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Quantum-electrodynamical treatment of second-harmonic generation through phase-conjugate
six-wave mixing: Temporal analysis
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It is shown how the effects of molecular reorientation may be incorporated in a fully quantized quantum-
electrodynamical treatment of a high-order nonlinear optical effect. Specifically, a general temporal theory is
developed to account for the second-harmonic intensity produced through phase-conjugate six-wave mixing.
The theory permits elucidation of the intensity of the second-harmonic radiation for arbitrary arrangements of
the generating laser beams and molecular geometry. Several models are considered: a one-dimensional model,
linear geometry, and a planar geometry. A comparison is made between the results associated with these
models and with those obtained from ultrafast experiments on dilute solutions of substituted stilbenes. We find
that the off-axial components of the molecular polarizabilities are necessary to properly describe the orienta-
tional dynamics of such molecules.

PACS numbgs): 42.65.Ky, 78.47+p, 42.50.Ct, 42.40.Ht

[. INTRODUCTION grating scattering signal is derived, followed by the introduc-
tion of population and orientation dynamics, in the latter case
Recently it has been demonstrated that ultrafast highextending the treatment of Favf@8]. In Sec. IV the main
order nonlinear optical experiments provide novel informa-predictions of the theory for molecules of different symmetry
tion that is unavailable through lower-order measurementéypes are examined and compared with experimental obser-
[1-11]. Current applications include study of the ultrafast vations. In the fina] section_ the conclusions are summarized.
dynamics of pure liquid§1—4], orientational dynamics in Before proceeding, a brief comment may be made on our
solution [5—8], and the observation of intermolecular cou- choice of a quantum electrodynami¢@ED) representation

pling [9]. In addition there are proposals for the use of sucHor the theory in Sec. Ill. With proper caution results of the

measurements in the determination of molecular hyperpola:3@Me form, and leading to precisely the same analysis of

izabilities [10], and the structure of molecular aggregatesorlentatlonal diffusion, could be obtained from what is to

[11] many the more familiar semiclassical or nonlinear polariza-

It has also become clear that there is a compeliin neet'on formalism—and for descriptive purposes, that is a lan-
for detailed th tical treat s of high dp gl' guage we have used elsewhgt8]. However, for the devel-
or detaiied theoretical treatments of higher-order non Ir‘eaopment of fundamental theory the semiclassical formalism is

optical interaction. High-order experiments produce numer'seriously flawed in a number of respects. For example, the

ous signals, and their spatial overlap and interferences calpmiclassical expansion of the electric polarization field en-
render interpretation difficulf12—15. One method to ad- genders a sum of quantum amplitudes between processes
dress the problem of distinguishing between these variougith nonidentical sets of initial and final radiation states,
signals is to exploit their polarization dependefit®,17. In  yjolating the superposition principle—though in practice,
a previous paper we presented a detailed quantummiscreant interference terms are ignored. Also the semiclas-
electrodynamical treatment of six-wave mixing; the theorysical tradition leads to conclusions that disrespect several
was then used to predict and analyze the results of a numberinciples of time-reversal symmetry, for example, in the
of polarization-resolved measurements of the generation iformal equivalence between the amplitudes for second har-
isotropic solutions of optical second harmonids’]. The  monic generation and degenerate down-converga@?21].
purpose of the present paper is to extend that quantun@ED is the only theory in which the photon concept can be
electrodynamical treatment to the time-resolved regime. Alused with legitimacy, and we embrace its rigor.
though our primary objective is to provide a complete de-
scription of our recent ultrafast time-resolved experiments
[5,6], the very general methods developed here also provide
a complete framework for application to other time-resolved The optical configuration to be considered is shown dia-
measurements of six-wave mixing. grammatically in Fig. 1, the exact details of which have been
This paper is structured as follows. In the following sec-reported elsewhere in the literatufg,16]. The beams are
tion a brief description of the experiments is given. In Secreferred to in terms of the modes to which their photons
[ll the temporal theory is described in some detail: first abelong. Photons of mode 1), are at the laser’s funda-
guantum-electrodynamical analog of the classical transiennhental wavelength of 800 nm and propagate with a wave
vectork and polarization statk. This beam is the probe—it
may be time-delayed with respect to the seeding bemmns
* Author to whom correspondence should be addressed. andms by use of computer-controlled optical delays. Beam

Il. EXPERIMENTAL DETAILS
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FIG. 2. Feynman diagrams associated with grating formation:
(a) two-photon andb) single-photon absorption.

on the production of the signal harmonic through the opera-
tion of a population grating associated with on-resonance
processes, the time dependence of the primary absorption
correctly represented by Fermi's golden rule.

Detector

FIG. 1. Schematic diagram of the six-wave mixing arrangement. ) o
The fundamental beams counterpropagate witl= (k,\) andm, A. Grating description

=(k,\"). Modem; is a pump beam and arrives at the samBle  The first task in this section is to show that, in the pres-
synchronously with the other(harmoni¢ pump beam ms  ence of the two writing beants, andms, the created popu-
= (k',\"). Probe beanm, is time delayed with respect to the pump . |ation grating is of just the correct periodicity to efficiently
beams, the harmonic signai,=(—k’,\") being produced in the nonerate phase-matched second-harmonic photons from the
phase-conjugate direction. Laboratory axes are as shown and oth fobe bearm- . As a result. then signal photons emerge at
. 1- ) 4
symbols represem A, aperture; BS’.be‘"’_‘m Spl{ﬁé.rSO _at 400 the second-harmonic frequency and propagate in exactly the
C, chopper; F, 400-nm band-pass filter; P, polarizer; and WP, Wav%pposite direction to the seeding beam, according to the
late. ! . !

P dictates of wave-vector matching.

) . We shall suppose that the seeding pulses from modes 2
m, is also at the fundamental laser wavelength—it propazng 3 are coincident with the sample at titwe0 and then at
gates in the opposite direction to the probe beam and has o . {he pulse from the probe beafmode 1 arrives. The
independently adjustable polarization state. Beagiis @  sample is absorbing at the harmonic frequency and so tran-
second harmonic prodyced on passing some of'the laser oWiion to the excited state is expected. Nonetheless, there are
put through a beta barium bor&@BO) CIVSt‘i‘I- This second  yyo ways in which this may be accomplished in the presence
seeding beam makes a small angte5®) with beamm,.  f the two seeding beams: two-photon absorption of photons
The second-harmonic signal beam is detected in a direc-  gpjely from the fundamental beam, and single-photon ab-
tion opposite tan. The path lengths of the seeding beamssorption of photons from the harmonic beam. We thus need
are carefully adjusted to ensure that they arrive coincideng consider two Feynman diagrams as shown in Fig. 2. The
tally at the sampléS, which, in our experiments comprise ca. matrix element(quantum amplitudefor the transition in a
103M solutions of either 4-dimethylamino-Aitrostilbene particular moleculé is thus written as

(DMANS) or 4-diethylamino-4-nitrostilbene(DEANS), in
either toluene or tetrahydrofuran. For reference, the structure VIR VISR VICE (1)
of DMANS is shown later, in Fig. 6.
whereM{¢® is the matrix element for grapfa) of Fig. 2 and
Il THEORY M{ER) that for graph(b). By well-established method23]
these quantities can be written as
To address the dynamical features of second-harmonic
emission arising from the experiment described in Sec. Il,
theory must properly accommodate the designed engagement
of optical resonances. The sample is specifically chosen to be '
absorbing at the harmonic frequency, in order to create the Xei(z)efz)e_'Zk'Rg 2
population imbalance responsible for the dynamical behavior
(see below. In this regard, weaker signals associated withand
off-resonance six-wave coherence can only represent a neg-
ligible and effectively time-independent background. The co- MED Z
herence timescales over which such signals will exhibit os- L
g
cillatory features are too short to be significant in the
reported experiments, and the secular resonances, which theyIn these equations the position of the molecule is de-
can enjoin22] do not lead to population redistribution. Cog- scribed by the vectaR,, the wave vectors of the two beams
nizance of the operational conditions thus enables us to focusf modem; andm, arek andk’, respectivelyg™ is a unit

fick

—)[<m’><<m>—1>]l’2a%i?)<w,w>

M {62 =
480V

fi. ™

hck’
280V

1/2
| ortterec s
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vector describing the polarization state of madg, (m) and

