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Time dependence of evanescent quantum waves
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The time dependence of quantum evanescent waves generated by a point source with an infinite or a limited
frequency band is analyzed. The evanescent wave is characterized by a foréttamsent related to the
precise way the source is switched on. It is followed by an asymptotic, monochromatic wave which at long
times reveals the oscillation frequency of the source. For a source with a sharp onset the forerunner is
exponentially larger than the monochromatic solution and a transition from the transient regime to the
asymptotic regime occurs only at asymptotically large times. In this case, the traversal time for tunneling
already plays a role only in the transient regime. To enhance the monochromatic solution compared to the
forerunner we investigatéa) frequency-band-limited sources aifd) the short-time Fourier analysighe
spectrogramcorresponding to a detector which is frequency band limited. Neither of these two methods leads
to a precise determination of the traversal time. However, if they are limited to determine the traversal time
only with a precision of the traversal time itself both methods are successful: In this case the transient behavior
of the evanescent waves is at a time of the order of the traversal time followed by a monochromatic wave
which reveals the frequency of the source.

PACS numbg(s): 42.50.Ct, 03.65-w

[. INTRODUCTION of transmitted and incident wave packets does not describe a
causal process. Many publications and a recent workshop
In order to summarize essential aspects of the time depefave been devoted to discuss the implicatii2is
dence of wave phenomena a number of characteristic veloci- The role played by the imaginary part of the group veloc-
ties or times have been defined. Tpiease velocityw/k, is ity dw/dk and the possible definition of a signal velocity in
the velocity of constant phase points in the stationary wavéhe evanescent case have been much discussed but not yet

(assumek>0 for the time beiny completely clarified. Assume that a source is placed at
- =0 and emits with frequencw, from t=0 on. If wq is
glkx—iot, (1) above thecutoff frequencyof the medium(the one that

makesk=0) a somewhat distorted but recognizable front

The boundary conditions, the superposition principle, and th@ropagates with the vglocity corresponding:#g Within the
dispersion relationw= w(k) between the frequency and framework of the Schriinger equation, and using a set of
the wave numbek determine the time evolution of the dimensionless quantities where the cutoff frequency (sek
waves in a given medium. When a group of waves is formedbelow), the dispersion relation takes the fof8)
by superposition of stationary waves around a particulat
propagates with thgroup velocity dv/dk. In dispersive me-
dia (where o depends ork), the group velocity can be
smaller (normal dispersionor greater(anomalous disper-
sion than the phase velocity. It was soon understood tha]t .
these velocities could be both greater tledor the propaga- n other words, at some d|stangéorm the source, the am-
tion of light, and Sommerfeld and Brillouifi], studying the ~Plitude behaves, in first approximation, as
fieldls that_ result from an input step fun_ction_modulated sig- I//(X,t)%efiwoteﬂkoxe)(t_va), @)
nal in a single Lorentz resonance medium, introduced other
useful velocities, such as the velocity of the very first wave-whereky= (wq— 1)1/2 is the wave number related to, by
front (equal toc), or thesignal velocityfor the propagation the dispersion relation, an@ is the Heavisidgstep func-
of the main front of the wave. Both the very first front and tion. In the evanescent casey<1, a preliminary analysis
the signal velocity describe thus the causal response of thgy Stevens[4], following the contour deformation tech-
system and are therefore of particular interest. niques used by Brillouin and Sommerfeld, suggested that a

The above description is, however, problematic don- main front, moving now with Ve|0cityvm:2(_‘]_— wo)]-/z
nescent wavescharacterized by imaginary wave numbers=|m(dw/dk)w0 and attenuated exponentially by exp(
mstt_eaq of the real wave numbgrs of. propagating wave where ko= (1— wo) 2], could be also identified,
Their time dependence has been investigated by theoreticians
and experimentalists in recent years because of its peculiar P(x,t)~e '@t X@ (t—xv,,). (4
behavior. A striking phenomenon is that, when crossing an
evanescent region, certain initial wave features, such as thEhe result seemed to be supported by a different approximate
peak of the incident amplitude, appear at the far side aanalysis of Moretti based on the exact solut{&@}, and by
anomalously large speeds, but clearly a comparison of peakke fact that the time of arrival of the evanescent front,

w=1+k?, 2

and the signal propagation velocity for the main front is
equal to the group velocityy ,=(dw/dK),, =2(wo—1)"2
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=xlvy, had been found independently by tBker and Lan-  arrival of the first main peak and the transition from a fore-
dauer[6,7] as a characteristitraversal timefor tunneling  runner dominated behavior to an asymptotic behavior domi-
using rather different criteria: semiclassical arguments, th@ated by the monochromatic front. We also investigate in
rotation of the electron spin in a weak magnetic field, and theome detail the proposals made in Réf] to enhance the
transition from adiabatic to sudden regimes in an oscillatingnonochromatic front and consider both frequency-limited
potential barrier. sources and a frequency-time analysis of the wave at a fixed
In the treatment of Stevens, as well as in the original workPoSition. This leads to the investigation of the spectrogram of
by Sommerfeld and Brillouin, the contour for the integral the wave generated by the source.
defining the field evolution was deformed along the steepest FOr @ source with a sharp onset, we find that the traversal
descent path from the saddle point; and the main ftgnt time 7 plays a basic and unexpected role in the transient
was associated with a residue due to the crossing of a pole Eggime. For strongly attenuating conditiofis the WKB
i by the steepest descent path. But later, more accurafihit) the traversal time governs the appearance of the first
studies of the punctual source problem or other boundar{?@n peak of the forerunner. In contrast, the transition from
conditions showed that the contribution from the saddlehe forerunner to an asymptotic regime which is dominated
point (due to frequency components above or at the frePy the monochromatic signal of the source is given by an
quency cutoff created by the sharp onset of the source emi§xponentially long time. If the source is frequency band lim-
sion), and possibly from other critical pointe.g., resonance ited such that it switches on gradually but is still fast com-
poles when a square barrier is located in front of the sourc@ared to the traversal time, the situation remains much the
[8]) were generally dominant at so that no sign of the,  Same as for the sharp source, except that now the transition
front (4) can in fact be seen in the total wave density at thafom the transient regime to the stationary regime occurs
time [8—12]. Similarly, corrections to the original work by Much faster, but still on an exponentially long time scale.
Sommerfeld and Brillouin have been also worked out for1Ne situation changes if we permit the source to be switched
electromagnetic pulse propagati¢h3]. In spite of these ©n Over a time scale comparable to or larger than the tra-
clarifying works, several important aspects have remained©rsal time for tunneling. Clearly, in this case a precise defi-
obscure or not investigated, such as the actual time scale féition of the traversal time is not possible. But for such a
the attainment of the stationary regime, the characterizatiofource the transition from the transient regime to the
of the transients, and the ralié any) played byr in the time ~ @Symptotic regime is now determined by the traversal time.
dependence of the quantum wave. Much the same picture emerges if we limit the detector in-
Recently, one of the authors in collaboration with ThomasStead of the source. As long as the frequency window of the
[14], reconsidered the problem of Sommerfeld and Brillouin,detector is made sharp enough to determine the traversal
and provided a detailed discussion of the forerunners and tHf§me with accuracy, the detector response is dominated by
signal sent out by a source which has a sharp onset in tim&1€ Uppermost frequencies. In contrast, if the frequency win-

