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Mazer action in a bimodal cavity
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The work of Meyer, Scully, and Walther@Phys. Rev. A56, 4142 ~1997!# is generalized to study the
operation of a two-mode mazer with particular reference to the question of mode-mode correlations. The
explicit expression for the detailed balance steady-state photon distribution has been derived. It is shown that
the two-mode mazer exhibits much stronger sub-Poissonian statistics for each mode. The photon-number
distributions are found to be quite sensitive to the presence of blackbody photons in the cavity. The interfer-
ences among contributions from different dressed states enable one to obtain the phase of the transmission
amplitude of finding the atom in the initial excited state by considering a set of two measurements involving
two different initial states of the atom-field system.

PACS number~s!: 42.50.Vk, 42.50.Dv, 03.75.2b
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I. INTRODUCTION

Since the early realization@1# of micromaser, the interac
tion of atoms with fields in high quality cavities continues
attract a great deal of attention@2#. The operation of micro-
mazer has been explained@3,4# and many features of th
characteristics of the field in the cavity have been predic
These include sub-Poissonian statistics@3,4#, the trapping
states@5#, and unusual types of diffusion of the field@6#. All
these characteristics depend in important manner on pa
eters such as atomic flux, quality factor, etc. Recently i
remarkable experiment@7# the trapping states have also be
seen. The work on micromasers has been generalize
many different directions. For example, the two-photon m
cromaser as well as the microlaser were realized@8,9#. Fur-
ther the theory was extended to three-level systems@10#.

When the micromaser is pumped by ultracold~laser
cooled! atoms@11#, quantization of external motion of atom
becomes necessary. This quantization of center-of-m
~c.m.! motion @12,13# leads to a completely new kind o
induced emission@14#. In this way, Scullyet al. @14# have
introduced a new concept called mazer~microwave amplifi-
cation by thez motion induced emission of radiation!. The
quantum theory of single mode mazer operating on two-le
atoms has been developed in great detail@15–17#. The
steady state photon distribution of the mazer operating
two-level atoms under the resonance condition looks sim
to a pair of thermal distributions one of which is shifte
towards the larger photon number@14#. This state which can
be viewed as a mixture of the thermal state and the shi
thermal state, has been shown to be nonclassical@18#. The
work of Meyeret al.has been extended to treat the theory
single mode two-photon mazer@19#. The interaction between
an ultracoldL-type three-level atom with degenerate grou
levels and a single mode radiation field has been studied
the effect of detunings on the photon emission probability
an excited atom has been discussed@20#. In this paper, we
examine the two-mode mazer. We follow very closely t
work of Meyer, Scully, and Walther@15#.
1050-2947/2000/62~2!/023809~12!/$15.00 62 0238
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The organization of the paper is as follows. In Sec. II, w
study the interaction of three-level cold atoms movi
through the two-mode cavity and we show the correlat
between the internal dynamics and the externalz motion of
atoms. In Sec. III, we discuss the transmission of an at
incident on the cavity in various initial states. In Sec. IV, w
derive the master equation for the reduced density matrix
the field in the cavity. In Sec. V, the steady state pho
probability distribution under the condition of detailed ba
ance is derived. In Sec. VI, the photon statistics of cav
field in a fixed mode has been discussed. In Sec. VII,
obtain the steady state photon probability distribution n
merically for the case of unequal coupling constants for
two cavity modes.

II. MODEL SYSTEM AND DYNAMICS

We consider a beam of slow, monoenergetic three-le
atoms with aL-type configuration passing through a highQ,
two-mode microwave cavity of lengthL. The atomic flux is
so adjusted that only one atom interacts with the cavity fi
at a time. The energy level diagram for the analysis is sho
in Fig. 1. The transition between the two lower levelsb1 and
b2 is dipole forbidden and the transition from the upper lev
a to any of the lower levelsb1 andb2 is allowed. The fre-
quencies of the transitionsa→b1 anda→b2, coincide with
those of the modes 1 and 2 of the microwave cavity so t
the atom and the fields interact resonantly. We also neg

FIG. 1. The scheme of the two-mode micromaser and
energy-level diagram for the analysis.
©2000 The American Physical Society09-1
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the cavity field damping during the time an atom intera
with the cavity field. The Hamiltonian for the atom-field in
teraction including the quantization of the c.m. motion of t
atoms, is given by

H5HA1HF1HAF . ~1!

whereHA (HF) is the Hamiltonian of the free atom~field!
andHAF is the interaction Hamiltonian describing the atom
field interaction in the dipole and the rotating wave appro
mations:

HA5
pz

2

2m
1\Vaua&^au1 (

a51

2

\Vba
uba&^ubau,

HF5 (
a51

2

\vaaa
†aa , ~2!

HAF5 (
a51

2

\ga~aaua&^bau1uba&^auaa
† !.

The operatoru j &^ j u( j 5a,b1 ,b2) gives the projection on
to the stateu j & with energy\V j . The operatorsu i &^ j u( i , j
5a,b1 ,b2 ; iÞ j ) describe the transition from levelj to level
i. The operatorsaa (aa

†) annihilate ~create! a photon in
modesa with the resonance frequenciesva5Va2Vba

. The

parametersga are the corresponding atom-field couplin
constants andm is the atomic mass. The parametersga are
dependent onz through the mode function of the cavity.

