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Quantum-electrodynamical treatment of second-harmonic generation through phase-conjugat
six-wave mixing: Temporal analysis

Ian D. Hands, Shujie Lin, Stephen R. Meech, and David L. Andrews*
School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom

~Received 29 September 1999; published 18 July 2000!

It is shown how the effects of molecular reorientation may be incorporated in a fully quantized quantum-
electrodynamical treatment of a high-order nonlinear optical effect. Specifically, a general temporal theory is
developed to account for the second-harmonic intensity produced through phase-conjugate six-wave mixing.
The theory permits elucidation of the intensity of the second-harmonic radiation for arbitrary arrangements of
the generating laser beams and molecular geometry. Several models are considered: a one-dimensional model,
linear geometry, and a planar geometry. A comparison is made between the results associated with these
models and with those obtained from ultrafast experiments on dilute solutions of substituted stilbenes. We find
that the off-axial components of the molecular polarizabilities are necessary to properly describe the orienta-
tional dynamics of such molecules.

PACS number~s!: 42.65.Ky, 78.47.1p, 42.50.Ct, 42.40.Ht
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I. INTRODUCTION

Recently it has been demonstrated that ultrafast h
order nonlinear optical experiments provide novel inform
tion that is unavailable through lower-order measureme
@1–11#. Current applications include study of the ultrafa
dynamics of pure liquids@1–4#, orientational dynamics in
solution @5–8#, and the observation of intermolecular co
pling @9#. In addition there are proposals for the use of su
measurements in the determination of molecular hyperpo
izabilities @10#, and the structure of molecular aggrega
@11#.

It has also become clear that there is a compelling n
for detailed theoretical treatments of higher-order nonlin
optical interaction. High-order experiments produce num
ous signals, and their spatial overlap and interferences
render interpretation difficult@12–15#. One method to ad-
dress the problem of distinguishing between these var
signals is to exploit their polarization dependence@16,17#. In
a previous paper we presented a detailed quant
electrodynamical treatment of six-wave mixing; the theo
was then used to predict and analyze the results of a num
of polarization-resolved measurements of the generatio
isotropic solutions of optical second harmonics@17#. The
purpose of the present paper is to extend that quant
electrodynamical treatment to the time-resolved regime.
though our primary objective is to provide a complete d
scription of our recent ultrafast time-resolved experime
@5,6#, the very general methods developed here also pro
a complete framework for application to other time-resolv
measurements of six-wave mixing.

This paper is structured as follows. In the following se
tion a brief description of the experiments is given. In S
III the temporal theory is described in some detail: firs
quantum-electrodynamical analog of the classical trans
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grating scattering signal is derived, followed by the introdu
tion of population and orientation dynamics, in the latter ca
extending the treatment of Favro@18#. In Sec. IV the main
predictions of the theory for molecules of different symme
types are examined and compared with experimental ob
vations. In the final section the conclusions are summariz

Before proceeding, a brief comment may be made on
choice of a quantum electrodynamical~QED! representation
for the theory in Sec. III. With proper caution results of th
same form, and leading to precisely the same analysis
orientational diffusion, could be obtained from what is
many the more familiar semiclassical or nonlinear polari
tion formalism—and for descriptive purposes, that is a la
guage we have used elsewhere@19#. However, for the devel-
opment of fundamental theory the semiclassical formalism
seriously flawed in a number of respects. For example,
semiclassical expansion of the electric polarization field
genders a sum of quantum amplitudes between proce
with nonidentical sets of initial and final radiation state
violating the superposition principle—though in practic
miscreant interference terms are ignored. Also the semic
sical tradition leads to conclusions that disrespect sev
principles of time-reversal symmetry, for example, in t
formal equivalence between the amplitudes for second
monic generation and degenerate down-conversion@20,21#.
QED is the only theory in which the photon concept can
used with legitimacy, and we embrace its rigor.

II. EXPERIMENTAL DETAILS

The optical configuration to be considered is shown d
grammatically in Fig. 1, the exact details of which have be
reported elsewhere in the literature@5,16#. The beams are
referred to in terms of the modes to which their photo
belong. Photons of mode 1 (m1), are at the laser’s funda
mental wavelength of 800 nm and propagate with a wa
vectork and polarization statel. This beam is the probe—i
may be time-delayed with respect to the seeding beamsm2
andm3 by use of computer-controlled optical delays. Bea
©2000 The American Physical Society07-1
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m2 is also at the fundamental laser wavelength—it pro
gates in the opposite direction to the probe beam and ha
independently adjustable polarization state. Beamm3 is a
second harmonic produced on passing some of the laser
put through a beta barium borate~BBO! crystal. This second
seeding beam makes a small angle~;5°! with beamm2 .
The second-harmonic signal beamm4 is detected in a direc
tion opposite tom3 . The path lengths of the seeding beam
are carefully adjusted to ensure that they arrive coincid
tally at the sampleS, which, in our experiments comprise c
1023M solutions of either 4-dimethylamino-48-nitrostilbene
~DMANS! or 4-diethylamino-48-nitrostilbene~DEANS!, in
either toluene or tetrahydrofuran. For reference, the struc
of DMANS is shown later, in Fig. 6.

III. THEORY

To address the dynamical features of second-harm
emission arising from the experiment described in Sec.
theory must properly accommodate the designed engage
of optical resonances. The sample is specifically chosen t
absorbing at the harmonic frequency, in order to create
population imbalance responsible for the dynamical beha
~see below!. In this regard, weaker signals associated w
off-resonance six-wave coherence can only represent a
ligible and effectively time-independent background. The
herence timescales over which such signals will exhibit
cillatory features are too short to be significant in t
reported experiments, and the secular resonances, which
can enjoin@22# do not lead to population redistribution. Cog
nizance of the operational conditions thus enables us to fo

FIG. 1. Schematic diagram of the six-wave mixing arrangeme
The fundamental beams counterpropagate withm15(k,l) andm2

5(k,l8). Mode m2 is a pump beam and arrives at the sampleS
synchronously with the other~harmonic! pump beam m3

5(k8,l9). Probe beamm1 is time delayed with respect to the pum
beams, the harmonic signalm45(2k8,l-) being produced in the
phase-conjugate direction. Laboratory axes are as shown and
symbols represent A, aperture; BS, beam splitter~50:50 at 400 nm!;
C, chopper; F, 400-nm band-pass filter; P, polarizer; and WP, w
plate.
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on the production of the signal harmonic through the ope
tion of a population grating associated with on-resona
processes, the time dependence of the primary absorp
correctly represented by Fermi’s golden rule.

A. Grating description

The first task in this section is to show that, in the pre
ence of the two writing beamsm2 andm3 , the created popu-
lation grating is of just the correct periodicity to efficient
generate phase-matched second-harmonic photons from
probe beamm1 . As a result, them4 signal photons emerge a
the second-harmonic frequency and propagate in exactly
opposite direction to the seeding beamm3 , according to the
dictates of wave-vector matching.

We shall suppose that the seeding pulses from mode
and 3 are coincident with the sample at timet50 and then at
t5t the pulse from the probe beam~mode 1! arrives. The
sample is absorbing at the harmonic frequency and so t
sition to the excited state is expected. Nonetheless, there
two ways in which this may be accomplished in the prese
of the two seeding beams: two-photon absorption of phot
solely from the fundamental beam, and single-photon
sorption of photons from the harmonic beam. We thus n
to consider two Feynman diagrams as shown in Fig. 2. T
matrix element~quantum amplitude! for the transition in a
particular moleculej is thus written as

M f i
~j!5M f i

~j,a!1M f i
~j,b! , ~1!

whereM f i
(j,a) is the matrix element for graph~a! of Fig. 2 and

M f i
(j,b) that for graph~b!. By well-established methods@23#

these quantities can be written as

M f i
~j,a!5S \ck

4«0VD @^m8&~^m&21!#1/2a~ i j !
10 ~v,v!

3ei
~2!ej

~2!e2 i2k•Rj ~2!

and

M f i
~j,b!52 i S \ck8

2«0VD 1/2

^p&1/2m i
10ei

~3!eik8•Rj. ~3!

In these equations the position of the molecule is
scribed by the vectorRj , the wave vectors of the two beam
of modem1 andm2 arek andk8, respectively,e(n) is a unit

t.

her

ve

FIG. 2. Feynman diagrams associated with grating formati
~a! two-photon and~b! single-photon absorption.
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QUANTUM-ELECTRODYNAMICAL TREATMENT OF . . . PHYSICAL REVIEW A 62 023807
vector describing the polarization state of modemn , ^m& and
^p& are the mean numbers of photons in modesm2 andm3 ,
and a repeated Cartesian index implies three-dimensi
summation over that index. In deriving Eqs.~2! and ~3! the
state vectors describing the radiation fields have been
sumed to be coherent laser states and so^m&
5^a (2)un̂ua (2)&, whereua (2)& is the coherent state represen
ing mode 2 andn̂ is the number operator. A similar expre
sion may be written for̂p&. Also, the molecular parameter
apparent in Eqs.~2! and ~3! are the transition dipolem i

10

5^1um i
(j)u0& and the index-symmetric transition polarizab

ity:

a~ i j !
10 ~v,v!5(

r H m i
1rm j

r01m j
1rm i

r0

Ẽr02\v
J , ~4!

in which the complex energy term in the denominator ta
the form Ẽr05Er2E02 iG r to account for the damping as
sociated withG r , the linewidth of the excited stateur&. The
convention adopted here is to make the sign of the damp
term negative to ensure compliance with time-reversal p
ciples @20#. Introducing the density of states for the writin
process,rF

(1) , the rate at which the excited state is popula
is given by Fermi’s golden rule and clearly three contrib
tions are apparent:

G5
2prF

~1!

\
uM f i

~j!u25G11G21G3 ~5!

where

G15
2prF

~1!

\ S \ck

4«0VD 2

@^m&~^m&21!#a~ i j !
10 ei

~2!ej
~2!u2, ~6!

G25
2prF

~1!

