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Two-mode laser with excess noise

P. J. Bardroff and S. Stenholm
Department of Physics, Royal Institute of Technology (KTH), Lindstedtsva¨gen 24, S-10044 Stockholm, Sweden

~Received 17 November 1999; published 20 July 2000!

In this paper we investigate how excess noise behaves in a two-mode laser below and above threshold. In
both cases the mode correlations of the stationary state modify the noise essentially. Our two-mode model
relates directly to experimental situations.

PACS number~s!: 42.50.Lc, 42.55.Ah
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I. INTRODUCTION

In the usual lasers the linewidth is given by th
Schawlow-Townes formula@1–3#. In certain systems, how
ever, the noise can be enhanced by the so-called excess-
factor. This was predicted by Petermann@4# for gain-guided
semiconductor lasers. Later it was generalized for arbitr
systems within a semiclassical theory@5# and recently within
a complete quantum theory@6#. Also many concrete model
have been analyzed theoretically in detail@7#. On the other
hand, the essential parts of the theory have been confir
experimentally in various systems with large output coupl
@8#, coupled transverse polarizations@9#, or inserted small
apertures@10#. The measurement of an excess-noise fac
up to a few hundreds for geometrically unstable laser cavi
@11# is particularly remarkable.

In our earlier papers@6#, we have discussed the exce
noise in the linear operation regime, that is, just around
threshold for lasing. In this case of a linear attenuator
quantum amplifier, the excess noise is determined by on
few properties of the reservoirs, and the results emerging
of rather universal character. Unfortunately this general
havior breaks down when saturation sets in. In an ac
laser, the noise depends on the details of the physical
figuration, which greatly complicates the analysis. In t
paper we treat a model case which, however, relates clo
to experimentally realizable situations.

We analyze the case of a two-mode laser@12# which cor-
responds exactly to the experimental configuration of R
@9#. Due to a non-Hermitian coupling between the two p
larization modes of the laser, the linewidth shows exc
noise. We consider the two transverse polarizations. Bec
of the geometry of the cavity and of the reservoir, we c
neglect all other modes and the many-mode treatment of
@6# reduces to two discrete modes. Using the Faraday ef
the frequencies of the two circularly polarized modes
split by an external magnetic field. Due to anisotropic loss
the two circularly polarized modes are coupled in a no
Hermitian way. This leads to nonorthogonal eigenmode
the so-called quasimodes. In the theory of excess noise
far, the enhancement factor only depends on the propertie
the quasimodes, in particular their scalar products or ov
laps. We show that the amount of excess noise is modi
by the correlations between the quasimodes. These cor
tions are determined by the stationary state and may v
strongly even in cases when the usual excess noise is
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posed to remain constant. We first analyze the linear c
below threshold. There the spectrum can be calculated
lytically. In the nonlinear case above threshold, we only tr
the case of small nonlinearities. We can make a predic
for the maximally possible excess noise and suggest how
increase or decrease the noise in the corresponding ex
ment of Ref.@9#.

II. LINEAR AMPLIFIER

The general case of the linear amplifier is described by
master equation@6#

d

dt
r̂5

1

2 (
n,m

Lm,n$2ân
†r̂âm2âmân

†r̂2 r̂âmân
†%

1
1

2 (
n,m

Gm,n$2ânr̂âm
† 2âm

† ânr̂2 r̂âm
† ân%

2 i(
n

vn@ ân
†ân ,r̂ # ~1!

for the density operatorr̂ whereân and ân
† denote the anni-

hilation and creation operators of the field modes. The m
trices

Lm,n5
1

VE d3xRL~x!@un~x!dL~x!#@um~x!dL~x!# ~2!

and

Gm,n5
1

VE d3xRG~x!@un~x!dG~x!#@um~x!dG~x!# ~3!

are determined by the parameters of the reservoirs: the
plification rateRL(x), the loss rateRG(x), and the directions
of the dipole momentsdL(x) and dG(x). In contrast to the
treatment in Ref.@6#, we have here made the assumption th
the spread between the frequenciesvn is small relative to
their mean value.

We consider the two transverse polarizations
©2000 The American Physical Society14-1
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S 1

0D and S 0

1D
of a cavity modeu(x). Using the Faraday effect, we assum
that we can control the frequency splitting6V between the
two circularly polarized modes,

u6~x!5S 1

6 i D u~x!/A2,

by applying a magnetic field to the medium. In addition, t
field is assumed to experience an isotropic gainA and aniso-
tropic losses with the ratesCh andCv in the directions of the
horizontal and vertical polarizations, respectively.

