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Time dependence of evanescent quantum waves
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The time dependence of quantum evanescent waves generated by a point source with an infinite or a limited
frequency band is analyzed. The evanescent wave is characterized by a forerunner~transient! related to the
precise way the source is switched on. It is followed by an asymptotic, monochromatic wave which at long
times reveals the oscillation frequency of the source. For a source with a sharp onset the forerunner is
exponentially larger than the monochromatic solution and a transition from the transient regime to the
asymptotic regime occurs only at asymptotically large times. In this case, the traversal time for tunneling
already plays a role only in the transient regime. To enhance the monochromatic solution compared to the
forerunner we investigate~a! frequency-band-limited sources and~b! the short-time Fourier analysis~the
spectrogram! corresponding to a detector which is frequency band limited. Neither of these two methods leads
to a precise determination of the traversal time. However, if they are limited to determine the traversal time
only with a precision of the traversal time itself both methods are successful: In this case the transient behavior
of the evanescent waves is at a time of the order of the traversal time followed by a monochromatic wave
which reveals the frequency of the source.

PACS number~s!: 42.50.Ct, 03.65.2w
pe
lo

av

th

e
e

-
h

ig
th
e

d
t

rs
e
ia

ul
a
t

a

be a
hop

c-
in
t yet
t

nt

of

is

-

-
t a

ate

,

I. INTRODUCTION

In order to summarize essential aspects of the time de
dence of wave phenomena a number of characteristic ve
ties or times have been defined. Thephase velocity, v/k, is
the velocity of constant phase points in the stationary w
~assumek.0 for the time being!

eikx2 ivt. ~1!

The boundary conditions, the superposition principle, and
dispersion relationv5v(k) between the frequencyv and
the wave numberk determine the time evolution of th
waves in a given medium. When a group of waves is form
by superposition of stationary waves around a particularv, it
propagates with thegroup velocity dv/dk. In dispersive me-
dia ~where v depends onk), the group velocity can be
smaller ~normal dispersion! or greater~anomalous disper
sion! than the phase velocity. It was soon understood t
these velocities could be both greater thanc for the propaga-
tion of light, and Sommerfeld and Brillouin@1#, studying the
fields that result from an input step function modulated s
nal in a single Lorentz resonance medium, introduced o
useful velocities, such as the velocity of the very first wav
front ~equal toc), or thesignal velocityfor the propagation
of the main front of the wave. Both the very first front an
the signal velocity describe thus the causal response of
system and are therefore of particular interest.

The above description is, however, problematic foreva-
nescent waves, characterized by imaginary wave numbe
instead of the real wave numbers of propagating wav
Their time dependence has been investigated by theoretic
and experimentalists in recent years because of its pec
behavior. A striking phenomenon is that, when crossing
evanescent region, certain initial wave features, such as
peak of the incident amplitude, appear at the far side
anomalously large speeds, but clearly a comparison of pe
1050-2947/2000/62~2!/023808~13!/$15.00 62 0238
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of transmitted and incident wave packets does not descri
causal process. Many publications and a recent works
have been devoted to discuss the implications@2#.

The role played by the imaginary part of the group velo
ity dv/dk and the possible definition of a signal velocity
the evanescent case have been much discussed but no
completely clarified. Assume that a source is placed ax
50 and emits with frequencyv0 from t50 on. If v0 is
above thecutoff frequencyof the medium ~the one that
makesk50) a somewhat distorted but recognizable fro
propagates with the velocity corresponding tov0. Within the
framework of the Schro¨dinger equation, and using a set
dimensionless quantities where the cutoff frequency is 1~see
below!, the dispersion relation takes the form@3#

v511k2, ~2!

and the signal propagation velocity for the main front
equal to the group velocity,vp5(dv/dk)v0

52(v021)1/2.
In other words, at some distancex form the source, the am
plitude behaves, in first approximation, as

c~x,t !'e2 iv0te1 ik0xQ~ t2xvp!, ~3!

wherek05(v021)1/2 is the wave number related tov0 by
the dispersion relation, andQ is the Heaviside~step! func-
tion. In the evanescent case,v0,1, a preliminary analysis
by Stevens@4#, following the contour deformation tech
niques used by Brillouin and Sommerfeld, suggested tha
main front, moving now with velocityvm52(12v0)1/2

5Im(dv/dk)v0
and attenuated exponentially by exp(k0x)

@wherek05(12v0)1/2#, could be also identified,

c~x,t !'e2 iv0te2k0xQ~ t2xvm!. ~4!

The result seemed to be supported by a different approxim
analysis of Moretti based on the exact solution@5#, and by
the fact that the time of arrival of the evanescent frontt
©2000 The American Physical Society08-1
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5x/vm, had been found independently by Bu¨ttiker and Lan-
dauer @6,7# as a characteristictraversal timefor tunneling
using rather different criteria: semiclassical arguments,
rotation of the electron spin in a weak magnetic field, and
transition from adiabatic to sudden regimes in an oscillat
potential barrier.

In the treatment of Stevens, as well as in the original w
by Sommerfeld and Brillouin, the contour for the integr
defining the field evolution was deformed along the steep
descent path from the saddle point; and the main front~4!
was associated with a residue due to the crossing of a po
ik0 by the steepest descent path. But later, more accu
studies of the punctual source problem or other bound
conditions showed that the contribution from the sad
point ~due to frequency components above or at the
quency cutoff created by the sharp onset of the source e
sion!, and possibly from other critical points~e.g., resonance
poles when a square barrier is located in front of the sou
@8#! were generally dominant att, so that no sign of thev0
front ~4! can in fact be seen in the total wave density at t
time @8–12#. Similarly, corrections to the original work b
Sommerfeld and Brillouin have been also worked out
electromagnetic pulse propagation@13#. In spite of these
clarifying works, several important aspects have remai
obscure or not investigated, such as the actual time scal
the attainment of the stationary regime, the characteriza
of the transients, and the role~if any! played byt in the time
dependence of the quantum wave.

