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Propagation of transverse optical coherence in random multiple-scattering media
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We experimentally investigate the evolution of the transverse spatial coherence of light as it traverses a
random, multiple-scattering medium. For near-forward scattering, it has been proposed that the wave-transport
process can be well described by a transport equation for the spatial-angular Wigner function of the light, or
equivalently for the two-point spatial coherence functiorutual intensity. We find good agreement between
the wave-transport theory and our experimental results for media of different thickness. In a dense (feedium
example, optical distance, or density, greater tharthe nature of the scattered light field can be qualitatively
described by a complex Gaussian-Schell model, which raises an interesting interpretation about the process of
long-path optical transport.

PACS numbgs): 42.50.Ar, 42.25.Dd, 42.25.Kb

[. INTRODUCTION nated by near-forward scattering. We find that a formalism
[1,9] based on the two-point spatial coherence function
Light transport in random, multiple-scattering media has &he related Wigner distribution functiprprovides a self-
wide range of applications in biomedical imagifg], as- consistent description of wave transport that is subject to
tronomy [2], illuminating engineeringd3], and geophysics direct experimental verification.
[4]. Radiative transfer, a widely used model for light trans-  The spatial coherence functi¢S8CH (also called the mu-
port, is based on a Boltzmann-type equation describing th&al intensity of light is defined as
evolution of the radiance, or specific intens[®-5]. This
energy-transport model neglects the wave nature of light, so >4y k(P
it is limited to describing incoherent light only. In some in- p(F1. T2, )= (B(FLOE (F230), @)
stances this model may be an adequate description. How-
ever, light has an intrinsic wave nature, and often thiswherer, andr, are position vectors, arid(r’;t) is the com-
strongly influences light transport as a consequence of difplex, scalar electric field. The bracket indicates an ensemble
fraction and interferencg6]. To include wave aspects of average over all possible realizationsE(f;t), each being
partially coherent light, efforts have been made to generalizassociated with a particular configuration of the medium,
the theory of radiative transfer. In the case of free-spacevhich is subject to spatial and/or temporal fluctuations. From
transport, the generalized radiance was introduced to replacdementary classical coherence theory it is well known that
the radiance as the fundamental quantity that is transportettie SCF manifests the second-order spatial coherence prop-
[7]. erty of light [5]. Importantly, the SCF can be measured by
In the case of transport in a random, multiply scatteringinterferometry [10] or by phase-space tomographgl].
medium, there are many situations in which the key quantityVithin the range of experimental parameters considered
of interest to experimenters is the specific intensity, since ifcorresponding to predominantly near-forward scattering
can be measured rather easily. Nevertheless, as we demarur measurements of the two-point spatial coherence func-
strate here, in order to obtain a more quantitative understandion are found to be in good quantitative agreement with the
ing of transport, both theoretically and experimentally, onepredictions of a wave-transport model for the Wigner func-
should go beyond this lowest-order, incoherent descriptiotion.
of light. In principle, one should consider a hierarchy of In this paper we first review a recently proposed transport
higher-order, multipoint correlation functions of the field. In equation for the Wigner function, and its solution in the case
this context, recent work has focused on such subtle issues af near-forward scattering. Then we present the results of
coherent backscattering, light localization, and non-Gaussiameasurements of the SCF and Wigner function for light after
intensity statistic§8]. A general theory describing these ef- traversing a medium of polystyrene microspheres in a gelatin
fects involves tracking an essentially infinite number ofmedium. After a comparison between the experimental re-
higher-order field correlation functions as the light propa-sults and the theoretical predictions, we develop a simplified
gates. This makes such an approach intractable for use emalytical approach to solving the Wigner-function transport
modeling transport in realistic systems of practical interestequation. The form of the solution found here demonstrates
which are often complex and inhomogeneous. the connection between the transport problem and the
The question we address in this study is whether ther&aussian-Schell model for partially coherent lidBf. In
exists an intermediate level of description that lies betweeparticular, we find that in a dense medium an initially coher-
the overly simplified, conventional transport theory and theent beam is transformed into a complex Gaussian-Schell
modern, field-theoretic treatmenit8] that come with great source, to a good approximation. This allows also a connec-
complexity. Encouragingly, we verify by experiments andtion to be made between the transport equation and a simpli-
modeling that such a level does exist in the regime domified version based on a Fokker-Planck equation.
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Another application for theories of random light propaga-random medium, then most of the scattered light propagates
tion is in the case of light in a turbulent atmosphere. In thisin the forward direction. This may be called generically near-
context, which is dominated by near-forward scattering, dorward scatteringsnake-light scatterinffl7]). In this case
formalism has been based on the paraxial approximation, anshe can assume, following the spirit of R¢®] that light
is known as the extended Huygens-Fresnel formaliskiF) scattered into large angles is weak compared to near-forward
[12,13. We show that the wave-transport equation that wdight, and the correlation between near-forward light and
use is equivalent to the EHF in the case of near-forwardvide-angle light is weak. Then the WF of the total light field
scattering, which is the region in which our experiments areand the integral kernel can be separated into two parts:
carried out.

