(C,+C,—A)/4=iJQ?~(C,—C,)%/16 (20)  state through TG *v(*). If G_ ! is proportional to the
unit matrix, thenK=1 since then the two quasimodes are
are the eigenvalues dd. This result is for the case below correlated in such a way that their individual excess noises
threshold, A<C,+C,, and outside the locking region, cancel each other. This is the case for, ¢ C,— A)>4|Q).
4/Q|=|C,—C,|, when the two eigenvalues™ have dif-  The two quasimodes are uncorrelated onlyGf, ¢ C,—A)

ferent imaginary parts. Taking the real part of the Fourier<4|q)| which means tha6 ' is proportional to the inco-
transform we obtain a Lorentzian spectral line with the widthy,grent superposition " @M+ ey je., we then

1 have
szE(Ch+CU—A). (21
< 1602+ (C,—C,)? 23
Hence, the linewidth itself does not show any excess width. 16Q%—(C,—C,)?
However, considering that the quasi mode experiences a loss
rate Cp+ C,)/2 and an amplification rat&/2, the stationary This still differs from the usual result
state intensity given by,=M(0) shows an excess of inten-
sity by a factor 1602
T ler—(c,-c,) 9
(Gt CoA 1802 (C-C)? (Ch=Co)
(Ch+C,—A)*+160°—(Cy—C,)? approximately by a factor of 2 for large excess noise. The
. ) o ] . maximal excess noise is given by
in comparison with intensity\/(C,+C,—A) given by the
single-mode theory. Note that in the linear regime the inten- RY ~2
sity of the field is entirely due to the field uncertaitiboise. maX:(Ch+ ComA)+2(Ch=Cy) , (25)

However, a similar argument will be seen to apply for the (Ch+C,—A)?
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which depends only on the ratio of the isotropic and the 1 B _ _
anisotropic contributions of the reservoir as can be seen from Deﬁzi(L—F)— iw— §(|a+|2+|a,|2)
Aw, Eqg.(22), andGs’l, Eq.(14). Itis interesting to note that

in the two directions perpendicular to the two quasimodesrhe parameteB describes the strength of the saturation and
there is no excess noise. o is proportional to the amplification rat. In this isotropic
We can equivalently write the linewidth as case, all polarization directions experience the same satura-
tion. All possible superpositions of the two quasimodes are
(26) stable. If the initial condition excites a pure quasimode, the
oscillation is perfectly harmonic as shown in Figa)l How-
ever, if both quasimodes are excited, the oscillations of both
What counts in the Shawlow-Townes linewidth formula is modes show higher harmonics of the quasimode frequency
the ratio between the damping and amplification rates ands shown in Fig. (b). The strength of the higher harmonics
the stationary intensity. We have chosen here the normalepends on the ratio between the quasimode frequency
order to calculate the spectrum. Using symmetric or antinory/Q)?— (C,—C,)?/16 and the time scale of th@éntensity
mal order, theK factor is slightly different. For instance, for saturation determined bA—(C,+C,) and B. The time
the antinormal orderG; * has to be replaced b§; '+1 in  scale of the saturation can be chosen independently of the
Eg. (19. However, in the regime of large excess noise,stationary state intensity, which is given byA+{C,

(29

0 1)

1 A
Aw==(Ch+C,—A)=K—.
2 R

(Ch+C,—A)<4|Q|, the different orderings agree. —C,)/B. If the saturation process is much slower than the
quasimode frequency, then the oscillation is harmonic again
IIl. NONLINEAR AMPLIFIER as shown in Fig. (). The nonlinear term is given by the

sum of the intensities of the two quasimodes independently.
In this section we are considering an amplifier with satu-This can be shown easily by applying the rotating wave ap-
ration. This system describes the laser above threshold withroximation to the nonlinear term in E8). In the other
A>C,+C,. In the Appendix we derive the equations for a extreme case, when the saturation is much faster than the
multimode amplifier with saturation from an atomic model quasimode frequency, the intensity of each quasimode is 0s-
for the reservoir. We restrict ourselves to the case of smakillating with the quasimode frequency which leads to higher
saturation. Then, like in the single-mode case, there is only Aarmonics of field oscillation. Then the real part of the field

fourth-order term of the type amplitude approximates a rectangular function whereas the
imaginary part resembles a triangular function as shown in
Alaapaa T fa oA Fig. 1(b). Note that the distinction between real and imagi-

T T T
n,mE,kJ Lomic{PFAnamaA] 48] pranamdy+62,d) pranany nary parts depends on the choice of the initial phase.

