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Mazer action in a bimodal cavity
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The work of Meyer, Scully, and WalthgPhys. Rev. A56, 4142 (1997] is generalized to study the
operation of a two-mode mazer with particular reference to the question of mode-mode correlations. The
explicit expression for the detailed balance steady-state photon distribution has been derived. It is shown that
the two-mode mazer exhibits much stronger sub-Poissonian statistics for each mode. The photon-number
distributions are found to be quite sensitive to the presence of blackbody photons in the cavity. The interfer-
ences among contributions from different dressed states enable one to obtain the phase of the transmission
amplitude of finding the atom in the initial excited state by considering a set of two measurements involving
two different initial states of the atom-field system.

PACS numbse(s): 42.50.Vk, 42.50.Dv, 03.75:b

I. INTRODUCTION The organization of the paper is as follows. In Sec. II, we
study the interaction of three-level cold atoms moving
Since the early realizatioii] of micromaser, the interac- through the two-mode cavity and we show the correlation
tion of atoms with fields in high quality cavities continues to between the internal dynamics and the extemalotion of
attract a great deal of attenti¢@]. The operation of micro- atoms. In Sec. Ill, we discuss the transmission of an atom
mazer has been explaingd,4] and many features of the incidenton the cavity in various initial states. In Sec. IV, we
characteristics of the field in the cavity have been predictedderive the master equation for the reduced density matrix of
These include sub-Poissonian statistiés4], the trapping the field in the cavity. In Sec. V, the steady state photon
stateq5], and unusual types of diffusion of the figl@l]. All probability distribution under the condition of detailed bal-
these characteristics depend in important manner on parardice is derived. In Sec. VI, the photon statistics of cavity
eters such as atomic flux, quality factor, etc. Recently in dield in a fixed mode has been discussed. In Sec. VI, we
remarkable experimefi7] the trapping states have also beenobtain the steady state photon probability distribution nu-
seen. The work on micromasers has been generalized ferically for the case of unequal coupling constants for the
many different directions. For example, the two-photon mi-two cavity modes.
cromaser as well as the microlaser were reali&€]. Fur-
ther the theory was extended to three-level SyStE.‘tﬁ}s II. MODEL SYSTEM AND DYNAMICS
When the micromaser is pumped by ultracalldser
cooled atoms[11], quantization of external motion of atoms ~ We consider a beam of slow, monoenergetic three-level
becomes necessary. This quantization of center-of-maggoms with aA-type configuration passing through a high
(c.m) motion [12,13 leads to a completely new kind of two-mode microwave cavity of length. The atomic flux is
induced emission14]. In this way, Scullyet al. [14] have  so adjusted that only one atom interacts with the cavity field
introduced a new concept called mageiicrowave amplifi- at a time. The energy level diagram for the analysis is shown
cation by thez motion induced emission of radiatipriThe  in Fig. 1. The transition between the two lower levielsand
quantum theory of single mode mazer operating on two-leveb; is dipole forbidden and the transition from the upper level
atoms has been developed in great defab-17. The ato any of the lower level$, andb, is allowed. The fre-
steady state photon distribution of the mazer operating omguencies of the transitiors— b, anda—b,, coincide with
two-level atoms under the resonance condition looks similathose of the modes 1 and 2 of the microwave cavity so that
to a pair of thermal distributions one of which is shifted the atom and the fields interact resonantly. We also neglect
towards the larger photon numddd]. This state which can
be viewed as a mixture of the thermal state and the shifted
thermal state, has been shown to be nonclas§i@l The
work of Meyeret al. has been extended to treat the theory of
single mode two-photon mazgt9]. The interaction between | —/— \ [~ 777777 TTTTT ATt >

. atomic beam
an ultracoldA -type three-level atom with degenerate ground
levels and a single mode radiation field has been studied and
the effect of detunings on the photon emission probability of © .
excited atoms microwave cavity

an excited atom has been discus§2d]. In this paper, we
examine the two-mode mazer. We follow very closely the FIG. 1. The scheme of the two-mode micromaser and the
work of Meyer, Scully, and Walthdr5]. energy-level diagram for the analysis.
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the cavity field damping during the time an atom interacts
with the cavity field. The Hamiltonian for the atom-field in-
teraction including the quantization of the c.m. motion of the
atoms, is given by

H:HA+HF+HAF' (1)

whereH, (Hg) is the Hamiltonian of the free atoitfield)
andH 4¢ is the interaction Hamiltonian describing the atom-
field interaction in the dipole and the rotating wave approxi-
mations:

PHYSICAL REVIEW A62 023809

E
A +
\Y :- -: |¢n+1,m+1>
l |
T T
0------ 4 EREEEEEE
|‘:I)-n+1,m+1>

T T
0 cavity L z

FIG. 2. Schematic representation of the endfgyf the excited
atoms incident upon a two-mode micromaser cavity withng)

2 2
P
Ha=5 - +#Q,/a)(al + Zl Al [Ba)[bal.

