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Propagation of transverse optical coherence in random multiple-scattering media

Chung-Chieh Cheng and M. G. Raymer
Oregon Center for Optics and Department of Physics, University of Oregon, Eugene, Oregon 97403

~Received 6 March 2000; published 19 July 2000!

We experimentally investigate the evolution of the transverse spatial coherence of light as it traverses a
random, multiple-scattering medium. For near-forward scattering, it has been proposed that the wave-transport
process can be well described by a transport equation for the spatial-angular Wigner function of the light, or
equivalently for the two-point spatial coherence function~mutual intensity!. We find good agreement between
the wave-transport theory and our experimental results for media of different thickness. In a dense medium~for
example, optical distance, or density, greater than 5!, the nature of the scattered light field can be qualitatively
described by a complex Gaussian-Schell model, which raises an interesting interpretation about the process of
long-path optical transport.

PACS number~s!: 42.50.Ar, 42.25.Dd, 42.25.Kb
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I. INTRODUCTION

Light transport in random, multiple-scattering media ha
wide range of applications in biomedical imaging@1#, as-
tronomy @2#, illuminating engineering@3#, and geophysics
@4#. Radiative transfer, a widely used model for light tran
port, is based on a Boltzmann-type equation describing
evolution of the radiance, or specific intensity@2–5#. This
energy-transport model neglects the wave nature of light
it is limited to describing incoherent light only. In some in
stances this model may be an adequate description. H
ever, light has an intrinsic wave nature, and often t
strongly influences light transport as a consequence of
fraction and interference@6#. To include wave aspects o
partially coherent light, efforts have been made to genera
the theory of radiative transfer. In the case of free-sp
transport, the generalized radiance was introduced to rep
the radiance as the fundamental quantity that is transpo
@7#.

In the case of transport in a random, multiply scatter
medium, there are many situations in which the key quan
of interest to experimenters is the specific intensity, sinc
can be measured rather easily. Nevertheless, as we de
strate here, in order to obtain a more quantitative understa
ing of transport, both theoretically and experimentally, o
should go beyond this lowest-order, incoherent descrip
of light. In principle, one should consider a hierarchy
higher-order, multipoint correlation functions of the field.
this context, recent work has focused on such subtle issue
coherent backscattering, light localization, and non-Gaus
intensity statistics@8#. A general theory describing these e
fects involves tracking an essentially infinite number
higher-order field correlation functions as the light prop
gates. This makes such an approach intractable for us
modeling transport in realistic systems of practical intere
which are often complex and inhomogeneous.

The question we address in this study is whether th
exists an intermediate level of description that lies betw
the overly simplified, conventional transport theory and
modern, field-theoretic treatments@8# that come with great
complexity. Encouragingly, we verify by experiments a
modeling that such a level does exist in the regime do
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a

-
e

o

w-
s
if-

e
e
ce
ed

g
y
it
on-
d-
e
n

as
n

f
-
in

t,

re
n
e

i-

nated by near-forward scattering. We find that a formali
@1,9# based on the two-point spatial coherence function~or
the related Wigner distribution function! provides a self-
consistent description of wave transport that is subject
direct experimental verification.

The spatial coherence function~SCF! ~also called the mu-
tual intensity! of light is defined as

r~rW1 ,rW2 ,t !5^E~rW1 ;t !E* ~rW2 ;t !&, ~1!

whererW1 andrW2 are position vectors, andE(rW;t) is the com-
plex, scalar electric field. The bracket indicates an ensem
average over all possible realizations ofE(rW;t), each being
associated with a particular configuration of the mediu
which is subject to spatial and/or temporal fluctuations. Fr
elementary classical coherence theory it is well known t
the SCF manifests the second-order spatial coherence p
erty of light @5#. Importantly, the SCF can be measured
interferometry @10# or by phase-space tomography@11#.
Within the range of experimental parameters conside
~corresponding to predominantly near-forward scatterin!,
our measurements of the two-point spatial coherence fu
tion are found to be in good quantitative agreement with
predictions of a wave-transport model for the Wigner fun
tion.