When the reservoir has its dipole moments oriented in the
AAAAAAAAAA direction of the horizontal and of the vertical polarization,

~4anaid pran + anandial pe} @7 then we have a case with
added to the master equatitl) with the coefficientsC,, 1, | Deg=(L-I)/2—iw
as defined in Eq(A20) in the Appendix. As can be seen . . .
from the definition,£ depends on the geometry of the reser- B| la |?+|a_|? a a*+ata
voir. We only consider the three generic cag2sof mode ol s s — 2 — 2 |
competition, mode locking, and the neutral one of coexist- e N s
ence of the two modes. (30)

Here the the quasimodes are competing. Depending on the

initial condition either one or the other is excited and sup-
The first point which we are addressing is how the quasipresses the other as shown in Fig. 2. When the reservoir has

modes are modified by the saturation. For this purpose, wis dipole moments oriented uniformly over all transverse

are considering the expectation values of the field amplitudedirections of the polarization, we have a case similar to the

without noise. In that case, the quartic terms in the masteisotropic one with

equation can be approximately factorized in the amplitudes.

A. Quasimodes

Then the time evolution is covered by an equation like Eq. 1 . B
(10) Deﬁ=§(L—F)—|w—Z
d|a a,| B —  — |a, a,|?+2]a_|? 0
&(:):D(:)‘E('“”Z*'“'2)<_) . I
a_ a o 0 2la|?+]a_|?
=D ﬁ( ﬁ+) , (2¢)  This type of reservoir constitutes a realistic description of an
N oo amplifier without any polarization or frequency dependence.

When the quasimode frequency is much faster than the am-
with an effective time evolution operator given by plification and saturation processes, the situation behaves
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L
-5 | N
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E — (), - FIG. 2. Case of mode competition. The initial condition excites
AN ,’ the two quasimodes in the ratio 3:2 of the amplitudes. We #se (
L PREEREN / \ —-C,—C,)/2=2 andB/2=0.1; the remaining parameters are as in
21 \’ ‘\ / \ Fig. 1. In(a) we show the amplitude& and in(b) the intensitied
/ \ \ / // of the quasimodes. After a few oscillations the mode which was
// /Y%\/ / N initially excited more strongly supersedes the other one.
/
/\ ' \‘\\ ' : / P \;0 which amplifies independently the right and left circularly
\ \ ‘40\/ >/ polarizations, respectively. Note that different reservoirs can
\ / / yield identical matrices. but different tensor<..

/ or the purpose of this paper we are satisfied wi is
| \ \ For th f th tisfied with th
h N, )(\ /’ rather qualitative discussion. All we want to emphasize is

~ N that the quasimode description is not changed by the

nonlinearities—at least not in the case of perfectly isotropic
saturation. Only some features like stability, mode competi-
tion, and higher harmonics of the quasimodes depend on the
details of the reservoir.

FIG. 1. Behavior of the quasimodes in the isotropic case. Ex
actly one quasimode is excited (@). The oscillation of the real part
(dashed lingand the imaginary part of the field amplitute(short
dashed ling are perfectly harmonic. The parameters afe-Cj,
—-C,)/2=2, (C,—C,)/2=1.99,B/2=0.1, andQ=1. The oscilla-
tion period and the intensity are given k22— (C,—C,)%/16 and In this section, we investigate the linewidth of the quasi-
(A—C,—C,)/B, respectively. In(b) also a small part of the other Modes in the saturated case. Then the intensity is taken to be
quasimoddreal part solid line, imaginary part long dashed Jile  stabilized, and the linewidth is mainly caused by the phase
excited by the initial condition. The oscillation shows strong non-diffusion. In the Fokker-Planck equatiod), the (normal-
linearities. In(c) we show the same situation as (h) but (A ordey noise originates from the diffusion term