These authors also pointed out that the forerunner, generat&@W of the detector is made so narrow that the possible un-
by switching on the source, is associated with a time-Ccertainty in the determination of the traversal time is of the

dependent wide-band spectrum whereas the signalwthe order of the traversal time itself, the detector sees a crossover

front, carries the oscillation frequency of the source into thd"om the transient regime to the monochromatic asymptotic
evanescent medium. The signal is called a “monochromati€€9ime at a time determined by the traversal time.

front.” In contrast to previous work, which tried to find a _ Possibly, the fact that we cannot determine the traversal
front simply by analyzing the amplitude of the waves, thesdime with an accuracy better than the traversal tlme |t§elf
authors emphasized the frequency content of the forerunndf!lS us something fundamental about the tunneling time
and the signal. In the evanescent case, the amplitude of tHgoPIem and is not a property of the two particular methods
monochromatic front is exponentially small compared to thenvestigated here.

forerunner, and in agreement with the works mentioned

above, it cannot be detected using a simple criterion based on Dimensionless quantities and notation

the magnitude of the wave. Two approaches were proposed _ _ . - .
to enhagnce the monochromatic fro?f?s compared to E[)hepfore— The (du_nensmna)l t|me-deps_:nde_nt Schdénger equation
runners. First, the dominance of the forerunners might ariséOr a par.t|clel of massm moving in a constant potential
due to the fact that high frequencies are transmitted in the/ (X) =V is given by

propagating energy range. This can be avoided if the source P 52 g2y

is frequency limited such that all frequencies of the source = — — 4\, (5)
are within the evanescent cagéechnically this means that a aT 2m gx2

frequency window is chosen to avoid the effect of the saddle-

point contribution) A second option is not to limit the source Tha number of variables and parameters may be reduced by

but to frequency limit the detection. We can choose a deteGnqqycing dimensionless quantities for position, time, and
tor that is tuned to the frequency of the source and that rey,

: ) wave amplitude,
sponds when the monochromatic front arrives.
The aim of this work is to characterize the time depen- 2
dence of Schidinger evanescent waves generated by a point Y= X(2mV) 6)

source. We identify several wave features, in particular the h
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TV fact this permits us to express the integral in terms of known
t=—-, (7)  functions. In the complek plane we have
12 1 eikx—i(k2+1)t
- X, t :—.—f dk 2k————— 16
v = o Y X T). ® U= s 2 (16
This allows us to write the corresponding dimensionless e it 1 1 -
. . - ikx—ik“t
Schralinger equation, 21 ). W ki + K irg e ,
oy Y (17)
IE =— ﬁ + lﬂ (9)

where the contoul , goes from— to « passing above the

Other useful dimensionless variables related to the dime nole atl «p. The two terms in Eq(17) lead to integrals with

sional energyE (or frequencyW=E/#), and wave number he form discussed in Appendix A. The contour can be de-
K =[2m(W—V/#)/%]Y2 are, respectively, formed along the steepest descent path from the saddle at

ks=x/2t, the straight line

w=E/V, (10
K= — ke + X/2t (18)
k:(w—l)m:z—l,z- (1) (kg andk, are the real and imaginary parts kf, plus a
(2mV) small circle around the pole ak, after it has been crossed
The reader may check that the dimensional dispersion reldy the steepest descent path, for fixeat the critical time
tion
. 19
Vv Kzﬁ T= Z
= — 4 — 0
W 7 + om (12

This procedure allows us to recognize two functions

takes for dimensionless quantities the simple form given ir[l5 16 (see Appendixes A and)Bone for each integral
Eq. (2). ’ ’

1
Il. SOURCE WITH A SHARP ONSET P(x,t)= Ee"”'kst[w( —ug)+w(—ug)]. (20
(INFINITE FREQUENCY BAND )

In this section we shall investigate the time-dependenHere,
wave function forx=0 and t>0 corresponding to the

“boundary condition” 1+i i r
ot Up=—5t"Ko| —i1——]|,
P(x=0t)=e "2 (1), (13 2172 t
which may also be given by the corresponding Fourier trans- _
form p_ I, [T
Uo—ﬁt Ko I_f . (21)
Hx=0,0) = — | (14
x=0,w)= —. ) )
v @ (2m) 2 w—wo+i0 It is clear from the exact resUlEgs.(20) and(21)], that 7 is
- an important parameter that appears naturally in the
The superposition w-function arguments, and determines wity the global
- iKx—i ot properties of the solution. Its detailed role will be discussed
P(X,1)= '_f we—_ (15)  in the following sections.
27) o= woti0 Equation(20) is in agreement with a previous expression

) by Moretti[7], derived using different contour deformations
satisfies the Schainger equation as well as the boundary and notation. Our analysis of this exact result will be, how-
condition (13). Along the integration pattk is positive for  ever, quite different and more detailed.