A. Fokker-Planck equation

Starting from the master equation, we arrive at the follo
ing Fokker-Planck equation for theP function:

Ṗ5
1

2 (
n,m56

Ln,mH 2
]2

]an]am*
2

]

]am*
an* 2

]

]an
amJ P

1
1

2 (
n,m56

Gn,mH ]

]am*
an* 1

]

]an
amJ P

2 i (
n,m56

vn,mH ]

]am*
an* 2

]

]an
amJ P, ~4!

with the matrices defined as

L5
A

2 F1 0

0 1G , ~5!

G5
1

2 FCh1Cv Ch2Cv

Ch2Cv Ch1Cv
G , ~6!

and

v5FV 0

0 2V
G . ~7!

The indices6 denote the two circularly polarized mode
Here we are working in a frame rotating with the mean f
quency of the two modes.
02381
-

-

To solve the Fokker-Planck equation, we make the ans

P~a1 ,a2 ,a1* ,a2* ,t !

5N~ t !expH 2
1

2 (
k,l

@a l* 2ā l* ~ t !#Gl ,k~ t !@ak2āk~ t !#J ,

~8!

with the mean values of the amplitudesāk(t)5^âk&, the
Hermitian matrix G(t), and the normalization constan
N(t)5det$G(t)%/(2p)2. The inverse of the matrixG,

2~G21!k,l5^âl
†âk&2^âl

†&^âk&, ~9!

is the normally ordered correlation. Knowing the equatio
of motion for ^âk& and ^âl

†âk& @6#, we find the equations o

motion for āk andG21 to be given by

d

dt S ā1

ā2
D 5DS ā1

ā2
D ~10!

and

d

dt
G215DG211G21D†1

1

2
L, ~11!

with D5(L2G)/22 iv.
The general solutions of Eqs.~10! and ~11! are given by

S ā1~ t !

ā2~ t !
D 5eDtS ā1~0!

ā2~0!
D ~12!

and

G21~ t !5eDt@G21~0!2Gs
21#eD†t1Gs

21 , ~13!

where Gs
21 is the stationary solution of Eq.~11! which is

unique as long asGÞL. For the Green functionG of the
Fokker-Planck equation~4! we use the initial condition
G21(0)50 so that G„a1 ,a2 ,a1(0),a2(0),t50…
5d (2)

„a12a1(0)…d (2)
„a22a2(0)…. Hered (2) denotes the

two-dimensional delta function.
For our particular example, we find
Gs
215

1

2

A

Ch1Cv2A

~Ch1Cv2A!2116V22~Ch2Cv!2 F ~Ch1Cv2A!2116V2 ~Ch2Cv!~Ch1Cv2A14iV!

~Ch2Cv!~Ch1Cv2A24iV! ~Ch1Cv2A!2116V2 G ~14!

and

eDt5e(Ch1Cv2A)t/4S sin~AV22~Ch2Cv!2/16t !

AV22~Ch2Cv!2/16
F 2 iV ~Ch2Cv!/4

~Ch2Cv!/4 iV G1 cos@AV22~Ch2Cv!2/16t#F1 0

0 1G D .

~15!
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TWO-MODE LASER WITH EXCESS NOISE PHYSICAL REVIEW A62 023814
This stationary state is valid for the case below thresholdA
,Ch1Cv .

B. Spectrum

The spectrum of the electromagnetic field is defined as
Fourier transform of the two-time correlation functio
^E(2)(t1t)E(1)(t)&s in the stationary state (t→`). In order
to obtain the spectrum for a certain polarization orientati
we have first to project the field onto the normalized vectov
of this orientation. To do so, it is convenient to calculate fi

M ~t!5F ^â1
† ~ t1t!â1~ t !&s ^â1

† ~ t1t!â2~ t !&s

^â2
† ~ t1t!â1~ t !&s ^â2

† ~ t1t!â2~ t !&s
G ~16!

and then to project onto the particular direction

v5S v1

v2
D

using
,

ie
th

th
lo

-

en

he

02381
e

,

t

v†M ~t!v5^@v1* â1
† ~ t1t!1v2* â2

† ~ t1t!#@v1â1~ t !

1v2â2~ t !#&s . ~17!

According to the quantum regression theorem@13#, M (t) is
given by

M ~t!5E d4aE d4a8S a1*

a2*
D

3~a18 ,a28 !G~a1 ,a2 ,a18 ,a28 ,t!Ps~a8!

52~Gs
21eD†t!T, ~18!

whered4a denotes the integration over the whole two-mo
phase space andPs is the stationary stateP function.