—C,—C,)/2=0.02 andB/2=0.001. This results in the same inten- Zhme+ Lnymﬁzlﬁan&a;. When we express this in the ampli-
sities; however, the higher harmonics are practically not visible. tydesg, of the quasimodes, we find

B. Linewidth

like in the previous case as shown in Figa)3 Otherwise it 32

exhibits mode competition between the horizontal and verti- 2+ ( 2+ Ln,mC#f)* ng))—*

cal polarization and the oscillation frequency is given by the PATS ATIES BB,

bare mode frequend as shown in Figs. ®) and 3c). The A 52

exactly isotropic case can be realized by a reservoir, as used == > ( > el ch))—_ (32
above, in combination with a reservoir of the same strength 2 pu== \n=x 9B,3B},
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20 ~ 1 ( C(Jrv)

1 /\/\/\ (012 4z | ¢

(33

expressed on the basis of the circular polarization modes.

\/r\/ Now we will consider only the diagonal term

10 /\/ Vi #%19B.dB* . When the two quasimodes are orthogonal the
cross term is zero. When they are almost identical, the cross

term leads to a mixing of the two modes; however, this does

not contribute significantly to the noise. Transforming to a

\/\/\/\/\/\/\/\/\’\A polar representation of the field amplituge =R, e'¢+, we
get

100 200 300 4 AR O S 34
. IB.opc A\R? 9p? TR ar )
1000 {1} . . .
Assuming that the moduluR, of the quasimode amplitude
( is constant because of the saturation, the diffusion term
(b) A1 P
(5712 + 1)) 5 — pye (35
2 4R% 9
500
only describes diffusion of the phase, .

The interesting point is to see how the quasimode ampli-
tudeR, connects to the intensity of the field in the polariza-
tion direction of the quasimode. Using the field operator ex-
pressed in terms of quasimodes,

10 t 20
R \ Lo ~ e(Ya (O Lt [P4
[/a\} /A ,\ - Oa+ 1a_= et v)2 v)2 C(V) v
Val n\, \ | \,/\ © | S 2 4 2 |l
20 \ \ (36)
/ \ we find the field in the direction of the quasimode by pro-
\ ] \ jecting onto the normalized eigenvectors
YERE \ N1
/ \ / o0 )
-20 t . Lo .
\ Hence the intensity is given by
\AN X \ '
J N/ \ / /
| 1
FIG. 3. Realistic reservoir competition. The initial condition ex- |2+ )2
cites the two quasimodes in the ratio 3:2 of the amplitudes; the
remaining parameters are as in Fig. 1. (B we show the two C(Jr")* c(++) c(++)* c(+”)
intensities| for (A—Cy—C,)/2=0.02 andB/2=0.001 and in(b) cm* [ o(+) ¢ [ ™ s
for (A—C,—C,)/2=20 andB/2=1. Whereas(a) exhibits mode 5 5 — — (ALA,).
competition, in(b) the quasimodes are locked and the field ampli- vp== cW* 2 +clWr2 (7 412 g
tudesE oscillate with the bare mode frequenfyas shown inc); (39)
the (stablg stationary state is approximately given by the vertical
polarization which experiences the smallest loss. The  (usua) excess noise factor K= (|C(+V)|2
Here. the +1c™?)?/]c™2 + (M2 |2 is large when the two quasimodes
' become degenerate. In that limit the intensity can be written
c as
ct)
l,~———————((ATA ) +(ATA_)+(ATA
are the(unnormalized eigenvectors oD which define the ! |c(++)|2+|c(f)|2(< A AAH +

quasimode operatod,=c(Va, +c{”a_ together with the

o
quasimode function +(ALAL)). (39
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with (ATA, )=R2, we see that the relation between the —i cosf+e ¢ sin 9’2
intensity | . in the polarization direction of the quasimode K=
and the intensityRi of the quasimode itself depends
strongly on the correlation of the two quasimodes in the