»>0, and purely imaginarywith positive imaginary pajt
for 0<<0. This corresponds to waves that vaniskateo. In
Ref.[14] the integration was carried out in the complex fre-
guency plane since this permitted a close comparison be- Often an exact expression is not very informative by it-
tween the calculation for the Schilinger equation and for self, and the approximations make its essential content mani-
relativistic field equations. If only the Schiimger equation fest in certain limits. The simplest approximation 6fx,t)

is of interest the complek plane is most advantageous. In for times beforer is to retain the dominant contribution of

Approximations
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the saddle by setting=Kk in the denominators of Eq17) 15
and integrating along the steepest descent path. It is useful t
write this in different ways,

eit+ik§t( 1 1>_eit+ik§t7_(2t/ﬂ_)l/2

V= uy uy) (-1 ke(PHR)

<

_ I_ — 4 Qs efi(l*ﬂs)t (22) 8
27 NV 0g Q.- Q, '
where
2
2 X 2
Q=K2=—, Qo=—«2. 23 5 ‘ . ‘ ‘
4t 0 100 200 300 400 500

t
(These are particular values of the frequency variable

=w—1, defined with respect to the frequency level of the ~FIG. 1. log, of the amplified densityA=[y(x,t)|? exp(2¢x)
potential) The average local instantaneous frequency for thigersus time for a signal emitted by a source located=a0 with

saddle contributior{17] is equal to the frequency of the frequencywy=0.5, and observed at=7,14,21(solid, dotted, and
saddle point, dotted-dashed ling@sNoticeable forx=7 is the contribution of the

saddle-point solutiony (dashed lingin comparison with the exact
w=1+Q,. (24 solution . At x=14,21 the exact wave functiof and the saddle-
point solutiony are indistinguishable on the scale of the figure. All
(Note the different sign of)¢ in the exponent of Eq22). (), units are dimensionless.
depends ort~2 and a time derivative has to be taken to

obtain Eq.(24), see[17].) asymptotic formulas lead exactly to E&6). As discussed in
After the crossing of the polix, by the steepest descent Appendix B one should not be misled by the apparent front
path att= 7 the residue in Eqg. (26). It is possible to obtain a smooth approximate
‘ expression around= r by adding a correction taj, that
Po(x,t)=e"'dle” 0O (t—17) (25  takes into account the region near the pdd]. This cor-
rected expression, however, is asymptotically equivalent to
has to be added to E2), Eq. (26) because at, and within the conditions that make

_ the saddle approximation valid, the contribution of the pole
YOO~ (X0 F (X, 1). (26 is negligible. To see this more precisely let us examine the

The solution given by Eq(25) describes a monochromatic ratio between the modulus of the two contributions,
front that carries the signal into the evanescent medium. The o 22

conditions of validity of this approximation can be deter- R(t)= -2 — e <Ot X242+ «2). (28)
mined by examining the asymptotic series of Whg) func- | X

tions in Eq.(20) for large|z|, see Appendix B. In fact, Eq. _ _ _

(26) is obtained from the dominant terms of these expanits value atr is an exponentially small quantity,

sions. The modulus of the twa-function arguments in Eq.
(21) is given by

R(t=7)=e (27 Kox) 2 (29

Note also thaR has a minimum at/3Y?< 7 and tends tae
(t2+ 72)12 (27)  ast—ox. As a function ofx, the minimum ofR decreases up

to x«xp=1/2, and then grows again monotonously.
) i o i In summary, for the source with a sharp onset described
This quantity may be large in different circumstances. I_t 90€ere, the monochromatic front is not visible when the ap-
to = wheno, t, 0rx go tox, and also when—0. M(t) is  ,5yimation (26) remains valid around= 7. However, two
minimum at thegossmg time= 7, where it takes the value yery important observable features of the wave can be ex-
M(t=7)=(xx)"“. Forxx<1 the pole lies within the range (5cted easily from Eq26). The first one is the arrival of the
of the saddle Gaussian and cannot be treated separately. yangient fronf characterized by its maximum density tat

Assuming thatM is large the phase af determines the  _ /312 This time is of the order of, but the wave front

appropnatellgsymptotlc expression w(z). For Im(z) 520* that arrives does not oscillate with the pole frequenagybut
w(2)~i/(m2), whereas for Im)<0, w(z)~i/(7""2)  \ith the saddle-point frequency. Figure 1 shows this
+e %, see Egs(B5) and (B6). arg(—up) goes fromm/4 to  transient front for three positions. In this and similar figures
3m/4 whent goes fromt=0 to «, and arg(-ug) goes from the densities are exponentially amplified B to make
/4, att=0, clockwise to— 7r/4 whent— o, and crosses the possible the comparison among different valuez with the
real axis att=r7. Thus the application of the previous same scale. Thus, all amplified densities ||?e?<0* tend

Ko

M(t)=]-ugl=| ~ugl= 53
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FIG. 2. Evolution of the average instantaneous frequengy FIG. 3. log, of the amplified densityA=i(x,t)|* exp(2¢cX)

saddle-point frequencws, and signal frequency, versus time ~ Versus time fox=0.05 andx=0.45(solid and dotted lines, respec-
(solid, dashed, and dotted ling®r x=7 andw,=0.5. The circle tively). The approximations provided by the saddle-point solution

marks the timet,, at which the pole contribution and saddle-point ¥s '€ also showridashed line and empty circlesvo=0.5. The
contribution are equal in magnitude. empty and filled squares mark the values of the traversal tirfioe

x=0.05 andx=0.45, respectively.

to one in the asymptotic largeregime, and the correspond-
ing logarithm to zero. Also shown is the approximation due

ﬁgsﬁ/lst, foilihjggrlll:telsthg?lt)aed:;r;?izggzl)elﬁs{{;zrzéy’ixeié(aCt but fail_s aroundr because the pole is_within the width of the

i i . ) —  Gaussian centered at the saddle point. The pole cancels part
simply R™". In Fig. 2 the instantaneous average frequency qf the Gaussian contribution so that the bump predicted by
is represented for the smallestvalue of Fig. 1,x=7. At 4t 7312 js not seen in this regime. Figure 3 shows the
smallt and around the transient fronb= =~ ws. time dependence of the density for two small values.of

The second observable feature that we can extract frordoes not correspond to any sharply defined feature, but pro-

Eq. (26) is the time scale for the attainment of the stationaryvides here a valid rough estimate of the attainment of the
regime, or equivalently, the duratidp of the transient re- stationary regime.
gime dominated by the saddle before the pole dominates.