Recently, one of the authors in collaboration with Thom
@14#, reconsidered the problem of Sommerfeld and Brillou
and provided a detailed discussion of the forerunners and
signal sent out by a source which has a sharp onset in t
These authors also pointed out that the forerunner, gener
by switching on the source, is associated with a tim
dependent wide-band spectrum whereas the signal, thev0
front, carries the oscillation frequency of the source into
evanescent medium. The signal is called a ‘‘monochrom
front.’’ In contrast to previous work, which tried to find
front simply by analyzing the amplitude of the waves, the
authors emphasized the frequency content of the foreru
and the signal. In the evanescent case, the amplitude o
monochromatic front is exponentially small compared to
forerunner, and in agreement with the works mention
above, it cannot be detected using a simple criterion base
the magnitude of the wave. Two approaches were propo
to enhance the monochromatic fronts compared to the f
runners. First, the dominance of the forerunners might a
due to the fact that high frequencies are transmitted in
propagating energy range. This can be avoided if the so
is frequency limited such that all frequencies of the sou
are within the evanescent case.~Technically this means that
frequency window is chosen to avoid the effect of the sadd
point contribution.! A second option is not to limit the sourc
but to frequency limit the detection. We can choose a de
tor that is tuned to the frequency of the source and that
sponds when the monochromatic front arrives.

The aim of this work is to characterize the time depe
dence of Schro¨dinger evanescent waves generated by a p
source. We identify several wave features, in particular
02380
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arrival of the first main peak and the transition from a for
runner dominated behavior to an asymptotic behavior do
nated by the monochromatic front. We also investigate
some detail the proposals made in Ref.@14# to enhance the
monochromatic front and consider both frequency-limit
sources and a frequency-time analysis of the wave at a fi
position. This leads to the investigation of the spectrogram
the wave generated by the source.

For a source with a sharp onset, we find that the trave
time t plays a basic and unexpected role in the transi
regime. For strongly attenuating conditions~in the WKB
limit ! the traversal time governs the appearance of the
main peak of the forerunner. In contrast, the transition fr
the forerunner to an asymptotic regime which is domina
by the monochromatic signal of the source is given by
exponentially long time. If the source is frequency band li
ited such that it switches on gradually but is still fast co
pared to the traversal time, the situation remains much
same as for the sharp source, except that now the trans
from the transient regime to the stationary regime occ
much faster, but still on an exponentially long time sca
The situation changes if we permit the source to be switc
on over a time scale comparable to or larger than the
versal time for tunneling. Clearly, in this case a precise d
nition of the traversal time is not possible. But for such
source the transition from the transient regime to
asymptotic regime is now determined by the traversal tim
Much the same picture emerges if we limit the detector
stead of the source. As long as the frequency window of
detector is made sharp enough to determine the trave
time with accuracy, the detector response is dominated
the uppermost frequencies. In contrast, if the frequency w
dow of the detector is made so narrow that the possible
certainty in the determination of the traversal time is of t
order of the traversal time itself, the detector sees a cross
from the transient regime to the monochromatic asympto
regime at a time determined by the traversal time.

Possibly, the fact that we cannot determine the trave
time with an accuracy better than the traversal time its
tells us something fundamental about the tunneling ti
problem and is not a property of the two particular metho
investigated here.

Dimensionless quantities and notation

The ~dimensional! time-dependent Schro¨dinger equation
for a particle of massm moving in a constant potentia
V(X)5V is given by

i\
]C

]T
52

\2

2m

]2C

]X2
1VC. ~5!

The number of variables and parameters may be reduce
introducing dimensionless quantities for position, time, a
wave amplitude,

x5
X~2mV!1/2

\
, ~6!
8-2
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TIME DEPENDENCE OF EVANESCENT QUANTUM WAVES PHYSICAL REVIEW A62 023808
t5
TV

\
, ~7!

c~x,t !5
\1/2

~2mV!1/4
C~X,T!. ~8!

This allows us to write the corresponding dimensionle
Schrödinger equation,

i
]c

]t
52

]2c

]x2
1c. ~9!

Other useful dimensionless variables related to the dim
sional energyE ~or frequencyW5E/\), and wave number
K5@2m(W2V/\)/\#1/2, are, respectively,

v5E/V, ~10!

k5~v21!1/25
K\

~2mV!1/2
. ~11!

The reader may check that the dimensional dispersion r
tion

W5
V

\
1

K2\

2m
~12!

takes for dimensionless quantities the simple form given
Eq. ~2!.

II. SOURCE WITH A SHARP ONSET
„INFINITE FREQUENCY BAND …

In this section we shall investigate the time-depend
wave function for x>0 and t.0 corresponding to the
‘‘boundary condition’’

c~x50,t !5e2 iv0tQ~ t !, ~13!

which may also be given by the corresponding Fourier tra
form

ĉ~x50,v!5
1

~2p!1/2

i

v2v01 i0
. ~14!

The superposition

c~x,t !5
i

2pE2`

`

dv
eikx2 ivt

v2v01 i0
~15!

satisfies the Schro¨dinger equation as well as the bounda
condition ~13!. Along the integration path,k is positive for
v.0, and purely imaginary~with positive imaginary part!
for v,0. This corresponds to waves that vanish atx5`. In
Ref. @14# the integration was carried out in the complex fr
quency plane since this permitted a close comparison
tween the calculation for the Schro¨dinger equation and fo
relativistic field equations. If only the Schro¨dinger equation
is of interest the complexk plane is most advantageous.
02380
s

n-

a-

n

t

s-

e-

fact this permits us to express the integral in terms of kno
functions. In the complexk plane we have

c~x,t !52
1

2ipEG1

dk 2k
eikx2 i (k211)t

k21k0
2

~16!

52
e2 i t

2p i EG1

dkF 1

k1 ik0
1

1

k2 ik0
Geikx2 ik2t,

~17!

where the contourG1 goes from2` to ` passing above the
pole atik0. The two terms in Eq.~17! lead to integrals with
the form discussed in Appendix A. The contour can be
formed along the steepest descent path from the sadd
ks5x/2t, the straight line

kI52kR1x/2t ~18!

(kR and kI are the real and imaginary parts ofk), plus a
small circle around the pole atik0 after it has been crosse
by the steepest descent path, for fixedx, at the critical time

t5
x

2k0
. ~19!

This procedure allows us to recognize twow functions
@15,16# ~see Appendixes A and B!, one for each integral,

c~x,t !5
1

2
e2 i t 1 iks

2t@w~2u08!1w~2u09!#. ~20!