In this paper we first review a recently proposed transp
equation for the Wigner function, and its solution in the ca
of near-forward scattering. Then we present the results
measurements of the SCF and Wigner function for light a
traversing a medium of polystyrene microspheres in a gel
medium. After a comparison between the experimental
sults and the theoretical predictions, we develop a simplifi
analytical approach to solving the Wigner-function transp
equation. The form of the solution found here demonstra
the connection between the transport problem and
Gaussian-Schell model for partially coherent light@5#. In
particular, we find that in a dense medium an initially coh
ent beam is transformed into a complex Gaussian-Sc
source, to a good approximation. This allows also a conn
tion to be made between the transport equation and a sim
fied version based on a Fokker-Planck equation.
©2000 The American Physical Society11-1
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Another application for theories of random light propag
tion is in the case of light in a turbulent atmosphere. In t
context, which is dominated by near-forward scattering
formalism has been based on the paraxial approximation,
is known as the extended Huygens-Fresnel formalism~EHF!
@12,13#. We show that the wave-transport equation that
use is equivalent to the EHF in the case of near-forw
scattering, which is the region in which our experiments
carried out.

II. WAVE TRANSPORT EQUATION

For a beam propagating in thez direction, the transverse
Wigner function~WF! of light may be defined as

W~xW' ,kW' ,z;t !5E d2sW'

~2p!2 exp@2 isW'•kW'#

3r~xW'1sW'/2,xW'2sW'/2,z;t !, ~2!

where

r~xW'1sW'/2,xW'2sW'/2,z;t !

5^E~xW'1sW'/2,z;t !E* ~xW'2sW'/2,z;t !& ~3!

is the transverse spatial coherence function of light,xW'

5(x,y,0), andsW'5(sx ,sy,0). It has been proposed that th
WF of light traversing a homogeneous medium with a ra
dom distribution of scatterers obeys a Boltzmann-type tra
port equation@9,14,15,16#

S ] t1v]z1
v
k

kW'•¹W xW'DW~xW' ,kW' ;z,t !

5E d2kW'8 F̃~kW'2kW'8 !W~xW' ,kW'8 ;z,t !, ~4!

where

F̃~DkW'!52vmTd2~DkW'!1
vN

k2

ds~DkW'!

dV
. ~5!

Herev is the speed of light inside the surrounding mediu
whose refraction index isn0 (v5c/n0), N is the number
density of the scatterers,k52pn0 /l is the magnitude of the
wave vector, (ds/dV)5u f (DkW')u2 is the differential scatter-
ing cross section of a single scatterer for scattering fromkW8

to kW (5kW81DkW'), and f (DkW') is the scattering amplitude
of the scatterers. The total extinction coefficientmT is the
sum of the absorption coefficientmA and the scattering co
efficient mS . Note that the paraxial approximation, whic
allows F̃(kW'2kW'8 ) to be expressed as a function of the d
ference of wave vectors, is applied in Eqs.~4! and~5!. More
general treatments can be found in Refs.@1,14,15#.

A. Transport equation for near-forward scattering

Equations~4! and ~5! are, in general, difficult to solve
However, if one considers the situation where the light fi
is predominantly scattered through only small angles by
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random medium, then most of the scattered light propag
in the forward direction. This may be called generically ne
forward scattering~snake-light scattering@17#!. In this case
one can assume, following the spirit of Ref.@9# that light
scattered into large angles is weak compared to near-forw
light, and the correlation between near-forward light a
wide-angle light is weak. Then the WF of the total light fie
and the integral kernel can be separated into two parts:

W'WN1hW~1!, ~6!

F̃'F̃N1hF̃ ~1!, ~7!

whereWN and F̃N are the near-forward parts,h is a small
perturbation parameter, andW(1) and F̃ (1) are the first-order
corrections corresponding to the wide-angle scattering. T
Eq. ~4! reads

F] t1v]z1
v
k

kW'•¹W xW'G~WN1hW~1!!

'E d2kW'8 ~ F̃N1hF̃ ~1!!~WN1hW~1!!. ~8!

The equation for terms of zero order inh is given by

F] t1v]z1
v
k

kW'•¹W xW'GWN5E d2kW'8 F̃NWN , ~9!

and the equation for terms of first order inh is given by

F] t1v]z1
v
k

kW'•¹W xW'GW~1!

5E d2kW'8 F̃NW~1!1E d2kW'8 F̃ ~1!WN . ~10!

The angular range within which this approximation
valid is somewhat arbitrary, as long as it is sufficiently na
row. We find it convenient to define this angle as being eq
to the collection angle of our optical system@18#. This angle
is several times wider than the angular width of the m
forward peak in the scattering cross section, for the type
medium we use~see below!.