2
He= >, fiw,ala,,
a=1

2

2

photons. The interaction is equivalent to reflection and transmission
of atoms through a potential barri@tashegl or potential well(dot-

ted with a potential energy/ =%+/g7(n+1)+g5(m+1). Thus re-
flection and transmission of the atom is very similar to the one in
the work of Meyeret al. However, the atom can be reflected and
transmitted in either of the three statesn,m), |b;,n+1,m), and
|by,n,m+1).

HAF: aZl ﬁga(aa|a><ba| + | ba><a|al)-

In the basis of dressed statkeﬁﬁlﬂynﬁl), |¢?,1+1'n2+1> of

the atom-field system, the Hamiltoni&8) leads to

The operatotj)(j|(j=a,b,,b,) gives the projection on
to the statefj) with energy7();. The operatorgi)(j|(i,j
=a,b,,b,;i#]) describe the transition from levgko level
i. The operatorsa, (az) annihilate (creat¢ a photon in
modesa with the resonance frequencies = ,— Qba' The

Hl ¢r?l+l,n2+1>: h.| ¢r?l+l,n2+1>!

©)

0 0
Hil ¢nl+ 1n,+ 1=yl ¢’nl+ 1n,+ 1

parametersg, are the corresponding atom-field coupling Here h. = pZ/2m=7/g5(z)(n;+1)+g5(2)(n,+1) andh

constants andn is the atomic mass. The parametgrsare

dependent orz through the mode function of the cavity.

In a suitable reference frame, the Hamiltonidn of the

atom-field system reads

2

= p§/2m. Note thath.. andh, are still operators which act in
the space of the center of mass variables. If we expand the
wave function of the combined atom-cavity system as

W) =X+ bn 10,40+ X-In 1 10,+2)F Xol ¢21+1,n2+1>1

Pz (6)
Hi=5—+Hae. )
2m
then
The operatorH ¢ is readily diagonalizable. It has eigen- J
0 * : H . Xa
states |¢nl+l,n2+l>!|¢nl+l,n2+l> with  eigenvalues O, i% ot =h,Xe, a==,0. (7)

+#gi(n,+1)+g5(n,+1), respectively, where

Clearly the effect of the cavity with fixed number of photons
in each mode is to produce a potential ternhias discussed
in Ref. [12]. If we approximate the mode function of the
cavity by a mesa functiog(z) = 6(z) (L — z), then the po-
tential terms will be as displayed in Fig. 2.

We now consider the initial atom-field state to be
|]a,ny,n,), i.e., the atom is in the excited state with pho-
tons in mode 1 and, photons in mode 2 of the cavity field.
This state can be expanded in terms of the dressed s$thtes

1
la,ny,ny)= Eud);ﬁ—l,nz%—l)—'—|¢r:1+1,n2+1>]- (8)

From the above discussions, the problem is now reduced
to that of an atom incident upon the potentials
Vo, 1n,+1(2)=2A\gI(n; +1)+g3(n,+1). We consider

0 g2vVny+1
|¢n1+1,n2+1>= > > |b1,n1+1,n2>
Voi(ni+1)+g5(ny+1)
givni+1
T2 > |by,ny,ny+1) |,
Vgi(ny+1)+g5(ny+1)
N 1
|¢n_1+1,n2+l>zﬁ la,ny,ny) as
givn;+1
= > |by,ni+1,ny)
Voi(ng+1)+g5(ny+1)
govn,+1
7= > [by,ny,np+1) |
\/91(n1+1)+92(n2+1)
(4)

the c.m. wave packet of the incident atom to éz,0)
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= [d kA(k)e'*?6(—z) where the amplitudeg\(k) are ad- (Z]W(0))=(z,0)|a,ny,n). (9)
justed such that the center of wave packet enters the cavity at

timet=0. The Heaviside’s step functio#( — z) merely lim-

its the spread of the initial wave packet to the 0 region By using Eq.(8) the wave function of the atom-field system
only. The wave function of the atom-field system initially is at timet is found to be

(W (1)) =exp(—iH /) $(z.0)[a.ny.ny)

1
=exp(—iHt/A)(z,0) EH bnys1n,e 1) T B0 r1nye0)]

1 —it[ p?
—E exp(T[ﬁ+ﬁ\/gf(n1+l)+9§(ﬂz+l) ¢(Z:0)|¢r:rl+1,n2+1>
—it[ p? , 5 _
+ex - ﬁ—ﬁ\/gl(nﬁ' 1)+g5(ny+1) ¢(Z,0)|¢n1+1,n2+1> . (10