In a suitable reference frame, the Hamiltonian~1! of the
atom-field system reads

HI5
pz

2

2m
1HAF . ~3!

The operatorHAF is readily diagonalizable. It has eigen
states ufn111,n211

0 &,ufn111,n211
6 & with eigenvalues 0,

6\Ag1
2(n111)1g2

2(n211), respectively, where

ufn111,n211
0 &5F g2An211

Ag1
2~n111!1g2

2~n211!
ub1 ,n111,n2&

2
g1An111

Ag1
2~n111!1g2

2~n211!
ub2 ,n1 ,n211&G ,

ufn111,n211
6 &5

1

A2
F ua,n1 ,n2&

6
g1An111

Ag1
2~n111!1g2

2~n211!
ub1 ,n111,n2&

6
g2An211

Ag1
2~n111!1g2

2~n211!
ub2 ,n1 ,n211&G .

~4!
02380
s

-

In the basis of dressed statesufn111,n211
6 &, ufn111,n211

0 & of

the atom-field system, the Hamiltonian~3! leads to

HI ufn111,n211
6 &5h6ufn111,n211

6 &,

~5!
HI ufn111,n211

0 &5h0ufn111,n211
0 &.

Here h65pz
2/2m6\Ag1

2(z)(n111)1g2
2(z)(n211) andh0

5pz
2/2m. Note thath6 andh0 are still operators which act in

the space of the center of mass variables. If we expand
wave function of the combined atom-cavity system as

uC&5x1ufn111,n211
1 &1x2ufn111,n211

2 &1x0ufn111,n211
0 &,

~6!

then

i\
]xa

]t
5haxa , a56,0. ~7!

Clearly the effect of the cavity with fixed number of photo
in each mode is to produce a potential term inh as discussed
in Ref. @12#. If we approximate the mode function of th
cavity by a mesa functiong(z)5u(z)u(L2z), then the po-
tential terms will be as displayed in Fig. 2.

We now consider the initial atom-field state to b
ua,n1 ,n2&, i.e., the atom is in the excited state withn1 pho-
tons in mode 1 andn2 photons in mode 2 of the cavity field
This state can be expanded in terms of the dressed state~4!
as

ua,n1 ,n2&5
1

A2
@ ufn111,n211

1 &1ufn111,n211
2 &]. ~8!

From the above discussions, the problem is now redu
to that of an atom incident upon the potentia
Vn111,n211

6 (z)56\Ag1
2(n111)1g2

2(n211). We consider

the c.m. wave packet of the incident atom to bec(z,0)

FIG. 2. Schematic representation of the energyE of the excited
atoms incident upon a two-mode micromaser cavity with (n,m)
photons. The interaction is equivalent to reflection and transmis
of atoms through a potential barrier~dashed! or potential well~dot-
ted! with a potential energyV5\Ag1

2(n11)1g2
2(m11). Thus re-

flection and transmission of the atom is very similar to the one
the work of Meyeret al. However, the atom can be reflected an
transmitted in either of the three statesua,n,m&, ub1 ,n11,m&, and
ub2 ,n,m11&.
9-2
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5*d kA(k)eikzu(2z) where the amplitudesA(k) are ad-
justed such that the center of wave packet enters the cavi
time t50. The Heaviside’s step functionu(2z) merely lim-
its the spread of the initial wave packet to thez,0 region
only. The wave function of the atom-field system initially
a
e

ut

fo
m

02380
at
^zuC~0!&5c~z,0!ua,n1 ,n2&. ~9!

By using Eq.~8! the wave function of the atom-field syste
at time t is found to be
^zuC~ t !&5exp~2 iH I t/\!c~z,0!ua,n1 ,n2&

5exp~2 iH I t/\!c~z,0!
1

A2
@ ufn111,n211

1 &1ufn111,n211
2 &]

5
1

A2
FexpS 2 i t

\ F pz
2

2m
1\Ag1

2~n111!1g2
2~n211!G Dc~z,0!ufn111,n211

1 &

1expS 2 i t

\ F pz
2

2m
2\Ag1

2~n111!1g2
2~n211!G Dc~z,0!ufn111,n211

2 &G . ~10!
or
me

or
rom
Denoting the reflection and transmission amplitudes
rn1 ,n2

6 ,tn1 ,n2

6 for the potential barrier-well problem of th

dressed statesufn111,n211
6 &, respectively, we have

rn1 ,n2

6 5 iDn1 ,n2

6 sin~kn1 ,n2

6 L !tn1 ,n2

6 , ~11!

tn1 ,n2

6 5@cos~kn1 ,n2

6 L !2 iSn1 ,n2

6 sin~kn1 ,n2

6 L !#21, ~12!

Dn1 ,n2

6 5
1

2 S kn1 ,n2

6

k
2

k

kn1 ,n2

6 D , ~13!

Sn1 ,n2

6 5
1

2 S kn1 ,n2

6

k
1

k

kn1 ,n2

6 D ,

kn1 ,n2

6 5AS k27
2m

\
Ag1

2~n111!1g2
2~n211! D

5AS k27k2Ag1
2~n111!1g2

2~n211!

g1
21g2

2 D ,

~14!

where \k is the atomic c.m. momentum and\2k2/2m
5\Ag1

21g2
2 is the vacuum coupling energy. Carrying o

the time evolution of the state ket in Eq.~10! for the potential
barrier-well problem of the dressed states, we obtain the
lowing wave function of the atom-field system after the ato
has left the interaction region
s

l-

^zuC~ t !&5E dkA~k!e2 i (\k2/2m)t$@Ra,n1 ,n2
~k!e2 ikzu~2z!