B. Gaussian approximation for the Mie scattering kernel

The near-forward part of the Mie differential scatterin
cross section shown in Fig. 1 can be approximated in
near-forward region by a Gaussian function with respec
the angle@9,19#,

S ds

dV D
N

'
sN

pu0
exp@2uDkW u2/~k2u0

2!#, ~11!

whereuDkW'u5ukW'2kW'8 u'k sinu'ku is the magnitude of the
change of transverse wave vector, andu0 (;5.8 mrad) is
the 1/e half-width estimated from the Mie cross section~see
Fig. 1! @20#. We take the integrated scattering cross sect
1-2
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sN into the near-forward angles to be defined by the coll
tion angleuC of our optical system,

sN[E
0

2p

dwE
0

uC
du sinuS ds

dV D
MIE

, ~12!

where (ds/dV)MIE is the Mie differential cross section. Th
normalization of (ds/dV)N reads

2pE
0

`

duu
sN

pu0
exp@2u2/u0

2#5sN .

Fourier transforming Eq.~9! according to Eq.~2! yields

F]z2
i

k
¹W xW'•¹W sW'1

1

v
FN~sW'!GGN~xW' ,sW' ,z!50, ~13!

where we considered the time-stationary case, and defin

GN~xW' ,sW' ,z![rN~xW'1sW'/2,xW'2sW'/2,z!

5^E~xW'1sW'/2,z!E* ~xW'2sW'/2,z!&, ~14!

and FN(sW') is the ~minus of the! Fourier transform of
F̃N(DkW'):

FIG. 1. Comparison of the Mie-theory differential cross sect
and its Gaussian approximation@Eq. ~11!# for 46-mm-diam spheres
with a refractive indexn51.59 in a medium withn51.42. The
circles are the Mie cross section, and the solid curves are its Ga
ian approximation.
02381
-

d

FN~sW'!52E d2kW' exp@ iDkW'•sW'#F̃N~DkW'!

5vmT2vNsN exp@2k2u0
2usW'u2/4#. ~15!

Here we use Eq.~11! to evaluateFN(sW'). Equation ~13!
establishes the fundamental wave-transport equation for
SCF.

To solve Eq.~13!, we define a characteristic function

M ~pW ,qW ,z![S 1

2p D 4E d2xW'E d2sW'

3exp@2 ipW •xW'2 iqW •sW'#GN~xW' ,sW' ,z!.

~16!

Substituting Eq.~16! into Eq. ~13!, solving for M (pW ,qW ,z),
and then transforming back toGN , one finds@21#

GN~xW' ,sW' ,z!5E d2qW exp@ iqW •xW'#

3expF21

v E
0

z

dz8FN„sW'2qW ~z2z8!/k…G
3E d2xW'8

~2p!2 exp@2 iqW •xW'8 #

3GN~xW'8 ,sW'2qW z/k,z50!. ~17!

This is the general solution for Eq.~13!, given the boundary
condition forGN at z50:

GN~xW' ,sW' ,z50!

5^E~xW'1sW'/2,z50!E* ~xW'2sW'/2,z50!&.

~18!

Note that the wave-transport theory is not the only way
reach these predictions. For example, Eq.~17! can also be
derived under the small-angle-scattering approximation
using the extended Huygens-Fresnel principle@22#.

C. Model for optical transport experiments

In our experiments we used as the input light field a c
limated Gaussian beam,

E~xW' ,z50!5S 1

pa2D 1/2

exp@2uxW'u2/2a2#, ~19!

with normalization *d2xW'uE(xW' ,z50)u251, and beam
width a5140mm. So the SCF of the input light is

GN~xW' ,sW',0!5
1

pa2 expF2S uxW'u21
1

4
usW'u2D /a2G . ~20!

Further, we rewrite Eq.~17! as

ss-
1-3
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GN~xW' ,sW' ,z!5E d2qW exp@ iqW •xW'#

3exp@2I 1~sW,qW ,z!#I 0~sW,qW ,z!, ~21!

where

I 1~sW,qW ,z!5
1

v E0

z

dz8F„sW'2qW ~z2z8!/k…

5mTz2NsNE
0

z

dz8

3expF2
k2u0

2

4
usW'2qW ~z2z8!/ku2G ~22!

and

I 0~sW,qW ,z!5E d2xW'8

~2p!2 exp@2 iqW •xW'8 #GN~xW'8 ,sW'2qW z/k,z50!

5
1

~2p!2 expF2
usW'2qW z/ku2

4a2 2
a2q2

4 G . ~23!

If we define the error function

erf@x#[
2

Ap
E

0

x

dy exp@2y2#,

which satisfies erf@0#50 and erf@`#51, then Eq.~22! reads

I 1~sW,qW ,z!5mTz2
NsNAp

u0uqW u H erfF ku0

2uqW u
qW •sWG

2erfFku0

2
~qW •sW/uqW u2zuqW u/k!G J . ~24!