Denoting the reflection and transmission amplitudes as L ram)t i
Pre ny+ oy n, fOr the potential barrier-well problem of the <Z|‘I’(t)>:f dkA(k)e {[Ran,.n,(K)e™"0(—2)
dressed statdsp,, , respectively, we have iK(z—
d$/l’n1+l,n2+l> p y +Ta,n1,n2(k)elk(z L)H(Z—L)]|a,nl,n2)

+[Ro, ny+ 10, (K€ F26(—2)

Py, =1 An o, SINKY 0 )70 s (11) |
+Tp, n,+10,(K€ D 0(z—L)][bg 0y +10,)
Tﬁl'”zz[coskﬁl'”zl‘)_izri,nzsm(kri,nzl-)]il, (12 +[sz,nl,n2+1(k)e_ik29(—Z)
+sz,nl,n2+1(k)eik(27|—)6(2_L)]
1 kr? n k
Mn=3 Tk 13 X|b Ny np+ 1)}, 15
knl,n2
where
ki 1 B 1 -

E;I: n :E< nl’n2+ k ): Ra'nl'nZZE(pftlynz—i_pnlynz)i Ta,nl,nZZE(Tl’lenz_F Tnlynz)y
AL e (16

are the probability amplitudes that the atom is reflected or
transmitted with the atom-field state remaining in the same
initial state aga,n,,n,) and

2m
= \/ ( k2% ——\Jgi(n+ 1)+ g3(n;+1)

g3(ny+1)+g2(n,+1) R _ 9ivnitl (o —p )
_ K25 k2 by.ny+1n, \/ > > Pnin,™ Pnyin,
, 2ygi(ny+1)+9g5(n,+1)

9i+05
(14 - B g;Vni+1
PrM 2 92+ 1)+ 93Nyt 1)

where #ik is the atomic c.m. momentum antl®«%/2m . -

=#+/g?+g2 is the vacuum coupling energy. Carrying out X(Tnynp ™ Tngny)s (17

the time evolution of the state ket in E4.0) for the potential

barrier-well problem of the dressed states, we obtain the folare the probability amplitudes that the atom is reflected or
lowing wave function of the atom-field system after the atomtransmitted when the atom-field state makes a transition from
has left the interaction region initial |a,ny,n,) to |by,n;+1,n,). Similarly, the atom is re-
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flected or transmitted when the atom-field state changes to 0.5 T T
|by,nq,n,+ 1) with amplitudes ] (a)
04} .
goVn,+1 N _ |
sz,nl,n2+1: > > (pnl,nz_pnl,nz)i
2\gi(n+1)+g3(n,+1) 03 b ]
T
govn,+1
To, iy np1™= 2 2 0z 1
2gi(n+1)+g5(np+1)
X (7o, n,™ oy ny)- (18 01} 1
Note that all the physical characteristics regarding the inter- 0.0 . L J ;
action of ultracold atoms with a high quality cavity can be 0 5 10 15
calculated in terms of quantities defined by E(6)—(18). =
Let us examine the probability of emission of a photon. 10 F . . _
When an initially excited three-level atom is incident upon ' b
the cavity containing rf;,n,) photons in the two modes oo | (b) i
(1,2), respectively, then from Eq&l7) and(18) the probabil- '
ity that the atom goes to the levie} and emits a photon in o8 b 1
mode 1 is ’
Pinynp(@=bD)=Ro 0 10>+ o,y +1n,% (19 o7 Y ]
the probability that the atom goes to the lelsgland emits a 06 ’
photon in mode 2 is
05} _
p(nl,nz)(aﬂbz):|Rb2,n1,n2+1|2+|Tb2,nl,n2+1|zr (20 0.4 | R R
0 5 10 15
and the probability that the atom emits a photon either in kL

mode 1(or) mode 2 inside the cavity is
(on y FIG. 3. The probability of transmissiol of an atom in the

initial state through the cavity as a function of the length of the
cavity «L for the parameterg,/g,;=2, k/xk=0.01 and for the ini-
tial atom-field statesa) |a,0,0) (T=|T.00?) and (b) |by,1,0) (T
E|Tbl,1‘0|2). For the initial atom-field statga,0,0), the probability
(21 of transmission is independent of the ragjg/g;.

p(nlvnz)(emlssmr)— | Rbl,n1+ 1,n2| + |Tb1,nl+ 1,n2|

+ | sz,nl,n2+1|2+ |Tb2,nl,n2+1|2-

I1l. TRANSMISSION OF ATOMS J2 01 _
- , o o |b1,1,o>=ﬁwwﬁum—wm
In this section, we discuss the transmission characteristics 91t9; 2(91+93)
of an ultracold atom through the cavity induced potentials. In (22)

Fhe previou§ section, we have seen that for an incident atorp repeat of stepg9)—(16) now yields the probabilityT that
in the excited state, the two orthogonal dressed stateg, atom is transmitted in the same initial state

|¢§1+1,n2+1> create barrier-well potentials for the external

motion of atoms. When the initial atom-field statgas0,0), o3 @ |?