1Ta,n1 ,n2
~k!eik(z2L)u~z2L !#ua,n1 ,n2&

1@Rb1 ,n111,n2
~k!e2 ikzu~2z!

1Tb1 ,n111,n2
~k!eik(z2L)u~z2L !#ub1 ,n111,n2&

1@Rb2 ,n1 ,n211~k!e2 ikzu~2z!

1Tb2 ,n1 ,n211~k!eik(z2L)u~z2L !#

3ub2 ,n1 ,n211&%, ~15!

where

Ra,n1 ,n2
5

1

2
~rn1 ,n2

1 1rn1 ,n2

2 !, Ta,n1 ,n2
5

1

2
~tn1 ,n2

1 1tn1 ,n2

2 !,

~16!

are the probability amplitudes that the atom is reflected
transmitted with the atom-field state remaining in the sa
initial state asua,n1 ,n2& and

Rb1 ,n111,n2
5

g1An111

2Ag1
2~n111!1g2

2~n211!
~rn1 ,n2

1 2rn1 ,n2

2 !

Tb1 ,n111,n2
5

g1An111

2Ag1
2~n111!1g2

2~n211!

3~tn1 ,n2

1 2tn1 ,n2

2 !, ~17!

are the probability amplitudes that the atom is reflected
transmitted when the atom-field state makes a transition f
initial ua,n1 ,n2& to ub1 ,n111,n2&. Similarly, the atom is re-
9-3
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flected or transmitted when the atom-field state change
ub2 ,n1 ,n211& with amplitudes

Rb2 ,n1 ,n2115
g2An211

2Ag1
2~n111!1g2

2~n211!
~rn1 ,n2

1 2rn1 ,n2

2 !,

Tb2 ,n1 ,n2115
g2An211

2Ag1
2~n111!1g2

2~n211!

3~tn1 ,n2

1 2tn1 ,n2

2 !. ~18!

Note that all the physical characteristics regarding the in
action of ultracold atoms with a high quality cavity can
calculated in terms of quantities defined by Eqs.~16!–~18!.
Let us examine the probability of emission of a photo
When an initially excited three-level atom is incident up
the cavity containing (n1 ,n2) photons in the two mode
~1,2!, respectively, then from Eqs.~17! and~18! the probabil-
ity that the atom goes to the levelb1 and emits a photon in
mode 1 is

p(n1 ,n2)~a→b1!5uRb1 ,n111,n2
u21uTb1 ,n111,n2

u2, ~19!

the probability that the atom goes to the levelb2 and emits a
photon in mode 2 is

p(n1 ,n2)~a→b2!5uRb2 ,n1 ,n211u21uTb2 ,n1 ,n211u2, ~20!

and the probability that the atom emits a photon either
mode 1~or! mode 2 inside the cavity is

p(n1 ,n2)~emission!5uRb1 ,n111,n2
u21uTb1 ,n111,n2

u2

1uRb2 ,n1 ,n211u21uTb2 ,n1 ,n211u2.

~21!

III. TRANSMISSION OF ATOMS

In this section, we discuss the transmission characteris
of an ultracold atom through the cavity induced potentials
the previous section, we have seen that for an incident a
in the excited state, the two orthogonal dressed st
ufn111,n211

6 & create barrier-well potentials for the extern

motion of atoms. When the initial atom-field state isua,0,0&,
the probability of transmission in the excited state of an at
through the cavity is plotted as a function ofkL in Fig. 3~a!
by using Eq.~16! for the parameterk/k50.01. The graph
shows resonances atkL5mp with m51,2, . . . , which is
similar to the transmission of an excited two-level atom
cident on a single mode cavity@15#. As described in Ref.
@15#, this feature is just the transmission characteristic of
potential well.

Next we consider the initial atom-field state to be eith
ub1,1,0& or ub2,0,1&. Using the same procedure as in t
previous section, we obtain the time evolution for the init
stateub1,1,0&. Here it is important to note that the dress
stateufn1 ,n2

0 & also contributes since
02380
to

r-

.

n

cs
n
m
es

-

e

r

l

ub1,1,0&5
g2

Ag1
21g2

2
uf1,1

0 &1
g1

A2~g1
21g2

2!
~ uf1,1

1 &2uf1,1
2 &).

~22!

