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Nonlinear behavior of weakly anisotropfeecton lasers with fast material dynamicslassA laser$ con-

taining an anisotropic Kerr-type nonlinear material inside the cavity has been theoretically explored. Among

interesting periodic amplitude-polarization dynamics, such vector nonlinear systems exhibit important features
which are promising for progress in the elaboration of simple, inexpensive, and highly sensitive methods of

measurement. In particular, it is shown that under stationary laser operation, the turning angle of the polariza-
tion plane of the emitted field is a unique measure of the field-independent anisotropy of the Kerr material. In

contrast, dynamical features of the system behavior reflect solely influence of the third-order Kerr nonlinearity.

As a consequence, the modulus and sign of the coefficient of this nonlinearity can be determined when a
linearly polarized laser mode is destabilized at the corresponding Hopf bifurcation point. Accuracy and sen-

sitivity of the measurements in this system can be enhanced by the bistability phenomenon, which is an
inherent feature of vector lasers. The dynamics of this system subject to the action of a longitudinal magnetic
field is also investigated.

PACS numbse(s): 42.55.Lt, 42.60.Mi, 42.65:k, 42.25.Ja

I. INTRODUCTION ing their propagation in a nonlinear mediuf,3]. While

Continuing interest in lasers is a consequence of progreshese optical nonlinearities are familiar in conventional non-
in guantum electronics, which leads to the development ofinear optics, i.e., when the laser field is used as a source for
new laser devices and new applications that use lasers. R#tense light, their effect on theonlinear dynamicsf vector
cent achievements in nonlinear dynamics reveal new horilasers containing nonlinear material inside the catiityad-
zons for laser applications: numerous nonlinear laser systengitional to the material of the gain mediuns practically
might be effective tools for solving inverse problems Whenunexplored_. Actually, the synthesis of the problem of nonlin-
relevant information about inherent structure of these sys€@r dynamics of vector lasers and the problem of saturable

tems is extracted from the laser output parameitgfsFur- ~ OPfical anisotropies constitutes a new class of challenging
thermore, results of such investigations should be not nece§PI€ctives having large potential for applications. It should
f e also emphasized that this class of problems can be an

sarily limited to laser physics. Indeed, many systems Alhtrinsic problem for certain lasers, as, for instance, for fiber
known to undergo the same nonlinear phenomena irrespe%sers P e '

time and/or cost consuming. An advantage of lasers is a reldam for further progress in inverse methods of measure-
tively easy measurement of parameters of the laser field. ments. Because vectorial degi®eof freedom in lasers con-
However, most of the previous works have emphasize@jderably complicates their behavigf], significant progress
the nonlinear behavior of so-called scalar laser systems. lgan be achieved even in the simplest case of a dd<s-
these systems the emitted laser field is assumed to have cector laser. Recall that corresponding scalar analogs do not
tain fixed polarization because of strong anisotropy of eitheexhibit any remarkable dynamics at gfl]. The most famil-
the gain mediungas in the case of solid state or glass lasersjar and widely used lasers of this type are He-Ne lasers.
for instance or the laser cavityas in the case of a laser with Moreover, these devices are rather convenient tools for ex-
Brewster angle windows This is not the case for modern perimentalists since they are readily available, cost effective,
commercially available lasers with axially symmetric archi-and can be easily managed. In this work we study theoreti-
tecture. The most notable are vertical cavity surface emittingally nonlinear dynamics of such a laser containing a cell
lasers(VCSELS, fiber lasers, microchip lasers, and weakly filled with anisotropic Kerr-type nonlinear materig]. We
anisotropic gas lasers with windows placed orthogonally teshow that a whole complex of stationary and dynamical phe-
the resonator axis. The design of these lasers permits theomena exhibited by this system suggests relatively simple,
polarization state of the field to evolve almost freely. Thushighly sensitive, low cost- and power-consuming methods of
the polarization(vectoria) degree of freedom can be an es- measurement of the material anisotropies. It is worth noting
sential factor in their dynamics, raising an interesting prob-that while measurement of the third-order nonlinearities is a
lem of its impact on progress in the development of inverseather old problem, it is still of interest because of numerous