Particularly interesting are now the polarization directio
of the quasimodes which are given by the normalized eig
vectorsv (6) of the matrixD. Those can be selected by a
justing the polarization of the detector accordingly. For t
case 4uVu.uCh2Cvu, we find
M (6)~t!5etd(6)* v (6)†Gs
21* v (6)

5

A

Ch1Cv2A
@~Ch1Cv2A!2116V21~Ch2Cv!2#

~Ch1Cv2A!2116V22~Ch2Cv!2
e2(Ch1Cv2A)t/47 iAV22(Ch2Cv)2/16t. ~19!
om
ary

re
ses

he
Here

d(6)52~Ch1Cv2A!/46 iAV22~Ch2Cv!2/16 ~20!

are the eigenvalues ofD. This result is for the case below
threshold, A,Ch1Cv , and outside the locking region
4uVu>uCh2Cvu, when the two eigenvaluesd(6) have dif-
ferent imaginary parts. Taking the real part of the Four
transform we obtain a Lorentzian spectral line with the wid

Dv5
1

2
~Ch1Cv2A!. ~21!

Hence, the linewidth itself does not show any excess wid
However, considering that the quasi mode experiences a
rate (Ch1Cv)/2 and an amplification rateA/2, the stationary
state intensity given byI s5M (0) shows an excess of inten
sity by a factor

K5
~Ch1Cv2A!2116V21~Ch2Cv!2

~Ch1Cv2A!2116V22~Ch2Cv!2
~22!

in comparison with intensityA/(Ch1Cv2A) given by the
single-mode theory. Note that in the linear regime the int
sity of the field is entirely due to the field uncertainty~noise!.
However, a similar argument will be seen to apply for t
r

.
ss

-

regime above threshold in the next section. As we see fr
Eq. ~19!, the excess noise factor depends on the station
state throughv (6)†Gs

21* v (6). If Gs
21 is proportional to the

unit matrix, thenK51 since then the two quasimodes a
correlated in such a way that their individual excess noi
cancel each other. This is the case for (Ch1Cv2A)@4uVu.
The two quasimodes are uncorrelated only if (Ch1Cv2A)
!4uVu, which means thatGs

21 is proportional to the inco-
herent superpositionv (1)

^ v (1)†1v (2)
^ v (2)†; i.e., we then

have

K'
16V21~Ch2Cv!2

16V22~Ch2Cv!2
. ~23!

This still differs from the usual result

K5
16V2

16V22~Ch2Cv!2
~24!

approximately by a factor of 2 for large excess noise. T
maximal excess noise is given by

Kmax5
~Ch1Cv2A!212~Ch2Cv!2

~Ch1Cv2A!2
, ~25!
4-3
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which depends only on the ratio of the isotropic and
anisotropic contributions of the reservoir as can be seen f
Dv, Eq.~21!, andGs

21 , Eq.~14!. It is interesting to note tha
in the two directions perpendicular to the two quasimod
there is no excess noise.

We can equivalently write the linewidth as

Dv5
1

2
~Ch1Cv2A!5K

A

I s
. ~26!

What counts in the Shawlow-Townes linewidth formula
the ratio between the damping and amplification rates
the stationary intensity. We have chosen here the nor
order to calculate the spectrum. Using symmetric or antin
mal order, theK factor is slightly different. For instance, fo
the antinormal order,Gs

21 has to be replaced byGs
2111 in

Eq. ~19!. However, in the regime of large excess nois
(Ch1Cv2A)!4uVu, the different orderings agree.

III. NONLINEAR AMPLIFIER

In this section we are considering an amplifier with sa
ration. This system describes the laser above threshold
A.Ch1Cv . In the Appendix we derive the equations for
multimode amplifier with saturation from an atomic mod
for the reservoir. We restrict ourselves to the case of sm
saturation. Then, like in the single-mode case, there is on
fourth-order term of the type

(
n,m,k,l

Ln,m,k,l$r̂Fânâm
† âkâl

†24âl
†r̂Fânâm

† âk16âkâl
†r̂Fânâm

†

24âm
† âkâl

†r̂Fân1ânâm
† âkâl

†r̂F% ~27!

added to the master equation~1! with the coefficientsLn,m,k,l
as defined in Eq.~A20! in the Appendix. As can be see
from the definition,L depends on the geometry of the res
voir. We only consider the three generic cases@2# of mode
competition, mode locking, and the neutral one of coex
ence of the two modes.

A. Quasimodes

The first point which we are addressing is how the qua
modes are modified by the saturation. For this purpose,
are considering the expectation values of the field amplitu
without noise. In that case, the quartic terms in the ma
equation can be approximately factorized in the amplitud
Then the time evolution is covered by an equation like E
~10!:

d

dt S ā1

ā2
D 5DS ā1

ā2
D 2

B

2
~ uā1u21uā2u2!S ā1

ā2
D

5DeffS ā1

ā2
D , ~28!

with an effective time evolution operator given by
02381
e
m

s

d
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,
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.