the probability of transmission in the excited state of an atom T= |Tbl,1,0|2: 2. 2 (7'3,oJr 700t 5 2]
through the cavity is plotted as a function el in Fig. 3(a) 2(91+92) (91+92)

by using Eq.(16) for the parametek/«=0.01. The graph (23
shows resonances al.=ma with m=1,2, ..., which is where g o are given by Eq(12) and the additional factor of

similar to the transmission of an excited two-level atom in-_2,, 2 2 S
. . . . . /(g5 + comes from the contribution due to the dressed
cident on a single mode cavif{l5]. As described in Ref. 92/(91* 92)

[15], this feature is just the transmission characteristic of theSt‘"’ltel‘anll“z> in the expansion(22). Using Eq.(23), the
potential well. transmission probability that an atom in the initial stHig)
Next we consider the initial atom-field state to be eitheriS transmitted through the cavity containing initially one pho-
|b1,1,0) or |b,,0,1). Using the same procedure as in the ton in mode 1 has been plotted in Ei@beorthe parameters
previous section, we obtain the time evolution for the initial92/91=2, k/k=0.01. On comparing the graphsaB and
state|b,,1,0). Here it is important to note that the dressed3(b), we see that the effect of the dark stas) , ) en-
statelq&ﬁlynz) also contributes since hances the probability of transmission of atom in the initial
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state|b,) at kL=ms with m=2,4,6 .... Wealso see that the cavity. The successive passage of atoms changes the field
we have the possibility of determining the phagg o of the  in the cavity. In the analysis of Sec. I, we had assumed the
amplitude %(r({0+ To0=Tao0,0 from the measurements of cavity field to be in the Fock state. However, for the dynamic
TaooandTy 10 evolution of the field we have to examine a more general
initial state of the cavity field. Using Eq8) the wave func-

tion of the initial atom-field system is now given by

| To,10°= [9%Taod?+ 02

(97+03)?
+20793] Ta,00/C0% 02.0,0)]- (24) <z|~1f<0>>=t/f(z,0>nEn Cn, nyl@N1,M2)
1.2

Note that Fig. 8) yields |T,00? and Fig. 3b) gives
|Tb1,1,0|2. Clearly from these two figures one can @&t o.
This has become possible due to the interference between the

contributions coming from different dressed states in the ex- _
pansion(22). + b+ 1n,+1))- (29

1
=420 = 2 Cnyiny( 0 1n,41)

IV. BUILDUP OF THE CAVITY FIELD . . . L .
Carrying out the time evolution for this initial state using Eq.

In this section, we derive the master equation for the cav{15), the state of atom-field system after the interaction is
ity field assuming that a steady atomic beam passes througjiven by

[}

(W ()= f dkA(K)e KPS (R, (K)e R0~ 2)|aung o)+ Ty, o (KIEKED0(z— L)]a,ng ny)

ni,n,=0
+Rp, i+ 10,(K€0(=2)[by,n1+ 1)+ Ty o 110, (KXY 0(z—L)[by,ny+105)

+Rp, nyin,+ 1K€ 20(=2)[by,n1 Mo+ 1)+ T oy 2(K)€HETD0(z— L) [by,ng,np+ 1)], (26)

where
= 3 [ adiZwoxrolia. @
Ra,nl,nz(k):Cnl,ana,nl,nz(k)- i=a,by by
(27 We consider the case in which excited atoms are injected
Ta,nl,nz(k) = Cnl,nzTa,nl,nz(k): into the cavity at random times and the time interval between
successive atoms entering the cavity obeys a Poissonian dis-
are the probability amplitudes for reflecti¢or) transmission ~ tribution with an average. As discussed in Ref4], the
of the atom in the upper stata) with the cavity field con- contribution of each atom passing through the cavity and the
taining (n,n,) photons in the two modes and similarly, the field damping lead to the following coarse grained time evo-
atom is reflectedor) transmitted when the atom-field state is 'Ytion of reo.luced density operator of the field in the interac-
|by,n1+1,n5) (or) |by,ng,ny+ 1) with amplitudes tion picture:

p(H)=r3p(t)+Lp(t), (30)
Rbl Nyt 1,n2( k)= Cnl,anbl,n1+ 1,n2( k),

where 6p(t) is the change ip(t) due to the passage of a
single atom in the excited state. The field damping and the
T, ny+10,(K)=Ch 0, To, 0 +1n,(K), effect of thermal photons are described by the Liouville op-
(28) erator

sz,nl,n2+1(k)zc sz, +l(k)!