\ H i S \ck

4«0VD S \ck8

2«0VD 1/2

@^p&^m&~^m&21!#1/2

3a~ i j !
10 m̄k

10ei
~2!ej

~2!ēk
~3!e2 i ~2k1k8!•Rj1c.c.J , ~7!

and

G35
2prF

~1!

\ S \ck8

2«0VD ^p&um i
10ei

~3!u2. ~8!

We see that the rate at which the excited state is popul
depends on the position of the molecule, throughG2—and
also on the molecular orientation, through the molecular m
trix elements. It is thisG2 term that produces the gratin
within the sample. We note here that the periodicity of t
grating, determined bye2 i (2k1k8)•Rj, is exactly that required
for phase-matched second-harmonic generation from
probe beam, the signal being created in precisely the op
site direction to the harmonic pump beam.

Thus far we have a rateG(Rj) at which the upper state i
populated during application of the two writing beams. If w
take the effective time for which the beams are applied
Dt, the probability that the moleculej is excited immedi-
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ately after the pulses have passed isP(Rj)5G(Rj)Dt. The
probe pulse arrives after a delay oft (.Dt) sec, during
which time the molecule, if excited, may relax. We suppo
that it relaxes to the ground state via a simple exponen
decay. At timet the probability that the molecule is excite
is hence

P~Rj ,t!5G~Rj!Dte2k10~t2Dt !, ~9!

wherek10 is the decay constant.

B. Clamped-molecule model

We ignore for the present any movement~rotational or
translational! that may occur in-between pulses, for that is
feature we accommodate later. The probe pulse encoun
the associated population distribution in the sample a
second-harmonic generation~SHG! is produced from it.
Again, two possibilities arise, as illustrated in Fig. 3~in
which only the dominant of three contributory time orderin
is shown!. Writing asM f i8

(j,a) and M f i8
(j,b) the quantum ma-

trix elements for these component processes, the effec
matrix element for harmonic production will be as follows

M f i8
~j!5@12P~Rj ,t!#M f i8

~j,a!1P~Rj ,t!M f i8
~j,b! , ~10!

reflecting a statistical weighting of the appropriate quant
amplitudes. For a two-level system Eq.~10! is exact, and

FIG. 3. Representative Feynman diagrams describing harm
formation from molecules in~a! the ground electronic state and~b!
the excited state.
7-3
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follows from use of the completeness relation for the m
lecular states. The two components involved in the harmo
generation process are in fact identical in terms of the p
tonics, differing only in their molecular mediation, and so w
have

M f i8
~j,a!52 i S \ck

2«0VD S \ck8

2«0VD 1/2

@^n&~^n&21!#1/2

3b i ~ jk !ēi
~4!ej

~1!ek
~1!ei ~2k1k8!•Rj ~11!

and

M f i8
~j,b!52 i S \ck

2«0VD S \ck8

2«0VD 1/2

@^n&~^n&21!#1/2

3b i ~ jk !8 ēi
~4!ej

~1!ek
~1!ei ~2k1k8!•Rj. ~12!

Here, ^n& is the mean number of photons in mode 1 and
overbar represents complex conjugation. The ind
symmetric hyperpolarizabilities are given by

b i ~ jk !5
1

2
(
s,t

F m i
0tm j

tsmk
s0

~Ẽt022\v!~Ẽs02\v!

1
m j

0tm i
tsmk

s0

~Ẽt01\v!~Ẽs02\v!
1

m j
0tmk

tsm i
s0

~Ẽt01\v!~Ẽs012\v!

1
m i

0tmk
tsm j

s0

~Ẽt022\v!~Ẽs02\v!
1

mk
0tm i

tsm j
s0

~Ẽt01\v!~Ẽs02\v!

1
mk

0tm j
tsm i

s0

~Ẽt01\v!~Ẽs012\v!
G ~13!

and

b i ~ jk !8 5
1

2
(
s,t

F m i
1tm j

tsmk
s1

~Ẽt122\v!~Ẽs12\v!

1
m j

1tm i
tsmk

s1

~Ẽt11\v!~Ẽs12\v!
1

m j
1tmk

tsm i
s1

~Ẽt11\v!~Ẽs112\v!

1
m i

1tmk
tsm j

s1

~Ẽt122\v!~Ẽs12\v!
1

mk
1tm i

tsm j
s1

~Ẽt11\v!~Ẽs12\v!

1
mk

1tm j
tsm i

s1

~Ẽt11\v!~Ẽs112\v!
G , ~14!

respectively. The total matrix element for SHG from the e
semble is thus
02380
-
ic
-

n
-

-

M f i8 52 i S \ck

2«0VD S \ck8

2«0VD 1/2

@^n&~^n&21!#1/2

3ēi
~4!ej

~1!ek
~1!(

j
$b i ~ jk !1P~Rj ,t!Db i ~ jk !%

3ei ~2k1k8!•Rj, ~15!

where the hyperpolarizability difference between the up
and lower states has been written

Db i ~ jk !5b i ~ jk !8 2b i ~ jk ! . ~16!

The rate of production of SHG from the ensemble is n
given by the Fermi rule:

R5
2prF

~2!

\ U(
j

M f i8
~j!U2

,

whererF
(2) is the density of states for the second~reading!

process. Taking an orientational average and effecting
usual split into incoherent~single site! and coherent~multi-
site interference! terms, we have

^R&5
2prF

~2!

\ K (
j

uM f i8
~j!u21 (

j5j8
M f i8

~j!M̄ f i8
~j8!L .

The dominant contribution to SHG is hence the coher
term,

Rcoh5
2prF

~2!

\ (
j5j8

^M f i8
~j!&^M̄ f i8

~j8!&, ~17!

where we have assumed that differing molecules in the
lution are orientationally uncorrelated, as is the case for
majority of pairs in the system. For any particular molecu
we have

^M f i8
~j!&52 i S \ck

2«0VD S \ck8

2«0VD 1/2

@^n&~^n&21!#1/2ēi
~4!ej

~1!ek
~1!

3^$b i ~ jk !1P~Rj,t!Db i ~ jk !%&e
i ~2k1k8!•Rj. ~18!

Effecting the orientational average on the first term with
braces in Eq.~18! leads to its disappearance, as is usual
SHG in isotropic media. The second term, however, conta
‘‘hidden’’ orientational factors throughP(Rj ,t), as a result
of which the average is nonzero.

Using Eq.~9! we thus have

^G~Rj!Dte2k10~t2Dt !Db i ~ jk !&

5^~G11G21G3!Db i ~ jk !&Dte2k10~t2Dt !. ~19!

Of the three contributory terms, it is the middle one that w
be responsible for the observed signal as it is the only on
exhibit the necessary phase matching when inserted into
~18!. We thus ignore the other two terms in Eq.~19!. The
correctness of this assumption is readily verified from
7-4
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fact that the signal is not observed if either of the writi
beams is blocked. Using theG2 term in Eq.~19! we now find

^G~Rj!Dte2k10~t2Dt !Db i ~ jk !&

5 i
2prF

~1!

\ S \ck

4«0VD S \ck8

2«0VD 1/2

@^p&^m&~^m&21!#1/2

3^$a~ lm!
10 m̄n

10el
~2!em

~2!ēn
~3!e2 i ~2k1k8!•Rj1c.c.%

3Db i ~ jk !&Dte2k10~t2Dt !

with the exponential explicitly exhibiting the phase matchi
~and the complex conjugate term accounting for the fact
SHG can be produced from a fundamental beam propaga
in the opposite direction, as also observed experimenta!.
The phase-matched, orientationally averaged matrix elem
is hence

^M f i8
~j!&5

prF
~1!

\ S \ck

2«0VD 2S \ck8

2«0VD @^p&^m&~^m&21!

3^n&~^n&21!#1/2^a~ lm!
10 m̄n

10Db i ~ jk !&

3el
~2!em

~2!ēn
~3!ēi

~4!ej
~1!ek

~1!Dte2k10~t2Dt !, ~20!

which is necessarily position independent so that the ph
matching double sum in Eq.~17! can be evaluated for th
ensemble ofN molecules asN(N21)'N2 for largeN. The
resulting rate of SHG production is

Rcoh5
2p3~rF

~1!!2rF
~2!

\3 ~NDt !2S \ck

2«0VD 4S \ck8

2«0VD
3@^p&^m&~^m&21!^n&~^n&21!#

3u^a~ lm!
10 m̄n

10Db i ~ jk !&el
~2!em

~2!ēn
~3!ēi

~4!ej
~1!ek

~1!u2

3e22k10~t2Dt !. ~21!

Casting the result in terms of the mean intensities of
beams, the final expression for the coherent SHG from
grating may be written

I sig
~2v!5

~rF
~1!!2~k8!3g1

~2!g2
~2!~NDt !2

256\2c2«0
6 ~ I 1

~v!I 2
~v!!2I 3

~2v!

3u^a~ lm!
10 m̄n

10Db i ~ jk !&el
~2!em

~2!ēn
~3!ēi

~4!ej
~1!ek

~1!u2

3e22k10~t2Dt !, ~22!

where I n
(v) is the mean intensity of thenth beam of fre-

quencyv, andgn
(2) is its degree of second-order coheren

Equation~22! thus exhibits the expected~and observed@5,6#!
dependence on the intensities of the three input beams~qua-
dratic with respect to the two fundamental beams and lin
in the harmonic writing beam! and also the sample densi
(I sig

(2v)}N2). Dynamically this equation yields a simple e
ponential decay due to relaxation of the molecules from
excited to ground state—the lifetime of the decay theref
governed by the intrinsic fluorescence lifetime.
02380
at
ng

nt

e-

e
e

.

ar

e
e

The polarization dependence of Eq.~22! is exactly that
found previously for the case of coincident pulses@16#. An
interesting feature of the result is its dependence on mole
lar polarizabilities. Evaluating the sixth-rank average we fi

I sig
~2v!5

~rF
~1!!2~k8!3g1

~2!g2
~2!~NDt !2

256\2c5«0
6 ~ I 1

~v!I 2
~v!!2I 3

~2v!