W=~ Wy + W, (6)
Il. WAVE TRANSPORT EQUATION o -
— — F~Fn+ 7k, (7

For a beam propagating in tteedirection, the transverse

Wigner function(WF) of light may be defined as whereW, and Fy are the near-forward parts; is a small

) d2s, R perturbation parameter, ami) andF® are the first-order
WX, K, ,zt) = f 2m)? exd —is, -k, ] corrections corresponding to the wide-angle scattering. Thus
Eq. (4) reads
X p(R 48 2% ~5 2z1), (2

where k

U > >
d+vd,+ —kL-V;L}(W,\ﬁ— WD)

p(X, +8,/12X, —§,/12z;t)

~ | d%K (Fy+ gF D) (Wi+ pWD). (8
—(E(X, +8, 2ZOE*(X, -, 2z1)) (3 f 1Far B (W 2 WED. (8
is the transverse spatial coherence function of light, ~The equation for terms of zero order #nis given by
=(x,y,0), ands, =(sy,s,,0). It has been proposed that the
WEF of light traversing a homogeneous medium with a ran-
dom distribution of scatterers obeys a Boltzmann-type trans-
port equatior(9,14,15,16

[ >
(9t+vﬁz+ Eki'vii

WN:f dzlziﬁliNWN, (9)

and the equation for terms of first order inis given by

[V o >
ditvd,+ EkJ_’V)U_)W()_()L K ;z,t)

v

otuvd,+ K

k8w

= f d’KIF(k —KDW(X, K] 520, ()
:f d21|”=NW<1>+J d?k FYWy.  (10)
where
_ The angular range within which this approximation is
E(AK, )= — 0 ur6%(AK, ) + vN da(Ak,) (5) valid is somewhat arbitrary, as long as it is sufficiently nar-
+ mr TR da row. We find it convenient to define this angle as being equal
) S ) _ to the collection angle of our optical systéd8]. This angle
Herev is the speed of light inside the surrounding mediumis several times wider than the angular width of the main

whose refraction index isly (v=c/no), N is the number forward peak in the scattering cross section, for the type of
density of the scattererk=2mng/\ is the magnitude of the  medium we usdsee below.

wave vector, §o/dQ) = |f(AK,)|? is the differential scatter-
ing cross section of a single scatterer for scattering fkom B. Gaussian approximation for the Mie scattering kernel

tok (=k'+Ak,), andf(Ak,) is the scattering amplitude  The near-forward part of the Mie differential scattering
of the scatterers. The total extinction coefficignf is the  ¢ross section shown in Fig. 1 can be approximated in the
sum of the absorption coefficient, and the scattering co- near-forward region by a Gaussian function with respect to
efficient us. Note that the paraxial approximation, which the angle[9,19],
allows F(k, —k!) to be expressed as a function of the dif- .

i i i g ag >
ference of wave vectors, is applied in E¢4$). and(5). More ( ) - go exq—|Ak|2/(k20§)],

N

general treatments can be found in Réfs14,15. da

Ty (11

A. Transport equation for near-forward scattering Where|AI2L | _ | EL _ |21|%k sin 6~k is the magnitude of the

Equations(4) and (5) are, in general, difficult to solve. change of transverse wave vector, afyl (~5.8 mrad) is
However, if one considers the situation where the light fieldthe 1 half-width estimated from the Mie cross sectiee
is predominantly scattered through only small angles by théig. 1) [20]. We take the integrated scattering cross section
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1
Fn(S)= —J d?k, exdiAk, -8, JFn(AK,)
0.8
=vur—vNoyexg —k?63|5,|%/4]. (15
do os
aQ Here we use Eq(11) to evaluateFy($,). Equation(13)
o establishes the fundamental wave-transport equation for the
SCF.
o2 To solve Eq.(13), we define a characteristic function
-31.4 ~15.7 0 -‘1-5‘7 31.4