Finally, whenxxg is small (1), the saddle approxima-
tion describes correctly the very short-time initial growth,

can be identified formally as the time where the saddle and lll. FREQUENCY-BAND-LIMITED SOURCE
pole contributions are equaR=1. Because of Eq.29) we
shall assume<t,, to obtain the explicit result Thomas and one of the authdis4] recently suggested a
way to avoid the dominance of the saddle-point solution over
xekox | 23 the monochromatic front by limiting the frequency band of
tyr (2—1/2) (30 the source. Specifically, it was proposed to cut off the
2K amplitude(14),

Using kox>1, the velocity for the motion of the space
“point” where the transition from transient to stationary be- [ﬁ(w,xzo):

[0(0— (@~ Aw))

havior (or from saddle to poletakes place is given by (2m)Y2 0= woti0
3 - —0(w—(w—Aw))]. (32
Ui ™ =~
" 2kt This implies that the emission of the source is not sharply

defined as in Eq(14); see Appendix C. Instead,
Contrary to the motion of the front maximum, this point does 14 PP

not move with constant velocity. The transition may be ob- . 1

served in various ways. In Fig. 1 the decimal logarithms of Pp(x=0)=e ' O(t)— —IME(—idwt) |, (33
the exact(amplified densities and of their components are

represented. The crossing point wheRe=1 may be ob- whereE;, is the exponential integral defined in E§4). The
served forx=7 in the change of behavior of the total wave frequency-band width @ may be chosen so that the onset of
density. The oscillation arount, is due to the interference the source is fast with respect toand that all the frequen-
betweeny, and ¢, and has the characteristic peridgd cies in the source are in the evanescent refjia,
=27/|Q|. In Fig. 2 the crossover between the regime
dominated by 'ghe sanIe frequency and the one dominated by 2—7T<Aw<|00|. (34)
wq IS also easily noticeable. T
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Later we will see that in fact it is necessary to give up thewhereD .. (genericallyD,) are the integrals frony. to o
condition that the source switches on fast compared to thalong the corresponding steepest descent p&ths$Xz),
traversal time. Now “negative times” are also required to

describe the signal growth. For an arbitragy e it f et san®)(2y"%-y) w2
i (ogrde  e-i(et=ky ‘27 Jsom Y~—Yo '
P 2]y so W omaorior % ang
In this case the integration technique used in the previous Po(x,t) =e"'“oe @ (t). (43

section does not provide an analytical solution. We shall ma- ) ] N
nipulate the integral to facilitate the exact numerical evaluaUnlike Eq. (25) the residue is now present at all positive

tion and the discussion of approximations. Usidg- w—1,  fimes. Using the generic notatiar=y.. for any of the two
Eq. (35) becomes extreme points the steepest descent paths from them and

their slopes are given by

ie—itJQ0+Aw e i(Qt-ky)

X,t)= dQ) ———. 36 1
W= 5 Qp-de  Q—Qo+i0 36 y,=§sgr{t)[yé—4y‘°§(1+z)+2y2Rz(4+3z)
The integrand of Eq.(36) has a saddle point af) — 422y (1+2)+ 412 (44)
= (x/2t)2. But since(), is now negative, a frequency interval
chosen according to E¢34) now excludes this saddle. It is ay, _y%—3y§(1+z)+sz(4+32)—22(1+z)
convenient to introduce the variable=(/Qg so that the rYate 5 , (45
valley-hill structure of the exponent remains constant, Yr Yi
— : - ay
ie it fy,  gihsant)(2y?-y) N _sgnt)(—2)v2 (46)
e @) e,

In the numerical evaluations the value pfalong the path
may be obtained by solving for each step

dy=dy,(dyg/dy, +i), (47)

In ord(_er to perform contour deformations in the compiex with the initial conditiony =2z
plane it is also necessary to specify that the branch cut for

yY2is set along the positive real axis, and that the saddle is at
y=1 for t>0 (just above the clitbut aty=e?" for t<0

(just below. The steepest descent and ascent paths from it The leading term il ~! of Eq. (42) is obtained by inte-

are given, in the first Riemann sheetyfby the sections of grating fromz along the ray with the direction of the steepest

Here,

Vo=Qo/Qs,  Vi=YVorAw/Qs, A=|Qd]. (39)

Approximations

the parabolas descent path at and taking all functions in the integrand,
except the exponential, out of the integral, with their values

1 atz[18],

Vi=Sgrt) 5 (1-y3) (descent, @y 2219
i : .
D NDOE e—lth—KZXelﬂZ (48)
1 T 2aN(zyg) |z Y21 ’

y,=—sgr(t)§(1—y§) (ascent, (40) A (Z=Yo)| |

where w,= w.=wy*Aw, k,=k.=(1—w.)Y? and ¥, is
starting from the saddle point. Irrespective of the sightbe  the angle of the steepest descent path at
original contour in EQ.(37) is entirely within one of the
valleys of the saddle, so that there is no need to take this
critical point into account in the contour deformation. The
most efficient contour deformation consists of following the
steepest descent path from the lower integration extrgme
downwards to infinity and coming up to the upper integration

6,= m+arctafisgr(t)(—z)*?] (49)

(the branch of the arctan function betweenr/2 and /2 is
taker). The modulus of these contributions is given by

— XK+
extremey . following its steepest descent path.ti$0 this ID.|= S , (50)
contour encloses the pole at and the corresponding resi- T 2mAw(t?+t3)1?
due has to be included. The extreme points become the criti-
cal points of the integral, apart from the polewt whent where
>0,
X
Y(x,t)=D_—D, + ¢, (41) ti_zxi ®D
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are the critical times when the steepest descent path from th
saddle crosses the extreme points of integrayion Regard-

ing the possibility of making the monochromatic front vis-
ible, the frequency-band-limited source eliminates the saddle
dominated transient effects, but they are substituted by tran
sients associated with a new critical point: the upper extreme .
of integration. The actual time for transition to the stationary 55
regime is still larger thanr under semiclassical conditions, 8'5
but much smaller than that for the sharp onset case. A dif-—
ference with the infinite frequency band case is that the
maximum of |D-.| is att=0. This is quite remarkable. A
particular feature of the wave, its maximum, appears in-
stantly with zero delay at arbitrarily large distances. One
should keep in mind, though, that the buildup of the initial
signal has required previously an infinite time, frams

—x tot=0.