methods of extracting information. experimental difficulties extracting desirable information
On the other hand, it is well known that intense optical(see Ref[7] and references thergin
(lase) fields may induce field-dependent chandes, inten- The remainder of this paper is the following. Section Il is

sity and polarization sensitiyén their polarization state dur- devoted to the description of the theoretical model. In Sec.
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M,

[l we discuss the behavior of the laser steady states, the f
mode stability and time-dependent regimes. The dynamics of

this system subject to the action of a longitudinal magnetic
field is investigated in Sec. IV. Finally, in Sec. V the main

conclusions are summarized. M,

7> I
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FIG. 1. Scheme for the nonlinear laser system considered in the
work. M; andM, are the mirrorsA andK are the Jones matrices

Theoretical treatment of the problem is based on the Joned the bare laser cavity and the Kerr cell, respectively. The arrow
matrix and vector approach, which has been discussed i#hows the forward direction for the field propagation.

detall in Refs[6,8,9]. According to that method, the electric ] )
field, considered in the usual plane-wave approximation, i§n€nt with controllable anisotrofyL1]. Thus geometry of the

described by the Jones vectBr setup will be as depicted in Fig. 1.
Because the effect of the cavity and the gain medium can

be taken into account additively, we can focus on the cavity
g lot’ anisotropy alone. Later, the rate of change of the electric
field due to the cavity will be added to the lasing equations.
For the laser configuration shown in Fig. 1, the cavity overall
whereE,, (E.) ande,, (¢-) are the slowly varying am- matrix, which includes all anisotropies except the nonlinear
plitudes and phases of the two orthogonal components of thgnisotropy of the gain medium, can be written in the follow-
electric field in the Cartesiaftircularn basis;w is frequency ing form:
of the laser field, antl’ is time in seconds. Alternatively, the
Jones vectoE can be expressed in terms of the field inten- A, =K ALAK=K,AK; . 2
sity I=E".E (E" is the Hermitian conjugate vector &),
ellipticity angle 8 or, equivalently, ellipticity é=tanhg  Here subscriptf (b) refers to forward(backward matrix.
=(E.—E_)/(E;+E_), and azimuth of the long axis of the The Jones matrixA of the anisotropic element with aligned
polarization ellipseP= (¢, — ¢_)/2. In the Cartesian basis amplitude and phase anisotropies in the Cartesian basis is

it takes the form 8] .
- (P 0 ) (e O
el [ 1 [cog®+ip) | o p,e 4 =< 0 &, @
~ Vcosh 28| sif®+ip)

Here ¢'=(¢, +¢_)/2 is the mean(globa) phase of the
electric field, and time is expressed in round-trip unitg (

=t"c/2nL, wherec is the light velocity andhL is the optical sorption in the cavity. Any anisotropy in the (y) direction

length of the laser cavily d b A is th ity i h
Each anisotropic element inside the cavity, including the €AUCER (py). Parameted is the cavity linear phase an-

gain medium, can be described by & 2 Jones matrix. Be- isotropy which is measured in radiatfsr example, there is

cause these matrices do not necessarily commute, the orde? phase anisotropy whe=0, whereasA = /4 corre-

of all the anisotropic elements in a laser is significant. To ﬁXsponds tcl’ a quadrter wave pI}ate. - 4K .
the geometry of the problem the following assumptions are. €t let us determine matricé$; and K. Assuming
done. First, the laser resonator is of a FabryePg/pe. Sec- that the decay rate of the nonlinear polarization of the Kerr