M(p.q.2)=

1 4
E) f d2%, f d%s,

Xexd —ip-X, —ig-§, [I'n(X, .S, ,2).
(16)

Substituting Eq.(16) into Eq. (13), solving for M(p,q,2),
and then transforming back 16y, one finds[21]

Pk 8. 2= [ ddextia x,)

_l z
Xex;{TJ dzZ' Fn(S, —G(z—2Z')/k)
0

0 -
(mrad) dzxi .
. _ . : . Sz exd—ig-x]
FIG. 1. Comparison of the Mie-theory differential cross section (2m)
and its Gaussian approximati¢gg. (11)] for 46-um-diam spheres

) 2 = _
with a refractive indexn=1.59 in a medium withn=1.42. The XI'\(Xy .S, —qz/k,z=0). 17
circles are the Mie cross section, and the solid curves are its Gauss-

ian approximation. This is the general solution for E¢L3), given the boundary

condition forI'y atz=0:
oy into the near-forward angles to be defined by the collec-
tion angled of our optical system, I'y(X, ,8,,z=0)

N =(E(X, +§,/22=0)E* (X, —§,/22=0)).
UN:fo d(pfo désing E)MIE, (12) (18)

Note that the wave-transport theory is not the only way to
reach these predictions. For example, ELy) can also be
derived under the small-angle-scattering approximation by
using the extended Huygens-Fresnel princ[j22].

where da/dQ) e is the Mie differential cross section. The
normalization of lo/d(Q)y reads

- N 2/ 2
27 dﬁﬁ—eexq—0/00]=a,\,.
0 % C. Model for optical transport experiments

Fourier transforming Eq9) according to Eq(2) yields _ In our exper_iments we used as the input light field a col-
limated Gaussian beam,
. - 1 . .. B 1 \12
97~ 1 Vi Ve + o Fn(S) (In(X,.8,,2) =0, (13 E(R, ,2=0)=| —| exi{~ %, |22a%],  (19)

where we considered the time-stationary case, and deﬁneokNith normalization [d2% IE(X z—0)|2— 1 and beam
1L SRR E —
idth a=14 . th F of the input light i
T(%, .8, \2)=pr(%,+5,12%, —8,122) width a Oum. So the SCF of the input light is

—(E(%, +5,122)E* (X, —§,12.2)), (14)

/a?|. (20)

g & 1 g |2 1. 2
FN(XLISJ_!O):T[,—aZeX = IX.| +Z|SJ_|
and Fy(S,) is the (minus of the Fourier transform of
En(AK)): Further, we rewrite Eq(17) as
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- - _ 2= s o
1—‘N(XJ_ Sy -Z)_f d qexq—'q XL] object plane

Xexq_'l(iqu)]'o(ga _}72)1 (21)

g Lo
where 1 § r {\ {\ é
I1(§,c1,z)=;fodz’F(i—c*](z—z’)/k) & L U U

) /M
: BS2 A
1 B

L3 <

CCD Camera

FIG. 2. The variable-shear Sagnac interferometer, which mea-
and sures the spatial coherence functi&CH of light emitted at the
object plane.S, scattering medium or source. BS, nonpolarizing
a2z’ 50/50 beam splittersM, mirror. P, polarizer.L, lens. WP, wave

|0(§,q,z)=fﬁzexr[—i(j-ii]FN()Zi,§L—qz/k,z=0) plate set.

1 F{_|§L—<jz/k|2 a’qg?

z
:MTZ_ NUNJ dZ'
0

k265
0, = ’ 2
Xexr{—Tbi—q(z—z )IK| } (22

Below we use Eqs(25—(27) to predict the SCF from the

T (2m)? ex 4aZ 4 (23 transport theory, and compare it with results from our experi-
ments.
If we define the error function
2 . Ill. EXPERIMENTS AND COMPARISON WITH THEORY
_ 2
erf[x]= \/_; fo dy exd —y~], A. High-numerical-aperture, variable-shear Sagnac
interferometer
which satisfies eff0]=0 and erf«]=1, then Eq.(22) reads Figure 2 shows our experiment setup. Light from the
sample or sourcé€S) leaves the object plane, is collected by
L Na‘N\/; k6o = lensesL1 andL?2, is linearly polarized by a polarizing cube
11(5,6,2) = prz 9o/ er 204] q-s (P), and passes through a nominal 50/50 nonpolarizing beam

splitter (BS1) before entering the Sagnac interferometer
through the second beam spliti®S2). The light is equally