In our experiments the optical field is sheared in one dim
sion, so we consider onlyxW'5(x,0,0) andsW'5(s,0,0). In
this case, Eq.~21! reads~for y50!

GN~x,s,z!5E dq exp@ iqx#exp@2I 1~s,q,z!#I 0~s,q,z!,

~25!

where

I 1~s,q,z!5mTz2
NsNAp

u0q H erfFku0

2
sG

2erfFku0

2
~s2zq/k!G J , ~26!

and

I 0~s,q,z!5
1

2p
expF2

~s2qz/k!2

4a2 2
a2q2

4 G . ~27!
02381
-

Below we use Eqs.~25!–~27! to predict the SCF from the
transport theory, and compare it with results from our expe
ments.

III. EXPERIMENTS AND COMPARISON WITH THEORY

A. High-numerical-aperture, variable-shear Sagnac
interferometer

Figure 2 shows our experiment setup. Light from t
sample or source~S! leaves the object plane, is collected b
lensesL1 andL2, is linearly polarized by a polarizing cub
~P!, and passes through a nominal 50/50 nonpolarizing be
splitter ~BS1! before entering the Sagnac interferome
through the second beam splitter~BS2!. The light is equally
split into clockwise- and counterclockwise-traveling beam
which undergo shears of equal magnitude, but opposite s
before recombining at BS2, where interference takes pla
After reflecting partially from BS1, the light is directed ont
a charge-coupled device~CCD! camera, forming two over-
lapping images of the object plane, with interference fring
present. Interferograms are recorded and saved in comp
memory. By varying the orientations of a set of intrarin
birefringent wave plates to introduce nonreciprocal ph
shifts to the two counterpropagating beams, we perfo
measurements at four relative-phase values. From these
measurements we obtain the complex SCF@19,23#. Details
of the design and operation of this wide-angle, variable-sh
interferometer are given in our paper@23#. Our system is
similar in layout to that of Iaconis and Walmsley@10#, with
modifications to increase the numerical aperture of the s
tem without distorting the shape of the wave front and
avoid adding additional astigmatism.

We have tested the operation of the interferometer
measuring the SCF of a well-known coherent Gaussian b
from a laser. We find that the measured values of the S
equal the expected values to within about 5–10 % of
peak value.

FIG. 2. The variable-shear Sagnac interferometer, which m
sures the spatial coherence function~SCF! of light emitted at the
object plane.S, scattering medium or source. BS, nonpolarizi
50/50 beam splitters.M, mirror. P, polarizer.L, lens. WP, wave
plate set.
1-4
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B. Spatial coherence function„SCF…

To study the spatial coherence function of light, we us
a linearly polarized, continuous-wave He-Ne laserl
5632.8 nm) as the source of input light to a random medi
composed of polystyrene microspheres~mean diameter 46
mm, standard deviation 0.64mm, and refractive indexn
51.59 manufactured by Bangs Laboratories, Inc.!, sus-
pended in a solidified gelatin-water mixture (n051.42) be-
tween two 1-mm-thick glass plates. See Fig. 2, in which
object plane is at the output surface of the medium, an
imaged onto the CCD camera. The ensemble averagin
spatial configurations defining the SCF was achieved by
idly moving ~at 15 Hz! the sample transversely over a ran
65 mm while collecting data over a long exposure time~0.5
sec!. The input light beam from the laser was collimated
a lens at the medium input face (z50) with a Gaussian-
beam radius 140mm ~a half-width at 1/e maximum inten-
sity!.

To investigate how the coherence properties of the li
change with depth into a medium, we keep the volume fr
tion ~VF! of the microspheres in suspension at 2%, a
change the thickness of the medium. The characteristics
scattering medium with thicknessL can be specified by the
optical distance ~OD!, given by O5mTL, where mT