3U(
n51

6

VnEnU2

e22k10~t2Dt !, ~23!

where the linear matrixV comprises molecular paramete
defined by

F V1

V2

V3

V4

V5

V6

G 5AF m̄g
10a~bb!

10 Dbg~aa!

m̄b
10a~bg!

10 Dbg~aa!

m̄g
10a~ab!

10 Dbg~ab!

m̄b
10a~ag!

10 Dbg~ab!

m̄g
10a~ag!

10 Dbb~ab!

m̄a
10a~gg!

10 Dbb~ab!

G , ~24!

the matrix of coefficients being given by

A5
1

1053
8 25 25 4 4 25

25 11 4 26 26 4

25 4 11 26 26 4

4 26 26 16 2 26

4 26 26 2 16 26

25 4 4 26 26 11

4 , ~25!

and the linear matrixE embodies a set of six, in genera
linearly independent, polarization parameters

E15~e1•e1!~e2•e2!~ ē3•ē4!, E25~e1•e1!~e2•ē3!~e2•ē4!,

E35~e1•e2!2~ ē3•ē4!, E45~e1•e2!~e1•ē3!~e2•ē4!,

E55~e1•e2!~e1•ē4!~e2•ē3!, E65~e1•ē3!~e2•e2!~e1•ē4!.

~26!

We note that in Eq.~24! we have used Greek indices t
denote a tensor component written in terms of the molec
axes, Latin indices now being reserved for components in
laboratory fixed frame. The polarization characteristics m
now be determined and should be identicalin form to those
of the coincident-pulse case. However, one would not exp
them to be exactly the same because of their different dep
dence on molecular properties.

C. Effects of molecular motion

The dynamic response predicted by the clamped-mole
model is a simple exponential. To account for more comp
dynamics observed experimentally@5,6# the model can now
be refined to encompass molecular motion. At the instan
time when the first pair of pulses excites the molecule, let
denote the position asRj

(0) and also letVj
(0) represent a se
7-5
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of three orientation coordinates, reflecting the angular dis
sition of the molecule against a laboratory-fixed frame. T
probability of excitation during application of the writin
beams is henceP(Rj

(0))5G(Rj
(0) ,Vj

(0))Dt, assuming there
is no significant molecular motion within the write interva
At a later timet, the probability that the molecule, initially a
positionRj

(0) , is still excited is thus

P~Rj
~0! ,t!5G~Rj

~0! ,Vj
~0!!Dte2k10~t2Dt !. ~27!

However its new position and orientation at this time may
represented as (Rj ,Vj), so that the corresponding molecul
matrix element for SHG is

M f i8
~j!52 i S \ck

2«0VD S \ck8

2«0VD 1/2

@^n&~^n&21!#1/2ēi
~4!ej

~1!ek
~1!

3$b i ~ jk !
~j! ~Vj!1P~Rj

~0! ,t!Db i ~ jk !~Vj!%

3ei ~2k1k8!•Rj. ~28!

When the ensemble average is effected, the first term di
pears as usual and, retaining only theG2 term ~evaluated at
Rj

(0)! as before, we have

^M f i8
~j!&52 i S \ck

2«0VD S \ck8

2«0VD 1/2

@^n&~^n&21!#1/2

3ēi
~4!ej

~1!ek
~1!^G2~Rj

~0! ,Vj
~0!!Db i ~ jk !~Vj!&

3ei ~2k1k8!•RjDte2k10~t2Dt !. ~29!

Taking the quasi-phase-matched term, this yields

Rcoh5
prF

~1!

\ S \ck

2«0VD 2S \ck8

2«0VD @^p&^m&~^m&21!^n&

3~^n&21!#1/2el
~2!em

~2!ēn
~3!ēi

~4!ej
~1!ek

~1!

3Dte2k10~t2Dt !^a l ~m!
10 ~Vj

~0!!m̄n
10~Vj

~0!!

3Db i ~ jk !~Vj!&e
i ~2k1k8!•~Rj2Rj

~0!
!. ~30!

The effects of translation and rotation are apparent in
expression. However, taking a typical diffusion coefficient
D;1029 m2 s21 we can estimate the mean distance travel
in 100 ps aŝ x&;2(Dt/p)1/2;3.6310210m. Even for mo-
tion exactly collinear with the wave-vector mismatch, t
scalar product (2k1k8)•(Rj2Rj

(0));331023, where l
5800 nm and a refractive index difference ofDn;0.5 has
been assumed. For other angles the value of the scalar p
uct will be still smaller. From this simple calculation it i
immediately evident that on the ps timescale we can ign
translational diffusion. This makes the right-hand side of E
~30! position independent, so that the phase-matching do
sum can be carried out as usual; the rate of coherent S
production is then
02380
o-
e

e

p-

is
f
d

od-

re
.
le
G

Rcoh5
2p3~rF

~1!!2rF
~2!

\3 ~NDt !2S \ck

2«0VD 4S \ck

2«0VD 2

3@^p&^m&~^m&21!^n&~^n&21!#

3u^a~ lm!
10 ~Vj

~0!!m̄n
10~Vj

~0!!Db i ~ jk !~Vj!&

3el
~2!em

~2!ēn
~3!ēi

~4!ej
~1!ek

~1!u2e22k10~t2Dt !. ~31!

Comparing Eqs.~31! and ~21! we observe that the effect o
molecular rotational motion can be accounted for by sim
replacing the orientational average^a ( lm)

10 m̄n
10Db i ( jk)& with

^a ( lm)
10 (Vj

(0))m̄n
10(Vj

(0))Db i ( jk)(Vj)&, which thereby corre-
lates the properties of the molecule at the two times wh
pulses are present. As this correlation is time dependen
too will be the average. The ensemble average is mad
time t by averaging over all the possible orientations of
molecule-fixed set of coordinates~x, y, z!, the tensorial com-
ponents being given in terms of laboratory-fixed coordina
~X, Y, Z!. Introducing direction cosinesl a i between the mo-
leculara axis and laboratoryi axis we have explicitly

^a~ lm!
10 ~Vj

~0!!m̄n
10~Vj

~0!!Db i ~ jk !~Vj!&

5a~lm!
10 m̄n

10Dbã~b̃g̃ !^ l ã i~t!l b̃ j~t!l g̃k~t!l l l~0!

3 l mm~0!l nn~0!&, ~32!

where the polarizability components, fixed within the m
lecular frame~and therefore invariant upon rotation of th
frame!, have been removed from the average. In writing E
~32! we also introduced a tilde to refer to components of
molecular frame at timet.

The direction cosines att50 can now be related to thos
at t5t using l l l(0)5 l ld̃(t) l d̃ l(t), whered̃ refers to a com-
ponent of the molecular frame at timet and repetition of a
Cartesian index implies summation. Thel ld̃(t) part comes
out of the ensemble average because it relates to molec
axes only, the net result being

^a~ lm!
10 ~Vj

~0!!m̄n
10~Vj

~0!!Db i ~ jk !~Vj!&

5a~lm!
10 m̄n

10Dbã~b̃g̃ !^ l ã i l b̃ j l g̃kl d̃ l l «̃ml f̃n&F ~ld̃,m«̃,nf̃! ,

~33!

where

F ~ld̃,m«̃,nf̃!5 l ld̃~t!l m«̃~t!l nf̃~t!. ~34!

The tensorF contains all the time dependence in the righ
hand side of Eq.~33! because the isotropic average acco
modates all possible molecular orientations and is thus in
pendent of time. The indices in Eq.~34! are grouped in such
a way as to emphasize the invariance with respect to in
change of any of the pairs of indices in parentheses,
F (ld̃,m«̃,nf̃)5F (m«̃,ld̃,nf̃) , etc. Inserting Eq.~33! into Eq.~31!
and computing the isotropic average we have
7-6
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TABLE I. Eigenvalues and eigenvectors of the asymmetric rotor.

l Eigenvalues Eigenfunction

0 E0
(0)50 C0,0

(0)5F0,0
(0)

1 E1
(1)5D11D3 C1,m

(1) 5(2)21/2(F1,m
(1) 1F21,m

(1) )
E0

(1)5D11D2 C0,m
(1) 5F0,m

(1)

E21
(1) 5D21D3 C21,m

(1) 5(2)21/2(F1,m
(1) 2F21,m

(1) )
2 E2

(2)56D12D C2,m
(2) 5@aF0,m

(2) 1b(2)21/2(F2,m
(2) 1F22,m

(2) )#/N1

E1
(2)53(D1D1) C1,m

(2) 5(2)21/2(F1,m
(2) 1F21,m

(2) )
E0

(2)56D22D C0,m
(2) 5@bF0,m

(2) 2a(2)21/2(F2,m
(2) 1F22,m

(2) )#/N1

E21
(2) 53(D1D2) C21,m

(2) 5(2)21/2(F1,m
(2) 2F21,m

(2) )
E22

(2) 53(D1D3) C22,m
(2) 5(2)21/2(F2,m

(2) 2F22,m
(2) )

3 E3
(3)515D23D212P C3,m

(3) 5@c(F1,m
(3) 1F21,m

(3) )1a(5)1/2(F3,m
(3)

1F23,m
(3) )#/N2

E2
(3)515D23D312J C2,m

(3) 5@a(10)1/2F0,m
(3) 1d(F2,m

(3) 1F22,m
(3) )#/N3

E1
(3)515D23D222P C1,m

(3) 5@a(5)1/2(F1,m
(3) 1F21,m

(3) )
2c(F3,m

(3) 1F23,m
(3) )#/N2

E0
(3)515D23D322J C0,m

(3) 5@d(2)1/2F0,m
(3) 2a(5)1/2(F2,m

(3) 1F22,m
(3) )#/N3

E21
(3) 515D23D122Q C21,m

(3) 5@e(F1,m
(3) 2F21,m

(3) )2a(5)1/2(F3,m
(3)

2F23,m
(3) )#/N4

E22
(3) 512D C22,m

(3) 5(2)21/2(F2,m
(3) 2F22,m

(3) )
E23

(3) 515D23D112Q C23,m
(3) 5@a(5)1/2(F1,m

(3) 2F21,m
(3) )

1e(F3,m
(3) 2F23,m

(3) )#/N4

a5)(D12D2) P5@4D213(D12D2)(D22D3)#1/2

b52D2D12D212D3 Q5@4D213(D12D2)(D32D1)#1/2

c54P17D11D228D3 N15(a21b2)1/252(Db)1/2

d52J2D12D212D3 N25(10a212c2)1/2

e54Q2D127D218D3 N35(10a212d2)1/2

D5(D11D21D3)/3 N45(10a212e2)1/2

D5(D1
21D2

21D3
22D1D22D1D32D2D3)1/2

J5(D21a2)1/2
in
ha
ro

ver
nal

and

f
ge

hro
I sig
~2v!5

~rF
~1!!2~k8!3g1

~2!g2
~2!~NDt !2

256\2c5«0
6 ~ I 1

~v!I 2
~v!!2I 3

~2v!