]- (24) split into clockwise- and counterclockwise-traveling beams,
which undergo shears of equal magnitude, but opposite sign,

In our experiments the optical field is sheared in one dimenP€fore recombining at BS2, where interference takes place.
sion, so we consider onlg, = (x,0,0) ands, =(s,0,0). In After reflecting pamally from BS1, the light is directed onto
this case, Eq(21) reads(for y=0) a charge-coupled devid€€CD) camera, forming two over-
lapping images of the object plane, with interference fringes
present. Interferograms are recorded and saved in computer
FN(x,s,z)zf dgexdigx]exd —14(s,q9,2)]14(s,q,2), memory. By varying the orientations of a set of intraring
(25) birefringent wave plates to introduce nonreciprocal phase
shifts to the two counterpropagating beams, we perform
measurements at four relative-phase values. From these four
measurements we obtain the complex §@8,23. Details
of the design and operation of this wide-angle, variable-shear
interferometer are given in our papg23]. Our system is
similar in layout to that of laconis and Walmslg$0], with
Ko, modifications to increase the numerical aperture of the sys-
—erf{—(s—zo/k)“, (26) tem without distorting the shape of the wave front and to
2 avoid adding additional astigmatism.
We have tested the operation of the interferometer by
and measuring the SCF of a well-known coherent Gaussian beam
from a laser. We find that the measured values of the SCF
@27 equal the expected values to within about 5-10% of the
peak value.

Kb
—erfl—=(q-3/|d[-Z[dl/k)

where

| . NO'N\/; k00
1(S,qaz)_MTZ_ Hoq er TS

1 (s—qz/k)? a’qg?
Io(s,q,z)=zex T a2 a4 |
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B. Spatial coherence function(SCF) Re[T(x,s5,2)]

To study the spatial coherence function of light, we used
a linearly polarized, continuous-wave He-Ne lasex (
=632.8 nm) as the source of input light to a random medium
composed of polystyrene microspher@sean diameter 46
um, standard deviation 0.64m, and refractive indexh
=1.59 manufactured by Bangs Laboratories, Jinsus-
pended in a solidified gelatin-water mixturay& 1.42) be-
tween two 1-mm-thick glass plates. See Fig. 2, in which the
object plane is at the output surface of the medium, and is
imaged onto the CCD camera. The ensemble averaging of
spatial configurations defining the SCF was achieved by rap-
idly moving (at 15 H2 the sample transversely over a range
+5 mm while collecting data over a long exposure tif@e
seg. The input light beam from the laser was collimated by
a lens at the medium input face=0) with a Gaussian-
beam radius 14Qum (a half-width at 1¢ maximum inten-
sity). -400

To investigate how the coherence properties of the light 0
change with depth into a medium, we keep the volume frac- X (hm) . -
tion (VF) of the microspheres in suspension at 2%, and 400 a7 0 378
change the thickness of the medium. The characteristics of a s (um)
scattering medium with thicknedscan be specified by the
optical distance (OD), given by O=u+ L, where ur FIG. 3. The SCF for the optical distanc®=1.34. (a) is the

[=N(oa+ ow+ oy)] is the total extinction coefficient, with Prediction of the theoryEgs. (25—(27)] for the real part of the

N being the number density of scattdis this caseN=3.9 SCF.(b) is the result of the experiment for the real part of the SCF.
X 10° cm™3), and oy being the cross section integrated over ) _ _

near-forward angles, distinguished by being within the col-different central locations; for the medium with an OD of

lection solid angley of our optical system, as in E¢L2). ~ 6.70, we averaged over seven. But for the medium with
Likewise, oy is the cross section integrated overide) ©OD’s of 4.02 and 1.34, we just averaged over one fixed
angles outside)y . The total scattering cross sectionds central location, and the resulting signal-to-noise ratio is ac-
(=on+0ay). Other attenuation mechanisms, such as abSeptable.

sorption, are represented by . The scattering cross section ~ comparisons of the SCF of light obtained from theory
os, calculated from Mie theory for this case, is 3.47 and experiment are shown in Figs. 3—6. We Ligg¢o denote
X10 %cm?, and the near-forward part ofrg is oy the measured SCF after scattering. The normalization of the