@5N(sA1sW1sN)# is the total extinction coefficient, with
N being the number density of scatters~in this caseN53.9
3105 cm23!, andsN being the cross section integrated ov
near-forward angles, distinguished by being within the c
lection solid angleVN of our optical system, as in Eq.~12!.
Likewise, sW is the cross section integrated over~wide!
angles outsideVN . The total scattering cross section issS
(5sN1sW). Other attenuation mechanisms, such as
sorption, are represented bysA . The scattering cross sectio
sS , calculated from Mie theory for this case, is 3.4
31025 cm2, and the near-forward part ofsS is sN
(50.68sS), which is determined by the collection soli
angle of the optical system@24#. A contribution correspond-
ing to 4% reflection from each glass plate holding the m
dium was included insA @25#. We studied four cases—L
50.1, 0.3, 0.5, and 1 cm—and the corresponding OD’s
2% VF are 1.34, 4.02, 6.70, and 13.4. In a nonabsorp
medium, mT'mS , wheremS is the total scattering coeffi
cient. The scattering mean free path isl S5(1/mS). Then the
OD of the medium (L/ l S) can be interpreted as the avera
number of scattering events occurring in the medium wh
light traverses it. A medium with an OD of 13.4 falls into th
multiple-scattering regime, while a medium with an OD
1.34 is close to a single-scattering regime.

The main difficulty of taking data in this experiment is
achieve a good ensemble average for a medium with la
OD. We believe that this problem may be caused by
effects of the superposition of ballistic~unscattered! and
scattered light, as discussed in the Appendix. We found
for thick media we needed to translate transversely the
dium around several central locations over a range of 1
and average the results from all of them to obtain a reas
able ensemble average~indicated by repeatability of results!.
For the medium with an OD of 13.4, we averaged over
02381
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different central locations; for the medium with an OD
6.70, we averaged over seven. But for the medium w
OD’s of 4.02 and 1.34, we just averaged over one fix
central location, and the resulting signal-to-noise ratio is
ceptable.

Comparisons of the SCF of light obtained from theo
and experiment are shown in Figs. 3–6. We useGS to denote
the measured SCF after scattering. The normalization of
SCF for both theory and experiment reads

15E dx G~x,s50,z!5E dx r~x,x,z!. ~28!

In theory, the imaginary part of the SCF of a collimate
input beam, Im@G(x,s,z50)#, is zero. However, after our bes
efforts to collimate the laser beam, the SCF of the input s
had a small imaginary part, with a relative magnitude

UIm@G~x,s,z50!#

Re@G~x,s,z50!#
U' 1

40
.

In the cases ofO51.34 and 4.02, with an ideal inpu
beam, Eqs.~25!, ~26!, and ~27! predict for this ratio at the
output face of the medium,

UIm@GS~x,s,z!#

Re@GS~x,s,z!#
U, 1

50
,

where GS(x,s,z) is the SCF of the transmitted light. Th
measured SCF for the cases ofO51.34 and 4.02 gives

FIG. 3. The SCF for the optical distanceO51.34. ~a! is the
prediction of the theory@Eqs. ~25!–~27!# for the real part of the
SCF.~b! is the result of the experiment for the real part of the SC
1-5
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FIG. 4. The SCF forO54.02.~a! is the prediction of the theory
@Eqs. ~25!–~27!# for the real part of the SCF.~b! is the result of
experiment for the real part of the SCF.
02381
UIm@GS~x,s,z!#

Re@GS~x,s,z!#
U' 1

30
.

They are essentially of the same order as the ratio

UIm@G~x,s,z50!#

Re@G~x,s,z50!#
U

of the input beam, and we consider the measured Im@GS# to
be negligible in these two cases@26#. Therefore in Figs. 3
and 4, we show the real part of the SCF only, since
believe that it carries all of the essential physics.

In Fig. 3 we can see two distinctive components in t
SCF from the side view ins-xspace. Since thes range of the
SCF is a measure of its transverse coherence length@27#, the
central narrow peak of the SCF corresponds to the parti
coherent scattered light, whereas the broad component
responds to the ballistic~unscattered! coherent component
which is proportional to the input SCF. As the OD of th
medium increases in Figs. 4–6, the scattered light beco
stronger, while the ballistic light decays exponentially. Wh
O'5, the scattered light dominates, and begins to look lik
divergent Gaussian beam modulated by a narrows width.
This is, in fact, the physics behind the complex Gaussi
Schell model, as discussed later in this paper. The real pa
the SCF in Fig. 6 for an OD of 13.4 is slightly diamon
shaped; this shape is reminiscent of that observed in the
of a divergent coherent beam@19,23#.
t

FIG. 5. The SCF forO56.70. ~a! is the prediction of the theory@Eqs. ~25!–~27!# for the real part of the SCF.~b! is the result of

experiment for the real part of the SCF.~c! is the prediction of the theory for the imaginary part of the SCF.~d! is the result of experimen
for the imaginary part of the SCF.
1-6
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FIG. 6. The SCF forO513.4. ~a! is the prediction of the theory@Eqs. ~25!–~27!# for the real part of the SCF.~b! is the result of
experiment for the real part of the SCF.~c! is the prediction of the theory for the imaginary part of the SCF.~d! is the result of experimen
for the imaginary part of the SCF.
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C. Wigner function