3U(
n51

6

LnEnU2

e22k10~t2Dt ! ~35!

with

3
L1

L2

L3

L4

L5

L6

4 5A3
m̄l

10a~mn!
10 Dbg̃~ã ã !F ~lg̃,mb̃,nb̃ !

m̄l
10a~mn!

10 Dbg̃ ~ã ã !F ~lb̃,mg̃,nb̃ !

m̄l
10a~mn!

10 Dbg̃ ~ãb̃ !F ~lg̃,mã,nb̃ !

m̄l
10a~mn!

10 Dbg̃ ~ãb̃ !F ~lb̃,mg̃,nã !

m̄l
10a~mn!

10 Dbb̃ ~ãb̃ !F ~lg̃,mã,ng̃!

m̄l
10a~mn!

10 Dbb̃ ~ãb̃ !F ~lã,mg̃,ng̃!

4 ~36!

and with A as given by Eq.~25!. F(t) gives the additional
time variation due to rotation of the molecules. We are
terested here in molecules in a fluid host and so we s
model the rotational motion stochastically as a diffusion p
cess. In this case the tensor takes the form
02380
-
ll
-

F ~ld̃,m«̃,nf̃!5^ l ld̃l m«̃l nf̃&Rd ~37!

where the subscript ‘‘R.d.’’ indicates an average taken o
an ensemble of molecular frames rotating due to rotatio
diffusion dynamics.

Using a method first developed by Favro@18#, we write
the ensemble average of a general function of orientation
time, g(V,t), as

^g&Rd5E g~V,t!r~V,t!dV, ~38!

wherer(V,t)dV is the probability of finding a member o
the ensemble of rotating frames oriented within the ran
(V,V1dV) at time t. The distribution function obeys a
differential equation analogous to the time-dependent Sc¨-
dinger equation

]

]t
r~V,t!52Hr~V,t!, ~39!

where
7-7
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H5(
i , j

L iDi j L j , ~40!

with D the molecular diffusion tensor andL the quantum-
mechanical angular momentum operator. If we use a se
coordinates that diagonalizes the diffusion tensor, as
henceforth be assumed, Eq.~40! may be written as

H5(
i

DiLi
2, ~41!

where D1 , D2 , and D3 are the principal diffusion coeffi-
cients. The dynamics of the ensemble of molecular fram
moving in response to rotational diffusion is thus identical
the quantum-mechanical problem of an asymmetric top, p
vided we identifyDi with \2/2I i , whereI i is the correspond-
ing moment of inertia. Equation~39! may be solved with a
Green’s function formulation, that is,

r~V,t!5E r~V0,0!G~V0uV,t!dV0 . ~42!

Here r(V0,0) is the initial probability that the frame ha
orientationV0 and G(V0uV,t) is the Green’s function de
scribing the rotation of the frame fromV0 at t50 into V at
time t5t. In our case we can take the initial ensemble
frames to have a common orientation,0, say, so that
r(V0,0)5d(V0), the Diracd function. This implies, using
Eq. ~42!, that

r~V,t!5G~0uV,t!. ~43!

This function is now expanded in terms of asymmetric ro
wave functions,Cn(V), the solution to Eq.~39! being

G~0uV,t!5(
n

C̄n~0!Cn~V!exp~2Ent! ~44!

with the initial condition

G~0uV,0!5(
n

C̄n~0!Cn~V!5d~V!

and whereEn are the eigenvalues corresponding toCn(V).
The latter wave functions can themselves be expresse
terms of symmetric rotor wave functionsFk,m

( l ) (V):

Cn~V!5Ch,m
~ l ! ~V!5 (

k52 l

l

Ah,k
~ l ! Fk,m

~ l ! ~V!. ~45!

The coefficientsAh,k
( l ) and eigenvaluesEh

( l ) have been tabu
lated by Favro@18# and Huntress@24# for l<2—here, how-
ever, we require these quantities up tol 53. Calculation of
the required values gives the results shown in Table I.

The symmetric rotor functions are orthonormal in t
sense
02380
of
ill

s

o-

f

r

in

E F̄k8,m8
~ l 8!

~V!Fk,m
~ l ! ~V!dV5d l l 8dkk8dmm8 , ~46!

and are expressible in terms of Wigner rotation matric
which describe the transformation from one set of coor
nates to another by rotation through the Euler anglesV
5(a,b,g):

Fk,m
~ l ! ~V!5~21!k2m@~2l 11!/8p2#1/2Dk,m

~ l ! ~V!. ~47!

Explicitly,

Dk,m
~ l ! ~V!5(

p
~21!p

A~ l 1m!! ~ l 2m!! ~ l 1k!! ~ l 2k!!

p! ~ l 2k2p!! ~ l 1m2p!! ~k2m1p!!

3eimgS cos
b

2 D 2l 1m2k22pS sin
b

2 D k2m12p

eika,

~48!

where thep summation is taken over all integers. Using Eq
~37!, ~38!, ~43!–~45!, ~47!, and~48! we obtain

F ~ld̃,m«̃,nf̃!5(
l ,h

G
~ld̃,m«̃,nf̃!

~ l ;h!
exp2Eh

~ l !t, ~49!

where

G
~ld̃,m«̃,nf̃!

~ l ;h!
5

~2l 11!

8p2 (
k,m52 l

l

~21!m1kAh,m
~ l ! Ah,k

~ l ! F
~ld̃,m«̃,nf̃!

~ l ;k,m!

~50!

and

F
~ld̃,m«̃,nf̃!

~ l ;k,m!
5E l ld̃l m«̃l nf̃Dk,m

~ l ! ~V!dV. ~51!

Associating the indicesx, y, andz with the numbers 1, 2,
and 3, respectively, the direction cosines may be written

l ld̃5(
i , j

M i j dl idd̃ j , ~52!

where the matrixM is given by
7-8
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M5F cosa cosb cosg2sina sing 2sina cosb cosg2cosa sing sinb cosg

cosa cosb sing1sina cosg 2sina cosb sing1cosa cosg sinb sing

2cosa sinb sina sinb cosb
G . ~53!
te
As the Wigner matrices are complete we can then wri

l ld̃5 (
l ,k,m

a
ld̃
~ l ,k,m!

Dk,m
~ l ! ~V!, ~54!

where

a
ld̃
~ l ,k,m!

5
2l 11

8p2 E l ld̃D̄k,m
~ l ! ~V!dV. ~55!

Inserting Eq.~52! into Eq. ~55! we have

a
ld̃
~ l ,k,m!

5
2l 11

8p2 (
i , j

E Mi j D̄k,m
~ l ! dVdl ldd̃ j . ~56!

Each integral here can be written in the form

E Mi j D̄k,m
~ l ! dV5

4p2

~ l 12!! S dk1

dk0

dk~21!

D T

Bl ,i j S dm1

dm0

dm~21!

D .

~57!
02380
whereBl ,i j is a matrix of numbers dependent only onl. Thus
we have from Eq.~56!

a
ld̃
~ l ,k,m!

5
2l 11

~ l 12!! S dk1

dk0

dk~21!

D T

C
ld̃
~ l !S dm1

dm0

dm(21)

D
5

1

2 S dk1

dk0

dk~21!

D T

C
ld̃
~ l !S dm1

dm0

dm~21!

D
5 1

2 (
i , j 51

3

~C
ld̃
~ l !

! i j dk~22 i !dm~22 j ! ~58!

where the second equality follows from Eq.~59! which is
obtained by direct computation:
C
ld̃
~ l !

5d l1S ~dlx2 idly!~dd̃x1 idd̃y! 2&dlz~dd̃x1 idd̃y! 2~dlx1 idly!~dd̃x1 idd̃y!

2&~dlx2 idly!dd̃z 2dlzdd̃z &~dlx1 idly!dd̃z

2~dlx2 idly!~dd̃x2 idd̃y! &dlz~dd̃x2 idd̃y! ~dlx1 idly!~dd̃x2 idd̃y!
D ~59!

5d l1D~ld̃ !
TheD (ld̃) matrix defined here will shortly be shown to form
the basis for our expressions forF

(ld̃,m«̃,nf̃)

( l ;k,m)
. Some proper-

ties of this matrix are given below in Eqs.~60!–~63!.

(
l

D~ll!52U ~U is the unit 333 matrix!, ~60!

Tr~D~ld̃!!52dld̃ , ~61!

D i j
~ld̃ !5D̄ j i

~ d̃l! , ~62!

D11
~ld̃ !5D̄33

~ld̃ ! , D22
~ld̃ !5D̄22

~ld̃ ! ,
~63!

D13
~ld̃ !5D̄31

~ld̃ ! , D12
~ld̃ !52D̄32

~ld̃ ! , D21
~ld̃ !52D̄23

~ld̃ ! .

From Eq.~51! and Eq.~54!, we have
F
~ld̃,m«̃,nf̃!

~ l ;k,m!
5 (

l 8,k8,m8
(

l 9,k9,m9
(

l-,k-,m-
a

ld̃
~ l 8,k8,m8!

am«̃
~ l 9,k9,m9!