(p) are the mean numbers of photons in modgsandmj, (2) m,
and a repeated Cartesian index implies three-dimensional |0)
summation over that index. In deriving Eq8) and(3) the
state vectors describing the radiation fields have been as-
sumed to be coherent laser states and ém) B
=(a@|n|a(?), where|a'?) is the coherent state represent-
ing mode 2 and is the number operator. A similar expres-
sion may be written fokp). Also, the molecular parameters . R’\/\I\I\FP |s)
apparent in Egs(2) and (3) are the transition dipolg.® m,
=(1|x!9|0) and the index-symmetric transition polarizabil- N\N\ 0)
ity: m, N\
1r (O+ 1r 10
ol (w,0)= 3 [M] @
r E,o—ﬁw m,
D
in which the complex energy term in the denominator takes
the formE,,=E,—E,—iTI’, to account for the damping as-
sociated withl", , the linewidth of the excited state). The 1)
convention adopted here is to make the sign of the damping
term negative to ensure compliance with time-reversal prin-
ciples[20]. Introducing the density of states for the writing R’\NJ\‘\/\ 5)
prOCGSSp,(:l), the rate at which the excited state is populated _ m,
is given by Fermi's golden rule and clearly three contribu- M 1)
tions are apparent: m
1
1
r— ZWP(F : |M§§)|2=I‘1+F2+F3 (5) FIG_. 3. Representative_ Feynman diagrams degcribing harmonic
h formation from molecules iffia) the ground electronic state afig)
the excited state.
where
27TP(F1> hok |2 ately after the pylses have passe®P{R;) =T"(R,)At. The
1= ( ) [<m>(<m>—1)]a(1i‘1?)ei(2>e}2>|2, (6)  probe pulse arrives after a delay of (>At) sec, during
h 4eoV which time the molecule, if excited, may relax. We suppose
2 mpld) hek | ekl | 12 that it rela>§es to the grounq state via a simple 9xpon_ential
T,= TPE i( ¢ )( ¢ ) [(p)(my((m)—1)]%2 decay. At timer the probability that the molecule is excited
h degV )\ 2eqV is hence
X a() milelPelePe 12K R c o (7) P(R¢,7)=T'(Ry)Ate 720, ©
and wherek; is the decay constant.
:27Tp§:1) ( hek! )< >| _106{3)|2 ® B. Clamped-molecule model
3 f 2gqV oI We ignore for the present any movemenbtational or

) ) ) translational that may occur in-between pulses, for that is a

We see that the rate at which the excited state is populate@ature we accommodate later. The probe pulse encounters
depends on the position of the molecule, throdga—and  the associated population distribution in the sample and
also on the molecular orientation, through the molecular magecond-harmonic generatiofSHG) is produced from it.
trix elements. It is thisl', term that produces the grating Again, two possibilities arise, as illustrated in Fig. (B
within the sample. We note here that the periodicity of theywhich only the dominant of three contributory time orderings
grating, determined bg~'(2<*¥)R¢ s exactly that required is shown. Writing asM/(¢® and M) the quantum ma-
for phase-matched second-harmonic generation from thgix elements for these component processes, the effective
probe beam, the signal being created in precisely the oppanatrix element for harmonic production will be as follows:
site direction to the harmonic pump beam.

Thus far we have a raté(R,) at which the upper state is M{O=[1-P(R;, D IM{EP+P(R,, M{{EP | (10)
populated during application of the two writing beams. If we
take the effective time for which the beams are applied aseflecting a statistical weighting of the appropriate quantum
At, the probability that the moleculé is excited immedi- amplitudes. For a two-level system E@{.0) is exact, and
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follows from use of the completeness relation for the mo-
lecular states. The two components involved in the harmonic
generation process are in fact identical in terms of the pho-
tonics, differing only in their molecular mediation, and so we

fick ) ( hck’

1/2
M= —i(m m) [(n)((n)—1)]"?

have X6$4)e}1)ef<1)2§ {Biio T PR, A Bk}
fck hck’ 1/2 Xei(2k+k’)~R§' (15)
Mﬁ§®=—%2 Vﬂg—v)[ﬁw«m—lnm
o o where the hyperpolarizability difference between the upper
Xﬁi(jk)éim)ejgne(kl)ei(2k+kr).R_g (11) and lower states has been written
ABiiy=Bi ik~ Bijk) - (16)
and
The rate of production of SHG from the ensemble is now
2 given by the Fermi rule:
M0 = i 20 A my gy 1722
fi 280V \ 2eqV e 2mp\? S Mo 2
1 StaDg(Dgi(2k+k')-R oo ||
X Bijxe e ec’e £, (12

where p®) is the density of states for the secofrdading

Here,(n) is the mean number of photons in mode 1 and arprocess. Taking an orientational average and effecting the

overbar represents complex conjugation. The
symmetric hyperpolarizabilities are given by

indexusual split into incoherenfsingle site¢ and coherentmulti-

site interferenceterms, we have

ZWPE:Z) ’ 1(Enpar (&
8 1 MiOtM}SMEO (R)= % Eg |Mfi(§)|2+ E Mfi(g)Mfi(g .
i(o=7% — — é=¢'
25t [ (Eyp—2fw)(Esp—fiw)
o ts s o ts <o The dominant contribution to SHG is hence the coherent
My M Mg M My M term,
+
(Et0+ﬁ(l))(ESO_h(l)) (Et0+ﬁw)(Eso+2ha)) 277[);:2)
_ AGINVIVIAtR)
MiOtMLijsO M(knﬂitsl/«jso Reon=—7 ggg’ (MiEN M=), 7
+
(Eto—2fiw)(Egp—fiw) (Epthio)(Exg—fiw) where we have assumed that differing molecules in the so-
ot ts O lution are orientationally uncorrelated, as is the case for the
n Mo K M 13 majﬁrity of pairs in the system. For any particular molecule
(Eio+h0)(Eqt2hw) we have
[ hck )\ [ hck \1?
and <M48*:‘%28&J(25v) [(n)((n)—1)] %6 efMey
1 mit R X{({Bigjo T P(Re 1A By e ZHH ) Re (18)
Bi”k):E S| (Byy—2h0)(Ey—to) Effecting the orientational average on the first term within
t st braces in Eq(18) leads to its disappearance, as is usual for
,u-lt,u}s,uﬁl M-“,uff,ufl SHG in isotropic media. The second term, however, contains
+— J — — J — “hidden” orientational factors througP(R,,7), as a result
(Eutho)(Eg—fiw) (Extfio)(Egt2hio) of which the average is nonzero.
Using Eq.(9) we thus have
) it e i iy
- - - - —kyo(7=ADA 3. .
(Bu—2ti0)(Eq—to) (Butho)Eq—ho) (T(RAte AT 0ABi )
i st =((F1+T,+T3)AB; k) Ate ™40 (19)
k Mj M
+ , (14

(Ey+hw)(Eq+2hio)

Of the three contributory terms, it is the middle one that will
be responsible for the observed signal as it is the only one to
exhibit the necessary phase matching when inserted into Eq.

respectively. The total matrix element for SHG from the en-(18). We thus ignore the other two terms in E49). The

semble is thus

correctness of this assumption is readily verified from the
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fact that the signal is not observed if either of the writing The polarization dependence of E@?2) is exactly that
beams is blocked. Using tH&, term in Eq.(19) we now find  found previously for the case of coincident pul$&8]. An
interesting feature of the result is its dependence on molecu-

(T(Ry)Ate™ 0™ AVA B, 1)) lar polarizabilities. Evaluating the sixth-rank average we find
2mpE [ hek | [ fick’ | Y2 (1121392 g2 (NAT)2
_ 1712 2oy (PEDZKD)*gPGL  (NADZ - e
" (480\/) zsov) [P {my((m)~1)] = ag st (1415212
X ({afi el P el ede 12k KRt ¢ ¢} 6 2
X QE,| e Zkulman, 23
X ABjji)Ate a7 AY “21 o @3

with the exponential explicitly exhibiting the phase matchingwhere the linear matriX) comprises molecular parameters
(and the complex conjugate term accounting for the fact thadefined by
SHG can be produced from a fundamental beam propagating