ond, the laser gain medium is placed next to the isotropic angtaterial is much larger than the decay rate of the laser field,
fully reflecting mirror. It is worthwhile to note that this is the WNIich can be readily met in class A lasers, overall phase
approximation, which enables an additive contribution of theSNifts Of left (=) and right (+) circularly polarized(CP)
field-dependent gain medium anisotropy and the anisotrop9°mp°nents_ of t_he laser field in the Kerr cell can be consid-
of the cavity[6], which is a typical situation in the models ©réd to be time independent and expresseffd,13

based on the Lamb approagh0]. Third, a Kerr cell with 1-B
nonlinear material is placed next to the gain medium. Fourth, b= P+ Y| ——|E.|?+
an auxiliary linearly(i.e., in the Cartesian bagianisotropic B 2
element is incorporated into the resonator. The role of the i OA . i .
latter element is twofold. On the one hand, without this ele-Here the first term ¢:7) describes field-independent phase
ment an effect of the optical anisotropies of the Kerr materiaPhifts of the CP components of the laser field, which can
in such a laser configuration would disappear. On the otheRPP€ar due to the effect of natural optical activity in the Kerr
hand, it is quite natural to incorporate such an element sincBaterial. The second term provides nonlinear phsase accumu-
in most cases the cavity optics is not perfect specifically in@tions.|” is the length of the Kerr celly=8mwx{3)/noc;

the Cartesian basis. Furthermore, under certain conditiong is the linear refractive index = x{3/x{1; xi2h and
these numerous anisotropies, which are normally spreagi3;; are components of the susceptibility tensor of rank 4;
throughout the cavity, can be replaced by an effective elelE.|?> (JE_|?) is the intensity of the rightleft) CP compo-

Il. LASER MODEL

EX(+)ei‘Px(+)

Ey()e'Ho

ei("’"“"). (1)

wherep, , are the amplitude transmission factors of the reso-
nator for two orthogonally polarized laser modes, i.e., they
are quantities within the rang®,1]. Their maximum values,

i.e., px=py=1, correspond to the absence of anisotropic ab-

1+B

T|E:|2 . ®
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nent, which can be expressed in terms of the total field inConditions(8) and(9) allow us to employ the same model as

tensity | and ellipticity angleg as

, exp=2p)
- 2coshPB

|E-|

Then matrices(; andK, in a circular basis read
0
exFidg))

IA(f(b) = ex%
5

where the upperlower) sign corresponds to the forward
(backward matrix. In Eq.(5) the following notations have
been usedAy=A_—yI’Bl(tanh2B)/2 and 2A.=$%"
+ O,

Substituting expression®) and (5), written in the same
frame, into expression2), the cavity Jones matrix in the
Cartesian basis takes the form

exp(£iAg)
0

"]
+ia,+i Y

2

sin 2A ¢
—cos2Ay/’

81+82? 81_82 COSZAK
2 2 \sin2Ag

Ar: (6)
wherel is a unit 2<2 matrix. As one can see, the field-
independent and nonlinearsotropic phase shift A,
+yl'1/2) has been explicitly disappeared from the cavit

matrix A,, which is an advantage of the FabryrBelaser
cavity geometry.

in Ref.[6]. For a laser subject to the action of a longitudinal
magnetic field(so-called Zeeman lasers is given by Egs.
(30) in [6] (it is not repeated here for the sake of compact-
nes$. Properties of the Kerr cell in the equations are simply
regarded by the parametdr’'=® — ®, of that model.
Actually, the parameter of the third-order nonlinearity is
rather small and for many materials it ranges from o
10" esu(or from 10 2% to 10 2! SI) [3,15. Meanwhile,
the average intensity of a cw laserlis 10* Watt m 2 [16]
and |tanh 28/<1. Hence, our laser model can be simplified
by expanding trigonometrical functions containing terms
with optical nonlinearity in series and keeping only terms of
the first order. The field intensity must also be properly
rescaled