Ny.No Ny.N3

1
Lp=5Ca(ny, +1)(2aspaj —ajasp—pajay)

sz,nl,n2+1(k):Cnl,nszz,nl,n2+1(k)- 1 ) ) .
+5Cynp, (2a;p8; —a1a1p— pasay)

Equation(26) can be used to find the atom-field density ma- 2
trix after a single atom has passed through the cavity. By 1
taking the trace over the atomic energy eigenstates and the + ECz(nszr 1)(2a2paZ—a£a2p—paZa2)

position eigenstates of the center of mass of the atom, the
reduced density operatgi(t) of the cavity field is then 1
found to be y operatqs(t) y + Ecznbz(Zagpaz—azagp—pazag). (31)
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Heren, is the number of thermal photons in modeand C,, is the damping rate of this mode. Using E¢®9)—(31) we
obtain the equation governing the time evolution of the density matrix elements

*

. *
p(Ny,n;ng,ny)= r{(Raynl’ana,ni,né+Taunl,nzTa,ni,né_ Dp(ng,nz;ng,n3)

+(Rb1,n1, R*

* _ h! ’
n, b1,nivn§+Tbl*”l'“szlyni,né)p(nl 1nz;n;—1nz)

+(Ro, n,.n,Rp

N1:N2"*by,nyin

X[2y(ny+1)(n1+1)p(ny+1ny;n;+1,n5)—(ng+ng)p(ng,ny;ng,ng)]

. L 1
é+Tb2,n1,nszz,ni,né)p(nl’n2_ 1inpnp—1)}+ Ecl(”b1+ 1)

l ’ ’ ! ! ! ! 1
+ Eclnbl[Z\/nlnlp(nl— 1ny;n;—1,n5)—(ni+n3+2)p(ng,ny;ng,ny)l+ ECz(nszr 1)

X[2y(n,+1)(n5+1)p(ny,ny+1;n;,n5+1)—(Ny+ny)

’ ! l ! ’ ! ’ ’ !
Xp(Nng,No;ng,Nn5) ]+ §C2nb2[2\/n2n2p(n1,n2— 1;n;,n;—1)—(ny+n,+2)p(ng,nying,ngl.
(32)

The diagonal elements of the density matfiin,,n,)=p(n;,n,;n;,n,) which gives the joint distribution of photons in
the two cavity modes, obeys the equation

P(n1,n2) ={[|Ran, .n,| 2+ Tan,.n,l 2= 1IP(N1,02) +[|Rp 0. 0,2+ To, iy i, 2TP(N1—1,02)
+[IRo,.n, 0,14 [ Th, 0, | 2TP(N1,np= 1)} + Co(n + D)[(N1+ 1)P(ny +1nz) =N P(Ng,N5) ]
+Cynp,[N1P(N1—1,05) = (ng+1)P(Ng,ny) ]
+Ca(np, + D[(n2+1)P(ng,np+1)—nP(Ng,ny)

+Canp [N2P(Ng,n— 1) = (N +1)P(ny,ny) ] (33

This is the master equation for the two-mode micromaser.

This equation has the character of rate equation for the prob- P(ny,ny)=P(ng,n;—1) (o +1)

ability and various terms on the right hand side behave as the 247b,

outflow and the inflow of probabilities. This equation has Go. . noo1

also the form that one would have expected on physical X { Cony, 42z T (36)
grounds. 2 Nz

Here G‘bl,nlfl,nzzr p(nlfl,nz)(aqbl)v sz,nl,nzfl
V. ANALYTICAL SOLUTION OF MASTER EQUATION =r p(nl’n271)(a_>b2) are the gain coefficients for modes 1

The steady state photon probability distribution is ob-and 2, respectively, withpn, n)(@—01), P(n, n,)(a—b2)
tained by setting as defined in Eq919) and (20). Substituting the expression
for P(n;—1,n,) obtained from Eq(36) into Eq.(35) and the
P(ny,n,)=0. (34) expression folP(n;,n,—1) obtained from Eq(35) into Eq.
(36), we get

The distributionP(n4,n,) can be obtained in analytical form 1 1
by using the condition of detailed balance which states that P(ny,n,)=P(n;—1n,—1) Cu(ng +1) Cylne +1)
the net inflow and outflow of probabilities are equal. This 11y 247b,

leads to

Gb ,n,—1n
x| Cynp, + —2 2
P(N1,12) = P(ny—1np)=—— 1 C Gbl‘“fl‘”z} "
Ny,No)=FP(N1—1LNy) —F—— n, +——,
1,112 1 2 Cl(nbl+ 1) 1 bl nl sz,nl—l,nz—l
(35 X Cznb2+—n2 : (37)
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1 1 It is obvious that Eqs(37) and(38) can both be satisfied if
Ci(np,+1) Cy(np,+1)

P(ny,ny)=P(n;—1n,—1)