in the opposite direction, as also observed experimentally m 04 B My a(ﬁﬂ AByaa) ]
The phase-matched, orientationally averaged matrix element O, '“B a(ﬁy)AIBy(aa
is hence 0| ﬁioa(lgﬁ) ABap)
" a, | =A 0,10 AB : (24
,(g) TPE Aack 2 hck, Q4 /'Lﬁ 05‘)/) y(aB)
<M >_ 3 280V 28 vV [<p><m>(<m>_1) QS ,uyoa(m, Aﬁﬁ(aﬁ
. - 76 | Mg @ w)A'Bﬁ (ap)
X (M) = DTV i 0 A Bigi) _ N o
><efz)e(rﬁ)éﬁf)éf“)e}l)eﬁlmte‘klo”‘“), 20 the matrix of coefficients being given by
(8 -5 -5 4 4 -5]
which is necessarily position independent so that the phase- 5 11 4 -6 -6 4
matching double sum in Eq17) can be evaluated for the
ensemble oN molecules a?N(N—1)~N? for largeN. The 1/-5 4 11 -6 -6 4
resulting rate of SHG production is A= 105l 4 -6 -6 16 2 -6/ (25
27 (p”)?pf) fick \4( hick’ 4 -6 -6 2 16 -6
Reor=—— 45— (NAD) (2 v) (m) -5 4 4 -6 -6 11]
X[pXmM((m)—1)(n)({(n)—1)] and the linear matriXE embodies a set of six, in general
linearly independent, polarization parameters
X |<a’(|m)/~"n Aﬁl(]k)>e 2) 2)_t3)_(-4) e(l)l Y P P P
« e~ 2k T— A1) 21) Ei=(e-e)(&: &) (6-6), Er=(e1-€)(&)(6- &),
— 24 A — o o
Casting the result in terms of the mean intensities of the Es=(er-&)(ey &), Es=(er&)(er-e)(eey),
beams, the final expression for the coherent SHG from theE _ — ) Eee(o B —
(26)
(D\2/1,7\3~(2) ~(2) 2
| (20)_ (pe)7(k')°g1" g7 (NAD) (o)) (0))2) (20) We note that in Eq(24) we have used Greek indices to
sig 2561°c%e§ vz s denote a tensor component written in terms of the molecular

axes, Latin indices now being reserved for components in the
—10 2) A(2)5t3)5(4) a(1) o(1 ' . . . ..
X|<a im Hn A Bik) )e( )e( H H e( )e< )| laboratory fixed frame. The polarization characteristics may
— 2Ky 7—AD) now be determined and should be identitaform to those
X @~ 2k (22 e
' of the coincident-pulse case. However, one would not expect
them to be exactly the same because of their different depen-

where 1{®) is the mean intensity of thath beam of fre- .
dence on molecular properties.

guencyw, andg(z) is its degree of second-order coherence.
Equation(22) thus exhibits the expectddnd observe{b,6])
dependence on the intensities of the three input beammes-
dratic with respect to the two fundamental beams and linear The dynamic response predicted by the clamped-molecule
in the harmonic writing beajnand also the sample density model is a simple exponential. To account for more complex
(18)N?). Dynamically this equation yields a simple ex- dynamics observed experimentally,6] the model can now
ponennal decay due to relaxation of the molecules from thée refined to encompass molecular motion. At the instant in
excited to ground state—the lifetime of the decay therefordime when the first pair of pulses excites the molecule, let us
governed by the intrinsic fluorescence lifetime. denote the position &&{” and also 1etQ{") represent a set

C. Effects of molecular motion
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of three orientation coordinates, reflecting the angular dispo- 2m3(pe”) % fick |4 fick \?

sition of the molecule against a laboratory-fixed frame. The Rcoh=T(NAt)2(2 V) (ﬂ)

probability of excitation during application of the writing eo eo

beams is henc®(R”)=T'(R{” ,0{))At, assuming there X[{pYmY((m)—1)(n)((n)—1)]

is no significant molecular motion within the write interval. 10 (ON—10; (+(0)

At a later timer, the probability that the molecule, initially at X m) (Qe) in () ABii ()

positionR:™, is still excited is thus ><efz)eﬁﬁ&é‘”e}l)efﬂZe‘2"10<7‘“). (31)
P(RY,7)=T(RY,Q)Ate kud7=40, (27)

Comparing Eqgs(31) and(21) we observe that the effect of

However its new position and orientation at this time may bgMolecular rotational motion can be ﬁgc%lgted for by simply

represented afR(;,(2;), so that the corresponding molecular reql{;’:\angothilgnegtatmnal averager(m)in ABi(jr) With

matrix element for SHG is (@i (V) Q) ABi11(2)), which thereby corre-
lates the properties of the molecule at the two times when

hek | ( hek! | 12 pulses are present. As this correlation is time dependent, so
MO = —j —| [(n((n)—1)]Y%ee Vel too will be the average. The ensemble average is made at
fi 2¢0V )\ 260V i | k . . . . .
€o €o time 7 by averaging over all the possible orientations of a
) (0) » molecule-fixed set of coordinatés, y, 2, the tensorial com-
X{Bilii (L) T PR, 1) ABi(1) (2} ponents being given in terms of laboratory-fixed coordinates
@i (2k+k') Ry (28) (X, Y, 4. Introducing direction cosinds, between the mo-

lecular @ axis and laboratory axis we have explicitly

When the ensemble average is effected, the first term disap-

10 0)y—10 0
pears as usual and, retaining only thg term (evaluated at (@i () QL) ABi 1) Q)
(0) -
R:’) as before, we have :a(l)?#)u,leABa(zﬁy)“Ei(T)'Zaj(T)liyk(T)hd(O)
© ( hek | [ Aick”) ¥ i X1 ,um(0)1,n(0)), (32)
(Mi®)=—i 6oV )| 250V [(N)((n)—1)]

where the polarizability components, fixed within the mo-

><€§4)e](1)e(kl)(F2(R(§°) ,Q(go))ABi(jk)(Qg)> lecular frame(and therefore invariant upon rotation of this
_ , frame), have been removed from the average. In writing Eq.
X @ (KK Rep t ko 7=AD, (290 (32 we also introduced a tilde to refer to components of the
molecular frame at time.
Taking the quasi-phase-matched term, this yields The direction cosines at=0 can now be related to those

att=r7 usingl,;(0)=1,3(")1%(7), wheres refers to a com-

mp® [ hek \2[ hck’ ponent of the molecular frame at timeand repetition of a

coh= ﬁF (2.9 V) (28 V>[<p>(m)((m)—1)(n> Cartesian index implies summation. Thgy(r) part comes
0 0 out of the ensemble average because it relates to molecular
><((n)—1)]1’2ef2)eﬁf)§$13)€f4)e}1)e(k” axes only, the net result being
—kqo(7—At)/ 10 (0)\710, (0) _
X Ate 0™ 80 ey ) () pin () (i () A QA B ()
. " (R.—RO) — - . - - -
XA B (Q))e!BKHKD(ReRE) (30) :a(lfﬂ)MiOAﬂa(ﬁ”y)Uai'ﬁj'}k' lzml 300 F (\5,05,9) »

: . N (33
The effects of translation and rotation are apparent in this

expression. However, taking a typical diffusion coefficient of
D~10 °m?s ! we can estimate the mean distance travelled"
in 100 ps agx)~2(Dt/)Y?~3.6x 10 °m. Even for mo-

tion exactly collinear with the wave-vector mismatch, the Fosuzve=ha(Dz(m)Lg(7). (34
scalar product (R+k’)-(R;—R\”)~3x10"3, where \

=800 nm and a refractive index difference ®h~0.5 has The tensor~ contains all the time dependence in the right-
been assumed. For other angles the value of the scalar prodand side of Eq(33) because the isotropic average accom-
uct will be still smaller. From this simple calculation it is modates all possible molecular orientations and is thus inde-
immediately evident that on the ps timescale we can ignor@endent of time. The indices in E(B4) are grouped in such
translational diffusion. This makes the right-hand side of Eqa way as to emphasize the invariance with respect to inter-
(30) position independent, so that the phase-matching doublehange of any of the pairs of indices in parentheses, i.e.,
sum can be carried out as usual; the rate of coherent SHE(,5 3,3 =F(.z..5.4%)» €tC. Inserting Eq(33) into Eq.(31)
production is then and computing the isotropic average we have

here
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with

and with A as given by Eq(25). F(7) gives the additional
time variation due to rotation of the molecules. We are in-
terested here in molecules in a fluid host and so we shall

20y (PED?(K) g2 92 ><NAt)2

PHYSICAL REVIEW A 62 023807

TABLE |. Eigenvalues and eigenvectors of the asymmetric rotor.

| Eigenvalues Eigenfunction
0 EQ®=0 VE=DGY
1 E{V=D,+D, V=) Ao+ ol )

EN=D,+D,
EY=D,+D,4
2 EP=6D+2A
E@=3(D+D,)
EP=6D-2A
E@=3(D+D,)
=3(D+Dj)
3 EQ)=15D—3D,+2I1

E®)=15D-3D;+2E
E(¥=15D—3D,—2II

EP=15D-3D;—- 25
E®)=15D-3D,—20

E®=12D
EG)=15D-3D,;+20

a=v3(D,;—Dy)

b=2A—D;-D,+2D,
c=4I1+7D,+D,—8D;
d=2E-D,;-D,+2D,
e=40-D;—7D,+8D,
D=(D;+D,+Dj)/3
A=(D?+D3+D3-D,D,—D;D3—D,D3)*?
E:(A2+a2)1/2

q;(l)_(b(l)
(1) =(2)" 1/2((13(1) (1)(1)

v = [acb ) +b(2) Y@, +c1>2> m1N;
v =(2) A o@+0?,)
q,(z)_[bq)(Z) a(2)” 1/2(@(2)+q)(2 Ny