Deff5
1

2
~L2G!2 iv2

B

2
~ uā1u21uā2u2!F1 0

0 1G . ~29!

The parameterB describes the strength of the saturation a
is proportional to the amplification rateA. In this isotropic
case, all polarization directions experience the same sat
tion. All possible superpositions of the two quasimodes
stable. If the initial condition excites a pure quasimode,
oscillation is perfectly harmonic as shown in Fig. 1~a!. How-
ever, if both quasimodes are excited, the oscillations of b
modes show higher harmonics of the quasimode freque
as shown in Fig. 1~b!. The strength of the higher harmonic
depends on the ratio between the quasimode freque
AV22(Ch2Cv)2/16 and the time scale of the~intensity!
saturation determined byA2(Ch1Cv) and B. The time
scale of the saturation can be chosen independently of
stationary state intensity, which is given by (A2Ch
2Cv)/B. If the saturation process is much slower than t
quasimode frequency, then the oscillation is harmonic ag
as shown in Fig. 1~c!. The nonlinear term is given by th
sum of the intensities of the two quasimodes independen
This can be shown easily by applying the rotating wave
proximation to the nonlinear term in Eq.~28!. In the other
extreme case, when the saturation is much faster than
quasimode frequency, the intensity of each quasimode is
cillating with the quasimode frequency which leads to high
harmonics of field oscillation. Then the real part of the fie
amplitude approximates a rectangular function whereas
imaginary part resembles a triangular function as shown
Fig. 1~b!. Note that the distinction between real and ima
nary parts depends on the choice of the initial phase.

When the reservoir has its dipole moments oriented in
direction of the horizontal and of the vertical polarizatio
then we have a case with

Deff5~L2G!/22 iv

2
B

2 F uā1u21uā2u2 ā1ā2* 1ā1* ā2

ā1ā2* 1ā1* ā2 uā1u21uā2u2 G .

~30!

Here the the quasimodes are competing. Depending on
initial condition either one or the other is excited and su
presses the other as shown in Fig. 2. When the reservoir
its dipole moments oriented uniformly over all transver
directions of the polarization, we have a case similar to
isotropic one with

Deff5
1

2
~L2G!2 iv2

B

4

3F uā1u212uā2u2 0

0 2uā1u21uā2u2G . ~31!

This type of reservoir constitutes a realistic description of
amplifier without any polarization or frequency dependen
When the quasimode frequency is much faster than the
plification and saturation processes, the situation beha
4-4
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like in the previous case as shown in Fig. 3~a!. Otherwise it
exhibits mode competition between the horizontal and ver
cal polarization and the oscillation frequency is given by th
bare mode frequencyV as shown in Figs. 3~b! and 3~c!. The
exactly isotropic case can be realized by a reservoir, as us
above, in combination with a reservoir of the same streng

FIG. 1. Behavior of the quasimodes in the isotropic case. E
actly one quasimode is excited in~a!. The oscillation of the real part
~dashed line! and the imaginary part of the field amplitudeE ~short
dashed line! are perfectly harmonic. The parameters are (A2Ch

2Cv)/252, (Ch2Cv)/251.99, B/250.1, andV51. The oscilla-
tion period and the intensity are given byAV22(Ch2Cv)2/16 and
(A2Ch2Cv)/B, respectively. In~b! also a small part of the other
quasimode~real part solid line, imaginary part long dashed line! is
excited by the initial condition. The oscillation shows strong non
linearities. In ~c! we show the same situation as in~b! but (A
2Ch2Cv)/250.02 andB/250.001. This results in the same inten-
sities; however, the higher harmonics are practically not visible.
02381
i-
e

ed
th

which amplifies independently the right and left circular
polarizations, respectively. Note that different reservoirs c
yield identical matricesL but different tensorsL.

For the purpose of this paper we are satisfied with t
rather qualitative discussion. All we want to emphasize
that the quasimode description is not changed by
nonlinearities—at least not in the case of perfectly isotro
saturation. Only some features like stability, mode comp
tion, and higher harmonics of the quasimodes depend on
details of the reservoir.