A repeat of steps~9!–~16! now yields the probabilityT that
an atom is transmitted in the same initial state

T5uTb1,1,0u25U g1
2

2~g1
21g2

2!
~t0,0

1 1t0,0
2 !1

g2
2

~g1
21g2

2!
U2

,

~23!

wheret0,0
6 are given by Eq.~12! and the additional factor o

g2
2/(g1

21g2
2) comes from the contribution due to the dress

state ufn1 ,n2

0 & in the expansion~22!. Using Eq. ~23!, the

transmission probability that an atom in the initial stateub1&
is transmitted through the cavity containing initially one ph
ton in mode 1 has been plotted in Fig. 3~b! for the parameters
g2 /g152, k/k50.01. On comparing the graphs 3~a! and
3~b!, we see that the effect of the dark stateufn1 ,n2

0 & en-

hances the probability of transmission of atom in the init

FIG. 3. The probability of transmissionT of an atom in the
initial state through the cavity as a function of the length of t
cavity kL for the parametersg2 /g152, k/k50.01 and for the ini-
tial atom-field states~a! ua,0,0& (T[uTa,0,0u2) and ~b! ub1,1,0& (T
[uTb1,1,0u2). For the initial atom-field stateua,0,0&, the probability
of transmission is independent of the ratiog2 /g1.
9-4
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stateub1& at kL5mp with m52,4,6, . . . . Wealso see that
we have the possibility of determining the phaseua,0,0 of the
amplitude 1

2 (t0,0
1 1t0,0

2 )[Ta,0,0 from the measurements o
Ta,0,0 andTb1,1,0:

uTb1,1,0u2[
1

~g1
21g2

2!2
@g1

4uTa,0,0u21g2
4

12g1
2g2

2uTa,0,0ucos~ua,0,0!#. ~24!

Note that Fig. 3~a! yields uTa,0,0u2 and Fig. 3~b! gives
uTb1,1,0u2. Clearly from these two figures one can getua,0,0.
This has become possible due to the interference betwee
contributions coming from different dressed states in the
pansion~22!.

IV. BUILDUP OF THE CAVITY FIELD

In this section, we derive the master equation for the c
ity field assuming that a steady atomic beam passes thro
e
is

a
B
t
t

02380
the
-

-
gh

the cavity. The successive passage of atoms changes the
in the cavity. In the analysis of Sec. II, we had assumed
cavity field to be in the Fock state. However, for the dynam
evolution of the field we have to examine a more gene
initial state of the cavity field. Using Eq.~8! the wave func-
tion of the initial atom-field system is now given by

^zuC~0!&5c~z,0! (
n1 ,n2

Cn1 ,n2
ua,n1 ,n2&

5c~z,0!
1

A2
(

n1 ,n2

Cn1 ,n2
~ ufn111,n211

1 &

1ufn111,n211
2 &). ~25!

Carrying out the time evolution for this initial state using E
~15!, the state of atom-field system after the interaction
given by
^zuC~ t !&5E dkA~k!e2 i (\k2/2m)t (
n1 ,n250

`

@Ra,n1 ,n2
~k!e2 ikzu~2z!ua,n1 ,n2&1Ta,n1 ,n2

~k!eik(z2L)u~z2L !ua,n1 ,n2&

1Rb1 ,n111,n2
~k!e2 ikzu~2z!ub1 ,n111,n2&1Tb1 ,n111,n2

~k!eik(z2L)u~z2L !ub1 ,n111,n2&

1Rb2 ,n1 ,n211~k!e2 ikzu~2z!ub2 ,n1 ,n211&1Tb2 ,n1 ,n211~k!eik(z2L)u~z2L !ub2 ,n1 ,n211&], ~26!
ted
en
dis-

the
o-
c-

a
the
p-
where

Ra,n1 ,n2
~k!5Cn1 ,n2

Ra,n1 ,n2
~k!,

~27!
Ta,n1 ,n2

~k!5Cn1 ,n2
Ta,n1 ,n2

~k!,

are the probability amplitudes for reflection~or! transmission
of the atom in the upper stateua& with the cavity field con-
taining (n1 ,n2) photons in the two modes and similarly, th
atom is reflected~or! transmitted when the atom-field state
ub1 ,n111,n2& ~or! ub2 ,n1 ,n211& with amplitudes

Rb1 ,n111,n2
~k!5Cn1 ,n2

Rb1 ,n111,n2
~k!,

Tb1 ,n111,n2
~k!5Cn1 ,n2

Tb1 ,n111,n2
~k!,

~28!
Rb2 ,n1 ,n211~k!5Cn1 ,n2

Rb2 ,n1 ,n211~k!,

Tb2 ,n1 ,n211~k!5Cn1 ,n2
Tb2 ,n1 ,n211~k!.

Equation~26! can be used to find the atom-field density m
trix after a single atom has passed through the cavity.
taking the trace over the atomic energy eigenstates and
position eigenstates of the center of mass of the atom,
reduced density operatorr(t) of the cavity field is then
found to be
-
y
he
he

r~ t !5 (
i 5a,b1 ,b2

E dẑ i ,zuC~ t !&^C~ t !u i ,z&. ~29!