) In th f ¢ o ¢ th In Fig. 4 we show how the functiofi{/(2Bf,) behaves
stationary state. In the case o per ect competition of thg, ihe case of isotropic saturation, when, for symmetry rea-

quasimodes, we havd} A_)=(A"A,)=0 and the phase sons, the maximum is at= /2. For a small net amplifica-
diffusion constant, Eq(35), is given by tion (A—C,—C,)/2, the stationary state is given by states
such as|#, ), and hence we expect the usual excess noise
which can be expressed #s=tarf(¢/2— m/4). For a large
net amplification, the two circular modes lock in such a way
as to yield the vertical polarization which experiences a
Such a stationary state can be constructed with states like Smaller loss than the horizontal one. Then no excess noise is
present. In both the two extreme cases, the stationary state is
|l/,+>:|a+zc(++)ao>|afzc(j)ao> (42) highly localized which justifies our assumptions. In the pa-
rameter region between the extremes, we expect our treat-
obeyingA+|(,//+>=(c(+)2++c(+)2,)ao|¢+> andA,|¢,//+>=0. ment to be only quantitatiyely'right for small saturatiBn_ '
The other extreme cask=1, emerges when the station- The other types of reservoirs discussed above show a similar

ary state is constructed by a incoherent superposition dpehavior.

states such as the two-mode coherent stgje= |a )| a_).
We find then IV. CONCLUSIONS

: — . (46)
i cosf+e'¢sinf ‘

Al A
— (|24 [cDP)D = g

The usual value of the excess noise factor is modified by
the correlations of the quasimodes in the stationary state.
This argument holds both below and above threshold. The
only difference is that, in the earlier case, the mean ampli-

R2+=|c(j)a++c(f)a,|2. (43) t_ude of the field is zero and only the uncertainties of the
fields are correlated. In the latter case, the important part of
If (s /) is real, then|c(++)*a++c(_+)*a_|2=|c(++)a+ the correlation originates form the amplitudes. Writing the

+ca_ |2 which yieldsA w=A/(81 ;) and therefore no ex- Mode  correlation  as (afam)=ay amt((a3—a)(@n
cess noise. Note that whé@,—C,|=4|Q|, for the case of —ay,)), this means that we can negleet o, in the case
maximal excess noisec{"/c'™) is purely imaginary. below and((a’ — a*)(ay— ay)) in the case above thresh-
The remaining step is to solve for the stationary state obld. Above threshold, our approximation works best with
the Fokker-Planck equatidd) including the saturation term, large amplitudes, in particular since ttexces} noise of the
Eq. (27). An ansatz consistent with the fourth-order approxi-modes may be large. Since we are, however, using only the
mation is first order of the nonlinearities, the amplitudes should not be
too large. Nevertheless, our analysis explains the principles
Play,a_)=Po(a,,a_)exp{~Bf(a.,a_)}, (44  of the dependence of the excess noise on the mode correla-

o=l a, +cS%a |121(1c(P)2+]c)?) (42

and

tions.
whereP, is the solution of the linear Fokker-Planck equation ' \ye find that the excess noise is the largest when the iso-

andf is a quartic function. We use the coordinate represenggnic parts of the net amplification are small in comparison
tation (a. ,a_)=r(cosf,¢*sinf) where we chooseto be it the anisotropic parts of the losses. This could be verified
r_eal since an overall p_hase factor does not r_natter in the stg the experimenf9]. By choosing a more anisotropic loss
tionary state. The stationary state can be written as and by adjusting the frequency splitting using the magnetic
field accordingly, higher excess noise could be achieved.
Pla, ,a_ )= exp{ £,(6,0)r2— Efz(g,go)r4 . (45  Changing the anisotropic part of the losses may also mean a
2 change of the isotropic part of the losses. This could easily
be compensated by changing the isotropic gain correspond-
In principle, the functiond; andf, can be calculated ana- ngly, since only the net amplification counts.
lytically, but for most of the interesting cases the formulas The usual excess-noise predictions are completely inde-
become too lengthy for any interpretation, and we only showhendent of the isotropic parts of the reservoir, since these
numerical plots. For a sufficiently small nonlinearity parts do not change the nonorthogonal eigenmodes. Hence,
B—which means that the laser operates with highthe excess noise is assumed to be maxifioamally infinite)
intensity—theP function is strongly localized in thedirec-  when the Hermitian coupling of the modes by the Faraday
tion. Then the essential contributionsrinlirection are at the effect equals the non-Hermitian coupling introduced by the
maximum,r?=f,/(Bf,), for any fixed ¢ and ¢. HenceP  reservoir. We find this behavior only as long as the quasi-
~ exp{fi/(2Bf,)} where for small B the maximum of mode frequency is faster than the time scales of the isotropic
f2/(2Bf,) will dominate. From the discussion above, it fol- part of the reservoir. Otherwise the isotropic part of the res-
lows that in the case of maximal excess noise ervoir dominates the stationary state and the excess noise
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FIG. 4. Stationanp functions. In(a) we find the stationary state
given by 6=w/2 and ¢~—0.48r for the parametersA/2
=2.0001,C,/2=2, C,/2=0, andQ)=1. The excess noise factor is
then aroundK~1000. In(b) and(c) A/2=5 and 36, respectively.
For increasing), the stationary state moves¢o= 7 with no excess
noise.