3a
nf̃

~ l-,k-,m-!E Dk,m
~ l ! ~V!Dk8,m8

~ l 8!
~V!Dk9,m9

~ l 9!
~V!

3Dk-,m-
~ l-!

~V!dV

and evaluating the integral we find

E Dk,m
~ l ! ~V!Dk8,m8

~ l 8!
~V!Dk9,m9

~ l 9!
~V!Dk-,m-

~ l-!
~V!dV

58p2 (
p,q,r ,s

FlkmpFl 8k8m8qFl 9k9m9rFl-k-m-s

3d~m1m81m91m-!0d~k1k81k91k-!0

3B~11p1q1r 1s,11 l 1 l 8

1 l 91 l-2p2q2r 2s!, ~64!
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whereB(x,y) is theb function @25# and we have defined

Flkmp5~21!p
A~ l 1m!! ~ l 2m!! ~ l 1k!! ~ l 2k!!

p! ~ l 2k2p!! ~ l 1m2p!! ~k2m1p!!
.

~65!

Using Eqs.~58!, ~59!, and ~64! and the properties of theb
function we obtain

F
~ld̃,m«̃,nf̃!

~ l ;k,m!
5

8p2

~ l 14!! (
k8,m8

(
k9,m9

(
p,...,s

a
ld̃
~1,k8,m8!

am«̃
~1,k9,m9!

3a
nf̃

~1,2k2k82k9,2m2m82m9!
FlkmpF1k8m8q

3F1k9m9rF1~2k2k82k9!~2m2m82m9!s ~66!

3~p1q1r 1s!! ~ l 132p2q2r 2s!! ~67!
th

02380
Finally, using the expression fora
ld̃

( l ,k,m)
given in Eqs.~58!

and ~59!, we have

F
~ld̃,m«̃,nf̃!

~ l ;k,m!
5

p2

~ l 14!! (
t,...,w51

3

D tu
~ld̃ !Dnw

~m«̃!

3D~61k2t2n!~61m2u2w!
~nf̃!

3 (
p,...,s

FlkmpF1~22t !~22u!qF1~22n!~22w!r

3F1~ t1n2k24!~u1w2m24!s~p1q1r 1s!!

3~ l 132p2q2r 2s!!. ~68!

This equation may be used to generate expressions
F

(ld̃,mẽ,nf̃)

( l ;k,m)
. Whenl, k, andm are set equal to zero we arriv

at the rather cumbersome expression:
F
~ld̃,m«̃,nf̃!

~0;0,0!
5

p2

6
$D11

~ld̃ !D22
~m«̃!D33

~nf̃!2D11
~ld̃ !D23

~m«̃!D32
~nf̃!2D11

~ld̃ !D32
~m«̃!D23

~nf̃!1D11
~ld̃ !D33

~m«̃!D22
~nf̃!

2D12
~ld̃ !D21

~m«̃!D33
~nf̃!1D12

~ld̃ !D23
~m«̃!D31

~nf̃!1D12
~ld̃ !D31

~m«̃!D23
~nf̃!2D12

~ld̃ !D33
~m«̃!D21

~nf̃!

1D13
~ld̃ !D21

~m«̃!D32
~nf̃!2D13

~ld̃ !D22
~m«̃!D31

~nf̃!2D13
~ld̃ !D31

~m«̃!D22
~nf̃!1D13

~ld̃ !D32
~m«̃!D21

~nf̃!

2D21
~ld̃ !D12

~m«̃!D33
~nf̃!1D21

~ld̃ !D13
~m«̃!D32

~nf̃!1D21
~ld̃ !D32

~m«̃!D13
~nf̃!2D21

~ld̃ !D33
~m«̃!D12

~nf̃!

1D22
~ld̃ !D11

~m«̃!D33
~nf̃!2D22

~ld̃ !D13
~m«̃!D31

~nf̃!2D22
~ld̃ !D31

~m«̃!D13
~nf̃!1D22

~ld̃ !D33
~m«̃!D11

~nf̃!2D23
~ld̃ !D11

~m«̃!D32
~nf̃!

1D23
~ld̃ !D12

~m«̃!D31
~nf̃!1D23

~ld̃ !D31
~m«̃!D12

~nf̃!2D23
~ld̃ !D32

~m«̃!D11
~nf̃!1D31

~ld̃ !D12
~m«̃!D23

~nf̃!2D31
~ld̃ !D13

~m«̃!D22
~nf̃!

2D31
~ld̃ !D22

~m«̃!D13
~nf̃!1D31

~ld̃ !D23
~m«̃!D12

~nf̃!2D32
~ld̃ !D11

~m«̃!D23
~nf̃!1D32

~ld̃ !D13
~m«̃!D21

~nf̃!1D32
~ld̃ !D21

~m«̃!D13
~nf̃!

2D32
~ld̃ !D23

~m«̃!D11
~nf̃!1D33

~ld̃ !D11
~m«̃!D22

~nf̃!2D33
~ld̃ !D12

~m«̃!D21
~nf̃!2D33

~ld̃ !D21
~m«̃!D12

~nf̃!1D33
~ld̃ !D22

~m«̃!D11
~nf̃!%. ~69!
However,D0,0
(0)(V)51 and soF

(ld̃,m«̃,nf̃)

(0;0,0)
is related to the

isotropic average of a product of three direction cosines—
result of which is known@26#. Overall one finds

F
~ld̃,m«̃,nf̃!

~0:0,0!
5

4p2

3
«lmn«d̃«̃f̃ . ~70!
e

The equality between Eqs.~69! and ~70! may be used to

generate relations between thed ’s. For example, settingl

5x andd̃5x, we see from Eq.~59! that only four terms are

nonzero, namely,D11
(xx)51, D13

(xx)521, D31
(xx)521, and

D33
(xx)51. Inserting these into Eq.~69! we get
7-10
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$D22
~m«̃!D33

~nf̃!2D23
~m«̃!D32

~nf̃!2D32
~m«̃!D23

~nf̃!1D33
~m«̃!D22

~nf̃!

2D21
~m«̃!D32

~nf̃!1D22
~m«̃!D31

~nf̃!1D31
~m«̃!D22

~nf̃!2D32
~m«̃!D21

~nf̃!

2D12
~m«̃!D23

~nf̃!1D13
~m«̃!D22

~nf̃!1D22
~m«̃!D13

~nf̃!2D23
~m«̃!D12

~nf̃!

1D11
~m«̃!D22

~nf̃!2D12
~m«̃!D21

~nf̃!2D21
~m«̃!D12

~nf̃!

1D22
~m«̃!D11

~nf̃!%

58«xmn«x«̃f̃ . ~71!

In this way we can generate general expressions that m
hold for sums of products of twod ’s. In particular it follows
that

$D22
~m«̃!D33

~nf̃!2D23
~m«̃!D32

~nf̃!2D32
~m«̃!D23

~nf̃!1D33
~m«̃!D22

~nf̃!

1D21
~m«̃!D32

~nf̃!2D22
~m«̃!D31

~nf̃!2D31
~m«̃!D22

~nf̃!1D32
~m«̃!D21

~nf̃!

1D12
~m«̃!D23

~nf̃!2D13
~m«̃!D22

~nf̃!2D22
~m«̃!D13

~nf̃!1D23
~m«̃!D12

~nf̃!

1D11
~m«̃!D22

~nf̃!2D12
~m«̃!D21

~nf̃!2D21
~m«̃!D12

~nf̃!1D22
~m«̃!D11

~nf̃!%

58«ymn«y«̃f̃ . ~72!

and so we may use Eq.~71! and Eq.~72! to write

$D22
~m«̃!D33

~nf̃!2D23
~m«̃!D32

~nf̃!2D32
~m«̃!D23

~nf̃!

1D33
~m«̃!D22

~nf̃!1D11
~m«̃!D22

~nf̃!2D12
~m«̃!D21

~nf̃!

2D21
~m«̃!D12

~nf̃!1D22
~m«̃!D11

~nf̃!%

54~«xmn«x«̃f̃1«ymn«y«̃f̃! ~73!

and

$D21
~m«̃!D32

~nf̃!2D22
~m«̃!D31

~nf̃!2D31
~m«̃!D22

~nf̃!1D32
~m«̃!D21

~nf̃!

1D12
~m«̃!D23

~nf̃!2D13
~m«̃!D22

~nf̃!2D22
~m«̃!D13

~nf̃!1D23
~m«̃!D12

~nf̃!%

524~«xmn«x«̃f̃2«ymn«y«̃f̃!. ~74!

This reduction process is aided by use of the properties of
D matrices given in Eqs.~60!–~63!. The equations thus pro
duced can be checked directly, confirming our assertion
Eqs.~69! and~70! are equivalent. They may also be used
simplify the other expressions generated by Eq.~68!. The
overall results forG

(ld̃,m«̃,nf̃)

( l ;h)
are shown in Table II. Using

Tables I and II and Eqs.~35!, ~36!, ~49! we can deduce the
temporal variation of the six-wave mixing signal for an
choice of beam polarizations. We shall do this now for so
cases of interest.

IV. TEMPORAL PROFILES

From now on we assume that the lifetime of the exci
state is much longer than the timescale of rotational reor
02380
st

e

at

e

d
n-

tation. From Eq.~35! we see that the temporal variation o
the harmonic signal may be written

I sig~t!5kU(
n51

6

Ln~t!EnU2

~75!

where the time dependence is shown explicitly so thatk is a
time-independent constant, and theEn are scalar parameter
determined by the polarization conditions, as given by E
~26!. We further note that Eq.~36! may be rewritten in the
form

L~t!5MF m̄l
10a~mn!

10 Dbã~g̃g̃ !F ~lã,mb̃,nb̃!

m̄m
10a~ln!

10 Dbã~g̃g̃ !F ~lã,mb̃,nb̃!

m̄l
10a~mn!

10 Dbã~b̃g̃ !F ~lã,mb̃,ng̃!

m̄l
10a~mn!