We consider the case in which excited atoms are injec
into the cavity at random times and the time interval betwe
successive atoms entering the cavity obeys a Poissonian
tribution with an averager. As discussed in Ref.@4#, the
contribution of each atom passing through the cavity and
field damping lead to the following coarse grained time ev
lution of reduced density operator of the field in the intera
tion picture:

ṙ~ t !5rdr~ t !1Lr~ t !, ~30!

wheredr(t) is the change inr(t) due to the passage of
single atom in the excited state. The field damping and
effect of thermal photons are described by the Liouville o
erator

Lr5
1

2
C1~nb1

11!~2a1ra1
†2a1

†a1r2ra1
†a1!

1
1

2
C1nb1

~2a1
†ra12a1a1

†r2ra1a1
†!

1
1

2
C2~nb2

11!~2a2ra2
†2a2

†a2r2ra2
†a2!

1
1

2
C2nb2

~2a2
†ra22a2a2

†r2ra2a2
†!. ~31!
9-5
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Here nba
is the number of thermal photons in modea and Ca is the damping rate of this mode. Using Eqs.~29!–~31! we

obtain the equation governing the time evolution of the density matrix elements

ṙ~n1 ,n2 ;n18 ,n28!5r $~Ra,n1 ,n2
Ra,n

18,n
28

!
1Ta,n1 ,n2

Ta,n
18,n

28
!

21!r~n1 ,n2 ;n18 ,n28!

1~Rb1 ,n1 ,n2
Rb1 ,n

18,n
28

!
1Tb1 ,n1 ,n2

Tb1 ,n
18,n

28
!

!r~n121,n2 ;n1821,n28!

1~Rb2 ,n1 ,n2
Rb2 ,n

18,n
28

!
1Tb2 ,n1 ,n2

Tb2 ,n
18,n

28
!

!r~n1 ,n221;n18,n2821!%1
1

2
C1~nb1

11!

3@2A~n111!~n1811!r~n111,n2 ;n1811,n28!2~n11n18!r~n1 ,n2 ;n18 ,n28!#

1
1

2
C1nb1

@2An1n18r~n121,n2 ;n1821,n28!2~n11n1812!r~n1 ,n2 ;n18 ,n28!#1
1

2
C2~nb2

11!

3@2A~n211!~n2811!r~n1 ,n211;n18 ,n2811!2~n21n28!

3r~n1 ,n2 ;n18 ,n28!#1
1

2
C2nb2

@2An2n28r~n1 ,n221;n18 ,n2821!2~n21n2812!r~n1 ,n2 ;n18 ,n28!#.

~32!

The diagonal elements of the density matrixP(n1 ,n2)5r(n1 ,n2 ;n1 ,n2) which gives the joint distribution of photons i
the two cavity modes, obeys the equation

Ṗ~n1 ,n2!5r $@ uRa,n1 ,n2
u21uTa,n1 ,n2

u221#P~n1 ,n2!1@ uRb1 ,n1 ,n2
u21uTb1 ,n1 ,n2

u2#P~n121,n2!

1@ uRb2 ,n1 ,n2
u2#1uTb2 ,n1 ,n2

u2#P~n1 ,n221!%1C1~nb1
11!@~n111!P~n111,n2!2n1P~n1 ,n2!#

1C1nb1
@n1P~n121,n2!2~n111!P~n1 ,n2!#

1C2~nb2
11!@~n211!P~n1 ,n211!2n2P~n1 ,n2!

1C2nb2
@n2P~n1 ,n221!2~n211!P~n1 ,n2!#. ~33!
e
ro
t

as
ic

b

th
is

1

n

This is the master equation for the two-mode micromas
This equation has the character of rate equation for the p
ability and various terms on the right hand side behave as
outflow and the inflow of probabilities. This equation h
also the form that one would have expected on phys
grounds.

V. ANALYTICAL SOLUTION OF MASTER EQUATION

The steady state photon probability distribution is o
tained by setting

Ṗ~n1 ,n2!50. ~34!

The distributionP(n1 ,n2) can be obtained in analytical form
by using the condition of detailed balance which states
the net inflow and outflow of probabilities are equal. Th
leads to

P~n1 ,n2!5P~n121,n2!
1

C1~nb1
11!

H C1nb1
1

Gb1 ,n121,n2

n1
J ,

~35!
02380
r.
b-
he
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-

at

P~n1 ,n2!5P~n1 ,n221!
1

C2~nb2
11!

3H C2nb2
1

Gb2 ,n1 ,n221

n2
J . ~36!

Here Gb1 ,n121,n2
5r p (n121,n2)(a→b1), Gb2 ,n1 ,n221

5r p (n1 ,n221)(a→b2) are the gain coefficients for modes
and 2, respectively, withp(n1 ,n2)(a→b1), p(n1 ,n2)(a→b2)
as defined in Eqs.~19! and ~20!. Substituting the expressio
for P(n121,n2) obtained from Eq.~36! into Eq.~35! and the
expression forP(n1 ,n221) obtained from Eq.~35! into Eq.
~36!, we get

P~n1 ,n2!5P~n121,n221!
1

C1~nb1
11!

1

C2~nb2
11!