(3)

yI’Bltanh23 4l "Bxii

Jtanh 28

7o XS
4] ’X(S)
=— — 21223 ¢anh 28= — B, J tanh 28,
|X(3)
m
where By=41"x3,(1x®) "t is a new nonlinearity

parameter, which is proportional to the ratio of the
yKerr to gain media third-order nonlinearitiesy >’
= 7N |d1] 983K Uy y2; Ku=Awp/(24IN2); Awp is
the width of the Doppler profile at half-amplitudi,,,= N,

To complete with the rate of change of the laser field due_ N1 i the difference between the populations of the upper
to the cavity, we need to know eigenvalues and eigenvector®) and lower(1) levels in the absence of lasing and sponta-

of matrix (6). It is easily seen that the eigenvalues Ayf

remain the same as in the case of the absence of the Kef

cell, i.e., they ares; ande,. Eigenvectors, , (or, equiva-
lently, f; =®,,+i8;,) can be conveniently found using
the following formulag8,14):

a;pta

o= ol Dpti(B )] (D)
11 22

app—ay  co§ PPy +i(B1—B7)]

ap—ay;  SIN@+P,+i(B+B2)]

Herea;; are the elements of matri6). The second expres-
sion in Eq.(7) implies that
(I)l—(D2=i7T/2, BIZBZ' (8)

Since the parameté is real, the first expression in E(Y)
gives
b,=7/2+A_—yl'Bl(tanh 28)/2, B1=B,=0. (9)

Recall thatl and 8 are instantaneous parameters of the las
field. Expressiond8) and (9) explicitly establish that the

neous emission from the level 2 to the levekhlis the Plank
anstant;|d12| is the normalized matrix element of the elec-
tric dipole moment of the lasing transitio; andy, are the
population decay rates of the levels 1 and 2, respectivédy;
the gain medium length; ant=21|d,,|%/3% v, v, is rescaled
intensity of the laser field.

Finally, the master lasing equations become

J=4)P—JP,Re(M _ tanh 23+ M, ) +tanh 28 ReAW}/ P,
—2vypJ{(1—cos 2b"/cosh 28)/ 1,
+ BgJ tanh 28 sin 2d"/cosh 28},

B=—{vp cos 2b" sinh 28+ wp sin 20" cosh 28}/ 7,
—2JReM _+2(ReAW)/Py+By{ vp sin 20" sinh 28

— wp cos 2b”cosh 28}J tanh 28, (10

®=—{ypsin 20" cosh B— wp cos 2b" sinh 28}/,

+2JImM _—2(Im AW)/Py— By{ yp cos 2b" cosh 28
+ wp sin 20" sinh 28} J tanh 28.

er

eigenmodes of the considered laser system are orthogonal
and linearly polarized. It is worth noting that the polarization Here the overdot means a derivative with respect to rescaled

azimuth of the cavity eigenmodk; (or ®,) behaves just as

time r=t7y; ®"=®d—A_; P=U—7"1; Uis areal part of

it does when a strong linearly polarized optical field propa-the complex error function which governs the laser gain;

gates through a Kerr cell placed outside a laser cd%$l.

0238

7~ ! denotes isotropic lossegp+iwp=1/2—¢,/2e,; M.
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={F,e 2P+F_e?P+(Sy+ Sp)e?P+ (S Sp)e 2Pl/cosh . Jy=(PIPo—yp/79)IR.Cy, By=0, @ —A_==m/2.
Note, pzﬁameter§A_ED+a_+G+a; _SBED,bJr G_p:, Sc (12
=D, +G.p; Sp=D_,+G_, andF.. are independent of The first conclusion is that the presence of the términ
the laser field amplitude-polarization parameters Eq.(12) is the only difference of these solutions with respect
2= o to the LP states of the laser with no Kerr cell.
D. .= ['_+ D.i=a L+ L7(+2Ap) Similar to the problem of a bare weakly anisotropic laser,
ra T =T I'FiAg ’ the linear stability analysis of the LP solutiofis?) reveals
that the full set of linearized equatiofsr the corresponding
— Ly — L Jacobian matrixcan be separated into two subsets. The first
Gra=ary 75 Cev=aspiiz subset, which represents the scalar degree of freedom, leads
- - to a single real intensity eigenvalug for each of the two
_ LO(F2A}) 9 p{ ( 5 ) 2] LP states
=, a+=—eXp —| .
- I'+iss 4 Ku Nf=—4P/Py, (13)
Here 5.= 0% A[; 6=w— wq is the atomic detuningp is N = —4(PIPy— yp! o).