(2) 1/2((1)(2 (I) ) )
_(2) 1/2((1)(2 CI) %,m)
x1r<3>—[c(q>(3>+¢>(3> +a(5) A df)
+®G) Y]IN,
W) =[a(10) 20+ d(®E)+ D )TN,
v =[a(5) A D) +<1><3 )
— (PR + DG )]/N2
=[d(2)Y2E), ~ a(5) A D)+ B3, ) 1IN,
11;(3) [e(q)(?») (3) )~ a(5)112(¢,(3)
—<I>‘3sm)]/N4
_(2) 1/2(q)(3 3) )
\1,(3) _[a(5)1/2(¢)(3) ‘D(Si)
+e(®R),—dB) )N,

I1=[4A%+3(D;~D,)(D,—D3)]*?
©=[4A%+3(D;—D,)(D3—~Dy)]"?
le(a2+ b2)1/2=2(Ab)1/2
N,=(10a?+2c?)"2
N3=(10a?+2d?%)"?
N,=(10a%+2e?)"2

(w)) (w (w
256/2c® (15
6 2
X 21 ALE,| e 27 AY (35
0=
- —10 A,B =
Al Iu’)\ a(/,LV y(a'@) (7\7#«5”.3)
—10 10
A, M @ AB o F 0B aswp)
—10
Ag| | %y ABy R F 05 ummp)
A =A —10 1OA~~ = - (36)
4 My A B5 apF o)
As 'U‘K a(,uV)ABB aﬁ)F (\yua,vy)
Ag —10 10

| 10 A B 5 F ez |

F(AE,MS,J/)):U)\E' /,LEI V%)Rd (37)

where the subscript “R.d.” indicates an average taken over
an ensemble of molecular frames rotating due to rotational
diffusion dynamics.

Using a method first developed by Far8], we write
the ensemble average of a general function of orientation and
time, g(Q,7), as

<g>Rd=f 9(Q,7)p(Q,7)dQ, (38)

wherep(€,7)dQ is the probability of finding a member of
the ensemble of rotating frames oriented within the range
(9Q,0+dQ) at time 7. The distribution function obeys a
differential equation analogous to the time-dependent Schro
dinger equation

d
P =—Hp(Q,), (39

model the rotational motion stochastically as a diffusion pro-
cess. In this case the tensor takes the form

where
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H= E LiDyL;, (40) Jq><k', L (Q)ON (0)dQ=8) 80 Sy s (46)

with D the molecular diffusion tensor ard the quantum-

mechanical angular momentum operator. If we use a set gind are expressible in terms of Wigner rotation matrices,

coordinates that diagonalizes the diffusion tensor, as wilWhich describe the transformation from one set of coordi-

henceforth be assumed, E40) may be written as nates to another by rotation through the Euler andles
=(a,B,7):

H=2 DL}, (4D)
| O(0)=(— 1) (21 +1)/8a21 YD) (Q).  (@7)

whereD,, D,, and D5 are the principal diffusion coeffi-
cients. The dynamics of the ensemble of molecular frame]'i: -
moving in response to rotational diffusion is thus identical to xplicitly,
the quantum-mechanical problem of an asymmetric top, pro-

vided we identifyD; with #2/21; , wherel, is the correspond-

ing moment of inertia. Equatio89) may be solved with a D) NA+m)(T—m)L (k) =K)!
Green’s function formulation, that is, m(€)= 2 (=1 p!'(I—k—p)!(I+m—p)!(k—m+p)!

eikoz

) 2l+m—k—2p k—m+2p
p(Q,7)= f P(Q0,0G(QQ,1d. (42 Xe'“("“z) (S”‘§>

Here p(,,0) is the initial probability that the frame has “8)

orientation(), and G(Q,|(2,7) is the Green’s function de-

scribing the rotation of the frame frofl, att=0 intoQ) at  where thep summation is taken over all integers. Using Egs.
time t=7. In our case we can take the initial ensemble of(37) (38), (43)—(45), (47), and(48) we obtain

frames to have a common orientatiof, say, so that

p(Q,0)=6(Q), the Diracé function. This implies, using

Eq. (42), that

F()\ﬁ/},s V(f)) 2 G )\5#8 V¢ exp—E I) (49)
p(Q,7)=G(0]Q,7). (43
This function is now expanded in terms of asymmetric rotor Where
wave functions¥ ,({2), the solution to Eq(39) being
e |
G(O|Q,7‘):; ‘I’n(O)\Ifn(Q)EX[X—EnT) (44) (im) L :(Zl +1) E ( 1)m+kA |) A(|) F(I ik, m) 5

(\ouevd)  8m? A2 (\o,uz,ve)

with the initial condition (50)

G(0|0,0=3 W, (0)W,(Q)=5(Q) and
n
and wherek,, are the eigenvalues correspondingdtq(€2). dikom)
The latter wave functions can themselves be expressed in F(}\’S:ME,V&):J' N V(,,D(') (Q)dQ. (51

terms of symmetric rotor wave functioss{ ) (Q):

0 ) () Associating the indices, y, andz with the numbers 1, 2,
‘I'n(Q):‘I’,y,m(Q):k;_I A kP im(€). (45 and 3, respectively, the direction cosines may be written

The coefficientsA), and eigenvalueg!)) have been tabu-
lated by FavrdlB] and Huntres$24] for |<2—here, how- <=5 M. 8 5 52
ever, we require these quantities uplte3. Calculation of 5= 2 Mij 683, (52
the required values gives the results shown in Table I.

The symmetric rotor functions are orthonormal in the
sense where the matrixM is given by
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COSa COSB cosy—sSina siny
M =| cOoSa cospB siny+sina cosy

—cosa sing

—sina cosB siny+cosa cosy singBsiny |,

PHYSICAL REVIEW A 62 023807

—sina cosB cosy—Ccosa Siny sinB cosy

(53

sinasinB cosp

As the Wigner matrices are complete we can then write whereB'" is a matrix of numbers dependent only loThus

N 2 a“"pih (Q), (54)

where

(1,k,m)

km 21+1 =)
a)\% wa |)\5Dk’m(ﬂ)dﬂ. (55

Inserting Eq.(52) into Eq. (55) we have

em_= = p®
a)\é = 8’772 % J‘MijDk,mdQ5)\|5:5j'

(56)

Each integral here can be written in the form

5k1 T 5m1

472 .
D{)d0= s Lil s
f mdQ= (52 5k0 B mo
k(—1)

Om(-1)
(57)

(Ox—10\y) (S5 +135)
_‘Q( 5)\x_ [ 5)\y) 852
= (O\x—10\y)(S5x—15%y)

= 5|1A(7x~5)

|
cli-a,

The A®® matrix defined here will shortly be shown to form

the basis for our expressions fBI( s . Some proper-
ties of this matrix are given below in EqéﬁO) (63).

> AMI=2U (U is the unit 3x3 matrix), (60)
A
THAO) =253, (61)
AW A(57‘>, (62
A(lxlbzysxs%), A(MS) A(m'
_ _ (63
A )\5) A()\ﬁ , A(}\ﬁ)_ A(g)éb‘)’ A()\(S) A(Z)\gts) i

From Eq.(51) and Eq.(54), we have

we have from Eq(56)

21+1 P\ O
(1km)_ )
as ~+2) Sko Cy;l  Omo
k(—1) Om(-1)
1 6kl T n 5ml
=5 S0 | C5l  Omo
Ok(-1) Om(-1)
3
)
%2: (C,3)ij Sk2—i)Om(2—) (58

i,j=1

where the second equality follows from E@9) which is
obtained by direct computation:

— (Ot 6,y (55 t+15%)
V2( Sy ti 5>\y) s
(S\x i) (5= 165%)

2 5)\2551 (59)

plikm (I7K"m") (17 k", m")
(}\5/‘55 V¢) E[ //2 ”"om ; m" a)\(s a'us
Ik m 1K m” 1"k
(ln/'kl//’m///) I (Il) (l”)
Xay:/) j Df(y)m(Q)Dk',m’(Q)Dk”,m”(Q)

XDy b 2)dQ
and evaluating the integral we find

f 0 (@DY ) (@)DL)(Q)DL (Q)d0

= 8772 2 FlkmpFI ’k’m’qFI”k”m”rFI’”k”’m”’s
p.q.r,s

X O(m+m’ +mr+mm)0O(k+ k' +K7+Kk")0
XB(l+p+q+r+s1+I+1’

+1"+1"=p—q-r—s), (64)
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whereB(x,y) is the 8 function[25] and we have defined Finally, using the expression farggk’m) given in Eqs(58)
and (59), we have