B. Linewidth

In this section, we investigate the linewidth of the qua
modes in the saturated case. Then the intensity is taken t
stabilized, and the linewidth is mainly caused by the ph
diffusion. In the Fokker-Planck equation~4!, the ~normal-
order! noise originates from the diffusion term
(n,m56Ln,m]2/]an]am* . When we express this in the ampl
tudesbn of the quasimodes, we find

(
n,m56

S (
n,m56

Ln,mcm
(m)* cn

(n)D ]2

]bn]bm*

5
A

2 (
n,m56

S (
n56

cn
(m)* cn

(n)D ]2

]bn]bm*
. ~32!

-

-

FIG. 2. Case of mode competition. The initial condition excit
the two quasimodes in the ratio 3:2 of the amplitudes. We useA
2Ch2Cv)/252 andB/250.1; the remaining parameters are as
Fig. 1. In ~a! we show the amplitudesE and in ~b! the intensitiesI
of the quasimodes. After a few oscillations the mode which w
initially excited more strongly supersedes the other one.
4-5
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Here, the

S c1
(n)

c2
(n)D

are the~unnormalized! eigenvectors ofD which define the
quasimode operatorsÂn5c1

(n)â11c1
(n)â2 together with the

quasimode function

FIG. 3. Realistic reservoir competition. The initial condition ex
cites the two quasimodes in the ratio 3:2 of the amplitudes;
remaining parameters are as in Fig. 1. In~a! we show the two
intensitiesI for (A2Ch2Cv)/250.02 andB/250.001 and in~b!
for (A2Ch2Cv)/2520 andB/251. Whereas~a! exhibits mode
competition, in~b! the quasimodes are locked and the field amp
tudesE oscillate with the bare mode frequencyV as shown in~c!;
the ~stable! stationary state is approximately given by the vertic
polarization which experiences the smallest loss.
02381
1

~c(n)
1
2 1c(n)

2
2 !

S c1
(n)

c2
(n)D ~33!

expressed on the basis of the circular polarization mode
Now we will consider only the diagonal term

]2/]b1]b1* . When the two quasimodes are orthogonal t
cross term is zero. When they are almost identical, the c
term leads to a mixing of the two modes; however, this do
not contribute significantly to the noise. Transforming to
polar representation of the field amplitudeb15R1eiw1, we
get

]2

]b1]b1*
5

1

4 S 1

R1
2

]2

]w1
2

1
1

R1

]

]r
1

]2

]r 2D . ~34!

Assuming that the modulusR1 of the quasimode amplitude
is constant because of the saturation, the diffusion term

~ uc1
(1)u21uc2

(1)u2!
A

2

1

4R1
2

]2

]w1
2

~35!

only describes diffusion of the phasew1 .
The interesting point is to see how the quasimode am

tudeR1 connects to the intensity of the field in the polariz
tion direction of the quasimode. Using the field operator e
pressed in terms of quasimodes,

Ê5S 1
0D â11S 0

1D â25 (
n56

1

c(n)
1
2 1c(n)

2
2 S c1

(n)

c2
(n)D Ân ,

~36!

we find the field in the direction of the quasimode by pr
jecting onto the normalized eigenvectors

S v1
(1)

v2
(1)D 5

1

Auc1
(1)u21uc2

(1)u2
S c1

(1)

c2
(1)D . ~37!

Hence the intensity is given by

I 15
1

uc1
(1)u21uc2

(1)u2

3 (
n,m56

S c1
(m)*

c2
(m)* D S c1

(1)

c2
(1)D

c(m)* 1
2 1c(m)* 2

2

S c1
(1)*

c2
(1)* D S c1

(n)

c2
(n)D

c(n)
1
2 1c(n)

2
2 ^Âm

† Ân&.

~38!

The ~usual! excess noise factor K5(uc1
(n)u2

1uc2
(n)u2)2/uc(n)

1
2 1c(n)

2
2 u2 is large when the two quasimode

become degenerate. In that limit the intensity can be writ
as

I 1'
K

uc1
(1)u21uc2

(1)u2
~^Â1

† Â1&1^Â1
† Â2&1^Â2

† Â1&

1^Â2
† Â2&!. ~39!

e

-

l
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With ^Â1
† Â1&5R1

2 , we see that the relation between t
intensity I 1 in the polarization direction of the quasimod
and the intensityR1

2 of the quasimode itself depend
strongly on the correlation of the two quasimodes in
stationary state. In the case of perfect competition of
quasimodes, we havêÂ1

† Â2&5^Â2
† Â1&50 and the phase

diffusion constant, Eq.~35!, is given by

Dv5~ uc1
(1)u21uc2

(1)u2!
A

2

1

4R1
2

5K
A

8I 1
. ~40!

Such a stationary state can be constructed with states li

uc1&5ua15c1
(1)a0&ua25c2

(1)a0& ~41!

obeyingÂ1uc1&5(c(1)
1
2 1c(1)

2
2 )a0uc1& andÂ2uc1&50.