Here,

u085
11 i

21/2
t1/2k0S 2 i 2

t

t D ,

u095
11 i

21/2
t1/2k0S i 2

t

t D . ~21!

It is clear from the exact result@Eqs.~20! and~21!#, thatt is
an important parameter that appears naturally in
w-function arguments, and determines withk0 the global
properties of the solution. Its detailed role will be discuss
in the following sections.

Equation~20! is in agreement with a previous expressi
by Moretti @7#, derived using different contour deformation
and notation. Our analysis of this exact result will be, ho
ever, quite different and more detailed.

Approximations

Often an exact expression is not very informative by
self, and the approximations make its essential content m
fest in certain limits. The simplest approximation forc(x,t)
for times beforet is to retain the dominant contribution o
8-3
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J. G. MUGA AND M. BÜTTIKER PHYSICAL REVIEW A 62 023808
the saddle by settingk5ks in the denominators of Eq.~17!
and integrating along the steepest descent path. It is usef
write this in different ways,

cs~x,t !5
e2 i t 1 iks

2t

2ip1/2 S 1

u08
1

1

u09
D 5

e2 i t 1 iks
2tt~2t/p!1/2

~ i 21!k0~t21t2!

5
i

2p
A24p i

Vst

Vs

Vs2V0
e2 i (12Vs)t, ~22!

where

Vs[ks
25

x2

4t2
, V052k0

2 . ~23!

~These are particular values of the frequency variableV
5v21, defined with respect to the frequency level of t
potential.! The average local instantaneous frequency for
saddle contribution@17# is equal to the frequency of th
saddle point,

vs[11Vs . ~24!

~Note the different sign ofVs in the exponent of Eq.~22!. Vs
depends ont22 and a time derivative has to be taken
obtain Eq.~24!, see@17#.!

After the crossing of the poleik0 by the steepest desce
path att5t the residue

c0~x,t !5e2 iv0te2k0xQ~ t2t! ~25!

has to be added to Eq.~22!,

c~x,t !'cs~x,t !1c0~x,t !. ~26!

The solution given by Eq.~25! describes a monochromat
front that carries the signal into the evanescent medium.
conditions of validity of this approximation can be dete
mined by examining the asymptotic series of thew(z) func-
tions in Eq.~20! for large uzu, see Appendix B. In fact, Eq
~26! is obtained from the dominant terms of these exp
sions. The modulus of the twow-function arguments in Eq
~21! is given by

M ~ t ![u2u08u5u2u09u5
k0

t1/2
~ t21t2!1/2. ~27!

This quantity may be large in different circumstances. It go
to ` whenk0 , t, or x go to`, and also whent→0. M (t) is
minimum at the crossing timet5t, where it takes the value
M (t5t)5(xk0)1/2. Forxk,1 the pole lies within the range
of the saddle Gaussian and cannot be treated separately

Assuming thatM is large the phase ofz determines the
appropriate asymptotic expression ofw(z). For Im(z).0,
w(z); i /(p1/2z), whereas for Im(z),0, w(z); i /(p1/2z)
1e2z2

, see Eqs.~B5! and~B6!. arg(2u08) goes fromp/4 to
3p/4 whent goes fromt50 to `, and arg(2u09) goes from
p/4, att50, clockwise to2p/4 whent→`, and crosses the
real axis at t5t. Thus the application of the previou
02380
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asymptotic formulas lead exactly to Eq.~26!. As discussed in
Appendix B one should not be misled by the apparent fr
in Eq. ~26!. It is possible to obtain a smooth approxima
expression aroundt5t by adding a correction tocs that
takes into account the region near the pole@14#. This cor-
rected expression, however, is asymptotically equivalen
Eq. ~26! because att, and within the conditions that mak
the saddle approximation valid, the contribution of the po
is negligible. To see this more precisely let us examine
ratio between the modulus of the two contributions,

R~ t ![
uc0u
ucsu

5
2p1/2

x
e2k0xt3/2~x2/4t21k0

2!. ~28!

Its value att is an exponentially small quantity,

R~ t5t!5e2k0x~2pk0x!1/2. ~29!

Note also thatR has a minimum att/31/2,t and tends tò
ast→`. As a function ofx, the minimum ofR decreases up
to xk051/2, and then grows again monotonously.

In summary, for the source with a sharp onset descri
here, the monochromatic front is not visible when the a
proximation~26! remains valid aroundt5t. However, two
very important observable features of the wave can be
tracted easily from Eq.~26!. The first one is the arrival of the
transient front, characterized by its maximum density att f
[t/31/2. This time is of the order oft, but the wave front
that arrives does not oscillate with the pole frequencyv0, but
with the saddle-point frequencyvs . Figure 1 shows this
transient front for three positions. In this and similar figur
the densities are exponentially amplified bye2k0x to make
possible the comparison among different values ofx with the
same scale. Thus, all amplified densitiesA[ucu2e2k0x tend

FIG. 1. log10 of the amplified densityA5uc(x,t)u2 exp(2k0x)
versus time for a signal emitted by a source located atx50 with
frequencyv050.5, and observed atx57,14,21~solid, dotted, and
dotted-dashed lines!. Noticeable forx57 is the contribution of the
saddle-point solutioncs ~dashed line! in comparison with the exac
solutionc. At x514,21 the exact wave functionc and the saddle-
point solutioncs are indistinguishable on the scale of the figure. A
units are dimensionless.
8-4
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TIME DEPENDENCE OF EVANESCENT QUANTUM WAVES PHYSICAL REVIEW A62 023808
to one in the asymptotic large-t regime, and the correspond
ing logarithm to zero. Also shown is the approximation d
to cs , although it is only distinguishable from the exa
result forx57. Note that the amplified densityucsu2e2k0x is
simply R21. In Fig. 2 the instantaneous average frequencyv̄
is represented for the smallestx value of Fig. 1,x57. At
small t and around the transient front,v̄5.̄vs .

The second observable feature that we can extract f
Eq. ~26! is the time scale for the attainment of the stationa
regime, or equivalently, the durationt tr of the transient re-
gime dominated by the saddle before the pole dominatest tr
can be identified formally as the time where the saddle
pole contributions are equal,R51. Because of Eq.~29! we
shall assumet!t tr to obtain the explicit result

t tr'S xek0x

2k0
2p1/2D 2/3

. ~30!