The transient regime previous to the dominance of th
pole must be also different from the infinite band case sinc%
now there is no saddle-point contribution. The transient is
here dominated by the integrBl, because of the exponen-
tial dependencies and by the frequency of the upper integra-
tion limit y, . An analysis similar to the one performed in .
the infinite frequency-band case can be now performed. Let

PHYSICAL REVIEW /A2 023808

4.0

-2.0
-500.0

0.0

FIG. 4. log, of the amplified densityA=|y(x,t)|? exp(2X)

or the frequency-band-limited source and of the approximate solu-
ion |D3|2 versus time(solid and dashed lines, respectivelfor
x=50 (lower sej andx= 135 (upper set wy=0.5, Aw=0.12.

ways. (@) We can consider a frequeney, and a frequency
interval such that- ko and «, become small. This means

us compare the contributions from the pole dhd by di-
viding their moduli,

(///
ol

— el ot X2 rAw(t2+12)M2). (52

at both - wg andA w should be close to zero, but to avoid
propagating waved w<(1— wg). (b) Alternatively, we can
allow wg to take any other value below 1, but making the
frequency intervall @ small. In both cases a small frequency
window is needed and we can expand with resped doso

D] that (— xp+ k. )X=—Aw7. Thus we see that the attempt to

measure the traversal time accurately has to be abandoned.

From the conditiorR’ =1 we obtain the new critical time = . 7 )
The lower limit of Eq.(34) is now violated. Figure 5 shows

@2X(xo= K ) V2 ox(xko=x+) an example where the first inequality in E@4) is not
b=\ " % ~xa (53)  obeyed. The traversal tim@gather thant,, which in this
4mAw TR case is an imaginary numberow marks the transition to the

asymptotic region even though the buildup time is so large
that the arrival of the monochromatic front cannot be defined
1 with a precision better than itself. In this respect, Fig. 6 is
~—— (54)  very illustrative. It shows how the transition of the average
(ko= K+) frequency characterizing the transient to the frequency of the

They have to be compared with the corresponding quantities
for the sharp onset case, E§R0) and(31), respectively. The
critical time for the transition depends exponentially>oim

both cases, but it arrives exponentially earlier for the
frequency-band-limited case. In Fig. 4 the logarithm of the 00 r
amplified density and of the approximation provided by
|D3|2 is represented for two values xfForx=50 the tran-

sition timet;, is relatively small and can be seen in the time 2 -1.0 |
interval shown.(The oscillation period of the interferences _8’
aroundt,, is now 2w/Aw.) For x=135, t;, is much larger
and cannot be seen in the scale chosen; note the well-define  -20 |
peak att=0. The slight disagreement between the exact re-
sult and the approximation provided B is because, for

and the critical velocity

!
Utr

1.0

very small times, the slope of the steepest descent path fror
y. is very small and the path passes close to the pole. The
pole perturbs the integral in this manner for times such that
AN I<Aw/Qg, ie,t<27/Aw.

.-

-3.0
-100.0

0.0

t

100.0 200.0

FIG. 5. log of the amplified densitA=|y(x,t)|2 exp(2,x) of

From Eq.(52) we see that the dominance of the mono-the approximation$D | and |DS|? versus time(solid, dashed,
chromatic front atr and fixedx requires that the magnitude and dotted lines, respectivéljor x=13.5. The square marks the
of (— kot x4)x~1 or smaller. This can be achieved in two value of 7. wy=0.5, Aw=0.12.
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0.65

kox>1; namely, when these conditions are satisfied the
saddle contribution to the wave function will be a very good
approximation to the total wave up to an “exponentially

0.60 | long” time t,,> 7, see Sec. Il.
The short-time Fourier transfor(stF) of the field ¢/(x,t)
i is given by
D o055t
o 1 J‘t+T/2d _ Yoy, (57
3 F(w;x,t)= t" expliot”) g(x,t").
° ( ) (2m)Y2 Ji-112 " 4

0.50

Note that the short-time Fourier spectrum depends, in addi-
tion to the frequency, parametrically on the observation point
0.45 - . x and the timeL.
-100.0 0.0 100.0 200.0 Consider now first the contribution of the monochromatic
t front to the stFt. We denote this stFt By, (w;x,t). Fort
<7—T/2 we haveF(w;x,t)=0. Fort>r+T/2 we find

FIG. 6. Frequency evolution, wg, andw versus time(solid,
dashed, and dotted linesf the frequency-band-limited source for
x=13.5, wy=0.5, andA w=0.12.

2 . i —wq)T/2
Folwixt)= e rotgilo-oon IO~ 0O T2]
, , , PR (2m)V2 (w—wo)
monochromatic solution occurs around the traversal tigne (59)
but the time interval required for the transition is clearly

larger thanr. This amplitude peaks at the frequency of the sousgeand,
fort>7+T/2, it is time independent at this frequency. Away
IV. TIME-FREQUENCY ANALYSIS from this frequency the stFt of the monochromatic wave de-
OF THE WAVE FUNCTION cays algebraically and oscillates sinusoidally. In the time in-

d limiti h . imi terval 7—T/2<t<7+T/2 the stFt tracks the arrival of the
Instead of limiting the source in frequency we can limit monochromatic front,

the detection of the field to a range of frequencies of interest
[14]. The wave amplitude at fixed position becomes a func- o~ Kox 1_ @it TI2)(w-wg)
tion of time ¢(t) that can be Fourier analyzed to provide its Folwix,t)= . (59)

frequency representatiof( ). However, neither of the cor- (2m)*2 W™ W

responding densitiesy(t)|? or |(w)|?, tells when a par- _ . I .
ticular frequency arrives or decays, nor what is the relativecons'der next the saddle-point contribution. Its frequency in

importance, at a given time, of different frequency compo—a sh,ort,-time interval is de_termined _by th_e expan/sican of
nents. This type of information is provided by joint time- $s(t)t’ away from t. This expansion givesy(t')t

— ’ ’ 2 H H
frequency representationd9]. There are many possible =204t Q" +O((t'— 1) ) Taking into account that
ways to carry out a time-frequency analysis. A simple one!h€ Prefactors are slowly varying over the time interval of
nterest herdthis is assured by the first inequality in Eq.