Go,,ny.ny-1 —qg,= - -
% Cznb2+ 2 :]lznz 0:=0>=0, Clnbl Cznbz Cnb. (39)
<l con +M) (3gy  Under these conditions, the steady state photon distribution
g ny ' has the form
|
r N1 r N2
P(Ny.nz) =P0.0| &= Cnb) CZ+Cnb>
ni+n +A—cote— + e~ +y —ote—
% lHZ e, 1 (348G AGS;S)(CqCq +2424SSy) (40
a1 [ T 2(9+1) (Cq2+32478,9)(Cq2+3,%5,?) ’
|
where qu=cosQ<§L), S§:sin(k§L) with  field. We consider the special case in which all the param-

eters for the two modes are equal, ig¢,=g,=9g, C;=C
Ky = \/(kzi"z V(a+1)/2) which is the same as EQL4) of  —c n, =ny =n,. In this cas?—z, qulg) gén %e sf':\tisfifed
Sec. Il with (n;+n,+1) replaced byq and g;=g,=g. R
Similarly Ay 35 are defined by Eqs(13) with kﬁl,nz re-
placed byk§ . The normalization condition of joint probabil-
ity gives Eﬁl,nzzoP(nl,n2)=1. The expressiori40) con-
tains all the statistical information about the steady statevhere

and the detailed balance steady state photon distribution has
the form

P(ny,ny)=f(ny+ny), (41)

n 1 1 |1 1+ATA;SI S (CHC, +33S-Sts
(=00 ———| TI S |21 (#8485 8)(CaCe 2a%S%S)| 1|
Cinp+)fg=1 | ¥ (q+1)]2 (Cq?+32428,H(Cy2+32,%8, %)

It is to be noted that the square bracketted term inside thgj?(gr\/q+1) (see Sec. V of Ref.[15]) where gr
product in the above equation, is identical to the photon_ ,2) /2, /2k. In this casef(n) has the form

emission probability of an ultracold, excited two-level atom
entering a single mode resonant cavity contairgrighotons

in the single mode mazdi5]. For comparison the steady f(n)=P(0,0) r "
state photon distribution of the single mode mazer operating "1C(np+1)
on two-level atoms with the atom-field coupling constgnt N
[15] is Cn, 1
<[] {=—+ ——=sirk(grJg+1){, (44
=1 r q+1
r " G pe(a—1)
P(n)= P(O)[— I1 [—+ . which is the same as obtained in the two-mode micromaser
Clnp+1)] g=1 | r q

(43) operating on three-level atonjd0]. As mentioned in Ref.
[10], f(n)=P(n,0)=P(0,n) is the joint probability of hav-
ing n photons in one mode and no photons in the other mode
Here pe(q) is the photon emission probability of an excited and the probability that the cavity contaifs’ total number
atom incident on the cavity containimpphotons and is equal of photons is
to the square bracketted term in E42) with g replaced by
g/+\2. For fast atoms, i.e., when the energy of incident atoms
is very large compared to the vacuum coupling energy, the Ps(n)= 2 P(ny,ny)=f(n)(n+1). (45)
square bracketed term in E2) can be approximated to ng+nz=n
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FIG. 5. The distribution of photons in mode for the param-
FIG. 4. The functionf(n)=P(n,0)=P(0,n) for the parameters etersg;=g,=g, C;=C,=C, N, =MNp, =Ny, r/C=100, n,=1,
9:=02=9g, C;=C,=C, ny =ny =ny, r/C=100, n,=1, kL  «L=10x/43 and(a) k/x=10, (b) k/x=0.01.
=10m/%/3 and(a) k/x=10, (b) k/x=0.01.
VI. STEADY-STATE PHOTON STATISTICS

From the joint probability distributior®(n,,n,), we can
P(0,0) can be determined from the normalization conditionobtain the distribution of photorf3,(n) in any fixed modex
> _oPs(n)=1. For fast atoms, the graph 6(n) has been by summing over the number of photons in the other mode.
plotted in Fig. 4a) for the parameters/C=100, n,=1,  The functionP ,(n) is defined by
xkL=10m/4/3, k/k=10. The graph shows the distribution
f(n) with single peak and compares well with the R€f0]
on two-mode micromaser. In general, the functfgn) can
have more than one peak depending on the valugof
= «k?L/2\/2k. The joint probability distributiorf (n) behaves By using Eq.(41) the functionP (n) is found to be
differently when the micromaser is pumped by ultracold at-
oms, i.e., when the energy of incident atoms is very low ”
compared to vacuum coupling energy. For ultracold atoms, Pa(n)=|2 f(1). (47)
f(n) is shown in Fig. 4b) for the parameters/C=100, n, "
=1, kL =10m/%3, k/x=0.01. The graph looks similar to @ |t may be noted from this equation tHa,(n) is independent
pair of thermal distributions one of Whlgh is shifted towards 4t ,, ‘since we assumeg;=g,=g, C;=C,=C, N, =N,
the larger photon number. This behavior f¢h) occurs at
kL=mam/{N withm=1,2,... ,N=1%,2, ..., and issimi-
lar to that of the steady state photon distribution of the single P, n+1)=P,(n)—f(n). (48)
mode mazef15] as expected on comparing Ed42) and
(43). WhenkL #ma/4/N, the distributionf(n) is a decreas- The functionf(n) is positive as seen from E¢42). There-
ing function ofn similar to a thermal distribution for ultra- fore, the photon distribution decreases monotonously with
cold incident atoms. The probability distribution of photons in a fixed mode cal-