(=0.68s¢), which is determined by the collection solid SCF for both theory and experiment reads

angle of the optical systefi24]. A contribution correspond-

ing to 4% reflection from each glass plate holding the me- 1=J dxI'(x,s= O,z)=f dX p(X,X,2). (29
dium was included ino, [25]. We studied four casest—

=0.1, 0.3, 0.5, and 1 cm—and the corresponding OD’s at . . .
2% VF are 1.34, 4.02, 6.70, and 13.4. In a nonabsorptivd" theory, the imaginary part of the SCF of a collimated

medium, 1~ s, Where ug is the total scattering coeffi- input beam, I_rfll“(x,s,z=0)], is zero. However, after our best_
cient. The scattering mean free pattds- (1/u<). Then the efforts to collimate the laser beam, the SCF of the input still
OD of the medium /1<) can be interpreted as the averageNad @ small imaginary part, with a relative magnitude
number of scattering events occurring in the medium when
light traverses it. A medium with an OD of 13.4 falls into the ImT'(x,5,2=0)]] 1
multiple-scattering regime, while a medium with an OD of R T'(x,s,z= 0)]\ 40°
1.34 is close to a single-scattering regime.

The main difficulty of taking data in this experimentisto |4 the cases of9=1.34 and 4.02, with an ideal input

achieve a good ensemble average for a medium with Iarggeam, Eqs(25), (26), and (27) predict for this ratio at the
OD. We believe that this problem may be caused by th%utput face of the medium,

effects of the superposition of ballisticunscattered and
scattered light, as discussed in the Appendix. We found that ’

ImT'g(x,8,2)]] 1

for thick media we needed to translate transversely the me- L At A
RgTI'(x,s,2)]| 50’

dium around several central locations over a range of 1 cm,
and average the results from all of them to obtain a reason-
able ensemble averagi@dicated by repeatability of results where I'g(X,s,z) is the SCF of the transmitted light. The
For the medium with an OD of 13.4, we averaged over termeasured SCF for the cases®# 1.34 and 4.02 gives
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Re[l(x,5.2)]

@
i

{

s (um)

FIG. 4. The SCF foW=4.02.(a) is the prediction of the theory
[Egs. (25—(27)] for the real part of the SCRb) is the result of
experiment for the real part of the SCF.

Re[T4(x,s,2)]
(a)

s (tm)

PHYSICAL REVIEW A62 023811

Im[Tg(%,s,2)] _ 1
ReT«(x,5,2)] 30

They are essentially of the same order as the ratio

Im[I'(x,5,z=0)]
R TI'(x,s,z=0)]

of the input beam, and we consider the measurgd {irto

be negligible in these two cas¢®6]. Therefore in Figs. 3
and 4, we show the real part of the SCF only, since we
believe that it carries all of the essential physics.

In Fig. 3 we can see two distinctive components in the
SCF from the side view is-xspace. Since therange of the
SCF is a measure of its transverse coherence ld@gihthe
central narrow peak of the SCF corresponds to the partially
coherent scattered light, whereas the broad component cor-
responds to the ballisticunscattered coherent component,
which is proportional to the input SCF. As the OD of the
medium increases in Figs. 4—6, the scattered light becomes
stronger, while the ballistic light decays exponentially. When
O=~5, the scattered light dominates, and begins to look like a
divergent Gaussian beam modulated by a narsowidth.

This is, in fact, the physics behind the complex Gaussian-
Schell model, as discussed later in this paper. The real part of
the SCF in Fig. 6 for an OD of 13.4 is slightly diamond
shaped; this shape is reminiscent of that observed in the SCF
of a divergent coherent beah9,23.

Im[Ti(x,s,2)]
©

s (um)

FIG. 5. The SCF for®=6.70. (a) is the prediction of the theorjEgs. (25—(27)] for the real part of the SCRb) is the result of
experiment for the real part of the SCE) is the prediction of the theory for the imaginary part of the S@Fis the result of experiment

for the imaginary part of the SCF.
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Re[FY(xssrz)] Im[r.\’(x’s’z)]

s (um)

FIG. 6. The SCF for0=13.4.(a) is the prediction of the theorfEgs. (25—(27)] for the real part of the SCRb) is the result of
experiment for the real part of the SCE) is the prediction of the theory for the imaginary part of the S@Fis the result of experiment
for the imaginary part of the SCF.