It is interesting to see how the Wigner function evolv
from the case with a small OD to the case with a large O
since the WF facilitates the visualization of the relation b
tween the position and wave-propagation direction. The p
diction for the WF corresponding to the above cases can
obtained numerically from Eq.~2! for the case of one-
dimensional shear,

WN~x,k,z!5E ds

2p
exp@2 isk#GN~x,s,z!, ~29!

whereGN(x,s,z) can be evaluated from Eqs.~25!–~27!. In
addition, the measured WF is obtained from the measu
SCF by using a fast Fourier transform to evaluate Eq.~29!.
The results are shown in Figs. 7–10. The normalization
the WF from Eq.~28! reads

E dx dk WN~x,k,z!51. ~30!

The following interpretation for the WF is just opposite
the one for the SCF. The central peak of the WF in Figs
and 8, which is narrow ink space, corresponds to the ballist
~unscattered! component of the light traversing the medium
whereas the broad peak corresponds to the scattered co
nent. As the thickness of the medium increases, the ball
light decays while the scattered light grows. When the O
reaches 6.70 the scattered light is dominant, and there
significant spread of the WF ink space. Notice that the rang
02381
,
-
e-
e

d

f

7

po-
ic

a

of the k axis in Figs. 7 and 8 is about seven times sma
than the one in Figs. 9 and 10, indicating that the lig
spreads ink space significantly as the OD of the mediu
increases from 4.02 to 6.70. The contour of the WF in
case ofO513.4 appears tilted, as is clearly shown in Fig. 1

FIG. 7. The Wigner function~WF! for O51.34. ~a! is the pre-
diction of the theory@Eqs.~25!–~27! and ~29!#. ~b! is the result of
experiment.
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This tilt ~actually a shear! represents a divergent beam. T
substantial agreement between our measurements and t
seen in Figs. 3–11 is, we believe, convincing evidence
the wave transport equation for the WF@Eq. ~9!# provides an
excellent description of near-forward wave transport in a r
dom medium over a wide range of conditions.

IV. COMPLEX GAUSSIAN-SCHELL MODEL FOR NEAR-
FORWARD SCATTERING LIGHT

As shown in previous sections, Eqs.~25!–~27! correctly
model our experiments. To bring out the physics beh

FIG. 8. The WF forO54.02.~a! is the prediction of the theory
@Eqs.~25!–~27! and ~29!#. ~b! is the result of experiment.

FIG. 9. The WF forO56.70.~a! is the prediction of the theory
@Eqs.~25!–~27! and ~29!#. ~b! is the result of experiment.
02381
ory
at
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d

these equations, it may be interesting to consider a sim
model as a qualitative guidance to explain the orders of m
nitude of the quantities we measured. Here we show
strongly scattered light can be roughly modeled by a co
plex Gaussian-Schell model commonly used to describe
tially coherent light.

Consider the strong-scattering case with large optical
tance, e.g.,O513.4. The SCF of the near-forward scatter
light may be separated into two components,

GN~xW' ,sW' ,z!'GB~xW' ,sW' ,z!1GSC~xW' ,sW' ,z!, ~31!

whereGB(xW' ,sW' ,z) is the ballistic~unscattered! part of the
transmitted light, andGSC(xW' ,sW' ,z) is the scattered part
From Eq.~15! the scattering kernel can be written as

FN~sW'!5vmT2vmN exp@2usW'u2/s0
2#, ~32!

where mN(5NsN) can be interpreted as the near-forwa
scattering coefficient, ands052/ku0 is the 1/e half-width of
the Fourier transform of the Gaussian approximation for
Mie cross section. It is reasonable to assume t
GB(xW' ,sW' ,z) obeys@from Eqs.~13! and ~15!#

S ]z2
i

k
¹W xW'•¹W sW'1mTDGB~xW' ,sW' ,z!50. ~33!

The solution of Eq.~33! can be approximated by@28#

GB~xW' ,sW' ,z!'exp@2mTz#GB~xW' ,sW' ,z50!. ~34!

Substituting Eqs.~31!, ~32!, and~33! into Eq. ~13! yields

FIG. 10. The WF forO513.4.~a! is the prediction of the theory
@Eqs.~25!–~27! and ~29!#. ~b! is the result of experiment.
1-8
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S ]z2
i

k
¹W xW'•¹W sW'1

1

v
FN~sW'! DGs~xW' ,sW' ,z!