the frequency of the center of the gain profilg

=g, 1gB; g, is the Landefactor, ug is the Bohr magneton, These eigenvalues are associated with ordinary behavior of
B is the magnetic-field strengthj2is the homogeneous pro- the laser field in many scalar class A lasers. They determine
file width; £.=£©13x£Wp2+,£@6 and £K®(x)  the stability of thex- andy- laser modes with respect to the
=3 1K) (Y +ix) "t = La(k) (Y0 +ix)"1(»5)+ix)"1.  perturbation of the mode intensity. In other words, they de-
The angular-momentum functionis, (k) are expressed in fine first laser threshold, i.e., onset of the laser emission,
term of the § Wigner’'s symbolg9]; k denotes the tensorial when the laser gain becomes larger than the cavity losses.
orders, which are scalak&0), vector k=1), and tensor Asymmetry in expressiond 3) is owing to the fact that the
(k=2). Scalar, vector, and tensorial parameters in the lasgnode is considered to be always tuned to the resonance
are the total population of upper and lower manifolds, andvhile the frequency of thg mode has an offset proportional
the atomic magnetic dipole and electric quadrupole, respedo the cavity anisotropy offset.

tively. 7(1'% are the corresponding decay rates. In the follow- The second subset characterizes the vectorial degree of

ing we will assume that; .= ¥{%=1{%= {3 . Explicit ex- ~ freedom and provides a pair of polarization eigenvaligs
pressions for other parameteré used in ﬂ(ﬁ)) are given in

Refs.[6,9]. )\é,az[_Z'YP_ZJ)I(RrCZ_wPJ),(BK

+Jopt+ 0pd By (wpd B +4J.R,Co+4yp) ]/ 19,
ll. STEADY STATES AND DYNAMICS OF THE LASER
SYSTEM WITH NO MAGNETIC FIELD (14)

To get insight into the physics of nonlinear phenomena N} ;=[+2yp—2J;R,C,+ wpJyBy
exhibited by the system, in this section we assume that the
magnetic field is absent. Mathematically this means Mat
in Eq. (10) is zero. Self- M) and cross- i _) saturation -
coefficients for this case considerably simplifj Here w,gx(y):4Jx(y)Rr2C§—4w,%I8pr)’((y)RmC2 is the
saturated frequency of the polarization relaxation oscillations
for the x- (y-) mode in a laser with no Kerr cell; the upper

*\wpy+ 0pd,Bi(wpd)Bx—4J/R.Cot4yp) /7.

M. =RC;=3(y1+ y2)Rexp{— sz HL1(0)+2L(2)}/T,

(11) (lowern) sign in wp,, denotes thex (y) mode; Jy,,
_ _ _ = Todxy) -
M_=RC,tanh25=9 tanh 25(y, + y2)Rexp| 62"“} It can be seen that in agreement with E®), amplitude-
X{Ly(1)—L(2)}M2T. polarization parameters of the emitted LP laser field do not

depend on the strength of the Kerr nonlinearity. Furthermore,
HereR=R,+iR,=1+(1—i6/T")/(1+ §*T?), R, andR,,  neither the intensity nor the ellipticity of this field is affected
are real, anddy,= 6/Ku. by the field-independent anisotropy () of the Kerr cell.
Lasing equations in the absence of the magnetic field adJnlike this fact, polarization azimuth depends linearly on
mit both elliptically polarized(EP) and linearly polarized A_. This azimuth behavior is similar to that found in con-
(LP) solutions. Due to the fact that the EP solutions exist inventional experiments in nonlinear opti@3]. However, an