and surely the most common, is the “spectrogram,” based :

on the short-time Fourier transfor¢atFy. We are interested (291, we obtain

in the Fourier spectrum that would be measured at the obser- ] :

vation pointx if the wave is observed during a time interval F(oxt)= o2 Qs

of durationT. If a precise determination of the traversal time s 7 NV Qg Qs— Oy

is attempted, the extent of the time intervais chosen to be )
SiM(Qst+1—w)T/2]

short compared to the traversal timeOn the other hand, if w el (Qs—1+ o)t . (60)
T is too short then the frequency resolution will be poor. A (Qst+1l-w)
compromise to obtain a good resolution in time and fre-
quency is forT to be bound above and beldi4], The stFt of the saddle-point solution peaks at the frequency
ws=0g+1. This frequency is very large at short timéki-
2kp 1 1 |Qq «3 netic regime”), where ws~ Q.=x%/(4t?) is dominated by
x T2, 24 (55 frequencies above the potential. At long tim&gotential

regime”) wg tends to the potential frequency 1. The transi-
This is equivalently expressed in terms of inequalities fortion time between these two regimes of differentcan be
time scales estimated by solvind)¢(t)=1. This givest=x/2, which

may be larger or smaller than We see that the two Fourier

=>T>T,, (56)  transforms peak at well-separated frequencies. Still the stFt

of the pole has an exponentially small amplitude compared
where To=2m7/|Q)| is the oscillation period corresponding to that of the forerunner. Therefore, it is possible that the stFt
to the frequency(,|. Combining the inequalities one finds of the saddle is still large at the frequeney, where the stFt
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of the monochromatic front peaks. Thus we have to investi- L5
gate the stFt of the saddle at the frequemgy From Eq.(60) - 14
we obtain - 13
. = 4 L 12

vt [T R - 11

FS(w01X1t) - aT Qst QS_QO I ‘ 1
, 3 - ) 109
X gl (st o)t S (€25~ o) T/2] . (6) . : : : 0.8

(25— Qo) 0 100 200 300 400 500

At a timet= 7 the amplitude of the saddle is still of order 1. ¢

Thus even at the peak frequency of the front its contribution FIG. 7. Contour map of the spectrogram far,=0.5, T
to the spectrum is of order 1 and much larger than the expo=52.36, x=135. Notice the transition from the kinetic to the po-
nentially small peak of the monochromatic front. tential regime and the side wings around the main peak.
Let us now investigate the properties of the transient in
the frequency-time domain, and determine the role played bgst =2 for large times. Its maximum arrives, for fixed at
7, In particular at the frequency of the signaé. The spec- /573 Equivalently, this maximum moves with a speed
trogram is defined as the square modulus of the stFt,
S(t,w;x)=N|F(w;x,t)|?, whereN is a normalization con- Ve =350 . (66)
stant.(The notation of the argument &is appropriate for a
time-frequency analysis at fixed.) For “normalizable”  This reveals that, ir5(t,wq;x), 7 is not the time where the
casesN is chosen so thaffdt dw S=1. In our case, this is stationary regime begin# is necessary to wait an exponen-
not possible because the asymptotic stationary regime dodislly long time to attain that regimebut the basic time scale
not decay, bu§ provides anyway information on the relative for the arrival of the main part of the transient. The detailed
importance of two time-frequency points, Bbis chosen to  oscillatory pattern of this main part will depend on the value
be some convenient valusl= 72/2. of T/Ty; see Figs. 8 and 9. Fab=wq the sine function
For analyzing the transient we may neglect the monochrovanishes at times
matic front and concentrate on the saddle-point term. The

spectrogram of the saddle-point solution is denoted by = T 67)
Si(t,w;Xx) and is given by " (nTy/T—1)°
SIrF[(Qg+1—w)T/2] (In the w-t plane the spectrogram has a maximum which
Ss(t,w;x) = a(t) (Ot 10 62 follows the linew=0.+1 and vanishes along the lines
s =Q0,+1+27n/T. In between these zero lines the spectro-
with an amplitude gram exhibits local maximaThe n for the closest zero te
isn~2T/T, whereas the largest [associated with the mini-
1 Q mum n so that Eq.(67) has a real solutigncorresponds to
a(t)= o o2 (63
(25— Qo) 0.006

Note thata(t) is also proportional to the absolute square of
the saddle-point solutiohyg(x,t)|?= (4/7) a(t). The ampli-

tude a has a maximum as a function of time at the transient
front peak,t; =327, that moves with a speed 0.004 |

vf=J§vm. (64)

Thusv; determines both the speed of the peak value of thes<
saddle-point solutiofy(x,t)|? and the speed of the absolute
maximum of the spectrogram. The peak value of the spec-
trogram for a given time is at the frequeney= Q.+ 1; see

an example in Fig. 7. Consider next the spectrogram at the
frequency of the sourcey= wq. For fixedx it is bounded by
the envelope function 0.000 |

®=0.5)

S(t

0.002

400

300 500
—_— (65)

t(Q— Qo) FIG. 8. Spectrograns(t,w=0,5) for wy=0.5, T=52.36, X
_ _ . =135 (solid line). The square marks the value 8£95.4.(This is
and has local maxima close to the times at which the Sinhe period that correspondsAas=0.12 in Fig. 4) T,=12.57. Also

function is+1. B(t) grows ast® for short times and decays shown,(t) (dotted ling and S, (dashed ling

B(t)=
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0.006 normalization constant, t&'(t,wq;X).] As a consequence,
S'(t,wg) peaks at=0 after an infinite time growth whereas
S(t,wq) is strictly zero att<—T/2 and its main transient
part peaks around. The qualitative behavior is different
because of the different window functions, even though the
inequalities used here or in Sec. lll, E¢55) and(34), are in
fact identical if one identifie§ =27/Aw; compare Fig. 8
and the upper curve of Fig. 4 where the valuesoT, and

T, are equal. These inequalities imply in both cases that the
pole contribution can be entirely neglected at or around
and that it will only be of importance at a time that depends
exponentially onkgX.

We have tested the time-frequency Wigner function, too.
This representation separates much more clearly the saddle
. . and pole contributions, but it also associates with the latter
100 200 300 400 500 an initial timet=0 rather thart= r, and presents the incon-

t venience of a very rapidly oscillating pattern and strong in-
terference terms.