Using k0x@1, the velocity for the motion of the spac
‘‘point’’ where the transition from transient to stationary b
havior ~or from saddle to pole! takes place is given by

v tr'
3

2k0t
. ~31!

Contrary to the motion of the front maximum, this point do
not move with constant velocity. The transition may be o
served in various ways. In Fig. 1 the decimal logarithms
the exact~amplified! densities and of their components a
represented. The crossing point whereR51 may be ob-
served forx57 in the change of behavior of the total wav
density. The oscillation aroundt tr is due to the interference
betweenc0 and cs , and has the characteristic periodT0
[2p/uV0u. In Fig. 2 the crossover between the regim
dominated by the saddle frequency and the one dominate
v0 is also easily noticeable.

FIG. 2. Evolution of the average instantaneous frequencyv̄,
saddle-point frequencyvs , and signal frequencyv0 versus time
~solid, dashed, and dotted lines! for x57 andv050.5. The circle
marks the timet tr at which the pole contribution and saddle-poi
contribution are equal in magnitude.
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Finally, whenxk0 is small (&1), the saddle approxima
tion describes correctly the very short-time initial growt
but fails aroundt because the pole is within the width of th
Gaussian centered at the saddle point. The pole cancels
of the Gaussian contribution so that the bump predicted
cs at t/31/2 is not seen in this regime. Figure 3 shows t
time dependence of the density for two small values ofx. t
does not correspond to any sharply defined feature, but
vides here a valid rough estimate of the attainment of
stationary regime.

III. FREQUENCY-BAND-LIMITED SOURCE

Thomas and one of the authors@14# recently suggested a
way to avoid the dominance of the saddle-point solution o
the monochromatic front by limiting the frequency band
the source. Specifically, it was proposed to cut off thev
amplitude~14!,

ĉ~v,x50!5
1

~2p!1/2

i

v2v01 i0
@Q„v2~v02Dv!…

2Q„v2~v2Dv!…#. ~32!

This implies that the emission of the source is not shar
defined as in Eq.~14!; see Appendix C. Instead,

c~x50,t !5e2 iv0tFQ~ t !2
1

p
Im E1~2 iDvt !G , ~33!

whereE1 is the exponential integral defined in Eq.~C4!. The
frequency-band widthDv may be chosen so that the onset
the source is fast with respect tot and that all the frequen
cies in the source are in the evanescent region@14#,

2p

t
!Dv!uV0u. ~34!

FIG. 3. log10 of the amplified densityA5uc(x,t)u2 exp(2k0x)
versus time forx50.05 andx50.45~solid and dotted lines, respec
tively!. The approximations provided by the saddle-point solut
cs are also shown~dashed line and empty circles!. v050.5. The
empty and filled squares mark the values of the traversal timet for
x50.05 andx50.45, respectively.
8-5
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Later we will see that in fact it is necessary to give up t
condition that the source switches on fast compared to
traversal time. Now ‘‘negative times’’ are also required
describe the signal growth. For an arbitraryx,

c~x,t !5
i

2pEv02Dv

v01Dv

dv
e2 i (vt2kx)

v2v01 i0
. ~35!

In this case the integration technique used in the previ
section does not provide an analytical solution. We shall m
nipulate the integral to facilitate the exact numerical eval
tion and the discussion of approximations. UsingV5v21,
Eq. ~35! becomes

c~x,t !5
ie2 i t

2p E
V02Dv

V01Dv

dV
e2 i (Vt2kx)

V2V01 i0
. ~36!

The integrand of Eq.~36! has a saddle point atVs
5(x/2t)2. But sinceV0 is now negative, a frequency interva
chosen according to Eq.~34! now excludes this saddle. It i
convenient to introduce the variabley5V/Vs so that the
valley-hill structure of the exponent remains constant,

c~x,t !5
ie2 i t

2p E
y2

y1

dy
eil sgn(t)(2y1/22y)

y2y01 i0
. ~37!

Here,

y05V0 /Vs , y65y06Dv/Vs , l5uVstu. ~38!

In order to perform contour deformations in the complexy
plane it is also necessary to specify that the branch cut
y1/2 is set along the positive real axis, and that the saddle
y51 for t.0 ~just above the cut! but at y5e2ip for t,0
~just below!. The steepest descent and ascent paths fro
are given, in the first Riemann sheet ofy, by the sections of
the parabolas

yI5sgn~ t !
1

2
~12yR

2 ! ~descent!, ~39!

yI52sgn~ t !
1

2
~12yR

2 ! ~ascent!, ~40!

starting from the saddle point. Irrespective of the sign oft the
original contour in Eq.~37! is entirely within one of the
valleys of the saddle, so that there is no need to take
critical point into account in the contour deformation. T
most efficient contour deformation consists of following t
steepest descent path from the lower integration extremey2

downwards to infinity and coming up to the upper integrat
extremey1 following its steepest descent path. Ift.0 this
contour encloses the pole atv0 and the corresponding res
due has to be included. The extreme points become the c
cal points of the integral, apart from the pole atv0 when t
.0,

c~x,t !5D22D11c08 , ~41!
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whereD6 ~genericallyDz) are the integrals fromy6 to `
along the corresponding steepest descent paths,SDP(z),

Dz5
ie2 i t

2p E
SDP(z)

dy
eil sgn(t)(2y1/22y)

y2y0
, ~42!

and

c08~x,t !5e2 iv0te2k0xQ~ t !. ~43!

Unlike Eq. ~25! the residue is now present at all positiv
times. Using the generic notationz5y6 for any of the two
extreme points the steepest descent paths from them
their slopes are given by

yI5
1

2
sgn~ t !@yR

424yR
3~11z!12yR

2z~413z!

24z2yR~11z!1z4#1/2 ~44!

]yI

]yR
5

yR
323yR

2~11z!1yRz~413z!2z2~11z!

2yI
, ~45!

]yI

]yR
U

z

5sgn~ t !~2z!1/2. ~46!

In the numerical evaluations the value ofy along the path
may be obtained by solving for each step

dy5dyI~dyR /dyI1 i !, ~47!

with the initial conditiony5z.