a very narrow domain of phase spd6el7] which, in addi- impressive feature of synthesis of the problems of vector
tion, is hardly accessible experimentally, we will not focuslasers and vector nonlinearities lies in the fact that these non-
on them. linearities do affect thetability of the LP laser modes. Thus,
The LP solutions of the problem are it can be said that such a vector laser system sets apart con-
tributions of the field-independent anisotropy and non-
J,=PIPyR,C;, B4x=0, d,—A_ =0, linear Kerr anisotropy naturally, without any further compli-
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cation of the experimental setup. Consequently, this so kL " ' '
phenomenon can be employed for measurements of thes N
optical anisotropies that will be discussed at the end of this
section.

Equations(14) admit both pitchfork and Hopf bifurca- 100 |
tions. However, expressions for the pitchfork bifurcations of
the x andy modes do not contain the nonlinearity parameter
Bk and, in effect, they are precisely the same as for a lase
with no Kerr cell. Since their analysis can be found in Ref.
[6], we will not concentrate on them.

In contrast, the Hopf bifurcations do depend®p. They stable  <TFe
are subject to the following conditions for tkeandy modes, oL ! . ! . ! . LT
respectively: 1.30 1.35 1.40 1.45 1.50

(a) ]

¢ -~

"ll‘ly \

) ‘\ J
\

\:0 .04 y-mode

) stable

AR
AR
M\

ARY
-0.01%:0.02 -0.0
AN

k)
<

2yp+2J;R,.Co+ wpByJ,=0, (15) 300 ; % — :
(b) [ y-mode . .-

instability

! stable
)

2yp—2J.R,.Cr+ wpByJ!=0. '
YpT SyPreaT OpBKYy 200 0.9995| —0.999 0.998

With no Kerr nonlinearity Bx=0), Egs. (15 recover the

results of Ref[6], giving no possibility of Hopf instabilities  «

for the x mode whenC,>0 (j—j’+1 lasers. In fact, our ® 100
problem can be even naturally restricted assuming@has

positive because this is the case for most of the commercially
available He-Ne lasers. Whey # 0 the first expression in stable g
Eq. (15) is no longer strictly positive. Hence both of them I \
can cross zero defining instability thresholds for both modes , ! , ! , |

-100
-0.06 -0.04 -0.02 0.00

Bl =—2(yp+JR,|Cl)/ wp}, (16) A (rad)

FIG. 2. The Hopf bifurcation points of the LR (continuous
lines) andy (dashed linesmodes and the values &) (dashed-

. . . dotted lineg are shown in the subspaces,(Bx) (a) and (A, Bk)
Careful inspection of the expression Bf reveals that the (b) for different magnitudes of the phaga and the amplitudéb)