Pl(n)zgo P(n,l), Pz(n)=|§0 P(I,n). (46)

=n,, and
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1
0.2 [
0.1 i 30 F
» [
00 | ”n"';' T Ny O [
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P,m 0.3 ]
0.2 oL ) ) ;
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0.0 kL
0 5 10 15 ) ) )
n FIG. 8. The mean(solid curve and the normalized variance

o ) ) ) (dashed curveof the distribution of photons in mode as functions
FIG. 6. The distribution of photons in mode 1 at different times of the interaction lengthvL for the parameters/C=100, n,

t during the evolution from the initial state. Mode 1 is initially ina —q 1, k/«x=10. Actual values of2 are 0.4 times those shown.
thermal state wit{n,)=1. Mode 2 is initially in the vacuum state. “

The parameters for the calculations @g=g,=0, C;=C>=C,  the field for mode 1 is a thermal distribution with the mean
Np.=N,.=n,, r/C=100, n,=1, xL=10m/%3, kix=0.01. _

1 b ' ' ' : value of photon numbegm;)=1 and vacuum state for mode
Graphs(a), (b), (c), a_nd(d) correspond ta=0, t=0.1/C, t=1/C, 2, for the parameters/C= 100, n,=1, KL=1%/%, K/ i
andt=10/C, respectively. =0.01. It is seen from the graphs that a steady state is

i reached within a time of order 10/and the steady state
culated from(47), is plotted both for fast atoms(x=10)  photon probability distribution coincides with the analytical
and ultracold atomsk(/fc:O.(il) in Fig. 5 for the parameters regyt obtained under the principle of detailed balance. This
r/C=100, n,=1, xL=10m/%/3. The graphs show that for confirms the uniqueness and stability of detailed balance
ultracold atoms there is a steep decrease in the curve %fteady state solution.

P,(n) at the valuen=5 for the chosen parameters. From  From Egs.(42) and (47), we can calculate the first and

Eq. (47), it is clear that this decrease in the curve is due tosecond moments of the photon distribution in any fixed mode
the two-peaked nature d{n) behaving similar to a pair of . From Eq.(47), we find

thermal distributions for ultracold incident atoms. We can

examine numerically the stability and uniqueness of this *

steady state result derived under the condition of detailed (ny)= 2 nP.(n)=
balance. Using the fourth order Runge kutta method for di- n=0

rect integration of rate equatio{83), we have plotted the w 17

photon probability distribution in Figs. 6 and 7 at different 2\ 2 _ -

times for the equal parameter case when the initial state of (o) ngo "Pa(n) 6 mE:O f(mym(m+1)(2m+1).

N|

20 f(mm(m+1), (49

(50
1.0 . . 1.0 r .
08 @ 1 os (b) ] The mean value of total photon number is found from Egs.
P.m 0.6 4 0.6 (45) and (49) to be
2
0.4 L 04 L © 0
02 1 o - (ny)=2 nPs(n)=2 nf(n)(n+1)=2(n,) (51
0.0 Ml .. : 0.0 Lo . n=0 n=0
0 5 10 15 0 5 10 15
0.5 r ' 05 The normalized standard deviatier), is defined by
04 f © {1 o4 5 5
n[l/ - na
Pz(n) 0.3 1 0.3 U§:<><n<>>- (52)
0.2 { o2 a
o1 Hﬂ”ﬂﬂﬂn... ) I In Figs. 8 and 9, we plot the steady-state mean and nor-
00, 5 10 5 00 5 10 15 malized variance of the distribution of photons in any fixed
n n mode forr/C=100 andn,=0.1 when the micromaser is