The other extreme case,K51, emerges when the station
ary state is constructed by a incoherent superposition
states such as the two-mode coherent stateuc&5ua1&ua2&.
We find then

I 15uc1
(1)* a11c2

(1)* a2u2/~ uc1
(1)u21uc2

(1)u2! ~42!

and

R1
2 5uc1

(1)a11c2
(1)a2u2. ~43!

If ( a1 /a2) is real, thenuc1
(1)* a11c2

(1)* a2u25uc1
(1)a1

1c2
(1)a2u2 which yieldsDv5A/(8I 1) and therefore no ex

cess noise. Note that whenuCh2Cvu54uVu, for the case of
maximal excess noise, (c1

(1)/c2
(1)) is purely imaginary.

The remaining step is to solve for the stationary state
the Fokker-Planck equation~4! including the saturation term
Eq. ~27!. An ansatz consistent with the fourth-order appro
mation is

P~a1 ,a2!5P0~a1 ,a2!exp$2B f~a1 ,a2!%, ~44!

whereP0 is the solution of the linear Fokker-Planck equati
and f is a quartic function. We use the coordinate repres
tation (a1 ,a2)5r (cosu,eiw sinu) where we chooser to be
real since an overall phase factor does not matter in the
tionary state. The stationary state can be written as

P~a1 ,a2!5 expH f 1~u,w!r 22
B

2
f 2~u,w!r 4J . ~45!

In principle, the functionsf 1 and f 2 can be calculated ana
lytically, but for most of the interesting cases the formu
become too lengthy for any interpretation, and we only sh
numerical plots. For a sufficiently small nonlineari
B—which means that the laser operates with h
intensity—theP function is strongly localized in ther direc-
tion. Then the essential contributions inr direction are at the
maximum,r 25 f 1 /(B f2), for any fixedu and w. HenceP
' exp$f1

2/(2Bf2)% where for small B the maximum of
f 1

2/(2B f2) will dominate. From the discussion above, it fo
lows that in the case of maximal excess noise
02381
e
e

of

f

-

-

ta-

s
w

K5U2 i cosu1eiw sinu

i cosu1eiw sinu
U2

. ~46!

In Fig. 4 we show how the functionf 1
2/(2B f2) behaves

for the case of isotropic saturation, when, for symmetry r
sons, the maximum is atu5p/2. For a small net amplifica-
tion (A2Ch2Cv)/2, the stationary state is given by stat
such asuc1&, and hence we expect the usual excess no
which can be expressed asK5tan2(w/22p/4). For a large
net amplification, the two circular modes lock in such a w
as to yield the vertical polarization which experiences
smaller loss than the horizontal one. Then no excess nois
present. In both the two extreme cases, the stationary sta
highly localized which justifies our assumptions. In the p
rameter region between the extremes, we expect our tr
ment to be only quantitatively right for small saturationB.
The other types of reservoirs discussed above show a sim
behavior.

IV. CONCLUSIONS

The usual value of the excess noise factor is modified
the correlations of the quasimodes in the stationary st
This argument holds both below and above threshold. T
only difference is that, in the earlier case, the mean am
tude of the field is zero and only the uncertainties of t
fields are correlated. In the latter case, the important par
the correlation originates form the amplitudes. Writing t
mode correlation as ^ân

†âm&5ān* ām1^(ân
†2ān* )(âm

2ām)&, this means that we can neglectān* ām in the case

below and^(ân
†2ān* )(âm2ām)& in the case above thresh

old. Above threshold, our approximation works best w
large amplitudes, in particular since the~excess! noise of the
modes may be large. Since we are, however, using only
first order of the nonlinearities, the amplitudes should not
too large. Nevertheless, our analysis explains the princip
of the dependence of the excess noise on the mode cor
tions.

We find that the excess noise is the largest when the
tropic parts of the net amplification are small in comparis
with the anisotropic parts of the losses. This could be verifi
in the experiment@9#. By choosing a more anisotropic los
and by adjusting the frequency splitting using the magne
field accordingly, higher excess noise could be achiev
Changing the anisotropic part of the losses may also me
change of the isotropic part of the losses. This could ea
be compensated by changing the isotropic gain correspo
ingly, since only the net amplification counts.