0.004

S(t,w=0.5)

0.002 -

0.000
0

FIG. 9. Spectrogran(t,0=0,5) for wy=0.5, T=12.57, x
=135 (solid line. The square marks the value e=95.4. T,
=12.57. Also shown3(t) (dotted ling. S; is indistinguishable V. SUMMARY AND DISCUSSION

from S.
The time dependence of evanescent Sdimger waves

n~T/T,. Hence there are approximatdlyT, zeros between created by a point source has been investigated, combining
7 and the last oscillation. FAF/To<1 there is a single major analytical or numerical exact results and approximate expres-
bump close tor, and for T/T,>1 there are many local Sions. The background of the former allows us to test and
maxima that “Samp|e” the form of the enve|ope function contrast the Val|d|ty of the S|mp|lf|9d deSCfiption of the latter.
(65). We have also performed a time-frequency analysis of the
transients which precede the stationary regime by means of
spectrograms.
An important aspect of the work is the elucidation of the
The time-frequency characterization of the wave functiong|e played by the different parameters, in particular by the
at a fixed position depends on the quasidistribution chosen«rayersal” time . It is a basic parameter that determines
There is nothing wrong with this nonuniqueness as long age global shape of the wave but at this time, in semiclassical
the quasidistribution chosen is specified. In choosing the di%onditionSK0x>1, the monochromatic frortwith the main
tribution one may consider several factors. Ideally the dism"frequency of the sourgds not observed in the total wave
bution should be easy to calculate, and should not be togecause of the dominance of the saddle-point contribution.
noisy, e.g., with wild oscillations. It may also occur that one However, for the source with a sharp onset we have identi-
of the distributions is naturally adapted to the way the detecfieq 3 transient front whose maximum peak arises at a time
tion experiment is performed. 7132, The dominant frequency of this front does not corre-
Let us first discuss a different type of spectrogram. Thesnond to the main frequency of the soureg, but to the
roles of time and frequency can be inverted so that instead gf,ean saddle-point frequendgbove or at the cutoff fre-
limiting the Fourier transform ofj(t) with a “square win-  guency. The timet,, > r that determines the duration of the
dow transient, or the passage to the asymptotic regime, has also
o . been identified. Frequency-band-limited sources accelerate
h()=0(-T2)8(~t=T72), (68) the crossover to the stationary regime but there is still a
transient dominated by the upper frequency contained in the
band. The spectrogra®(t,»;x) has been also investigated
to show the variation with time of the frequency compo-
nents. In this representation the main contribution at the fre-
gW)=0(w—Aw)O(—w—Aw). (69)  duencyw, arrives aix around the traversal time This main
contribution is a transient due to the saddle point. At an
The corresponding spectrogra®h is obtained as the square exponentially long time the pole term will eventually take
modulus of the sfFt. The two spectrogran®sand S’, are,  over and remain as the dominant contribution in the station-
however, not equal because the window functibnandg  ary regime.
are not Fourier transforms of each other. In particular, note In fact it is possible to see the monochromatic wave front
that the spectrograi® may be equivalently obtained from a arriving around the traversal time but only when the semi-
sfFt analysis for an initially sharp onset signal, or as theclassical conditions are abandoned, and with an accuracy
density that results from a source with a smooth orf§dte  which is never better than the traversal time itself. This oc-
density of#(x,t) in Eq. (35) is proportional, up to a trivial curs if the point source starts the emission abruptly, but also

Other time-frequency distributions

a “short frequency Fourier transform{sfFt) may be simi-
larly defined forfﬁ(w) by limiting the frequency integral
with a window,
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when it is switched on graduallylimiting the frequency 1
band, or for a limited-frequency-band detector, whose re- w(z)=-—
sponse is modeled here with a spectrogram. The coincidence im)r u-z
of all these cases strongly suggests that the limitation of the
accuracy to measureis in fact a general property.

e v

du, (B2)

Wherel’ _ goes from—« to o0 passing below the pole at

For Imz>0 this corresponds to an integral along the real
axis. For Imz<0 the contribution of the residue has to be
ACKNOWLEDGMENTS added, and for Ira=0 the integral becomes the principal

We are indebted to Harry Thomas who through discushart contribution a_long the real axi_s plus half the residue.
sions during the work of Ref.14] has also strongly influ- oM Eq.(B2) two important properties are deduced,
enced the direction of this work. Discussions with L. Cohen
and I. L. Egusquiza are also acknowledged. J. G. M. was
supported by MEC Grant NdPB97-1492, and in Geneva,
where most of this work was carried out, by the Swiss Na-
tional Science Foundation. M.B. is supported by the Swiss w(z¥)=[w(—2)]*. (B4)
National Science Foundation.

w(—2z)= 27— w(z) (B3)

To obtain an asymptotic series as> for Imz>0 one may
APPENDIX A: INTEGRALS expand_ -2 ‘_1 around the origin(the radius of conver-
gence is the distance from the origin to the pd) and
In this appendix we shall solve the integrals of the form integrate term by term. This provides

o-i(ak?+kb) - i L i 1x3-.-X(2m—1) I 0
I= dk———, >0 Al w(z)~—|1+ . Imz>
=T a (AD) nz| = (222)™
(BS)
wherel", goes from—oo to « passingabovethe pole atk
=ky. The saddle point of the exponent iskat —b/2a and

the steepest descent path is the straight line — (kg

which is a uniform expansion in the sector -0. For the
sector Inz<0 Eq. (B3) gives

+b/2a). The original contour is at the border between the * 1X3x% X (2m—1)

hill and valley and can be deformed into this path, taking w(z)~ 1+ 2 1

into account the residue of the pole when kK \/—z m=1 (2z%)m

—[Re(kq) +b/2a]. By completing the square and introduc- )

ing the new variable +2e %, Imz<O. (B6)

14+ If zis in one of the bisectors then z? is purely imaginary

u= u(k)— 1’2(k+ b/2a), (A2)  and the exponential becomes dominant. But right at the
crossing of the real axis, =0, the exponential term is of
ordero(z™") (all n), so that Egqs(B5) and (B6) are asymp-

the integral takes the form totically equivalent agz| —. One may insist, however, in
removing the discontinuity of the series expansi@s a
_ w g U function of z) around the real axis. This can be done by
i(b2/4a) L . . - ;
I=¢€ G—g du—2ime "o0[Im(u)] adding a correction to the saddle contribution that takes into
o 0

account the region close to the pole in the line integral, see
also the discussion in Reff14]. Note that in Eq(B5) only

whereuy=u(k=k,). Note that the variable has its origin the region around the origin contributes. Consider now also
the region around the pole,

at the saddle point and its real axis corresponds to the steep-

(A3)

es.t descent line. Using EgB2) and (B3) it can be finally zR+Ae’“2 L [zt du , (zgtA—z
written as f du~e? f o _az A—
A U—Z r-AU—Z —-A-2z
T=—ime G4y (—y,). (A4) (B7)
For large|z| and in the proximity of the real axis this may be
APPENDIX B: PROPERTIES OF w(z) approximated b)e‘zziwsgn @) which exactly cancels the