FIG. 7. The distribution of photons in mode 2 at different times pumped by fast and cold atoms. l_:or 'Fhe Casg (.)f fast atoms
t during the evolution from the initial state. Mode 2 is initially in (k/k=10), each mode of the cavity field exhibits features
the vacuum state. Mode 1 is initially in a thermal state with) s_|m|Iar to that o_f the smgle_modg mzlcromaser and the statis-
—1. The parameters for the calculations are same as in Fig. 8iCs of photons is super-Poissoniam,(>1). For the case of
Graphs(a), (b), (c), and (d) correspond tot=0.1/C, t=1/C, t ultracold atoms K/x=0.01) the graphs show sharp reso-
=3/C, andt=10/C, respectively. nances at kL=ma/{N with m=1,2,..., and N
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02.0 25 3.0 3.5
05 [ . N N . 1 N N N N ) kL
20 ?d(_) 4.0 FIG. 10. The dependence of the normalized cross-correlation

function on the interaction lengtikL for the parameters/C
FIG. 9. The mean and the normalized variance of the distribu-=100, n,=0.1, and(a) k/«x=10, (b) k/x=0.01. For the case of
tion of photons in moder as functions of the interaction lenggi. ~ Ultracold incident atoms, the graph shows resonancesclat
for the same parameters of Fig. 8 with<=0.01. The graphs show =m/N. The resonance sequence correspondingntel has
resonances atL = ma/4/N. The resonance sequence corresponding?€en plotted and the peaks are labeled\byalues.

to m=1 has been plotted and the peaks are labelel bglues. ) )
By using Eqs.(41) and(45), we can easily show that

o

=12,2,... . Thepeaks in the normalized variance are ac- 1,
companied by resonances in the mean photon number and <n1n2>5n nZ:O N1N2P(N1,N2) = £ ((n5) —(Nx)).
are reminiscent of the behavior of single mode mdaéi. 1z

For small values oN, the normalized variance? is less (4
than unity which shows that the photon statistics in eaclSubstituting Eqs(51) and(54) into Eq. (53), we get
mode is sub-Poissonian. This is because the joint probability

function f(n) behaves as a shifted thermal distribution at 2 <n§) 1

those resonance positions. Shifting the thermal distribution 5cross:§ (ng)? - @ - (55

of f(n) to smaller values oN does not increase the variance

of probability diStripUtiO”'Za(”) whenny, is small. However,  Hence the normalized standard deviatisnand the normal-
the normalized variance, decreases below the Poissonianizeq cross-correlation functiodssare related by10]

level because the mean val(ie,) is increased. These reso-

nances in the mean valde,) give rise to a strong anticor- ) (n3)—(ng)?

relation between the two cavity modes. A quantitative mea- oy = Ty 1+3 <n2>< Serosst 3 |- (56)
sure of this anticorrelation is given by the cross-correlation

function defined by According to this relation, the distribution of the total

number of photons in the cavity obeys sub-Poissonian statis-
(ngno)—(n;)(ny) tics (o5<1) when tlhe two _caV|ty mode_s are strongly anti-
Seros= 172 VA2l (53 correlated @g0ss<—3). In Fig. 10, we display the normal-
o8 (ng)(nz) ized cross-correlation functiofi,ssas a function of«L for
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FIG. 11. The joint probability distributio®(n,,n,) for the pa- FIG. 12. The joint distribution of photons in the modes for the
rametersg;=g,=g, C;=C,=C, ny =n,,=ny, r/C=100, ny same parameters of Fig. 11 withC=1000,g,/9,=2.
=1, k/k=0.01, andxL = 107/%/3.

detailed balance solution does not exist. In this case, by di-
the parameters/C=100, n,=0.1 both for fast atomsk{x  rect integration of the rate equatid83), we have obtained
=10) and for cold atomsk{«x=0.01). It is seen from the the result shown in Fig. 12.
graph that there exists a very strong anticorrelation between
the cavity modes for ultracold incident atoms compared to
fast atoms whencL=mm and this leads to sub-Poissonian
photon statistics for the total number of photons in the cav- The master equation for the reduced density operator of
ity. the field in the two-mode micromaser pumped by ultracold

A-type three-level atoms has been derived and the steady

VII. JOINT DISTRIBUTION OF PHOTONS state photon probability distribution under the principle of

. ] ) S detailed balance is obtained. The interesting feature is that
_ In this section, we dlscuss_the_Jom_t distribution of photons;e degree of anticorrelation between the cavity modes in-
in the two modes of the cavity field in steady state. For the;regses when the micromaser is pumped by ultracold atoms
case of equal paramete=0,=0, Np,=Np, =Ny, C1  instead of fast atoms. This leads to sub-Poissonian statistics
=C,=_C, the detailed balance steady state solution has beefor the distribution of total number of photons in the cavity.
obtained in Sec. V. Using Eg41), the joint distribution of By direct integration of the rate equation fB(n,,n,), the
photonsP(ny,n,) is plotted in Fig. 11 for the parameters steady state photon probability distribution has also been ob-
r/C=100, n,=1, xL=10m/4/3, k/k=0.01. The graph tained for the case of unequal coupling constamis g,.
shows thatP(ny,n,) is a symmetric function of; andn,. Further an initial asymmetric excitation of the atom-cavity
For the case of unequal coupling constants, ge# g,, the  system can be used to extract phase information.

VIIl. SUMMARY
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