VA+m) (=—m)! (I + k) (T =k)!

pl(I-k—p)!(I+m—p)! (k—m+p)!’ (km) 2 M 5
(65) F(A&,wv;ﬁ) (|+4)|t2 AG7AY

I:Ikmp:(_l)p

Using Egs.(58), (59), and(64) and the properties of thg

X Alg 6+k t— ) (6+
function we obtain PeFmmumw)

(13k,m) 872 <1 K'sm") (LK) % 2 FikmpF12-02-wqF12-n@-wr
Pt TTH AT 2y P s B B
XF i+ v-k-a)urw-m-as(PTq+r+s)!
xalb KK F g X(1+3-p—q—r—s)., (68)
X Faiomtt P k(s (66)  This equation may be used to generate expressions for

EL;';;% ) Whenl, k, andm are set equal to zero we arrive
X(p+q+r+s)l(I+3—p—q-r—s)!  (67)  at the rather cumbersome expression:

(0,00 NO) A (3 y NO) A (U5 y NO) A (45) A (v NO) A (45) A (v
000 =T AP AYAGP - AUPAT AP - DA+ AN AP

- ARPAKTAEY+ ARTALTAGY + AR ALY - AT MG ALY
+ARIAPEDIALS) _ AADAWDI A ) AQDAUEIA D) | A KO A E) A (26)
— ABTAGTAGY + ARDAUF AP + ARP AP A - ARPALD ALY
FARPAUPAEY - AR AETAGY - ARTAGD AR+ ABTAET ALY - ARTAYT ALY
+AQIAEDIA L) 4 ANDAER A (50 QDA EIA(10) 4 AN A (KD A () A (LD (52D 7 (20)
~AGPAEDAEY T AR AKTALY - AGTAGD ALY T AGYAETALY + ALY ALY

_A(g)éﬁ)A(z’gg)A(ffﬁ)‘i‘A%{s)A(ﬁE)A(ﬁd’)_A(3>\35)A(1%E)A(2]i¢)_A %5)A(M8)A(V¢)+A(>\5)A(M8 V¢)} (69)

However, D(O)(Q) 1 and soF( 0) - is related to the The equality between Eq$69) and (70) may be used to
isotropic average of a product of three direction cosines—th@enerate relations between thés. For example, setting

result of which is knowr{26]. Overall one finds =x and=x, we see from Eq(59) that only four terms are
A2 nonzero, namely,A{¥=1, AQ¥=-1, A{¥=-1, and
FOO0 T o %] (70
\ous,vh) 3 B A =1. Inserting these into Eq69) we get

023807-10



QUANTUM-ELECTRODYNAMICAL TREATMENT OF . ..

{A(ZAZLE)A%@_A(Z%E)A%@ A(MS)A(V¢)+A(M8 A% (v)

- AGTAGY T ALTAGY + AT ALY - ALY

—AEIA ”¢>+A<M8)A(v¢>+A<us AP — ALDIA P

+A(1‘1“§)A V¢) A(MS)A(Wﬁ) A(Z;JL_E)A(&@

V¢)}

=8exu1Exzg - (71)

In this way we can generate general expressions that must

hold for sums of products of twé’s. In particular it follows
that

{ALP ALY - ALTALGY - AGTALY + ALTALY

_,_A(Z/iE)A(SVz@_A(ZgE)A(th)_A(ME)A(Wﬁ)_,_A(#E)A(Vd))

+A(1’§;)A(V:ﬁ)—A(”E)A ve) _ A(MS)A(W +A MS)A(V¢)

+A(ﬁ§)A(W/>) A128 V¢>) A(MS) (V</> #S)A(W/J)}
=8&y,,8y55 - (72

and so we may use E71) and Eq.(72) to write
(AEPAGD - AN - AP ALD
FALTAL +AETALD - ALTALY
- AGPALY +ALTALY)
:4(8X,LLV8XE;5+8y/.LV8yE;5) (73
and
{A(Ms Vd>) A(,us)A(sz A(SAIE)A(ZE@_,_A%%E)A%@
+HABTALY - AETALY - AETALY + AKTAGY)

= _4(8X/.LV8XE;5—8)/}LV8)/E:#)' (74)

PHYSICAL REVIEW A 62 023807

tation. From Eq.(35) we see that the temporal variation of
the harmonic signal may be written

| sig( T)= K (795

6
21 An(TE,

where the time dependence is shown explicitly so thita
time-independent constant, and tBg are scalar parameters
determined by the polarization conditions, as given by Eq.
(26). We further note that Eq.36) may be rewritten in the
form

“go‘“(lw ABaHF0aupp ]
Ko @ mAﬁa F 0GB
—10

el A B F e,
A(n=M| o e R w o w7
i @ un A BpGaF G b
[T a(m AB5anF0Gup.vp)

—0
L 3% p ) A B3 F (haupoB)

and since the time-dependence here lies withinRhiensor
we see that there are in fact two different ways in which time
features: through a fourth-rank contractsthgle pair trace
tensor of the formF (5 .3,z and through the sixth-rank
tensorF (\3, .3, - Tables I and Il easily allow us to find the
form for the contracted tensor—we find that it is only when
=1 that nonzero contributions arise, i.e., the only terms to
survive involve

5:53,5“5#,,, 7]:1

(1;m) _
G(K(;],ue vE) 8:525)\25,4“/1 n=0 (77)
O5xOxOum m=—1,
so that
Fo~ % =68 {68 —E(17+5~5 —EW,
(Na,uB,vpB) MV{ ayOry€ -, 0),€

+ Sade BT, (79)

Quite generally then, the temporal evolution of the signal
may be written as

(5) -2
SIg(T) K|X)\MVC(F()\Q /.LB Vﬁ +X)\(MV)C¥BVF Aa,,u,ﬁ,vy)| ’

(79

This reduction process is aided by use of the properties of the
A matrices given in Eq960)—(63). The equations thus pro- where
duced can be checked directly, confirming our assertion that

Egs.(69) and(70) are equivalent. They may also be used to

simplify the other expressions generated by E&B). The

1
X\ = To5Hn @A B35 (8E1— 5B~ 5E4+4E,

Auva

overall results forG' ;7) are shown in Table II. Using
Tables | and Il and Eqs{35) (36), (49) we can deduce the
temporal variation of the six-wave mixing signal for any
choice of beam polarizations. We shall do this now for some
cases of interest.

IV. TEMPORAL PROFILES

From now on we assume that the lifetime of the excited
state is much longer than the timescale of rotational reorien-

023807-11

+4E5—5Eg) + ey, ABai)
X (—5E;+11E,+ 4E;— 6E,—

+uilaly A By (4E— BE,— 6E5+ 2E,

6E5+4Eg)

+ 16E5_ 6E6) +E>\ CY(MV)AIB;/(’&;,)
X (—5E;+4E,+4E;— 6E,— 6Eg+ 11E¢)}
(80)
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TABLE II. Explicit forms of the GELTZ)ME VH) coefficients forl <3.

(CF) I
N (N6, uz,v¢)
58)\;/,1/8}2;5

[
%[ 55;5‘&(45#,,5)\2_ 5)\,41,51!2_ 51})\ 5[.LZ) + 6&; 5(})2(45)\;L5VZ_ 51})\ 5;1.2_ 5,4“15)\2) + 8(2;9&52(451/)\ 5,41,2_ 5}\,44,51!2_ 5,41,115)\2)]
-1 1_10[ 55;&6)((45,11,1!5)&_ 5)\,LL6VX_ 5]’)\ 5,ux) + 5.'5; é\(;»((45)\/1,‘()‘10(_ 61}}\ 5/1,)(_ 6/LV5)\X) + %}&X(45V}\ 5,ux_ 5)\;1,51/)(_ 6,u.1/6)\>() ]
2
2 2 6_N§ [( 6:%(8%5:#_ 5&/8%;5)( 6Ax8x;w_ 5)\y8yp,v) +( %xsxgg_ %yeys'é)( 5vx8><)\;¢_ 5vy8y)\p,) + (5é><8x:$;5_ &ysy};)((sﬂxsxxv_ 5,u,y8y}\v)]

al
- VAN [5A28mv( 8&(£x§?¢3_ 5&/8y5:b) + 51/282}\;;,( %xsx:%_ %ysy?%) + ‘S,u.zez}\v( 5§x8x:5:15_ 5§y8y:3:ﬁ)
1

+ 5&858( 6)\)(8)(#,,* 5)\y8y,u,v) + &ﬁzsz:ié( OxE Xau 5vy8y}\,u) + 552823:1;( 6;/,X82)\V7 5p,y8y}\v)]
2
a
+ W [3( 3&5)\285;82#,,4‘ 6(2)1511282:5:‘82)\;1. + 5525;;1825;82)\ W EA;LVS:SE;)]
1