2mN exp@2usW'u2/s0
2#GB~xW' ,sW' ,z!50. ~35!

SincemTL@1, in a rather crude approximation we treat t
exponential function as ad function, mT exp@2mTz#'d(z).
So the last term in Eq.~35! can be approximated, by usin
Eq. ~34!, as

mN expF2
s2

s0
2GGB~xW' ,sW' ,z!

'mN exp@2usW'u2/s0
2#exp@2mTz#GB~xW' ,sW',z50!

'd~z!B~xW' ,sW'!, ~36!

where

B~xW' ,sW'![
mN

mT
exp@2usW'u2/s0

2#GB~xW' ,sW',z50!. ~37!

Now Eq. ~35! becomes

S ]z2
i

k
¹W xW'•¹W sW'1

1

v
FN~sW'! DGSC~xW' ,sW' ,z!

5B~xW' ,sW'!d~z!, ~38!

with initial condition

FIG. 11. Contour plots of the measured~predicted! WF for vari-
ous optical distances. In~a! and ~e!, O51.34; in ~b! and ~f!, O
54.02; in~c! and~g!, O56.70; and in~d! and~h!, O513.4@Units:
x ~mm! andk ~mm!#.
02381
GSC~xW' ,sW' ,z50!50. ~39!

Equation~38! can be considered as a first-order differe
tial equation in thez variable with ad source. The solution of
Eqs.~38! and ~39! corresponds to the solution of the hom
geneous equation

S ]z2
i

k
¹W xW'•¹W sW'1

1

v
FN~sW'! DGSC~xW' ,sW' ,z!50, ~40!

with initial condition @see Eqs.~20! and ~39!# given by

GSC~xW' ,sW' ,z50!5B~xW' ,sW'!

5
mN

mT

1

pa2

3expF2uxW'u2

a2 2S 1

s0
2 1

1

4a2D usW'u2G ,
~41!

Equation ~41! has a simple interpretation. Atz50, the
scattered light is determined by the coherent input light@Eq.
~20!#, modulated by the factor exp(2usW'u2/s0

2). This factor will
increase the exponential decay versus shear in Eq.~41!, so
the magnitude of the SCF,uGSC(xW' ,sW' ,z50)u, will become
smaller than that of the SCF of the coherent input bea
uGB(xW' ,sW' ,z50)u. This indicates that the optical field lose
most of its coherence almost immediately after the lig
leaves the planez50. Note that Eq.~41! is exactly the stan-
dard Gaussian Schell-model source, which is widely used
simple modeling of partially coherent light@5#.

From Eq.~32!, FN(sW') can be expanded in powers ofs,

FN~sW'!5vmt2vmN@12usW'u2/s0
21¯#

5vmW2vLusW'u21¯ , ~42!

where mW[mT2mN is the extinction coefficient resulting
form wide-angle scattering, andL[mN /s0

2. Next we assume
the scattering is strong enough soGSC is quite narrow ins
space and all the features of interest are within the rang
s;s0 @29#. Then Eq.~40! can be approximated by

X]z2
i

k
¹W xW'•¹W sW'1~mW2LusW'u2!CGSC~xW' ,sW' ,z!'0.

~43!

For the case of one-dimensional propagation and sh
sW'5(s,0,0), the solution of Eq.~43! with boundary condi-
tion ~41! reads~for y50! @30#

GSC~x,s,z!5C0~z!exp@2g~z!s2#expF „ix1b~z!s…2

4a~z! G ,
~44!

where

a~z!5
Lz3

3k2 1
z2

h2k2 1
a2

4
, ~45!
1-9
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FIG. 12. Comparison between our simple analytical model and the transport model~for O513.4!. ~a! and~c! show the prediction, from
our simple model@Eq. ~44!# for the real part of the SCF.~b! and~d! show the prediction from the transport model@Eqs.~25!–~27!# for the
imaginary part of the SCF.
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b~z!5S Lz1
2

h2D z

k
, ~46!

g~z!5Lz1
1

h2 , ~47!

1

h2 5
1

4a2 1
1

s0
2 , ~48!

and

C0~z!5
mN

2mT
S 1

pa~z! D
1/2

. ~49!

The normalized SCF predicted by this simple model@Eq.
~44!#, and the previous transport model@Eqs.~25!–~27!#, are
shown in Fig. 12 for comparison, for the casemTL513.4.
They agree to within 20%, which means the approximatio
we used here are quite reasonable for describing the sha
the SCF of light traversing a thick, dense, near-forward s
tering medium. The normalization used in Fig. 12 is acco
ing to Eq.~28!.