10 Dbb̃~g̃ã !F ~lã,mb̃,ng̃!

m̄m
10a~ln!

10 Dbg̃~ãg̃ !F ~lã,mb̃,nb̃!

m̄l
10a~mn!

10 Dbg̃~ãg̃ !F ~lã,mb̃,nb̃!

G , ~76!

and since the time-dependence here lies within theF tensor
we see that there are in fact two different ways in which tim
features: through a fourth-rank contracted~single pair trace!
tensor of the formF (lã,mb̃,nb̃) and through the sixth-rank
tensorF (lã,mb̃,ng̃) . Tables I and II easily allow us to find th
form for the contracted tensor—we find that it is only wh
l 51 that nonzero contributions arise, i.e., the only terms
survive involve

G
~ld̃,m«̃,n«̃!

~1;h!
5H dd̃ydlydmn, h51

dd̃zdlzdmn, h50

dd̃xdlxdmn, h521 ,

~77!

so that

F ~lã,mb̃,nb̃!5dmn$dãydlye
2E1

~1!t1dãzdlze
2E0

~1!t

1dãxdlxe
2E21

~1! t%. ~78!

Quite generally then, the temporal evolution of the sign
may be written as

I sig~t!5kuxlmnã
~3! F ~lã,mb̃,nb̃!1x

l~mn!ãb̃g̃

~5!
F ~lã,mb̃,ng̃!u2,

~79!

where

xlmnã
~3! 5

1

105
$m̄l

10a~mn!
10 Dbã~g̃g̃ !~8E125E225E314E4

14E525E6!1m̄m
10a~ln!

10 Dbã~g̃g̃ !

3~25E1111E214E326E426E514E6!

1m̄m
10a~ln!

10 Dbg̃~ãg̃ !~4E126E226E312E4

116E526E6!1m̄l
10a~mn!

10 Dbg̃~ãg̃ !

3~25E114E214E326E426E5111E6!%

~80!
7-11
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TABLE II. Explicit forms of theG
(ld̃,m«̃,nf̃)

( l ;h)
coefficients forl<3.

l h G
(ld̃,m«̃,nf̃)

( l ;h)

0 0 1
6 «lmn«d̃«̃f̃

1 1 1
10@d«̃f̃dd̃y(4dmndly2dlmdny2dnldmy)1dd̃«̃df̃y(4dlmdny2dnldmy2dmndly)1df̃d̃d«̃y(4dnldmy2dlmdny2dmndly)#

0 1
10@d«̃f̃dd̃z(4dmndlz2dlmdnz2dnldmz)1dd̃«̃df̃z(4dlmdnz2dnldmz2dmndlz)1df̃d̃d«̃z(4dnldmz2dlmdnz2dmndlz)#

21 1
10@d«̃f̃dd̃x(4dmndlx2dlmdnx2dnldmx)1dd̃«̃df̃x(4dlmdnx2dnldmx2dmndlx)1df̃d̃d«̃x(4dnldmx2dlmdnx2dmndlx)#

2 2
b2

6N1
2 @~dd̃x«x«̃f̃2dd̃y«y«̃f̃!~dlx«xmn2dly«ymn!1~df̃x«xd̃«̃2df̃y«yd̃«̃!~dnx«xlm2dny«ylm!1~d«̃x«xd̃f̃2d«̃y«yd̃f̃!~dmx«xln2dmy«yln!#

2
ab

2)N1
2
@dlz«zmn~dd̃x«x«̃f̃2dd̃y«y«̃f̃!1dnz«zlm~df̃x«xd̃«̃2df̃y«yd̃«̃!1dmz«zln~d«̃x«xd̃f̃2d«̃y«yd̃f̃!

1dd̃z«z«̃f̃~dlx«xmn2dly«ymn!1df̃z«zd̃«̃~dnx«xlm2dny«ylm!1d«̃z«zd̃f̃~dmx«zln2dmy«yln!]

1
a2

6N1
2 @3~dd̃zdlz«z«̃f̃«zmn1df̃zdnz«zd̃«̃«zlm1d«̃zdmz«zd̃f̃«zln!2«lmn«d̃«̃f̃#

1 1
6 @(dd̃y«z«̃f̃1dd̃z«y«̃f̃)(dly«zmn1dlz«ymn)1(d«̃y«zd̃f̃1d«̃z«yd̃f̃)(dmy«zln1dmz«yln)

1~df̃y«zd̃«̃1df̃z«yd̃«̃!~dny«zlm1dnz«ylm!]

0
a2

6N1
2 @~dd̃x«x«̃f̃2dd̃y«y«̃f̃!~dlx«xmn2dly«ymn!1~df̃x«xd̃«̃2df̃y«yd̃«̃!~dnx«xlm2dny«ylm!1~d«̃x«xd̃f̃2d«̃y«yd̃f̃!~dmx«xln2dmy«yln!#

1
ab

2)N1
2
@dlz«zmn~dd̃x«x«̃f̃2dd̃y«y«̃f̃!1dnz«zlm~df̃x«xd̃«̃2df̃y«yd̃«̃!1dmz«zln~d«̃x«xd̃f̃2d«̃y«yd̃f̃!1dd̃z«z«̃f̃~dlx«xmn2dly«ymn!

1df̃z«zd̃«̃~dnx«xlm2dny«ylm!1d«̃z«zd̃f̃~dmx«xln2dmy«yln!]1
b2

6N1
2 @3~dd̃zdlz«z«̃f̃«zmn1df̃zdnz«zd̃«̃«zlm1d«̃zdmz«zd̃f̃«zln!2«lmn«d̃«̃f̃#

21 1
6 @(dd̃z«x«̃f̃1dd̃x«z«̃f̃)(dlz«xmn1dlx«zmn)1(d«̃z«xd̃f̃1d«̃x«zd̃f̃)(dmz«xln1dmx«zln)

1(df̃z«xd̃ «̃1df̃x«zd̃ «̃)(dnz«xlm1dnx«zlm)]

22 1
6 @(dd̃x«y«̃f̃1dd̃y«x«̃f̃)(dlx«ymn1dly«xmn)1(d«̃x«yd̃f̃1d«̃y«xd̃f̃)(dmx«yln1«my«xln)

1(df̃x«yd̃ «̃1df̃y«xd̃ «̃)(dnx«ylm1dny«xlm)]

3 3
5a2

2N2
2 @dlx~dmxdny1dmydnx!1dly~dmxdnx2dmydny!#@dd̃x~d«̃xdf̃y1d«̃ydf̃x!1dd̃y~d«̃xdf̃x2d«̃ydf̃y!#

2
ac

)N2
2 $@3~dlydmzdnz1dlzdmydnz1dlzdmzdny!12dlydmydny2dlydmn2dmydln2dnydlm#

3@3(dd̃yd«̃zdf̃z1dd̃zd«̃ydf̃z1dd̃zd«̃zdf̃y)12dd̃yd«̃ydf̃y2dd̃yd«̃f̃2d«̃ydd̃f̃2df̃ydd̃«̃#

24@dly(dmydny2dmzdnz)2dlz(dmydnz1dmzdny)#

3@dd̃y(d«̃ydf̃y2d«̃zdf̃z)2dd̃z(d«̃ydf̃z1d«̃zdf̃y)#%

1
c2

30N2
2 @dlydmn1dmydln1dnydlm25dlydmzdnz25dlzdmydnz25dlzdmzdny#

3@dd̃yd«̃f̃1d«̃ydd̃f̃1df̃ydd̃«̃25dd̃yd«̃zdf̃z25dd̃zd«̃ydf̃z25dd̃zd«̃zdf̃y#

2
a2

N3
2 ~dlzdmn1dnzdlm1dmzdnl25dlzdmzdnz!~dd̃zd«̃f̃1df̃zdd̃«̃1d«̃zdf̃d̃25dd̃zd«̃zdf̃z!

1
2ad

)N3
2 $@dly~dmydnz1dmzdny!1dlz~dmydny2dmzdnz!#@dd̃y~d«̃ydf̃z1d«̃zdf̃y!1dd̃z~d«̃ydf̃y2d«̃zdf̃z!#

2@dlx(dmxdnz1dmzdnx)1dlz(dmxdnx2dmzdnz)#@dd̃x(d«̃xdf̃z1d«̃zdf̃x)1dd̃z(d«̃xdf̃x2d«̃zdf̃z)#%

1
d2

3N3
2 @dlz~dmxdnx2dmydny!1dmz~dlxdnx2dlydny!1dnz~dlxdmx2dlydmy!#

3@dd̃z(d«̃xdf̃x2d«̃ydf̃y)1d«̃z(dd̃xdf̃x2dd̃ydf̃y)1df̃z(dd̃xd«̃x2dd̃yd«̃y)#
023807-12
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TABLE II. ~Continued!.

1
c2

2N2
2 @dlx~dmxdny1dmydnx!1dly~dmxdnx2dmydny!#@dd̃x~d«̃xdf̃y1d«̃ydf̃x!1dd̃y~d«̃xdf̃x2d«̃ydf̃y!#

1
ac

)N2
2 $@3~dlydmzdnz1dlzdmydnz1dlzdmzdny!12dlydmydny2dlydmn2dmydln2dnydlm#

3@3(dd̃yd«̃zdf̃z1dd̃zd«̃ydf̃z1dd̃zd«̃zdf̃y)12dd̃yd«̃ydf̃y2dd̃yd«̃f̃2d«̃ydd̃f̃2df̃ydd̃«̃#
24@dly(dmydny2dmzdnz)2dlz(dmydnz1dmzdny)#@dd̃y(d«̃ydf̃y2d«̃zdf̃z)2dd̃z(d«̃ydf̃z1d«̃zdf̃y)#%

1
a2

6N2
2 @dlydmn1dmydln1dnydlm25dlydmzdnz25dlzdmydnz25dlzdmzdny#

3@dd̃yd«̃f̃1d«̃ydd̃f̃1df̃ydd̃«̃25dd̃yd«̃zdf̃z25dd̃zd«̃ydf̃z25dd̃zd«̃zdf̃y#

0
a2

15N3
2 @dlz~dmxdnx2dmydny!1dmz~dlxdnx2dlydny!1dnz~dlxdmx2dlydmy!#

3@dd̃z(d«̃xdf̃x2d«̃ydf̃y)1d«̃z(dd̃xdf̃x2dd̃ydf̃y)1df̃z(dd̃xd«̃x2dd̃yd«̃y)#

2
2ad

5)N3
2 $@dly~dmydnz1dmzdny!1dlz~dmydny2dmzdnz!#@dd̃y~d«̃ydf̃z1d«̃zdf̃y!1dd̃z~d«̃ydf̃y2d«̃zdf̃z!#

2@dlx(dmxdnz1dmzdnx)1dlz(dmxdnx2dmzdnz)#@dd̃x(d«̃xdf̃z1d«̃zdf̃x)1dd̃z(d«̃xdf̃x2d«̃zdf̃z)#%

1
d2

5N3
2 ~dlzdmn1dnzdlm1dmzdnl25dlzdmzdnz!~dd̃zd«̃f̃1df̃zdd̃«̃1d«̃zdf̃d̃25dd̃zd«̃zdf̃z!