C. Wigner function of the k axis in Figs. 7 and 8 is about seven times smaller
than the one in Figs. 9 and 10, indicating that the light
from the case with a small OD to the case with a large ODSPreads ink space significantly as the OD of the medium
since the WF facilitates the visualization of the relation be-ncréases from 4.02 to 6.70. The contour of the WF in the
tween the position and wave-propagation direction. The prec@S€ 0f0=13.4 appears tilted, as is clearly shown in Fig. 11.
diction for the WF corresponding to the above cases can be A (@)

obtained numerically from Eq(2) for the case of one- )
dimensional shear,

It is interesting to see how the Wigner function evolves

ds .
WN(x,k,z)=J Eex;{—lsk]l“,\,(x,s,z), (29

whereI'\(X,s,z) can be evaluated from Eq&5—(27). In
addition, the measured WF is obtained from the measured
SCF by using a fast Fourier transform to evaluate 2§).

The results are shown in Figs. 7—10. The normalization of
the WF from Eq.(28) reads

W\ (b)
f dx dk W(x,k,z)=1. (30

The following interpretation for the WF is just opposite to
the one for the SCF. The central peak of the WF in Figs. 7
and 8, which is narrow ik space, corresponds to the ballistic
(unscatteredcomponent of the light traversing the medium,
whereas the broad peak corresponds to the scattered compo-
nent. As the thickness of the medium increases, the ballistic
light decays while the scattered light grows. When the OD  FIG. 7. The Wigner functiofWF) for O=1.34.(a) is the pre-
reaches 6.70 the scattered light is dominant, and there is diction of the theonfEgs.(25)—(27) and (29)]. (b) is the result of
significant spread of the WF inspace. Notice that the range experiment.

k (1/pm)
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-400
x (um) O -400
400 s 0 0.25 x (m)
k (1/um) 400 188 0 1.88
FIG. 8. The WF forO=4.02.(a) is the prediction of the theory k (1/pm)

[Egs.(25—(27) and(29)]. (b) is the result of experiment. . o
FIG. 10. The WF for®=13.4.(a) is the prediction of the theory

This tilt (actually a shearrepresents a divergent beam. The [Eds-(29—(27) and(29)]. (b) is the resuit of experiment.
substantial agreement between our measurements and theory

seen in Figs. 3—11 is, we believe, convincing evidence thahese equations, it may be interesting to consider a simple
the wave transport equation for the VMEq. (9)] provides an model as a qualitative guidance to explain the orders of mag-
excellent description of near-forward wave transport in a ranhitude of the quantities we measured. Here we show that

dom medium over a wide range of conditions. strongly scattered light can be roughly modeled by a com-
plex Gaussian-Schell model commonly used to describe par-
IV. COMPLEX GAUSSIAN-SCHELL MODEL FOR NEAR- tially coherent light.

Consider the strong-scattering case with large optical dis-
tance, e.g9.(0=13.4. The SCF of the near-forward scattered
As shown in previous sections, Eq25)—(27) correctly  light may be separated into two components,
model our experiments. To bring out the physics behind

FORWARD SCATTERING LIGHT

@ I'y(X, .8, ,2)~I'g(X, ,S, ,2)+T's(X,,S,,2), (3D

wherel'g(X, ,S, ,2) is the ballistic(unscatteredpart of the
transmitted light, and"s(X, ,S, ,z) is the scattered part.
From Eq.(15) the scattering kernel can be written as

Fn(S)=vur—vunexd — S, |%/sg], (32

where un(=Noy) can be interpreted as the near-forward

scattering coefficient, ansh=2/kd, is the 1& half-width of

the Fourier transform of the Gaussian approximation for the
Mie cross section. It is reasonable to assume that
I's(X, ,§, ,2) obeys[from Egs.(13) and (15)]

-400 kﬁxl-v*gﬁm I'g(X,,5,,2=0. (33

d,—

x (um) 0

400

'188 0 1.88 The solution of Eq(33) can be approximated Hy8]

k(1/pm) (%, .8, 2)~ex] — urz]Ts(%, S, ,z=0).  (39)

FIG. 9. The WF forO=6.70.(a) is the prediction of the theory
[Egs.(25)—(27) and (29)]. (b) is the result of experiment. Substituting Egs(31), (32), and(33) into Eq. (13) yields
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k e K| = 0
0.25

-0.25
0.25

(b)

=
P

-0.25
1.88

(8)

e >

-1.88

@ 1.88

e
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X

-400

X

FIG. 11. Contour plots of the measurgatedicted WF for vari-
ous optical distances. Ifa) and (e), ©=1.34; in (b) and (f), O
=4.02; in(c) and(g), ©=6.70; and in(d) and(h), O=13.4[Units:
X (um) andk (um)].