PHYSICAL REVIEW /&2 023814

itself does not show an excess width. The excess-noise factor
appears only in the Schawlow-Townes linewidth formula
where the relation of the noise to the intensity is expressed.
In the usual lasers, an increase of the intensity is hence re-
lated to a decrease of the linewidth. In the case of excess
noise, the intensity may increase but the linewidth remains
constant. Therefore the excess-noise factor appears in the
Schawlow-Townes formula.
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APPENDIX: NONLINEAR AMPLIFIER

In this section we derive the master equation for a non-
linear multimode amplifier. Here, we do not consider damp-
ing which will be added later by a separate reservoir—and
hence by a separate Liouville operator in the master equa-
tion.

The free evolution of the field is given by the Hamiltonian

HOthg wpalay. (A1)

Here,a! anda, are the creation and annihilation operators of
the various modes with frequencies, and orthonormal
mode functionsu,(x), respectively. We use an atomic model
for the reservoir as has been used in the single-mode case
[14]. We assume that the light only interacts with the two
levels |e) and |g) of the atoms with their corresponding
HamiltonianHy, where we neglect the center-of-mass mo-
tion. The interaction is then described by the interaction
Hamiltonian

Hi=dY su,(x)(alo™+a,0"), (A2)

whereg™ are the atomic transition operators and the vedtor
is the dipole moment of the transition.
The master equation for the total system is then given by

d. i~ - A -
GiPF A==~ z[Hor+Hoat Hiupria(D) ]+ Loprat).
(A3)

The Liouvillian £p causes a decay from the atomic leviels
and|g) to some auxiliary levels with a decay raje From
there the population is pumped to the leve) and the
center-of-mass state. , . We use the center-of-mass free-
dom of the atom only to introduce a possible position depen-

becomes limited. Since at the point of maximal excess noisdenceP(x) = (x|p¢.m |X) of the reservoir. For simplicity, we
the quasimode frequency tends to zero, the noise never dieglect here diffusion, recoil, or other effects due to the mo-

verges.

tion of the atom.

Another interesting point is that the spectral line shape The time evolution of the field state,
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d. [N i .. d. [N R R
aPF(t) =- g[HOF Pr(t)]— gTrA{Hl.DHA(t) &PF(U =- %[HOF PE(D)]F+To[ Tra{ O} = pe(D)],
R . (A10)
—pe+a(DH}, (A4)

hich is a cl ion fi i f
is obtained from Eq(A3) by tracing out the atomic degrees whien1sa ¢ osed m;lster equatlcc)jnl.fqr(t)l S|_nce, becﬂause ©
of freedom. Describing only the internal degree of freedomEqv\(/As)’ O(t_) c?n ﬁ expressed finear yv'\r; terms mi(t). h
of the atom in the subspace of the levis and|g), we can & now simplify the master equation. We can express the

write the total master equatiah3) as the trace ofO as Tr{O}=[dx(x|((e|Oe)+(g|O[g))[x).
Note that from now on we drop the notation of the explicit
d. i . . time dependence of the operat@sand pr . We define the
GiPF A==z [Hor+Hoat Hi prsa(D) ] = 7pr4a(l) position-dependent pumping ratgx)=r(x|pc.m|X) and
the mode operator,
+ r0|e><e|Pc.m.PF(t)- (A5)