Approximations

The leading term inl21 of Eq. ~42! is obtained by inte-
grating fromz along the ray with the direction of the steepe
descent path atz and taking all functions in the integrand
except the exponential, out of the integral, with their valu
at z @18#,

Dz;Dz
0[

i

2pl~z2y0!uz21/221u
e2 i tvz2kzxeiuz, ~48!

wherevz5v65v06Dv, kz5k65(12v6)1/2, and uz is
the angle of the steepest descent path atz,

uz5p1arctan@sgn~ t !~2z!1/2# ~49!

~the branch of the arctan function between2p/2 andp/2 is
taken!. The modulus of these contributions is given by

uD6u5
e2xk6

2pDv~ t21t6
2 !1/2

, ~50!

where

t65
x

2k6
~51!
8-6
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TIME DEPENDENCE OF EVANESCENT QUANTUM WAVES PHYSICAL REVIEW A62 023808
are the critical times when the steepest descent path from
saddle crosses the extreme points of integrationy6 . Regard-
ing the possibility of making the monochromatic front vi
ible, the frequency-band-limited source eliminates the sad
dominated transient effects, but they are substituted by t
sients associated with a new critical point: the upper extre
of integration. The actual time for transition to the stationa
regime is still larger thant under semiclassical conditions
but much smaller than that for the sharp onset case. A
ference with the infinite frequency band case is that
maximum of uD6u is at t50. This is quite remarkable. A
particular feature of the wave, its maximum, appears
stantly with zero delay at arbitrarily large distances. O
should keep in mind, though, that the buildup of the init
signal has required previously an infinite time, fromt5
2` to t50.

The transient regime previous to the dominance of
pole must be also different from the infinite band case si
now there is no saddle-point contribution. The transien
here dominated by the integralD1 because of the exponen
tial dependencies and by the frequency of the upper inte
tion limit y1 . An analysis similar to the one performed
the infinite frequency-band case can be now performed.
us compare the contributions from the pole andD1 by di-
viding their moduli,

R85
uc08u
uD1u

5e(2k01k1)x@2pDv~ t21t1
2 !1/2#. ~52!

From the conditionR851 we obtain the new critical time

t tr8 5S e2x(k02k1)

4p2Dv2
2t1

2 D 1/2

'
ex(k02k1)

2pDv
, ~53!

and the critical velocity

v tr8 '
1

t~k02k1!
. ~54!

They have to be compared with the corresponding quant
for the sharp onset case, Eqs.~30! and~31!, respectively. The
critical time for the transition depends exponentially onx in
both cases, but it arrives exponentially earlier for t
frequency-band-limited case. In Fig. 4 the logarithm of t
amplified density and of the approximation provided
uD1

0 u2 is represented for two values ofx. For x550 the tran-
sition time t tr is relatively small and can be seen in the tim
interval shown.~The oscillation period of the interference
aroundt tr is now 2p/Dv.! For x5135, t tr is much larger
and cannot be seen in the scale chosen; note the well-de
peak att50. The slight disagreement between the exact
sult and the approximation provided byD1

0 is because, for
very small times, the slope of the steepest descent path
y1 is very small and the path passes close to the pole.
pole perturbs the integral in this manner for times such t
l21,Dv/Vs , i.e., t,2p/Dv.

From Eq.~52! we see that the dominance of the mon
chromatic front att and fixedx requires that the magnitud
of (2k01k1)x'1 or smaller. This can be achieved in tw
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ways. ~a! We can consider a frequencyv0 and a frequency
interval such that2k0 and k1 become small. This mean
that both 12v0 andDv should be close to zero, but to avo
propagating wavesDv,(12v0). ~b! Alternatively, we can
allow v0 to take any other value below 1, but making th
frequency intervalDv small. In both cases a small frequenc
window is needed and we can expand with respect toDv so
that (2k01k1)x52Dvt. Thus we see that the attempt
measure the traversal time accurately has to be abando
The lower limit of Eq.~34! is now violated. Figure 5 shows
an example where the first inequality in Eq.~34! is not
obeyed. The traversal time~rather thant tr , which in this
case is an imaginary number! now marks the transition to the
asymptotic region even though the buildup time is so la
that the arrival of the monochromatic front cannot be defin
with a precision better thant itself. In this respect, Fig. 6 is
very illustrative. It shows how the transition of the avera
frequency characterizing the transient to the frequency of

FIG. 4. log10 of the amplified densityA5uc(x,t)u2 exp(2k0x)
for the frequency-band-limited source and of the approximate s
tion uD1

0 u2 versus time~solid and dashed lines, respectively!, for
x550 ~lower set! andx5135 ~upper set!. v050.5, Dv50.12.

FIG. 5. log10 of the amplified densityA5uc(x,t)u2 exp(2k0x) of
the approximationsuD1u2 and uD1

0 u2 versus time~solid, dashed,
and dotted lines, respectively! for x513.5. The square marks th
value oft. v050.5, Dv50.12.
8-7



rly

it
re
nc
its
-

iv
o
-

e
ne
e

se
al
e

A
re

fo

g
s

the
od
lly

ddi-
int

tic

y
de-
in-
e

in
of

of
.

ncy

si-

r
stFt
red
tFt

r

J. G. MUGA AND M. BÜTTIKER PHYSICAL REVIEW A 62 023808
monochromatic solution occurs around the traversal timet,
but the time interval required for the transition is clea
larger thant.

IV. TIME-FREQUENCY ANALYSIS
OF THE WAVE FUNCTION

Instead of limiting the source in frequency we can lim
the detection of the field to a range of frequencies of inte
@14#. The wave amplitude at fixed position becomes a fu
tion of time c(t) that can be Fourier analyzed to provide
frequency representationĉ(v). However, neither of the cor
responding densities,uc(t)u2 or uĉ(v)u2, tells when a par-
ticular frequency arrives or decays, nor what is the relat
importance, at a given time, of different frequency comp
nents. This type of information is provided by joint time
frequency representations@19#. There are many possibl
ways to carry out a time-frequency analysis. A simple o
and surely the most common, is the ‘‘spectrogram,’’ bas
on the short-time Fourier transform~stFt!. We are interested
in the Fourier spectrum that would be measured at the ob
vation pointx if the wave is observed during a time interv
of durationT. If a precise determination of the traversal tim
is attempted, the extent of the time intervalT is chosen to be
short compared to the traversal timet. On the other hand, if
T is too short then the frequency resolution will be poor.
compromise to obtain a good resolution in time and f
quency is forT to be bound above and below@14#,

2k0

x
5

1

t
!