1 ~ ~ ~— ~—
1 E[(&WSZE¢+ &?zeyg¢) ( 5)\y82;w+ 5)\28y;w) + (5Ey825¢+ 5§zsy5¢)(5p,ysz}\v+ 5;Lzsy}\v)

+ ( 8‘2’3/81};4_ %ZSYEE)( 5VYSZ}\,4L+ 5V28y)\p,)]
2
a
0 6_Nz [( 8&8@:1;_ 8&/‘9%;5)( 6)\x8x;w_ 5)\y‘9y;w) +( Sgbxsx}é_ %ysyj%)( 51/)(8)()\/1,_ 5vy8y)\;¢) +( 5éx3x:$;5_ 5éy8y3:ﬁ)(5ﬂxsx>\v_ 5,uysy}\v)]
1

+ 2/ AN2 [5}\282/1,1/( 5&8x§;_ 56}/8yE:ﬁ) + 51/232)\;;,( é;bxsxgé_ %ysygé) + 5;1.282)\1/( 5Ex8x~6:ﬁ_ ‘%:ysy:s:/)) + 5&85;( 5)\x8></.w_ 5)\y8y,u,v)
1

2
+ 8(%282:5’5( 6VX8X)\[L_ 5Vy8y)\/1) + 55282’5(;( 5/1.)(‘9)()\1)_ 5My8yhv)] + G_N% [3( 3‘525)\2825:2)82;1,1'4_ ‘Z&zavzsz:ﬁsz}\,u"' 6525p282~c‘$;;sz)\v) - 8)\//,1)8’:5‘5;5]

1 - ~ _— _—

6[(8;528x5¢+ &&SZ;¢)(5AZSXMV+ 5)\X£Z,u,v) + (5§zsx6¢+ &§X825¢) ( 5,u.zax>\v+ 5[.LXSZ)\V)
+ (é;bzsx:% + %XEZEE)(éVZSX)\M_'_ ‘vasz)\y)]

1 ~ ~ _~— _~—

6[(8&8{545"' 86y8x'é¢)(5)\x8yuv+ 5)\y8x;w) + (5Ex8y6¢+ 5Ey8x6¢)(5p,x8y}\v+ 8;Ly8X)\V)

+( é\:i;xsy:fa + %ys x55) 5vx8y)\,u + 5uy8xhﬂ)]
5a?
3 3 FNZ [5»(( 5,4/.><5vy+ 5;Ly5w<) + 5)\y( 5/.0(51/)(7 5/.Ly5vy)][ 5&(( ‘séxé‘;ﬁy+ 5éy5;j)x) + 5:5\/( 55x8<~bx7 5)§y5:ﬁy)]

ac
V3N3
X [3(&W5§z%z+ &z‘%y‘i}sz"‘ 6:526226:”) + Zé‘uéy&éyb\:/;y_ 55}/55;_ &y&s‘?j)_ %y‘x‘i’é]
- 4[ 5)\y( 5p,y5vy_ 5;/,251)2) - 6)\2( 6,u.y5vz+ 5ﬂ25vy)]
X[é‘:iy(ééyé;;y_ 5525;52) - %z(ﬁgyé\‘z—’— aézatﬁy)]}

{[3( 5)\y5,u25112+ 6}\25;1.)/5VZ+ 5)\25,4;.25Vy) + 25}\y5p.y5vy_ 5)\y5/.w_ 5p.y5)\v_ 5Vy5)\,u]

+ W[ﬁ)\yéﬂy-‘r OuyOnyt 04y 0y = 500y0,76,,—58,,6,,y0,,—56,,0,,6,y]
2

X[‘%y‘%;;"‘ 5§yé\z§:ﬁ+ b\(})y‘iﬂ_ 55~by5'éz‘()\<~/>z_ S%Z&y&bz_ Séké‘zﬁéz%y]
2

a’
2 Wz ( 6)\25#»"' 51/25)\;;"' 5,4L25v)\ - 56}\25;425Vz)( 6:3‘155:i>+ é;&zé}é + 5'225:;)}_ 55‘&5&26&)
3

2ad

+ FN% {[ 5)\y( 5/.Ly51/z+ 5;;251/y) + 5)\2( ‘s,u,y‘svy_ 5,11,25VZ)][5~5}/( ‘séyb‘;ﬁz"' &z&by) + 5;3‘2( ‘Séyé:‘by_ 5516:;32)]

- [ 5)\x( 5[LX5VZ+ 6;,42510() + 5)\2( 6[LX5VX_ 5/1,251)2)][ ékéx( 5Ex6<;5z+ 5525;5x) + é‘éz( ‘séxé;;x_ 552632) ]}
d2

+ 3_N§ [5)\2( 6//.x5vx7 6//.y5vy) + 5,41,2( 5)\x6vx7 5)\y51/y) + 51/2( 5}\X5/LX7 §Ay5ﬂy)]

X[gzsz(‘séxé\:bxf 5Ey6:py) + 552( 5:53(6(;»(7 5~(§yb¥¢y) + b\d;z( 5‘5)(55)(7 &Wﬁéy)]
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TABLE Il. (Continued.

ﬁg [5)\x( 5,44,>(5vy+ 5;Ly5VX) + 5Ay( 5,ux 5vx7 5,uy5vy)]|: 56)(( 55)( 6;zy+ 5éy6;5x) + 5:75/( 5éx &/)xf 5éy6;;y)]

+

ac
\/ENZ {[3( 5)\y5,u.z‘51/z+ 5Az5py5vz+ 5)\25/.1,251/}/) + 25}\y5p.y5uy_ 5)\y5/.w_ 5py5)w— 51/}/5}\/.4]
2

X [3(8;3)/5515:1;24' b\;szééyé\;ﬁz"_ %zgéz‘rby) + Zgwﬁéybtby_ &Wéé;_ ‘Séy‘%:/)_ %yb};]
_4[ 5)\y( 5p.y‘5vy_ 5#251/2) - 5)\2( ‘5,u.y5111+ 5uzévy)][§~éy(5éyék¢y_ &ézé\;&z) - ‘S;Sz(&yé\qﬁz'i' ‘SEZ‘S\:/)y)]}
2

a
+ 6_NZ [5)\y5,u,v+ 5,uy5)w+ 5vy5)\,u_ S‘S)\ygyz‘svz_ 55)\15,uy5vz_ 55}\25;;.25vy]
2

X [ &éy‘%s;'i' 5Ey8;$~¢+ %yé};_ S&W&z%z_ S%Z&y&bz_ 56‘6‘2&1&”]
2
a’
15N§ [5)\2( 5,M><6ux_ 5/[,)/511)/) + 5/1,2( 5)\x5vx_ 5)\y5vy) + 51;2( 5)\x5,ux_ 5)\)/511,)/)]

X [ &?z(ééxbtbx_ ‘szybtby) + 5;,2( é‘~c§§<é\<;5x_ &W%y) + é:&z(éhéx‘séx_ éL(&)/‘;;Ey)]

2ad
- W {[ 5}\y( 6yy5uz+ 5M25vy) + 6)\2( 5;¢y 5uy_ 5,u26vz)][ é):?y( 5Ey§<;5z+ 5523;by) + 5:52( 5Ey5;by_ 6525;{;2)]
3

- [ 5}\X(5;1,X5VZ+ 5/425vx) + 5}\2( 5;/,x5vx_ 5#251/2)][ 5:%(( 5Ex5é$z+ 5526:/)x) + %z(&xa‘é)x_ 5525:/)2)]}
d2

"5 (O\20u0 800 82000 —58\20,20,2)( 85,054+ 832855+ 052055~ 55,0503
a2
m[é)\x( 3uxOux= O,y Ouy) = Oxy( B,y OxF 8,uxuy) Il T Fx Ogx = Sy Oy) — Ty Fzx Ogy + G2y 8 |
ae
5v3N3
X[3(85x822042F 0520:x 07+ 85202,04x) + 205xFaxOgu— O3x 05— Fax 05— OOz |

&

- 4[ 5)0(( 6;“51;)(_ 5/;251»2) - 6)\2( 6/1.)(51/2—"_ 5/1.261/X)][ é\éx(&éx%x_ 5525:{;2) - &sz(ﬁgxé‘gbz'i_ &z%x)]}

+ {[3( 5}\)(5/1.251/2—"_ 5)\25/“5,,24‘ 5)\25M25Vx) + 25}0(5;“51;)(_ 5}\)(5/“,— 5/LX5}\V_ 5VX6)\/L:|

+ W [ 5)\X6,u,v+ 5/LX6)\V+ 51/)(6)\#7 55}0(5#251/27 55}\25,40(51/27 55}\25;1,261»(]
4