The usual excess-noise predictions are completely in
pendent of the isotropic parts of the reservoir, since th
parts do not change the nonorthogonal eigenmodes. He
the excess noise is assumed to be maximal~formally infinite!
when the Hermitian coupling of the modes by the Farad
effect equals the non-Hermitian coupling introduced by
reservoir. We find this behavior only as long as the qua
mode frequency is faster than the time scales of the isotro
part of the reservoir. Otherwise the isotropic part of the r
ervoir dominates the stationary state and the excess n
4-7
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becomes limited. Since at the point of maximal excess no
the quasimode frequency tends to zero, the noise neve
verges.

Another interesting point is that the spectral line sha

FIG. 4. StationaryP functions. In~a! we find the stationary state
given by u5p/2 and w'20.48p for the parametersA/2
52.0001,Ch/252, Cv/250, andV51. The excess noise factor i
then aroundK'1000. In ~b! and ~c! A/255 and 36, respectively
For increasingA, the stationary state moves tow5p with no excess
noise.
02381
e
di-

e

itself does not show an excess width. The excess-noise fa
appears only in the Schawlow-Townes linewidth formu
where the relation of the noise to the intensity is express
In the usual lasers, an increase of the intensity is hence
lated to a decrease of the linewidth. In the case of exc
noise, the intensity may increase but the linewidth rema
constant. Therefore the excess-noise factor appears in
Schawlow-Townes formula.
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APPENDIX: NONLINEAR AMPLIFIER

In this section we derive the master equation for a n
linear multimode amplifier. Here, we do not consider dam
ing which will be added later by a separate reservoir—a
hence by a separate Liouville operator in the master eq
tion.

The free evolution of the field is given by the Hamiltonia

Ĥ0F5\(
n

vnân
†ân . ~A1!

Here,ân
† andân are the creation and annihilation operators

the various modes with frequenciesvn and orthonormal
mode functionsun(x), respectively. We use an atomic mod
for the reservoir as has been used in the single-mode
@14#. We assume that the light only interacts with the tw
levels ue& and ug& of the atoms with their correspondin
HamiltonianH0A where we neglect the center-of-mass m
tion. The interaction is then described by the interact
Hamiltonian

ĤI5d(
n

«nun~x!~ ân
†ŝ21ânŝ1!, ~A2!

whereŝ6 are the atomic transition operators and the vectod
is the dipole moment of the transition.

The master equation for the total system is then given

d

dt
r̂F1A~ t !52

i

\
@Ĥ0F1Ĥ0A1ĤI ,r̂F1A~ t !#1LPr̂F1A~ t !.

~A3!

The LiouvillianLP causes a decay from the atomic levelsue&
and ug& to some auxiliary levels with a decay rateg. From
there the population is pumped to the levelue& and the
center-of-mass stater̂c.m. . We use the center-of-mass fre
dom of the atom only to introduce a possible position dep
denceP(x)5^xur̂c.m.ux& of the reservoir. For simplicity, we
neglect here diffusion, recoil, or other effects due to the m
tion of the atom.

The time evolution of the field state,
4-8
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d

dt
r̂F~ t !52

i

\
@Ĥ0F ,r̂F~ t !#2

i

\
TrA$ĤI r̂F1A~ t !

2 r̂F1A~ t !ĤI%, ~A4!

is obtained from Eq.~A3! by tracing out the atomic degree
of freedom. Describing only the internal degree of freed
of the atom in the subspace of the levelsue& andug&, we can
write the total master equation~A3! as

d

dt
r̂F1A~ t !52

i

\
@Ĥ0F1Ĥ0A1ĤI ,r̂F1A~ t !#2gr̂F1A~ t !

1r 0ue&^eur̂c.m.r̂F~ t !. ~A5!

We obtain the termr 0ue&^eur̂c.m.r̂F(t) by an adiabatic elimi-
nation of the auxiliary levels wherer 0 is the repumping rate
to the stateue&. Note that the normalization TrA1Fr̂F1A(t) is
not conserved on this subspace and thatg.r 0.

Assuming that the dynamics associated with the ato
levels is much faster than the dynamics of the field, we w
to eliminate adiabatically the degrees of freedom of
atomic levels. To do so, we transform Eq.~A5! into the
interaction picture which removes the extremely fast f
time evolution. Denoting the interaction picture by a tild
we obtain

d

dt
r̂̃F1A~ t !52

i

\
@ Ĥ̃ I , r̂̃F1A~ t !#2gr̂̃F1A~ t !

1r 0ue&^eu r̂̃c.m.r̂̃F~ t !'0. ~A6!

This approximation means that the decay rateg is much
faster than all various detuningsvn2vA between the field
modes and the transitionue&-ug& with frequencyvA . Conse-
quently, we are neglecting all frequency dependences of
reservoir. Transforming back to the laboratory frame and
fining the operator

Ô5
g

r 0
r̂F1A , ~A7!

we get

Ô~ t !5ue&K eUr̂c.m.r̂F~ t !2
i

\g
@ĤI ,Ô~ t !#. ~A8!