1

T
!

uV0u
2p

5
k0

2

2p
. ~55!

This is equivalently expressed in terms of inequalities
time scales

t@T@T0 , ~56!

whereT0[2p/uV0u is the oscillation period correspondin
to the frequencyuV0u. Combining the inequalities one find

FIG. 6. Frequency evolutionv̄, vs , andv0 versus time~solid,
dashed, and dotted lines! of the frequency-band-limited source fo
x513.5, v050.5, andDv50.12.
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k0x@1; namely, when these conditions are satisfied
saddle contribution to the wave function will be a very go
approximation to the total wave up to an ‘‘exponentia
long’’ time t tr@t, see Sec. II.

The short-time Fourier transform~stFt! of the fieldc(x,t)
is given by

F~v;x,t !5
1

~2p!1/2Et2T/2

t1T/2

dt8 exp~ ivt8!c~x,t8!. ~57!

Note that the short-time Fourier spectrum depends, in a
tion to the frequency, parametrically on the observation po
x and the timet.

Consider now first the contribution of the monochroma
front to the stFt. We denote this stFt byFp(v;x,t). For t
,t2T/2 we haveFp(v;x,t)50. For t.t1T/2 we find

Fp~v;x,t !5
2

~2p!1/2
e2k0xei (v2v0)t

sin@~v2v0!T/2#

~v2v0!
.

~58!

This amplitude peaks at the frequency of the sourcev0 and,
for t.t1T/2, it is time independent at this frequency. Awa
from this frequency the stFt of the monochromatic wave
cays algebraically and oscillates sinusoidally. In the time
terval t2T/2,t,t1T/2 the stFt tracks the arrival of th
monochromatic front,

Fp~v;x,t !5
ie2k0x

~2p!1/2

12ei (t1T/2)(v2v0)

v2v0
. ~59!

Consider next the saddle-point contribution. Its frequency
a short-time interval is determined by the expansion
Vs(t8)t8 away from t. This expansion givesVs(t8)t8
52Vs(t)t2Vs(t)t81O„(t82t)2

…. Taking into account that
the prefactors are slowly varying over the time interval
interest here@this is assured by the first inequality in Eq
~55!#, we obtain

Fs~v;x,t !5
i

p
A22i

Vst

Vs

Vs2V0

3ei (Vs211v)t
sin@~Vs112v!T/2#

~Vs112v!
. ~60!

The stFt of the saddle-point solution peaks at the freque
vs[Vs11. This frequency is very large at short times~‘‘ki-
netic regime’’!, where vs;Vs5x2/(4t2) is dominated by
frequencies above the potential. At long times~‘‘potential
regime’’! vs tends to the potential frequency 1. The tran
tion time between these two regimes of differentvs can be
estimated by solvingVs(t)51. This gives t5x/2, which
may be larger or smaller thant. We see that the two Fourie
transforms peak at well-separated frequencies. Still the
of the pole has an exponentially small amplitude compa
to that of the forerunner. Therefore, it is possible that the s
of the saddle is still large at the frequencyv0, where the stFt
8-8
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of the monochromatic front peaks. Thus we have to inve
gate the stFt of the saddle at the frequencyv0. From Eq.~60!
we obtain

Fs~v0 ;x,t !5
i

p
A22i

Vst

Vs

Vs2V0

3ei (Vs1V0)t
sin@~Vs2V0!T/2#

~Vs2V0!
. ~61!

At a time t5t the amplitude of the saddle is still of order 1
Thus even at the peak frequency of the front its contribut
to the spectrum is of order 1 and much larger than the ex
nentially small peak of the monochromatic front.

Let us now investigate the properties of the transien
the frequency-time domain, and determine the role played
t, in particular at the frequency of the signalv0. The spec-
trogram is defined as the square modulus of the s
S(t,v;x)5NuF(v;x,t)u2, whereN is a normalization con-
stant.~The notation of the argument ofS is appropriate for a
time-frequency analysis at fixedx.! For ‘‘normalizable’’
casesN is chosen so that**dt dv S51. In our case, this is
not possible because the asymptotic stationary regime
not decay, butSprovides anyway information on the relativ
importance of two time-frequency points, soN is chosen to
be some convenient value,N5p2/2.

For analyzing the transient we may neglect the monoch
matic front and concentrate on the saddle-point term. T
spectrogram of the saddle-point solution is denoted
Ss(t,v;x) and is given by

Ss~ t,v;x!5a~ t !
sin2@~Vs112v!T/2#

~Vs112v!2
~62!

with an amplitude

a~ t !5
1

t

Vs

~Vs2V0!2
. ~63!

Note thata(t) is also proportional to the absolute square
the saddle-point solutionucs(x,t)u25(4/p)a(t). The ampli-
tudea has a maximum as a function of time at the transi
front peak,t f5321/2t, that moves with a speed

v f5A3vm . ~64!

Thusv f determines both the speed of the peak value of
saddle-point solutionucs(x,t)u2 and the speed of the absolu
maximum of the spectrogram. The peak value of the sp
trogram for a given time is at the frequencyvs5Vs11; see
an example in Fig. 7. Consider next the spectrogram at
frequency of the source,v5v0. For fixedx it is bounded by
the envelope function

b~ t !5
Vs

t~Vs2V0!4
, ~65!

and has local maxima close to the times at which the
function is61. b(t) grows ast5 for short times and decay
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as t23 for large times. Its maximum arrives, for fixedx, at
A5/3t. Equivalently, this maximum moves with a speed

venv5A3/5vm . ~66!

This reveals that, inS(t,v0 ;x), t is not the time where the
stationary regime begins~it is necessary to wait an exponen
tially long time to attain that regime!, but the basic time scale
for the arrival of the main part of the transient. The detail
oscillatory pattern of this main part will depend on the val
of T/T0; see Figs. 8 and 9. Forv5v0 the sine function
vanishes at times

tn5
t

~nT0 /T21!
. ~67!