[

We obtain the termg|e)(e|pe m pr(t) by an adiabatic elimi- BOO=7 Ek 2(UX) )y (A1)

nation of the auxiliary levels wheng, is the repumping rate

to the statge). Note that the normalization frrpr.a(t) is  which has the dimension of a Rabi frequency, yielding
not conserved on this subspace and thatr .
Assuming that the dynamics associated with the atomic o " on
levels is much faster than the dynamics of the field, we want ro(x|<e|©|e)|x>=r(x) 2 (—y )" 2 (Zm)
to eliminate adiabatically the degrees of freedom of the n=0 m=0
atomic levels. To do so, we transform E@\5) into the

~ a5t ~ ~ 51 _
interaction picture which removes the extremely fast free X[B(X)BT(X)]"pe[ BB ()]

time evolution. Denoting the interaction picture by a tilde, (A12)
we obtain
) and
de I =2 = P
&PHA(U:_%["N PE+A(D) ] = vpr1a(t) R
ro(x|(g/Olg)[x)
+1ol€)(elpe.m pr(t)~0. (A6) - " oon .
=102 (-y "X (2m+1)8*<x>
This approximation means that the decay rgtés much " m=
faster than all various detunings,— w, between the field X[B(X)BT(x)]"pe[ B(X)BT(x)]" ™ 1B(x).
modes and the transitige)-|g) with frequencyw, . Conse-
qguently, we are neglecting all frequency dependences of the (A13)
reservoir. Transforming back to the laboratory frame and de-
fining the operator Using the operator
A_ Y- . 1 <[ 2n
O=rprea (A7) ro,u(x)=§r(x)n§1 (—y*z)“*lmzzo (2m+ 1)
we get X[B(x)BT(x)]"pe[ BOX)B () ]" ™,
) o P (A14)
Oo(t)= |e><e pempe(t) =7 —[H,O1].  (A8)
Y we can write
The explicit solution of Eq(A8) is . . o at
(x|(e[Ole)[x) = p(x)+ vy *[B(x)B"(x) u(x)
e} . n n A A ~
o= ('—) S ( ”) +1(0)B()BT(X)] (A15)
n=0 ﬁ’}’ m=o0 \M
~Aa - and
X(_1)mH:n|e><e|Pc.m.PF(t)H|n . (A9)
Equation(A4) does not change when we restrict ourselves (x(glOlg)Ixy=2y"2BT(x) u(x)B(x).  (A16)
to the subspace of the levels) and|g). Using Egs.(A7)
and (A8) we rewrite Eq.(A4) as Hence, we find the time evolution given by the equation
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pr=(x)+2y BB 1(x) + 2(x)B(X)B(x)]

+y [B()BT(x)B(x)BT(x) (x)
—2B(x)BT(x)u(x)B(x)B'(x)
+r(x)B(x)BT(x)B(x)BT(x)] (A17)
together with the master equation

d.

PTG ;i_[HOF PE]F f dxr(x){(u(x) = pr)

+y BB (x) () + m(x)B(x)BT(x)
+2BT(x) () B(x) ]} (A18)

In the limit of a linear approximation, this master equation
reproduces the previously derived in RE]. In the case of
one mode and a distribution of the atomic reservoir concen

PHYSICAL REVIEW /&2 023814

d.

aPF: 2 I—mn{zaonam amanPF

[HOF PF]+

~ o At ~ o At At
_pFaman}+n;kl En,m,k,l{pFanamakal

+anandd prl, (A19)

where the matrixX. describes the linear part of the amplifi-
cation as defined in Eq5) and the tensor

1
Lamir= (i) enenerry | axr00T0,00dT un()d]

X[uk(x)d][u(x)d] (A20)

trated at one single point, the master equation agrees with the

one introduced by Sargent, Scully and Laf2h14].
Approximating the implicit master equatiqi18) up to
the order ofy™*, we find the explicit master equation

describes the nonlinear effects in the lowest order. Such an
approximation is often called the fourth-order approximation
in the literature] 2].
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