21
a2

10N4
2 @dlx~dmxdnx2dmydny!2dly~dmydnx1dmxdny!#@dd̃x~d«̃xdf̃x2d«̃ydf̃y!2dd̃y~d«̃xdf̃y1d«̃ydf̃x!#

1
ae

5)N4
2 $@3~dlxdmzdnz1dlzdmxdnz1dlzdmzdnx!12dlxdmxdnx2dlxdmn2dmxdln2dnxdlm#

3@3(dd̃xd«̃zdf̃z1dd̃zd«̃xdf̃z1dd̃zd«̃zdf̃x)12dd̃xd«̃xdf̃x2dd̃xd«̃f̃2d«̃xdd̃f̃2df̃xdd̃«̃#

24@dlx(dmxdnx2dmzdnz)2dlz(dmxdnz1dmzdnx)#@dd̃x(d«̃xdf̃x2d«̃zdf̃z)2dd̃z(d«̃xdf̃z1d«̃zdf̃x)#%

1
e2

30N4
2 @dlxdmn1dmxdln1dnxdlm25dlxdmzdnz25dlzdmxdnz25dlzdmzdnx#

3@dd̃xd«̃f̃1d«̃xdd̃f̃1df̃xdd̃«̃25dd̃xd«̃zdf̃z25dd̃zd«̃xdf̃z25dd̃zd«̃zdf̃x#

22 1
6 @dlx(dmydnz1dmzdny)1dly(dmzdnx1dmxdnz)1dlz(dmxdny1dmydnx)#

3@dd̃x(d«̃ydf̃z1d«̃zdf̃y)1dd̃y(d«̃zdf̃x1d«̃xdf̃z)1dd̃z(d«̃xdf̃y1d«̃ydf̃x)#

23
e2

2N4
2 @dlx~dmxdnx2dmydny!2dly~dmydnx1dmxdny!#@dd̃x~d«̃xdf̃x2d«̃ydf̃y!2dd̃y~d«̃xdf̃y1d«̃ydf̃x!#

1
ae

5)N4
2 $@3~dlxdmzdnz1dlzdmxdnz1dlzdmzdnx!12dlxdmxdnx2dlxdmn2dmxdln2dnxdlm#

3@3(dd̃xd«̃zdf̃z1dd̃zd«̃xdf̃z1dd̃zd«̃zdf̃x)12dd̃xd«̃xdf̃x2dd̃xd«̃f̃2d«̃xdd̃f̃2df̃xdf̃«̃#

24@dlx(dmxdnx2dmzdnz)2dlz(dmxdnz1dmzdnx)#@dd̃x(d«̃xdf̃x2d«̃zdf̃z)2dd̃z(d«̃xdf̃z1d«̃zdf̃x)#%

1
a2

150N4
2 @dlxdmn1dmxdln1dnxdlm25dlxdmzdnz25dlzdmxdnz25dlzdmzdnx#

3@dd̃xd«̃f̃1d«̃xdd̃f̃1df̃xdf̃«̃25dd̃xd«̃zdf̃z25dd̃zd«̃xdf̃z25dd̃zd«̃zdf̃x#
n

ly

s it
to
he
m-
and

x
l~mn!ãb̃g̃

~5!
5

m̄l
10a~mn!

10

105
$Dbã~b̃g̃ !~25E114E2111E3

26E426E514E6!1Dbb̃~g̃ã !

3~4E126E226E3116E412E526E6!%.

~81!
02380
In Eq. ~81!, the mn interchange symmetry means that o
contraction withF (lã,mb̃,ng̃) only the mn symmetric part of
that tensor will feature. Thus, on contraction with the pure
mn antisymmetric tensor«lmn«d̃«̃f̃ , a null result is obtained
so that there will be no contribution froml 50. In general,
however, there will be contributions froml 51, 2, and 3, and
the relaxation dynamics will be complicated. Nonetheles
is often appropriate to employ approximations in order
simplify matters, and the occurrence of symmetry within t
molecule will also in general reduce the number of para
7-13
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TABLE III. Eigenvalues~relaxation coefficients! for diffusers of different geometry and 1< l<3.

Eigenvalue Asymmetric diffuser
Symmetric diffuser

D15D25D' , D35D i

Axial diffuser
D15D25D' , D35`

E1
(1) D11D3 D i1D' `

E0
(1) D11D2 2D' 2D'

E21
(1) D21D3 D i1D' `

E2
(2) 6D12D 2(2D i1D') `

E1
(2) 3(D1D1) D i15D' `

E0
(2) 6D22D 6D' 6D'

E21
(2) 3(D1D2) D i15D' `

E22
(2) 3(D1D3) 2(2D i1D') `

E3
(3) 15D23D212P 3(3D i1D') `

E2
(3) 15D23D312J 4(D i12D') `

E1
(3) 15D23D222P D i111D' `

E0
(3) 15D23D322J 12D' 12D'

E21
(3) 15D23D122Q D i111D' `

E22
(3) 12D 4(D i12D') `

E23
(3) 15D23D112Q 3(3D i1D') `
o

d
th

e

so
s
te
-
n
al

in

xes
cal
s in
he
er

l
hile

s is
eters required to describe the temporal characteristics. S
important examples are considered below.

A. The one-dimensional molecule

For rodlike molecules like DEANS and DMANS~Fig. 6!
a first approximation that one might consider~in common
with a prevailing tradition of nonlinear optics! is that of a
‘‘one-dimensional’’ molecule. Here the molecule is allowe
to only have nonlinear polarizability components along
symmetry axis—which relates to theD3 principal diffusion
component. Diffusional relaxation around this axis will b
infinitely fast so we may takeD3 to be infinite—symmetry
also requires that relaxation perpendicular to this axis~i.e.,
due to tumbling motions! is isotropic, i.e.,D15D25D' .
Thus only one component of the molecule’s diffusion ten
will feature at this level of sophistication. Table III show
how such symmetry assumptions affect the relaxation ra
i.e., how the general eigenvaluesEh

( l ) vary between an asym
metrical diffusion tensor, a symmetrical diffusion tensor, a
an axial ~rodlike! diffusion tensor. In the one-dimension
approximation, Eqs.~80! and ~81! indicate the following
nonzero components:

xzzzz
~3! 5

m̄z
10a~zz!

10 Dbz~zz!

105
~2E114E223E3

26E418E514E6!, ~82!

xz~zz!zzz
~5! 5

m̄z
10a~zz!

10 Dbz~zz!

105
~2E122E215E3

110E424E522E6!. ~83!

Thus inserting these into Eq.~79! and using Tables I, II, and
III we find that the contribution froml 52 disappears, the
ensuing expression for the second-harmonic intensity be
02380
me

e

r

s,

d

g

I sig~t!5kum̄z
10a~zz!

10 Dbz~zz!/525u2u7~E112E214E512E6!

3e22D't12~2E122E215E3110E4

24E522E6!e212D'tu2. ~84!

In this approximation, we have contributions only from oddl
values and we expect to find an SHG amplitude that rela
with a biexponential decay, in agreement with classi
theory treatments and also our experimental observation
DMANS @5,6#. The relaxation rates are predicted to be in t
ratio of 6:1. To observe this feature it is useful to consid
two specific polarization combinations@5#. If all beams have
linear vertical polarization in the laboratoryX direction, the
signal intensityI sig(t) takes the form

I sig
i

~t!5kum̄z
10a~zz!

10 Dbz~zz!/175u2u21e22D't14e212D'tu2,

~85!

whereas if beaml is linearly polarized at 45° to the vertica
and the horizontal component of the signal is measured w
keeping the other two beams unchanged, the intensityI sig

' (t)
is given by

I sig
' ~t!5kum̄z

10a~zz!
10 Dbz~zz!/175u2

3cos2 du7e22D't22e212D'tu2. ~86!

The ratio of the amplitudes associated with these signal
hence

r ~t!5AI sig
i

~t!/I sig
' ~t!5U 2114e210D't

~722e210D't!cosdU
'U2114e210D't

722e210D't U ~87!
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for small anglesd. The agreement between Eqs.~85! and
~86! and experiment is not good in the case of polar solve
@5#—these equations predict a biexponential SHG amplit
with decay rates in the ratio 6:1, as against experime
observations in THF where biexponential decay has b
recorded with relative decay rates nearer to 40:1@5#. Evi-
dently, there is a fast relaxation channel not manifest in
simple one-dimensional model. The temporal variation or,
however, has been reported previously for DMANS and t
agrees well with Eq.~87!. This observation, along with mea
surements in nonpolar solvents, has been used as evid
for a time- and solvent polarity-dependent hyperpolariza
ity @5,6#, Dbz(zz)5Dbz(zz)(t). An alternative explanation
might be that the one-dimensional model may break do
for a real molecule like DEANS. Next we shall look at th
consequences of relaxing such constraints.