X[étsxfss(}"’ &x&?}&—i_ &px&%_ 56:5)(5526;)2_ 5&)‘255x5:/)2_ 56:325525;»(]

—2 %[ 5)\X( 5,u,y5112+ 5/.425Vy) + 5)\y( 5/.425VX+ 5/.LX 5»2) + 5}\2( 5/.anvy+ 5[.Ly5VX)]
X[ O5x(( G2y gzt G3204y) + Oay(G320x+ O2x052) + 85( SaxOgy+ G2y ) ]
3
-3 Z_NZ [‘SAX( 5;;.x5v><_ 5,u.y51zy)_ 5)\y( 5p.y5w<+ 5;Lx51/y)]|: 5-&(( 5Ex5<~ﬁx_ 5Ey5;5y) - 8-65/( 5Ex‘()‘<~/>y+ ﬁéyé}x)]
4
ae
+ 2 {[3( 5}\X6/1.25VZ+ 6}\25/1,)(61/2-"_ 6}\25;1.251/)() + 26}\X5/LX5VX_ 5)\)(5/[,1)_ 5/LX6)\V_ 5]/)(5)\/1.]
5v3N;
X [3(5“&(55253;2—’— 6:326&6;52"— 6325526;»() + 26:?x5§x53;x_ 6755(55:1)_ 5§x5:$;z_ 6:#)(53:5]
_4[ 5)\x( 5p,><5vx_ 5;/,251»2) - 6)\2( 5,u><5v2+ 5,4Lz6ux)][ é\&((ﬁéx%x_ 5528:#2) - b‘:sz(&éxé\;sz'i_ 6526;%)]}
a2
+ FG\L% [ 6)\X5,u,v+ §,L1,X5)\11+ 51/)(5)\/1,7 55}\)(5;4151/17 56}\25;0(61/17 56}\25/L25VX]
X [ ‘SN&X&E;)+ &x&?};&‘k %x@}? - 5&&5525;27 56“525&5;527 55‘&‘26528:#&
and In Eqg. (81), the uv interchange symmetry means that on
contraction withF 3 ,z.,3) only the ur symmetric part of
—10 10 that tensor will feature. Thus, on contraction with the purely
(5) N X (uv) -~ v antisymmetric tensot, ,, %%, a null result is obtained
= A B 2o (—BE +4E,+ 11E ® y . v oss
X\ (ur)aBy 105 {ABaE( ! 2 3 so that there will be no contribution froi=0. In general,
- however, there will be contributions frohs 1, 2, and 3, and
—6E,—6Es+4Ee) +ABp5a) the relaxation dynamics will be complicated. Nonetheless it
X (4E;— 6E,— 6E4+ 16E4+ 2E5— 6Eg)}. is often appropriate to employ approximations in order to

simplify matters, and the occurrence of symmetry within the
(81) molecule will also in general reduce the number of param-
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TABLE lll. Eigenvalues(relaxation coefficienjsfor diffusers of different geometry and<ll <3.

Symmetric diffuser Axial diffuser
Eigenvalue Asymmetric diffuser D,=D,=D,, D3=D, D,=D,=D,, Dg=
e D;+D4 D,+D, ®
EWY D;+D, 2D, 2D,
E® D,+Dj D,+D, o
EP 6D +2A 2(2D,+D)) ®
E® 3(D+Dy) D,+5D, ®
EP 6D—2A 6D, 6D,
E®) 3(D+Dy) D,+5D, %
E® 3(D+Ds) 2(2D;+D,) %
EQY 15D —3D,+ 211 3(3D,+D,) oo
EQ 15D —3D;+ 25 4(D,+2D)) o
E® 15D —3D,— 211 D,+11D, ®
EQY 15D —3D;— 22 12D, 12D,
E®) 15D—3D;—20 D,+11D, o
E®) 12D 4(D,+2D)) o
E®) 15D —3D;+20 3(3D,+D)) w

eters required to describe the temporal characteristics. Sompsig( )= K|F%Oa<lfz>ﬁ,3z(zz)/5252|7(E1+ 2E,+A4Es+2Eg)
important examples are considered below.
Xe P17+ 2(—E;—2E,+5E;+ 10E,
A. The one-dimensional molecule —4E;—2Eg)e” 12D 7'|2' (84)

For rodlike molecules like DEANS and DMANG-ig. 6)
a first approximation that one might consid@ém common In this approximation, we have contributions only from ddd
with a prevailing tradition of nonlinear optigss that of a  values and we expect to find an SHG amplitude that relaxes
“one-dimensional” molecule. Here the molecule is allowed with a biexponential decay, in agreement with classical
to only have nonlinear polarizability components along thetheory treatments and also our experimental observations in
symmetry axis—which relates to th&; principal diffusion  DMANS [5,6]. The relaxation rates are predicted to be in the
component. Diffusional relaxation around this axis will be ratio of 6:1. To observe this feature it is useful to consider
infinitely fast so we may tak®; to be infinite—symmetry two specific polarization combinatiof§]. If all beams have
also requires that relaxation perpendicular to this @xés, linear vertical polarization in the laboratol¥ direction, the
due to tumbling motionsis isotropic, i.e.,D;=D,=D, . signal intensityl 5i¢( 7) takes the form
Thus only one component of the molecule’s diffusion tensor
will feature at this level of sophistication. Table Il shows 15 7) = K| 22200y A By 17572187 2017+ 4@ 7120172
how such symmetry assumptions affect the relaxation rates, (85)
i.e., how the general eigenvalug§) vary between an asym-
metrical diffusion tensor, a symmetrical diffusion tensor, andwhereas if bean is linearly polarized at 45° to the vertical
an axial (rodlike) diffusion tensor. In the one-dimensional and the horizontal component of the signal is measured while
approximation, Eqs(80) and (81) indicate the following  keeping the other two beams unchanged, the inten§jfy)

nonzero components: is given by
—10 10
Mmy a5, AB .
e (2B + 4B, 36 I5ig( )= K[ 1507 A Bagzn 1752
X cog §|7e 2PL7—2e 1172, 86
— The ratio of the amplitudes associated with these signals is
(5) M%Oa(lzonABz(zZ) hence
Xz(z2z227 105 (—E1—2E;+5E;
21+4e"10u7
+10E,— 4E5— 2Eg). (83 (7)) =lg( D7) = |

(7—2e P17)cosd|

Il we find that the contribution froml =2 disappears, the ~

Thus inserting these into E¢r9) and using Tables |, I, and ’21+ 4100, 7
ensuing expression for the second-harmonic intensity being

(87)
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for small angless. The agreement between Ed85) and |sig(T)=K|M\\/5252|7K19_2D”+ 2K,e 1172 (88)
(86) and experiment is not good in the case of polar solvents

[S—these equations predict a biexponential SHG amplitud%here the polarizability and field-dependent constants are

with decay rates in the ratio 6:1, as against experiment iven by

observations in THF where biexponential decay has bee
recorded with relative decay rates nearer to 4&[L Evi- - -

dently, there is a fast relaxation channel not manifest in the - aAB T 1 2 4 2

simple one-dimensional model. The temporal variatiom,of HA ! -2 -4 8 E
however, has been reported previously for DMANS and this @ AR 4 8 —4 -2 !
agrees well with Eq(87). This observation, along with mea- K,= By Ez
surements in nonpolar solvents, has been used as evidence ! a, A, 16 -8 4 -—8||Es|’
for a time- and solvent polarity-dependenfc hyperpolari_zabil— aA By —2 —4 12 6 Esg
ity [5,6], AB,z5=AB:5(t). An alternative explanation | o, AB,

might be that the one-dimensional model may break down -8 4 -12 24

for a real molecule like DEANS. Next we shall look at the (89)

consequences of relaxing such constraints.
Ko=(ay—a )(AB—ABL—2Ap)
B. Linear molecules X (—Ey—2E,+5E;+ 10E,— 4Es—2E¢). (90)
The one-dimensional model is clearly very primitive—

even a linear polar molecule in an optical field possesses, iﬂecomputing the ratio given in Eq87), assuming cdsd