However, we also found that the calculated prefac
C0(z5L) in this case (mTL513.4) is about ten times large
than the predicted value from the transport theory@Eqs.
~25!–~27!#. This prefactor drops out in the normalized plo
shown in Fig. 12. We believe that this discrepancy is cau
02381
s
of

t-
-

r

d

by the crude approximation treating the source term in
~35! as ad function. This illustrates that this simple mod
@Eq. ~44!# should be used only as a rough intuitive guide, a
is not meant to replace the more accurate transport mode
Eqs.~25!–~27!.

V. DISCUSSION

The shapes of the SCF in Fig. 6 are somewhat simila
those for a divergent Gaussian beam with a large wave-f
curvature@19#. This suggested that it may be possible
describe scattered light using a simpler model based on
functional form of a Gaussian beam with somewhat differ
parameters. This turned out to be the case. Equation~44!,
which we may call a complex Gaussian-Schell mod
~CGSM! for partially coherent light, has in fact been use
previously to describe certain partially coherent optical fie
propagating through a linear optical system@31#. We have
just shown that this CGSM can be generalized to desc
multiply scattered light without using free parameters, a
still achieve reasonable agreement between theory and
periment.

The CGSM has a simple physical interpretation. Fo
strong, near-forward scattering medium, the coherent in
beam loses most of its coherence almost right at the in
plane atz50 ~after one mean free path!, while the intensity
profile of the light varies little. This leads to an effectiv
input source, which is described by a CGSM source,
1-10
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~41!. The transverse coherence length of this effect
source, on the order of@(1/s0

2)1(1/4a2)#21, has reduced
the s range of interest to the order ofs0(!a) @32# from the
original range of the input beam (;a). Then, for largerz,
subsequent evolution of the scattered light can be descr
by Eq.~43!, an approximate transport equation. In this eq
tion we may identifymW2LusW'u2 as the rate of decorrelatio
of the field at two points spatially separated by a dista
usW'u. This indicates that the decorrelation rate is minimal
nearby points, and increases quadratically with spatial se
ration. This behavior is closely analogous to the prediction
quantum theory, where decorrelation is referred to as de
herence@18,19#.

The simplified transport equation for the Wigner functio
according to Eqs.~2! and ~43!, is given by

S ]z1
v
k

kW'•¹W xW'1mW1L¹W
kW'

2 DW~xW' ,kW' ,z!50. ~50!

Equation~50! is a form of Fokker-Planck equation for diffu
sion of a transverse wave vector, including attenuation (mW)
and the convective transport termkW'•¹W xW' . The rate of
wave-vector diffusion isL[mN /s0

2. This indicates that the
CGSM corresponds to the Fokker-Planck equation, ak-space
diffusion approximation to the more complicated transp
equation@Eq. ~9!#.

Our picture for the wave transport in a near-forward m
dium is thus the following. A coherent input beam enters
medium, and after one mean free path its intensity pro
varies little, whereas its SCF rapidly evolves into that o
CGSM. Since the coherence length is now quite small,
proper transport equation can be replaced by Eqs.~43! or
~50!, in which further decorrelation and intensity evolution
modeled simply by a diffusion of transverse wave vect
Note that this behavior is distinct from spatial diffusion.
er

-

-

m

,
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In summary, our experiments verify that the propos
wave-transport equation~4! provides a quantitative descrip
tion of the evolution of the second-order spatial coherence
light in a random multiple-scattering medium in the nea
forward scattering regime. Further experiment and theory
needed to explore the case of a medium with stronger w
angle scattering, as in certain biotissues, for example.
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APPENDIX

A speckle pattern can be caused by the self-interfere
of narrow-band, thermal-like~i.e., blackbody! light described
by Gaussian field statistics. The probability distribution~his-
togram! for the intensity of narrow-band, thermal light is
negative-exponential distribution, so the most probable va
for intensity in this case is zero. In contrast, it has be
established that the superposition of coherent and ther
light will have a different intensity probability histogram
@33#. In this case the probability of obtaining zero intensity
decreased compared to that in the case of pure thermal l
which is caused by the nonzero mean amplitude of the
herent component. In our experiments the coherent com
nent is the unscattered input light, while the thermal-li
component is the light scattered in the medium. Their sup
position makes it difficult to average out certain particu
medium configurations by a limited-range uniaxial mov
ment. Further discussion can be found in Ref.@19#.
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