~In the v-t plane the spectrogram has a maximum wh
follows the linev5Vs11 and vanishes along the linesv
5Vs1112pn/T. In between these zero lines the spect
gram exhibits local maxima.! The n for the closest zero tot
is n'2T/T0 whereas the largesttn @associated with the mini-
mum n so that Eq.~67! has a real solution# corresponds to

FIG. 7. Contour map of the spectrogram forv050.5, T
552.36, x5135. Notice the transition from the kinetic to the po
tential regime and the side wings around the main peak.

FIG. 8. SpectrogramS(t,v50,5) for v050.5, T552.36, x
5135 ~solid line!. The square marks the value oft595.4. ~This is
the period that corresponds toDv50.12 in Fig. 4.! T0512.57. Also
shown,b(t) ~dotted line! andSs ~dashed line!.
8-9
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J. G. MUGA AND M. BÜTTIKER PHYSICAL REVIEW A 62 023808
n'T/T0. Hence there are approximatelyT/T0 zeros between
t and the last oscillation. ForT/T0,1 there is a single majo
bump close tot, and for T/T0@1 there are many loca
maxima that ‘‘sample’’ the form of the envelope functio
~65!.

Other time-frequency distributions

The time-frequency characterization of the wave funct
at a fixed position depends on the quasidistribution chos
There is nothing wrong with this nonuniqueness as long
the quasidistribution chosen is specified. In choosing the
tribution one may consider several factors. Ideally the dis
bution should be easy to calculate, and should not be
noisy, e.g., with wild oscillations. It may also occur that o
of the distributions is naturally adapted to the way the det
tion experiment is performed.

Let us first discuss a different type of spectrogram. T
roles of time and frequency can be inverted so that instea
limiting the Fourier transform ofc(t) with a ‘‘square win-
dow’’

h~ t !5Q~ t2T/2!Q~2t2T/2!, ~68!

a ‘‘short frequency Fourier transform’’~sfFt! may be simi-
larly defined for ĉ(v) by limiting the frequency integra
with a window,

g~w!5Q~v2Dv!Q~2v2Dv!. ~69!

The corresponding spectrogramS8 is obtained as the squar
modulus of the sfFt. The two spectrograms,S and S8, are,
however, not equal because the window functionsh and g
are not Fourier transforms of each other. In particular, n
that the spectrogramS8 may be equivalently obtained from
sfFt analysis for an initially sharp onset signal, or as
density that results from a source with a smooth onset.@The
density ofc(x,t) in Eq. ~35! is proportional, up to a trivial

FIG. 9. SpectrogramS(t,v50,5) for v050.5, T512.57, x
5135 ~solid line!. The square marks the value oft595.4. T0

512.57. Also shown,b(t) ~dotted line!. Ss is indistinguishable
from S.
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normalization constant, toS8(t,v0 ;x).# As a consequence
S8(t,v0) peaks att50 after an infinite time growth wherea
S(t,v0) is strictly zero att,2T/2 and its main transien
part peaks aroundt. The qualitative behavior is differen
because of the different window functions, even though
inequalities used here or in Sec. III, Eqs.~55! and~34!, are in
fact identical if one identifiesT52p/Dv; compare Fig. 8
and the upper curve of Fig. 4 where the values oft, T, and
T0 are equal. These inequalities imply in both cases that
pole contribution can be entirely neglected at or aroundt,
and that it will only be of importance at a time that depen
exponentially onk0x.

We have tested the time-frequency Wigner function, t
This representation separates much more clearly the sa
and pole contributions, but it also associates with the la
an initial time t50 rather thant5t, and presents the incon
venience of a very rapidly oscillating pattern and strong
terference terms.

V. SUMMARY AND DISCUSSION

The time dependence of evanescent Schro¨dinger waves
created by a point source has been investigated, combi
analytical or numerical exact results and approximate exp
sions. The background of the former allows us to test a
contrast the validity of the simplified description of the latte
We have also performed a time-frequency analysis of
transients which precede the stationary regime by mean
spectrograms.

An important aspect of the work is the elucidation of t
role played by the different parameters, in particular by
‘‘traversal’’ time t. It is a basic parameter that determin
the global shape of the wave but at this time, in semiclass
conditionsk0x.1, the monochromatic front~with the main
frequency of the source! is not observed in the total wav
because of the dominance of the saddle-point contribut
However, for the source with a sharp onset we have ide
fied a transient front whose maximum peak arises at a t
t/31/2. The dominant frequency of this front does not corr
spond to the main frequency of the sourcev0, but to the
mean saddle-point frequency~above or at the cutoff fre-
quency!. The timet tr.t that determines the duration of th
transient, or the passage to the asymptotic regime, has
been identified. Frequency-band-limited sources accele
the crossover to the stationary regime but there is sti
transient dominated by the upper frequency contained in
band. The spectrogramS(t,v;x) has been also investigate
to show the variation with time of the frequency comp
nents. In this representation the main contribution at the
quencyv0 arrives atx around the traversal timet. This main
contribution is a transient due to the saddle point. At
exponentially long time the pole term will eventually tak
over and remain as the dominant contribution in the stati
ary regime.

In fact it is possible to see the monochromatic wave fro
arriving around the traversal timet, but only when the semi-
classical conditions are abandoned, and with an accu
which is never better than the traversal time itself. This o
curs if the point source starts the emission abruptly, but a
8-10
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TIME DEPENDENCE OF EVANESCENT QUANTUM WAVES PHYSICAL REVIEW A62 023808
when it is switched on gradually~limiting the frequency
band!, or for a limited-frequency-band detector, whose
sponse is modeled here with a spectrogram. The coincide
of all these cases strongly suggests that the limitation of
accuracy to measuret is in fact a general property.
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APPENDIX A: INTEGRALS

In this appendix we shall solve the integrals of the for

I5E
G1

dk
e2 i (ak21kb)

k2k0
, a.0 ~A1!

whereG1 goes from2` to ` passingabovethe pole atk
5k0. The saddle point of the exponent is atk52b/2a and
the steepest descent path is the straight linekI52(kR
1b/2a). The original contour is at the border between t
hill and valley and can be deformed into this path, taki
into account the residue of the pole when Im(k0),
2@Re(k0)1b/2a#. By completing the square and introdu
ing the new variable

u5u~k!5
11 i

21/2
a1/2~k1b/2a!, ~A2!

the integral takes the form

I5ei (b2/4a)H E
2`

` e2u2

u2u0
du22ipe2u0

2
Q@ Im~u0!#J ,

~A3!

whereu05u(k5k0). Note that the variableu has its origin
at the saddle point and its real axis corresponds to the st
est descent line. Using Eqs.~B2! and ~B3! it can be finally
written as

I52 ipei (b2/4a)w~2u0!. ~A4!