3S C1nb1
1

Gb1 ,n121,n2

n1
D

3S C2nb2
1

Gb2 ,n121,n221

n2
D , ~37!
9-6
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P~n1 ,n2!5P~n121,n221!
1

C1~nb1
11!

1

C2~nb2
11!

3S C2nb2
1

Gb2 ,n1 ,n221

n2
D

3S C1nb1
1

Gb1 ,n121,n221

n1
D . ~38!
-

at

th
to
m

y
tin
t

d
l

m
th

02380
It is obvious that Eqs.~37! and ~38! can both be satisfied if

g15g25g, C1nb1
5C2nb2

5Cnb . ~39!

Under these conditions, the steady state photon distribu
has the form
P~n1 ,n2!5P~0,0!S r

C11Cnb
D n1S r

C21Cnb
D n2

3 )
q51

n11n2 H Cnb

r
1

1

2~q11! F12
~11Dq

1Dq
2Sq

1Sq
2!~Cq

1Cq
21Sq

1Sq
2Sq

1Sq
2!

~Cq
121Sq

12Sq
12!~Cq

221Sq
22Sq

22!
G J , ~40!
m-

has
where Cq
65cos(kq

6L), Sq
65sin(kq

6L) with

kq
65A(k27k2A(q11)/2) which is the same as Eq.~14! of

Sec. II with (n11n211) replaced byq and g15g25g.
Similarly Dq

6 ,Sq
6 are defined by Eqs.~13! with kn1 ,n2

6 re-

placed bykq
6 . The normalization condition of joint probabil

ity gives (n1 ,n250
` P(n1 ,n2)51. The expression~40! con-

tains all the statistical information about the steady st
 e

field. We consider the special case in which all the para
eters for the two modes are equal, i.e.,g15g25g, C15C2
5C, nb1

5nb2
5nb . In this case, Eq.~39! can be satisfied

and the detailed balance steady state photon distribution
the form

P~n1 ,n2!5 f ~n11n2!, ~41!

where
f ~n!5P~0,0!F r

C~nb11!G
n

)
q51

n H Cnb

r
1

1

~q11! F1

2 S 12
~11Dq

1Dq
2Sq

1Sq
2!~Cq

1Cq
21Sq

1Sq
2Sq

1Sq
2!

~Cq
121Sq

12Sq
12!~Cq

221Sq
22Sq

22!
D G J . ~42!
ser

ode
It is to be noted that the square bracketted term inside
product in the above equation, is identical to the pho
emission probability of an ultracold, excited two-level ato
entering a single mode resonant cavity containingq photons
in the single mode mazer@15#. For comparison the stead
state photon distribution of the single mode mazer opera
on two-level atoms with the atom-field coupling constang
@15# is

P~n!5P~0!F r

C~nb11!G
n

)
q51

n H Cnb

r
1

pe~q21!

q J .

~43!

Herepe(q) is the photon emission probability of an excite
atom incident on the cavity containingq photons and is equa
to the square bracketted term in Eq.~42! with g replaced by
g/A2. For fast atoms, i.e., when the energy of incident ato
is very large compared to the vacuum coupling energy,
square bracketed term in Eq.~42! can be approximated to
e
n

g

s
e

sin2(gtAq11) ~see Sec. V of Ref.@15#! where gt
5k2L/2A2k. In this casef (n) has the form

f ~n!5P~0,0!F r

C~nb11!G
n

3 )
q51

n H Cnb

r
1

1

q11
sin2~gtAq11!J , ~44!

which is the same as obtained in the two-mode microma
operating on three-level atoms@10#. As mentioned in Ref.
@10#, f (n)5P(n,0)5P(0,n) is the joint probability of hav-
ing n photons in one mode and no photons in the other m
and the probability that the cavity contains8n8 total number
of photons is

PS~n![ (
n11n25n

P~n1 ,n2!5 f ~n!~n11!. ~45!
9-7
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P(0,0) can be determined from the normalization condit
(n50

` PS(n)51. For fast atoms, the graph off (n) has been
plotted in Fig. 4~a! for the parametersr /C5100, nb51,
kL510p/A4 3, k/k510. The graph shows the distributio
f (n) with single peak and compares well with the Ref.@10#
on two-mode micromaser. In general, the functionf (n) can
have more than one peak depending on the value ofgt
5k2L/2A2k. The joint probability distributionf (n) behaves
differently when the micromaser is pumped by ultracold
oms, i.e., when the energy of incident atoms is very l
compared to vacuum coupling energy. For ultracold ato
f (n) is shown in Fig. 4~b! for the parametersr /C5100, nb

51, kL510p/A4 3, k/k50.01. The graph looks similar to
pair of thermal distributions one of which is shifted towar
the larger photon number. This behavior off (n) occurs at

kL5mp/A4 N with m51,2, . . . ,N51,3
2 ,2, . . . , and issimi-

lar to that of the steady state photon distribution of the sin
mode mazer@15# as expected on comparing Eqs.~42! and
~43!. WhenkLÞmp/A4 N, the distributionf (n) is a decreas-
ing function ofn similar to a thermal distribution for ultra
cold incident atoms.