-

Eﬁ Vgl-l—

Z

_FN(§L)

(X, .S, ,2)
—unexd —|8, |4s3ITg(X, .5, ,2)=0. (35

SinceutL>1, in a rather crude approximation we treat the
exponential function as @ function, ut exd — uzl~&2).

So the last term in Eq.35) can be approximated, by using
Eq. (34), as

32
MN ex% - ?}FB(XL I§J_ ,Z)
0

~unexd — |3, [%/sflexd — urz]Tg(X, .5, ,2=0)

~&(z)B(X, ,S,), (36)
where
& MN 272 S & o
B(X,, Sl)_,Uv_TeXF[ S, | Is51lg(X, ,$,,2=0). (37)
Now Eq. (35) becomes
N 1 _ oL
dz— Evﬂ'vﬂ‘*‘ ;FN(SJ_) FsdX, .S, ,2)
=B(X,,$,)d(2), (39)

with initial condition

02381
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Isd(X, .8, ,2=0)=0. (39

Equation(38) can be considered as a first-order differen-
tial equation in thez variable with as source. The solution of
Egs.(38) and(39) corresponds to the solution of the homo-
geneous equation

1

>

-Vg +

0V Fn(8) |Tsd(%,,81,2)=0, (40)

<

with initial condition[see Eqs(20) and (39)] given by

FSC()_()L 1§L 1220): B()_()L !§L)

:MN 1
MT TA
_|)ZL|2 1 >
xex;{ 22 - S_(2)+F SJ_|2,

(41)

Equation(41) has a simple interpretation. A=0, the
scattered light is determined by the coherent input I[@}.
(20)], modulated by the factor exp(s, |%/<2). This factor will
increase the exponential decay versus shear in(4k), so
the magnitude of the SCH (X, ,S, ,z=0)|, will become
smaller than that of the SCF of the coherent input beam,
|T's(X, ,S, ,z=0)|. This indicates that the optical field loses
most of its coherence almost immediately after the light
leaves the plane=0. Note that Eq(41) is exactly the stan-
dard Gaussian Schell-model source, which is widely used for
simple modeling of partially coherent ligh5].

From Eq.(32), Fy(S,) can be expanded in powers gf

. - 2
FN(SL):UIU'T_U/-LN[:L_|SL|2/SO+

=vuw—vAlS >+, (42)
where uyw=ut— uy IS the extinction coefficient resulting
form wide-angle scattering, antd= MN/So Next we assume
the scattering is strong enough Egc is quite narrow ins
space and all the features of interest are within the range of

s~5sp [29]. Then Eq.(40) can be approximated by

i
k

>

V)zl v)éL+(MW_A|§L|2))FSC()—()L 1§L 12)%0

(43

d,—

For the case of one-dimensional propagation and shear
§, =(s,0,0), the solution of Eq(43) with boundary condi-
tion (41) reads(for y=0) [30]

(. + )2
T'sc(X,5,2) = Co(2z)ex — 7<Z>Sz]ex%% ’
(44)
where
A2 722 a?
CY(Z) 3k2 + 772|(2 Z, (45)
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Re[T(x,s,2)] (a) Im[T(x,5,2)] (0)

s (um) s (um)

FIG. 12. Comparison between our simple analytical model and the transport (famd@= 13.4). (a) and(c) show the prediction, from
our simple modelEq. (44)] for the real part of the SCKb) and(d) show the prediction from the transport modlEfs. (25—(27)] for the
imaginary part of the SCF.

2\z by the crude approximation treating the source term in Eq.
B(z)=| Az+ Z)k’ (46)  (35) as aé function. This illustrates that this simple model
i e .
[Eq. (44)] should be used only as a rough intuitive guide, and
1 is not meant to replace the more accurate transport model of
Yz)=Az+ 7 (47 E0gs.(29-(27).
1 1 1 - V. DISCUSSION
? T 4a? * ;g (48) The shapes of the SCF in Fig. 6 are somewhat similar to