APPENDIX B: PROPERTIES OF w„z…

The w function @15,16# is an entire function defined in
terms of the complementary error function as

w~z!5e2z2
erfc~2 iz!. ~B1!

w(z) is frequently recognized by its integral expression
02380
-
ce
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p-

w~z!5
1

ipEG2

e2u2

u2z
du, ~B2!

whereG2 goes from2` to ` passing below the pole atz.
For Imz.0 this corresponds to an integral along the re
axis. For Imz,0 the contribution of the residue has to b
added, and for Imz50 the integral becomes the princip
part contribution along the real axis plus half the resid
From Eq.~B2! two important properties are deduced,

w~2z!52e2z2
2w~z! ~B3!

and

w~z* !5@w~2z!#* . ~B4!

To obtain an asymptotic series asz→` for Im z.0 one may
expand (u2z)21 around the origin~the radius of conver-
gence is the distance from the origin to the pole,uzu) and
integrate term by term. This provides

w~z!;
i

Apz
F11 (

m51

`
133•••3~2m21!

~2z2!m G , Im z.0

~B5!

which is a uniform expansion in the sector Imz.0. For the
sector Imz,0 Eq. ~B3! gives

w~z!;
i

Apz
F11 (

m51

`
1333•••3~2m21!

~2z2!m G
12e2z2

, Im z,0. ~B6!

If z is in one of the bisectors then2z2 is purely imaginary
and the exponential becomes dominant. But right at
crossing of the real axis, Imz50, the exponential term is o
ordero(z2n) ~all n), so that Eqs.~B5! and ~B6! are asymp-
totically equivalent asuzu→`. One may insist, however, in
removing the discontinuity of the series expansion~as a
function of z) around the real axis. This can be done
adding a correction to the saddle contribution that takes
account the region close to the pole in the line integral,
also the discussion in Ref.@14#. Note that in Eq.~B5! only
the region around the origin contributes. Consider now a
the region around the pole,

E
zR2D

zR1De2u2

u2z
du'e2z2E

zR2D

zR1D du

u2z
5e2z2

lnS zR1D2z

zR2D2zD .

~B7!

For largeuzu and in the proximity of the real axis this may b
approximated bye2z2

ip sgn (z) which exactly cancels the
discontinuity between Eqs.~B5! and ~B6!.

APPENDIX C: TIME DEPENDENCE
OF THE FREQUENCY-BAND-LIMITED SOURCE

The time dependence of the frequency-band-limited a
plitude atx50 is obtained from~32! by Fourier transform
8-11
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c~x50,t !5
1

2pEv02Dv

v01Dv

dv
ie2 ivt

v2v01 i0

5
1

2
e2 iv0t1

1

2p
PE

v02Dv

v01Dv ie2 ivt

v2v0
. ~C1!

Using the frequencyv85(v2v0)t,

PE
v02Dv

v01Dv

dv
e2 ivt

v2v0
5e2 iv0tPE

2tDv

tDv

dv8
e2 iv8

v8
, ~C2!

and the principal part integral can be expressed by con
deformation in terms of combinations of exponential in
grals @20#,

PE
2b

a

dY
e2 iY

Y
5E1~2 ib !2E1~ ia !2 ip, a,b.0

~C3!

where

E1~z!5E
z

`

dY
e2Y

Y
, uargzu,p ~C4!

~the contour does not cross the negative real axis!. Finally,
using Eq.~C3!, ~C1! can be written for allt

c~x50,t !5e2 iv0tH Q~ t !2
1

p
Im@E1~2 iDvt !#J .

~C5!

APPENDIX D: RELATIVISTIC CASE

Defining the dimensionless parameterc by combining the
dimensional velocity of lightC, the mass, and the potenti
constant as

c5C~2m/V!1/2, ~D1!

the dispersion relation for a Klein-Gordon wave equat
takes the form

V25~v21!25~c2/2!21c2k2. ~D2!

For evanescent conditionsk is purely imaginary,k5 ik. In
particular, forv5v0 or (V5V0), k0 cannot take arbitrarily
large values, 0,k0,c/2, contrast this with the nonrelativis
tic case where there is no upper limit.
y
rr
th

02380
ur
-

For a source with a sharp onset the wave function is@14#

c~x,t !5
i

2p
e2 i tE

2`

` 1

V2V01 i0
e2 i (Vt2kx)dV, ~D3!

which is zero fort,x/c. There are now two saddle points

6Vs56
c2t

2u
, ~D4!

u[~ t22x2/c2!1/2, ~D5!

and two branch cuts. The integration contour may be
formed along the two steepest descent paths. The po
crossed at@14#

t5
x

2k0
. ~D6!

Note the lower boundx/c,t when V→0 ~or k0→c/2).
Consequently the traversal time is strictly limited by the v
locity of light @14#.

We shall only discuss the contribution from the saddle
1Vs corresponding to the excitation of particles@14# ,

cs
1~x,t !5

ix

c2t
S 2 i

pu D 1/2 Vs

Vs1V0
e2 i [ t1(c/2)(c2t22x2)1/2]

3Q~ct2x!. ~D7!

Linearizing the square root of the exponent to evaluate
short-time Fourier transform of the saddle-wave functi
~D7!, one obtains

Ss~ t,v;x!5
2x2

p2Tc4t2u

Vs
2

~Vs1V0!2

sin2@~V2V0!T/2#

~V2Vs!
2

~ t.T/21x/c!. ~D8!

In this case the maximum of the envelope as a functiont
is given by

ten5
t

31/2F113S V0
2

c2/2
D 2G 1/2

. ~D9!

Because of the dispersion relationV0<c2/2 in the evanes-
cent case, it follows thatten is bounded byt/31/2 and
(4/31/2)t.
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