FIG. 4. The functionf (n)5P(n,0)5P(0,n) for the parameters
g15g25g, C15C25C, nb1

5nb2
5nb , r /C5100, nb51, kL

510p/A4 3 and~a! k/k510, ~b! k/k50.01.
02380
n

-

s,

e

VI. STEADY-STATE PHOTON STATISTICS

From the joint probability distributionP(n1 ,n2), we can
obtain the distribution of photonsPa(n) in any fixed modea
by summing over the number of photons in the other mo
The functionPa(n) is defined by

P1~n!5(
l 50

`

P~n,l !, P2~n!5(
l 50

`

P~ l ,n!. ~46!

By using Eq.~41! the functionPa(n) is found to be

Pa~n!5(
l 5n

`

f ~ l !. ~47!

It may be noted from this equation thatPa(n) is independent
of a since we assumedg15g25g, C15C25C, nb1

5nb2

5nb , and

Pa~n11!5Pa~n!2 f ~n!. ~48!

The functionf (n) is positive as seen from Eq.~42!. There-
fore, the photon distribution decreases monotonously withn.
The probability distribution of photons in a fixed mode ca

FIG. 5. The distribution of photons in modea for the param-
eters g15g25g, C15C25C, nb1

5nb2
5nb , r /C5100, nb51,

kL510p/A4 3 and~a! k/k510, ~b! k/k50.01.
9-8
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culated from~47!, is plotted both for fast atoms (k/k510)
and ultracold atoms (k/k50.01) in Fig. 5 for the parameter
r /C5100, nb51, kL510p/A4 3. The graphs show that fo
ultracold atoms there is a steep decrease in the curv
Pa(n) at the valuen55 for the chosen parameters. Fro
Eq. ~47!, it is clear that this decrease in the curve is due
the two-peaked nature off (n) behaving similar to a pair o
thermal distributions for ultracold incident atoms. We c
examine numerically the stability and uniqueness of t
steady state result derived under the condition of deta
balance. Using the fourth order Runge kutta method for
rect integration of rate equation~33!, we have plotted the
photon probability distribution in Figs. 6 and 7 at differe
times for the equal parameter case when the initial stat

FIG. 6. The distribution of photons in mode 1 at different tim
t during the evolution from the initial state. Mode 1 is initially in
thermal state witĥn1&51. Mode 2 is initially in the vacuum state
The parameters for the calculations areg15g25g, C15C25C,
nb1

5nb2
5nb , r /C5100, nb51, kL510p/A4 3, k/k50.01.

Graphs~a!, ~b!, ~c!, and~d! correspond tot50, t50.1/C, t51/C,
and t510/C, respectively.

FIG. 7. The distribution of photons in mode 2 at different tim
t during the evolution from the initial state. Mode 2 is initially i
the vacuum state. Mode 1 is initially in a thermal state with^n1&
51. The parameters for the calculations are same as in Fig
Graphs ~a!, ~b!, ~c!, and ~d! correspond tot50.1/C, t51/C, t
53/C, andt510/C, respectively.
02380
of

o

s
d
i-

of

the field for mode 1 is a thermal distribution with the me
value of photon number̂n1&51 and vacuum state for mod
2, for the parametersr /C5100, nb51, kL510p/A4 3, k/k
50.01. It is seen from the graphs that a steady state
reached within a time of order 10/C and the steady stat
photon probability distribution coincides with the analytic
result obtained under the principle of detailed balance. T
confirms the uniqueness and stability of detailed bala
steady state solution.

From Eqs.~42! and ~47!, we can calculate the first an
second moments of the photon distribution in any fixed mo
a. From Eq.~47!, we find

^na&[ (
n50

`

nPa~n!5
1

2 (
m50

`

f ~m!m~m11!, ~49!

^na
2&[ (

n50

`

n2Pa~n!5
1

6 (
m50

`

f ~m!m~m11!~2m11!.

~50!

The mean value of total photon number is found from E
~45! and ~49! to be

^nS&[ (
n50

`

nPS~n!5 (
n50

`

n f~n!~n11!52^na& ~51!

The normalized standard deviationsa is defined by

sa
25

^na
2&2^na&2

^na&
. ~52!

In Figs. 8 and 9, we plot the steady-state mean and n
malized variance of the distribution of photons in any fix
mode for r /C5100 andnb50.1 when the micromaser i
pumped by fast and cold atoms. For the case of fast at
(k/k510), each mode of the cavity field exhibits featur
similar to that of the single mode micromaser and the sta
tics of photons is super-Poissonian (sa

2.1). For the case of
ultracold atoms (k/k50.01) the graphs show sharp res
nances at kL5mp/A4 N with m51,2, . . . , and N

6.