those for a divergent Gaussian beam with a large wave-front
and curvature[19]. This suggested that it may be possible to
" describe scattered light using a simpler model based on the
1 ) functional form of a Gaussian beam with somewhat different
Ta(z) parameters. This turned out to be the case. Equdtd)
which we may call a complex Gaussian-Schell model
The normalized SCF predicted by this simple mdd&j.  (CGSM) for partially coherent light, has in fact been used
(44)], and the previous transport mod&gs.(25—(27)], are  previously to describe certain partially coherent optical fields
shown in Fig. 12 for comparison, for the cageL=13.4.  propagating through a linear optical syst¢&i]. We have
They agree to within 20%, which means the approximationgust shown that this CGSM can be generalized to describe
we used here are quite reasonable for describing the shapemiltiply scattered light without using free parameters, and
the SCF of light traversing a thick, dense, near-forward scatstill achieve reasonable agreement between theory and ex-
tering medium. The normalization used in Fig. 12 is accord-periment.
ing to Eq.(28). The CGSM has a simple physical interpretation. For a
However, we also found that the calculated prefactorstrong, near-forward scattering medium, the coherent input
Co(z=L) in this case ft1L=13.4) is about ten times larger beam loses most of its coherence almost right at the input
than the predicted value from the transport thefBgs. plane atz=0 (after one mean free pathwhile the intensity
(25—(27)]. This prefactor drops out in the normalized plots profile of the light varies little. This leads to an effective
shown in Fig. 12. We believe that this discrepancy is causethput source, which is described by a CGSM source, Eq.

Co(2)= Z’LNT( (49)

023811-10
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(41). The transverse coherence length of this effective In summary, our experiments verify that the proposed
source, on the order of (1/s3)+(1/4a%)]"*, has reduced wave-transport equatiof#) provides a quantitative descrip-
the s range of interest to the order ef(<a) [32] from the tion of the evolution of the second-order spatial coherence of
original range of the input beam~@). Then, for largerz, ~ light in a random multiple-scattering medium in the near-
subsequent evolution of the scattered light can be describd@rward scattering regime. Further experiment and theory are
by Eq.(43), an approximate transport equation. In this equaeeded to explore the case of a medium with stronger wide-
tion we may identifyu,,— A|S, |? as the rate of decorrelation angle scattering, as in certain biotissues, for example.

of the field at two points spatially separated by a distance

|S,|. This indicates that the decorrelation rate is minimal for

nearby points, and increases quadratically with spatial sepa- ACKNOWLEDGMENTS

ration. This behavior is closely analogous to the prediction in

Lantum theory. where decorrelation is referred to as decos We thank H. Heier for collaboration on the interferometer
gerence[lS 19 Y, design, and S. Jacques for support and collaboration. This

The simplified transport equation for the Wigner function work was supported by the U.S. Army Research Office and
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according to Eqs(2) and(43), is given by

v

kr(l-ﬁgl-l—,uw-i-j\ﬁa W(X, K, ,2)=0. (50) APPENDIX

d,+

] ) ] ] A speckle pattern can be caused by the self-interference
Equation(50) is a form of Fokker-Planck equation for diffu- f narrow-band, thermal-liké.e., blackbodylight described
sion of a transverse wave vector, including attenuatiop)( by Gaussian field statistics. The probability distributibis-
and the convective transport terin - Vg, . The rate of togram for the intensity of narrow-band, thermal light is a
wave-vector diffusion is\=uy/s3. This indicates that the negative-exponential distribution, so the most probable value
CGSM corresponds to the Fokker-Planck equatidispace for intensity in this case is zero. In contrast, it has been
diffusion approximation to the more complicated transportestablished that the superposition of coherent and thermal
equation[Eq. (9)]. light will have a different intensity probability histogram

Our picture for the wave transport in a near-forward me-[33]. In this case the probability of obtaining zero intensity is
dium is thus the following. A coherent input beam enters thedecreased compared to that in the case of pure thermal light,
medium, and after one mean free path its intensity profilevhich is caused by the nonzero mean amplitude of the co-
varies little, whereas its SCF rapidly evolves into that of aherent component. In our experiments the coherent compo-
CGSM. Since the coherence length is now quite small, th@ent is the unscattered input light, while the thermal-like
proper transport equation can be replaced by E43. or  component is the light scattered in the medium. Their super-
(50), in which further decorrelation and intensity evolution is position makes it difficult to average out certain particular
modeled simply by a diffusion of transverse wave vector.medium configurations by a limited-range uniaxial move-
Note that this behavior is distinct from spatial diffusion. ment. Further discussion can be found in R&B8].
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