The w function [15,16 is an entire function defined in discontinuity between Eq¢B5) and (B6).

terms of the complementary error function as
APPENDIX C: TIME DEPENDENCE

w(z)=e % erfd —iz). 1) OF THE FREQUENCY-BAND-LIMITED SOURCE

The time dependence of the frequency-band-limited am-
w(z) is frequently recognized by its integral expression plitude atx=0 is obtained from(32) by Fourier transform
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1 wptAw ie_i“‘)t
P PRV sty
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Using the frequency’ = (w — wg)t,

wgtAw efi‘”t
Pf dw

wy—Aw w— Wo
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1
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For a source with a sharp onset the wave functiori§
P(x,t)= i—e‘i‘fw o e 1@=K)q0), (D3
' 27 —Q—Qp+i0 ’

which is zero fot<x/c. There are now two saddle points at

ct
+0=*—, (D4)
0=(t>—x2/c?)*", (D5)

and the principal part integral can be expressed by contowand two branch cuts. The integration contour may be de-
deformation in terms of combinations of exponential inte-formed along the two steepest descent paths. The pole is

grals[20],

a eﬂY
Pf dYT=E1(— ib)—E(ia)—im, a,b>0
-b
(C3
where

-Y

= e
El(z)=j dYT, largz| <m (C4)
z

(the contour does not cross the negative real)akimally,
using Eqg.(C3), (C1) can be written for alt

zp(x=0,t)=e“"0‘[ o) — %Im[El(—iAwt)]] .
(CH

APPENDIX D: RELATIVISTIC CASE

Defining the dimensionless parametdsy combining the
dimensional velocity of lightC, the mass, and the potential

constant as

c=C(2m/V)¥?, (D1)

the dispersion relation for a Klein-Gordon wave equation

takes the form
0%=(w—1)?=(c?/2)%+ck?. (D2)

For evanescent conditiorisis purely imaginaryk=i«. In

crossed af14]
(D6)

Note the lower bound/c<7 when Q—0 (or kg—c/2).
Consequently the traversal time is strictly limited by the ve-
locity of light [14].

We shall only discuss the contribution from the saddle at
+Q, corresponding to the excitation of particlgtst] ,

. _ix(—i)lf2 Qs
s (X,)=— OO

_ g~ i[tH(c/2)(c?~x)M
Czt T S+ Qo

XO(ct—x). (D7)

Linearizing the square root of the exponent to evaluate the
short-time Fourier transform of the saddle-wave function
(D7), one obtains

2x2 02
m?Tc26 (Qgt Qg)?

Sir[(Q—Q)T/2]
(Q—0g)?

Ss(t,w;x) =
(t>T/2+x/c). (D8)
In this case the maximum of the envelope as a function of

is given by
- Qg 271/2
ten:3T/2 1+3 C2—/2

(D9)

particular, foro= wg or (A=10Q,), ko cannot take arbitrarily Because of the dispersion relatiéh,<c?/2 in the evanes-
large values, & ko<c/2, contrast this with the nonrelativis- cent case, it follows that,, is bounded by7/3"? and

tic case where there is no upper limit.

(4/13¥?) 7.

[1] L. Brillouin, in Wave Propagation and Group Velocitjca-
demic Press, New York, 1960

[2] Proceedings of the Workshop on Superlumi@aVelocities,

edited by P. Mittelstaedt and G. NimfAnn. Phys.(Leipzig)
7, 591(1998].

[3] The numerical value ob should not be overinterpreted. Only

origin and are physically significant.

[4] K. W. H. Stevens, Eur. J. Phy4, 98 (1980; J. Phys. C16,
3649(1983.

[5] P. Moretti, Phys. Scr45, 18 (1992.

[6] M. Buttiker and R. Landauer, Phys. Rev. Le#t9, 1739
(1982.

energy differences and the differences between the corre-[7] M. Buttiker, Phys. Rev. B7, 6178(1983.
sponding frequencies are invariant with respect to shifts of the [8] S. Brouard and J. G. Muga, Phys. Rev5A, 3055(1996.

023808-12



TIME DEPENDENCE OF EVANESCENT QUANTUM WAVES PHYSICAL REVIEW /A2 023808

[9] A. Ranfagni, D. Mugnai, P. Fabeni, and P. Pazzi, Phys. Scr. York, 1961).

42, 508(1990. [17] Writing =||e'? the local average instantaneous frequency
[10] A. Ranfagni, D. Mugnai, and A. Agresti, Phys. Lett. ¥58 is defined a$19]

161 (1991).
[11] N. Teranishi, A. M. Kriman, and D. K. Ferry, Superlattices e Eiﬁqb(x,t).

Microstruct. 3, 509 (1987). 7
[12] A. P. Jauho and M. Jonson, Superlattices MicrostracB03

Note that in this work the convention of signs for Fourier
transforms and for(x) is different from the one if19].
[18] N. Bleistein and R. Handelsmaisymptotic Expansions of

(1989.
[13] K. E. Oughstun and G. C. ShermalBlectromagnetic Pulse
Propagation in Causal Dielectric€Springer, Berlin, 19917

[14] M. Biittiker and H. Thomas, Ann. PhysLeipzig) 7, 602 Integrals (Dover, New York, 1985
(1998: Superlattices Microstruc®3, 781 (1998. [19] L. Cohen, Time-Frequency Analysi¢Prentice-Hall, Engle-

[15] Handbook of Mathematical Functionsedited by M. wood Cliffs, NJ, 1995 Ann. (N.Y.) Acad. Sci.808 97
Abramowitz and I. A. StegufDover, New York, 1972 (1997); Proc. SPIE3069 2 (1997.

[16] V. N. Faddeyeva and N. M. TerenteTables of the Probabil-  [20] J. G. Muga, V. Delgado, R. Sala, and R. F. Snider, J. Chem.
ity Integral for Complex ArgumentPergamon Press, New Phys.104, 7015(1996.

023808-13