FIG. 8. The mean~solid curve! and the normalized varianc
~dashed curve! of the distribution of photons in modea as functions
of the interaction lengthkL for the parametersr /C5100, nb

50.1, k/k510. Actual values ofsa
2 are 0.4 times those shown.
9-9
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51,3
2 ,2, . . . . Thepeaks in the normalized variance are a

companied by resonances in the mean photon number
are reminiscent of the behavior of single mode mazer@15#.
For small values ofN, the normalized variancesa

2 is less
than unity which shows that the photon statistics in ea
mode is sub-Poissonian. This is because the joint probab
function f (n) behaves as a shifted thermal distribution
those resonance positions. Shifting the thermal distribu
of f (n) to smaller values ofN does not increase the varianc
of probability distributionPa(n) whennb is small. However,
the normalized variancesa

2 decreases below the Poissoni
level because the mean value^na& is increased. These reso
nances in the mean value^na& give rise to a strong anticor
relation between the two cavity modes. A quantitative m
sure of this anticorrelation is given by the cross-correlat
function defined by

dcross[
^n1n2&2^n1&^n2&

^n1&^n2&
. ~53!

FIG. 9. The mean and the normalized variance of the distri
tion of photons in modea as functions of the interaction lengthkL
for the same parameters of Fig. 8 withk/k50.01. The graphs show
resonances atkL5mp/A4 N. The resonance sequence correspond
to m51 has been plotted and the peaks are labeled byN values.
02380
-
nd

h
ty
t
n

-
n

By using Eqs.~41! and ~45!, we can easily show that

^n1n2&[ (
n1 ,n250

`

n1n2P~n1 ,n2!5
1

6
~^nS

2 &2^nS&!.

~54!

Substituting Eqs.~51! and ~54! into Eq. ~53!, we get

dcross5
2

3 S ^nS
2 &

^nS&2
2

1

^nS& D 21. ~55!

Hence the normalized standard deviationsS and the normal-
ized cross-correlation functiondcrossare related by@10#

sS
2 [

^nS
2 &2^nS&2

^nS&
511

3

2
^nS&S dcross1

1

3D . ~56!

According to this relation, the distribution of the tota
number of photons in the cavity obeys sub-Poissonian sta
tics (sS

2 ,1) when the two cavity modes are strongly an
correlated (dcross,2 1

3 ). In Fig. 10, we display the normal
ized cross-correlation functiondcrossas a function ofkL for

-

g

FIG. 10. The dependence of the normalized cross-correla
function on the interaction lengthkL for the parametersr /C
5100, nb50.1, and~a! k/k510, ~b! k/k50.01. For the case o
ultracold incident atoms, the graph shows resonances atkL
5mp/A4 N. The resonance sequence corresponding tom51 has
been plotted and the peaks are labeled byN values.
9-10
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MAZER ACTION IN A BIMODAL CAVITY PHYSICAL REVIEW A 62 023809
the parametersr /C5100, nb50.1 both for fast atoms (k/k
510) and for cold atoms (k/k50.01). It is seen from the
graph that there exists a very strong anticorrelation betw
the cavity modes for ultracold incident atoms compared
fast atoms whenkL5mp and this leads to sub-Poissonia
photon statistics for the total number of photons in the c
ity.

VII. JOINT DISTRIBUTION OF PHOTONS

In this section, we discuss the joint distribution of photo
in the two modes of the cavity field in steady state. For
case of equal parametersg15g25g, nb1

5nb2
5nb , C1

5C25C, the detailed balance steady state solution has b
obtained in Sec. V. Using Eq.~41!, the joint distribution of
photonsP(n1 ,n2) is plotted in Fig. 11 for the parameter
r /C5100, nb51, kL510p/A4 3, k/k50.01. The graph
shows thatP(n1 ,n2) is a symmetric function ofn1 andn2.
For the case of unequal coupling constants, i.e.,g1Þg2, the

FIG. 11. The joint probability distributionP(n1 ,n2) for the pa-
rametersg15g25g, C15C25C, nb1

5nb2
5nb , r /C5100, nb

51, k/k50.01, andkL510p/A4 3.
r,

.

.

r,

02380
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-
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detailed balance solution does not exist. In this case, by
rect integration of the rate equation~33!, we have obtained
the result shown in Fig. 12.

VIII. SUMMARY

The master equation for the reduced density operato
the field in the two-mode micromaser pumped by ultrac
L-type three-level atoms has been derived and the ste
state photon probability distribution under the principle
detailed balance is obtained. The interesting feature is
the degree of anticorrelation between the cavity modes
creases when the micromaser is pumped by ultracold at
instead of fast atoms. This leads to sub-Poissonian stati
for the distribution of total number of photons in the cavit
By direct integration of the rate equation forP(n1 ,n2), the
steady state photon probability distribution has also been
tained for the case of unequal coupling constantsg1Þg2.
Further an initial asymmetric excitation of the atom-cav
system can be used to extract phase information.

FIG. 12. The joint distribution of photons in the modes for t
same parameters of Fig. 11 withr /C51000, g2 /g152.
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@17# M. Schröder, K. Vogel, W.P. Schleich, M.O. Scully, and H
Walther, Phys. Rev. A56, 4164~1997!.

@18# Ching Tsung Lee, J. Opt. Soc. Am. B14, 1576~1997!.
02380
@19# Zhi-Ming Zhang, Zhi-Yuan Lu, and Lin-Sheng He, Phys. Re
A 59, 808 ~1999!.

@20# Zhi-Ming Zhang and Lin-Sheng He, Opt. Commun.157, 77
~1998!.
9-12