The explicit solution of Eq.~A8! is

Ô~ t !5 (
n50

` S i

\g D n

(
m50

n S n
mD

3~21!mHI
mue&^eur̂c.m.r̂F~ t !HI

n2m . ~A9!

Equation~A4! does not change when we restrict ourselv
to the subspace of the levelsue& and ug&. Using Eqs.~A7!
and ~A8! we rewrite Eq.~A4! as
02381
ic
t

e

e
,

he
-

s

d

dt
r̂F~ t !52

i

\
@Ĥ0F ,r̂F~ t !#1r 0@TrA$Ô~ t !%2 r̂F~ t !#,

~A10!

which is a closed master equation forr̂F(t) since, because o
Eq. ~A8!, Ô(t) can be expressed linearly in terms ofr̂F(t).

We now simplify the master equation. We can express
the trace ofÔ as TrA$Ô%5*dx^xu(^euÔue&1^guÔug&)ux&.
Note that from now on we drop the notation of the expli
time dependence of the operatorsÔ and r̂F . We define the
position-dependent pumping rater (x)5r 0^xurc.m.ux& and
the mode operator,

B̂~x!5
1

\ (
k

«k„uk~x!d…âk ~A11!

which has the dimension of a Rabi frequency, yielding

r 0^xu^euÔue&ux&5r ~x! (
n50

`

~2g22!n (
m50

n S 2n
2mD

3@B̂~x!B̂†~x!#mr̂F@B̂~x!B̂†~x!#n2m

~A12!

and

r 0^xu^guÔug&ux&

52r ~x! (
n51

`

~2g22!n (
m50

n21 S 2n
2m11D B̂†~x!

3@B̂~x!B̂†~x!#mr̂F@B̂~x!B̂†~x!#n2m21B̂~x!.

~A13!

Using the operator

r 0m̂~x!5
1

2
r ~x! (

n51

`

~2g22!n21 (
m50

n21 S 2n
2m11D

3@B̂~x!B̂†~x!#mr̂F@B̂~x!B̂†~x!#n2m21,

~A14!

we can write

^xu^euÔue&ux&5m̂~x!1g22@B̂~x!B̂†~x!m̂~x!

1m̂~x!B̂~x!B̂†~x!# ~A15!

and

^xu^guÔug&ux&52g22B̂†~x!m̂~x!B̂~x!. ~A16!

Hence, we find the time evolution given by the equation
4-9
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r̂F5m̂~x!12g22@B̂~x!B̂†~x!m̂~x!1m̂~x!B̂~x!B̂†~x!#

1g24@B̂~x!B̂†~x!B̂~x!B̂†~x!m̂~x!

22B̂~x!B̂†~x!m̂~x!B̂~x!B̂†~x!

1m̂~x!B̂~x!B̂†~x!B̂~x!B̂†~x!# ~A17!

together with the master equation

d

dt
r̂F52

i

\
@Ĥ0F ,r̂F#1E dxr~x!$~m̂~x!2 r̂F!

1g22@B̂~x!B̂†~x!m̂~x!1m̂~x!B̂~x!B̂†~x!

12B†~x!m̂~x!B̂~x!#%. ~A18!

In the limit of a linear approximation, this master equati
reproduces the previously derived in Ref.@6#. In the case of
one mode and a distribution of the atomic reservoir conc
trated at one single point, the master equation agrees with
one introduced by Sargent, Scully and Lamb@2,14#.

Approximating the implicit master equation~A18! up to
the order ofg24, we find the explicit master equation
r.

. A
. J
tt.

.
P.

02381
-
he

d

dt
r̂F52

i

\
@Ĥ0F ,r̂F#1

1

2 (
n,m

Lm,n$2ân
†r̂Fâm2âmân

†r̂F

2 r̂Fâmân
†%1 (

n,m,k,l
Ln,m,k,l$r̂Fânâm

† âkâl
†

24âl
†r̂Fânâm

† âk16âkâl
†r̂Fânâm

† 24âm
† âkâl

†r̂Fân

1ânâm
† âkâl

†r̂F%, ~A19!

where the matrixL describes the linear part of the amplifi
cation as defined in Eq.~5! and the tensor

Ln,m,k,l5~\g!24«n«m«k« l

1

VE d3xr~x!@un~x!d#@um~x!d#

3@uk~x!d#@ul~x!d# ~A20!

describes the nonlinear effects in the lowest order. Such
approximation is often called the fourth-order approximati
in the literature@2#.
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