addition to its transition dipole momept=4;°, three non-  _1 " e optain
vanishing polarizability componentsy=ay, and a; '
= a(l)?x):a(lfy), and seven nonvanishing hyperpolarizability Ry +4e 100.7
componentq27], ABy=AByy, ABL=AByx=ABxyy) r(7)= gy D7) = ‘W_NDN : (9D
AIGXZAIBX(ZX)ZAﬁx(xz)zAﬂy(zy)zA,By(yz) . IntrOdUCII’lg 2
these components in E/9) produces the following expres-
sion for the SHG intensity: where
|
R 79 AB+6a, AB+6a)AB, +4a, AR, +12a; ABy+8a; AB,) ©2
! 3(ay—a, ) (AB—AB, —2ABy) !
R 760 AB+4a, AR —6ayAB, —4a, AP, +18ayA B+ 120 A By) ©3
2 6(a;—a,)(AB—AB, —2ABy) '
|
For the one-dimensional model oniy andA 3, are nonzero T1 2 4 11[E:
and these reduce t@;=21 andR,=7 as required. Devia- 1 E,
tions from these values are to be expected for any real mol- Ki=|a||6 2 4 12 E (95)
ecule undergoing rotational reorientation. One may therefore 9’ |8 -4 -8 16 ES
ask how sensitive these quantities should be to the shape of 6
the relaxing molecule.
For an initial exploration of this complex issue let us ex-and
amine a model wherein each nonaxial polarizability compo-
nent bears the same ratio to the axial component—_thus we K,=(1—q)(1—3q)(—E;—2E,+5E,
suppose tha, =qa andAB, =AB,=qAB,, whereqis a
parameter reflecting the divergence from the one- +10E,—4E5—2Eg). (96)
dimensional axial modelg=0). In terms of this parameter
we find that the signal intensity takes the form Using these expressions we find that the intensitigér)
and I;g(r), described by Eqgs(85) and (86), respectively,
| sig( ’T) — K|,LL||01”A,BH/5252|7K£eiZDi7+ 2K2e712DLT|2, take the form
(94) P
l5g( 7) = Kl e A B/175?7(1+20)(3+2q)e 2+

where +4(1-q)(1-3qg)e” P72, 97
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T T T T T T T T T T T T T T 1
0 20 40 60 80 100 120 140 160
time delay, v/ ps
FIG. 4. Variation of the ratior(7) [Eq. (99)] for different g
values. A diffusion coefficienD, =2.0x10 3ps ! has been as-
sumed as appropriate for a solution of DEANS in mesitylene.

Iéig( T): K|,U«”aHAIBH/5232|7(l+2q)(3+2q)e72DL7—

—6(1—q)(1-3q)e P172cog § (99

and so, again assuming é@s=1, we have

21(1+20)(3+2q) + 121 —q)(1—3q)e 1®.7|
7(1+2q)(3+2q)—6(1—q)(1—3q)e 1®L7 |
(99)

r(r)=

signal amplitude (arb. units)

0.024 4

0.020
»

0.016 4

X S —

PHYSICAL REVIEW A62 023807

0 20 40 60 80 100
7 (ps)

120 140 160

FIG. 5. The time dependence of the SHG amplitudes for two

different polarization arrangements for a solution of DEANS in
mesitylene(O) are the measured data for all vertical polarizations
and(@®) for beams 1 and 2 vertical, beam 3 at 45°, and detection of

o . L N the horizontal component of beam 4. The solid lines are fits to Egs.
The variation of this ratio is shown in Fig. 4 for a range of (97) and (98 using D, =2.0x10"3 ps’), yielding q=0.017

g values. We see that even a small deviation from the onex g gg7.

dimensional model will lead to temporal characteristics sig-
nificantly different from those predicted by the one-
dimensional model. Figure 5 shows the results of a fit to Egs.
(97) and(998) of data collected from a solution of DEANS in
mesityleng[6]. The data were not collected under the strin-
gent conditions required to generate a meaningful rgti),

but the fit to the individual amplitudes is seen to be good and
yields a consistent value for the parametgr=0.017
+0.007. Although the error here is large, the valuegas
significantly different from zero. Thus, although the analysis
implies an axialA 8,,,component 42—-100 times larger than
the other nonzero components, it is apparent that the small
off-axial components do significantly affect the dynamics. It
therefore has to be assumed that a similar conclusion would
be drawn in any more detailed representation.

C. A nonlinear model

The nonlinear model that we shall consider, illustrated in
Fig. 6, allows for distinct diffusion coefficients to be associ-
ated with each of the three axes. The molecule is treated as if
planar and, for the evaluation of polarizabilities,@®f, sym-
metry. The components of the polarizability tensors that are
nonzero are thug28]:

(1) 10 (2)_ 10

_ _ 10 _
M= HMzz, QT Ay, O 7= Oy A= Eryyys

AB= ABz(zz) ) A:85_1):AIBZ(XX):A:BX(XZ): A18x(z><) )

AB(LZ) =ABs1yy)=AByyn=APBy(zy) -

C,, lamina

FIG. 6. A simple nonlinear geometry used to model the dynam-

023807-16
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For this model the second-harmonic amplitude decays as tation about the molecular spine. In E4.00) the preexpo-
triexponential; nential coefficients are labeled in such a manner as to
indicate the relative rates of the decay terms. Indeed, as the

— —(15D—-3D+ 2= —(15D—-3D,—2E . . .. .
g )= k| fras™ 1*22)7 4 fie 1=28)7 diffusion coefficients approach the linear case, we have from

Table Il
T fgoue PO, (100
where the terminology of Table | has been used so that 15D—3DH+2:”;>aroo, 15D_3D”_2:”;)ar12Di '
D=(DV+D?+D,)/3 10
(DD D) (105 DW+DP - 2D, .

and linear

=2=4D W+ 4D+ D2-7D’D?-D¥D,~ DD, . However this more sophisticated model is capable of ac-
(102 counting for the occurrence of an additional decay compo-

nent in the six-wave mixing data that are expected for mol-
Here D(Y) and D represent diffusion coefficients corre- ecules of arbitrary shape.

sponding to tumbling motions arid, is associated with ro- The preexponential coefficients in EG.00 are given by

(ABP+ABP+AB)
o= 22 75& BV (B 2B, + 4B+ 2Eg) + (0l + al?) (2B, ~ E,— 2Bg+4Eg)}, (103

,LL”( - El_ 2E2+ 5E3+ 10E4_ 4E5_ 2E6)
105Q155°+ 1)

fine=

{3a'MAB Y (s+1)2-3a VAR ($2—1)—2aVAB (s+1)

—3aPABY (2~ 1)+3a?AB P (s—1)2+2aPAB|(s— 1) — 6 AB Y (s+1)+6a,ABP(s— 1)+ 4a,AB,},
(104

[.LH( - El_ 2E2+ 5E3+ 1(E4_4E5_ 2E6)
Frast= ST01527 1) {al"ABY (35— 1)%+aVABP(95°~ 1)~ 2a(VABS(35— 1) + oA B

X(9s2— 1)+ a'?AB?(3s+1)2—2a2 AB;s(3s+ 1) —6a,A B Vs(3s— 1) — 6y A BPs(3s+ 1) + 12a,A B;5%}, (105)

wheres is a diffusion parameter defined as V. SUMMARY

A quantum-electrodynamical treatment of an ultrafast

(DM —D?) time-resolved_six-vyave mixing experiment has beerj pre-

= = DI p@33D (106  sented. Consideration of the interference of two excitation
= Tl L I pathways leads naturally into a description quite analogous

to the classical transient grating picture of time-resolved ex-
For symmetric diffuser@(ll)=D(f) ands disappears. Table periment_s. It is, however, straightforvv_ard to incorporate the
IIl indicates that for such molecules the fast decay coefficienp@larization dependence of the signal into the QED treatment

will be 4(D,+2D ). Equation(105 also reduces to 16]. , ,
To account for the time-resolved data we have also incor-

porated into the analysis the population dynamics and the

S

w(—E;—2E,+5E3;+10E,— 4E5— 2Eg) dynamics of diffusional reorientation. The reorientational dy-
fras= 210 namics are complex but several limiting cases have been
treated. For a one-dimensional molecule the decay of the

X (a'V—a'?)y(ApP-ABD). (107  six-wave signal is predicted to follow biexponential relax-

ation with a 6:1 ratio of relaxation times. This is as observed

experimentally. However, it has also been shown that by
The fast term thus disappears in the one-dimensional anallowing for the existence of nonaxial components of the
linear models, but a fast component in the orientational repolarizability, somewhat better agreement with experiment is
laxation may well arise for more complex molecular shapesobtained. It has furthermore been demonstrated that for a
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molecule characterized by three different diffusion coeffi-tional) orientational motion, as well as the possibility of a
cients the dynamics may exhibit a triexponential form. Thustime-dependent hyperpolarizabilifg].

the theory presented is capable of correctly accounting for

the rotational dynamics of molecules of arbitrary shape, ob-

served through six-wave mixing. Future applications will in- ACKNOWLEDGMENT

clude a more detailed study of the polarization dependence

of the reorientational dynamics. In addition we plan to incor-  This work was funded by a research grant from the Sci-
porate into the theory the possibility of nondiffusifiéora-  ence and Engineering Research Council.
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