B. Linear molecules

The one-dimensional model is clearly very primitive—
even a linear polar molecule in an optical field possesse
addition to its transition dipole momentm5mz

10, three non-
vanishing polarizability componentsa i5a (zz)

10 and a'

5a (xx)
10 5a (yy)

10 , and seven nonvanishing hyperpolarizabil
components@27#, Db i5Dbz(zz) , Db'5Dbz(xx)5Dbz(yy) ,
Dbx5Dbx(zx)5Dbx(xz)5Dby(zy)5Dby(yz) . Introducing
these components in Eq.~79! produces the following expres
sion for the SHG intensity:
o
fo
e

x-
po

w

ne
r

02380
ts
e
al
n

e

s

nce
l-

n

in

I sig~t!5kum i/525u2u7K1e22D't12K2e212D'tu2, ~88!

where the polarizability and field-dependent constants
given by

K15F a iDb i

a'Db i

a iDb'

a'Db'

a iDbx

a'Dbx

G T

3
1 2 4 2

4 22 24 8

4 8 24 22

16 28 4 28

22 24 12 6

28 4 212 24

4 F E1

E2

E5

E6

G ,

~89!

K25~a i2a'!~Db i2Db'22Dbx!

3~2E122E215E3110E424E522E6!. ~90!

Recomputing the ratio given in Eq.~87!, assuming cos2 d
'1, we obtain

r ~t!5AI sig
i

~t!/I sig
' ~t!5UR114e210D't

R222e210D'tU, ~91!

where
R15
7~9a iDb i16a'Db i16a iDb'14a'Db'112a i Dbx18a'Dbx!

3~a i2a'!~Db i2Db'22Dbx!
, ~92!

R25
7~6a iDb i14a'Db i26a iDb'24a'Db'118a iDbx112a'Dbx!

6~a i2a'!~Db i2Db'22Dbx!
. ~93!
For the one-dimensional model onlya i andDb i are nonzero
and these reduce toR1521 andR257 as required. Devia-
tions from these values are to be expected for any real m
ecule undergoing rotational reorientation. One may there
ask how sensitive these quantities should be to the shap
the relaxing molecule.

For an initial exploration of this complex issue let us e
amine a model wherein each nonaxial polarizability com
nent bears the same ratio to the axial component—thus
suppose thata'5qa i andDb'5Dbx5qDb i , whereq is a
parameter reflecting the divergence from the o
dimensional axial model (q50). In terms of this paramete
we find that the signal intensity takes the form

I sig~t!5kum ia iDb i/525u2u7K18e
22D't12K28e

212D'tu2,

~94!

where
l-
re
of

-
e

-

K185F 1
q
q2

G TF 1 2 4 1

6 2 4 12

8 24 28 16
GF E1

E2

E5

E6

G ~95!

and

K285~12q!~123q!~2E122E215E3

110E424E522E6!. ~96!

Using these expressions we find that the intensitiesI sig
i (t)

and I sig
' (t), described by Eqs.~85! and ~86!, respectively,

take the form

I sig
i

~t!5kum ia iDb i/175u2u7~112q!~312q!e22D't

14~12q!~123q!e212D'tu2, ~97!
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I sig
' ~t!5kum ia iDb i/525u2u7~112q!~312q!e22D't

26~12q!~123q!e212D'tu2 cos2 d ~98!

and so, again assuming cos2 d'1, we have

r ~t!5U21~112q!~312q!112~12q!~123q!e210D't

7~112q!~312q!26~12q!~123q!e210D't U.
~99!

The variation of this ratio is shown in Fig. 4 for a range
q values. We see that even a small deviation from the o
dimensional model will lead to temporal characteristics s
nificantly different from those predicted by the on
dimensional model. Figure 5 shows the results of a fit to E
~97! and~98! of data collected from a solution of DEANS i
mesitylene@6#. The data were not collected under the str
gent conditions required to generate a meaningful ratior (t),
but the fit to the individual amplitudes is seen to be good a
yields a consistent value for the parameterq50.017
60.007. Although the error here is large, the value ofq is
significantly different from zero. Thus, although the analy
implies an axialDbzzz component 42–100 times larger tha
the other nonzero components, it is apparent that the s
off-axial components do significantly affect the dynamics
therefore has to be assumed that a similar conclusion w
be drawn in any more detailed representation.

C. A nonlinear model

The nonlinear model that we shall consider, illustrated
Fig. 6, allows for distinct diffusion coefficients to be asso
ated with each of the three axes. The molecule is treated
planar and, for the evaluation of polarizabilities, ofC2v sym-
metry. The components of the polarizability tensors that
nonzero are thus@28#:

m i5mzz, a i5a~zz!
10 , a'

~1!5a~xx!
10 , a'

~2!5a~yy!
10 ,

FIG. 4. Variation of the ratior (t) @Eq. ~99!# for different q
values. A diffusion coefficientD'52.031023 ps21 has been as-
sumed as appropriate for a solution of DEANS in mesitylene.
02380
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Db i5Dbz~zz! , Db'
~1!5Dbz~xx!5Dbx~xz!5Dbx~zx! ,

Db'
~2!5Dbz~yy!5Dby~yz!5Dby~zy! .

FIG. 5. The time dependence of the SHG amplitudes for t
different polarization arrangements for a solution of DEANS
mesitylene:~s! are the measured data for all vertical polarizatio
and~d! for beams 1 and 2 vertical, beam 3 at 45°, and detection
the horizontal component of beam 4. The solid lines are fits to E
~97! and ~98! using D'52.031023 ps21, yielding q50.017
60.007.

FIG. 6. A simple nonlinear geometry used to model the dyna
ics of the DMANS molecule.
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For this model the second-harmonic amplitude decays
triexponential:

I sig~t!5ku f faste
2~15D23D i12J!t1 f inte

2~15D23D i22J!t

1 f slowe2~D'
~1!

1D'
~2!

!tu2, ~100!

where the terminology of Table I has been used so that

D5~D'
~1!1D'

~2!1D i!/3 ~101!

and

J254D'
~1!2

14D'
~2!2

1D i
227D'

~1!D'
~2!2D'

~1!D i2D'
~2!D i .

~102!

Here D'
(1) and D'

(2) represent diffusion coefficients corre
sponding to tumbling motions andD i is associated with ro-
en

a
re
e

02380
atation about the molecular spine. In Eq.~100! the preexpo-
nential coefficients are labeled in such a manner as
indicate the relative rates of the decay terms. Indeed, as
diffusion coefficients approach the linear case, we have fr
Table III

15D23D i12J →
linear

`, 15D23D i22J →
linear

12D' ,

D'
~1!1D'

~2! →
linear

2D' .

However this more sophisticated model is capable of
counting for the occurrence of an additional decay com
nent in the six-wave mixing data that are expected for m
ecules of arbitrary shape.

The preexponential coefficients in Eq.~100! are given by
f slow5
m i~Db'

~1!1Db'
~2!1Db i!

75
$a i~E112E214E512E6!1~a'

~1!1a'
~2!!~2E12E222E514E6!%, ~103!

f int5
m i~2E122E215E3110E424E522E6!

1050~15s211!
$3a'

~1!Db'
~1!~s11!223a'

~1!Db'
~2!~s221!22a'

~1!Db i~s11!

23a'
~2!Db'

~1!~s221!13a'
2 Db'

~2!~s21!212a'
~2!Db i~s21!26a iDb'

~1!~s11!16a iDb'
~2!~s21!14a iDb i%,

~104!

f fast5
m i~2E122E215E3110E424E522E6!

210~15s211!
$a'

~1!Db'
~1!~3s21!21a'

~1!Db'
~2!~9s221!22a'

~1!Db is~3s21!1a'
~2!Db'

~1!

3~9s221!1a'
~2!Db'

~2!~3s11!222a'
2 Db is~3s11!26a iDb'

~1!s~3s21!26a iDb'
~2!s~3s11!112a iDb is2%, ~105!
st
re-
ion
ous
ex-
the
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or-
the
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een
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x-
ed
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he
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r a
wheres is a diffusion parameter defined as

s5
~D'

~1!2D'
~2!!

2J2D'
~1!2D'

~2!12D i

. ~106!

For symmetric diffusersD'
(1)5D'

(2) ands disappears. Table
III indicates that for such molecules the fast decay coeffici
will be 4(D i12D'). Equation~105! also reduces to

f fast5
m i~2E122E215E3110E424E522E6!

210

3~a'
~1!2a'

~2!!~Db'
~1!2Db'

~2!!. ~107!

The fast term thus disappears in the one-dimensional
linear models, but a fast component in the orientational
laxation may well arise for more complex molecular shap
t

nd
-

s.

V. SUMMARY

A quantum-electrodynamical treatment of an ultrafa
time-resolved six-wave mixing experiment has been p
sented. Consideration of the interference of two excitat
pathways leads naturally into a description quite analog
to the classical transient grating picture of time-resolved
periments. It is, however, straightforward to incorporate
polarization dependence of the signal into the QED treatm
@16#.

To account for the time-resolved data we have also inc
porated into the analysis the population dynamics and
dynamics of diffusional reorientation. The reorientational d
namics are complex but several limiting cases have b
treated. For a one-dimensional molecule the decay of
six-wave signal is predicted to follow biexponential rela
ation with a 6:1 ratio of relaxation times. This is as observ
experimentally. However, it has also been shown that
allowing for the existence of nonaxial components of t
polarizability, somewhat better agreement with experimen
obtained. It has furthermore been demonstrated that fo
7-17
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molecule characterized by three different diffusion coe
cients the dynamics may exhibit a triexponential form. Th
the theory presented is capable of correctly accounting
the rotational dynamics of molecules of arbitrary shape,
served through six-wave mixing. Future applications will i
clude a more detailed study of the polarization depende
of the reorientational dynamics. In addition we plan to inc
porate into the theory the possibility of nondiffusive~libra-
m

ys

pt

m

s.

ys

.

m

02380
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tional! orientational motion, as well as the possibility of
time-dependent hyperpolarizability@5#.
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