mode can be destabilized only for certay for which  nisotropy(given in the figure Other free parameters are fixed at
sin 2A is not complex. The minimum value of this parameter s— g andp=0.998(a) and »=1.33(b). The remaining parameters
when sin A is still real is are the same as those adopted in Sec. Ill. Note, the dashed-dotted
curve in(a) is barely perceptible. The (y) LP laser mode is stable
BIN= + 2\1- p?+4J.°R?C5+4J/R,|C,|/J.p, (17)  “below” (“above”) the corresponding continuotdashedcurves.
The bistability and the instability domains are pointed by arrows
where the parameter characterizing the amplitude anisotropyith two arrowheads.
has been denoted @s=p, /p,.
For numerical illustration this problem must be quantita-sented in the g, By) and (A, Bk) planes. The curves in Fig.
tively specified. For the sake of definitenessjal—j’ 2(a) are plotted for several values df given in the figure
=2 He-Ne laser operating at=1.15 um will be consid- and fixed amplitude anisotropy & 0.998). In Fig. 2b) pa-
ered. This laser transition is characterized by the angularametern was kept fixed aty=1.33 while several curves are
momentum functionsL,(0)=1+, L,;(1)=2, and L,(2) depicted for different values @f (also given in the figune In
= 355. Other parameters of this laser are taken frgi8]:  both these figures thex (y) mode is stable “below”
Ku=480 MHz, '=95 MHz, y,=49.92 MHz, andy, (‘above”) continuous(dashed curves.
=45.12 MHz. The key free parameters for numerical calcu- Figure 2a) shows that bifurcation values @&y rapidly
lations in this work will be the phase anisotropy the pa- increase for both modes as the laser net gain decreases, or,
rameter of the amplitude anisotropy detunings, and laser ~ equivalently, the lossesy( ) increase. This can be easily
isotropic lossesy™t. These are the parameters that can beunderstood because for lower intensity the Kerr nonlinearity
readily controllable experimentally. Since the expressiondecomes weaker. DependenceB@fandBy on the anisotro-
(16) and (17) remain unchanged wheA (wp) and By piesA andp is not so simplgFig. 2(b)]. In the limit of small
change their sign simultaneously, only negative paramete@mplitude and phase anisotropy, the dominant factor in de-
of the phase anisotropy will be explored in this section. Alltermining the critical value oBy is the denominator in Eq.
results for positiveA (wp) can be simply obtained by (16). This explains the rapid grows d8g’ when A ap-
changing the sign oBy to the opposite sign. proaches zero. Physically this occurs because of progressive
In Fig. 2 the Hopf instability boundaries for theandy = compensation of the optical effects in the Kerr cell due to
modes of the tuned to the resonan@=Q) laser are repre- Fabry-Peot geometry of the laser system when the anisot-

Bl = _2(7P_J§/Rr|C2|)/wPJ),/-
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y-mode

\—" “stable

instability

>
=
=
<
=
@
=

B, @(rad)

100 -

periodic behavior

) < bistabilty .- -
50 stable il T Rt o e . 4 ) . ) . ) .

03 02 -0 0.0 0.1 0.2 03 55 75 95 115

FIG. 3. The same as in Fig. 2 but in the subspagg, ( Bk). (b)
The free parameters are fixed at=1.33; A=—0.017 rad ancp
=0.999. I Nt |

ropy of the cavity amplitude-phase plate goes to zétig.
1). Increasing the amplitude anisotrofiye., decreasing)
makes the change @) and B}, to be smoother for small
|A|. A qualitative change in the behavior &f for small
amplitude anisotropjfor p=0.9995 in Fig. 2b)] is owing to
an interplay among the cavity lineay4) and gain medium
nonlinear (J,R,C,) anisotropies which enter in the stability
criteria (15) with opposite signs. Thus, small cavity phase 4 - ! - ! -
anisotropy is an unfavorable factor for the appearance of 50 100 150 200
instabilities. IncreasingA|, the sensitivity of the laser sys- Bk
tem to the K'err 'nonIir.learity increasgs. Hc.>wever,. relativgly FIG. 4. One parameter diagram of the ellipticity parameger
large|A| again gives rise to progressively increasing the in-(ontinyous linesand the polarization azimutfdashed linesas a
stability threshold due to the dominant role of the polariza-fynction of the nonlinearity paramet&y for =0, 7=1.33, p
tion decay rateyp (yp>RC;, wp) for large|A|, although,  =0.999, anda) A=—0.025 rad andb) A=—0.035 rad. Lower
this growth is not as sharp as in the case whehis small.  (uppej curves show maximéminima) of the variables.
Figure 2Zb) displays that thext mode has a larger domain in
which it takes minimal values dB than they mode. This  modes are stable. Numerical integration of the laser equa-
follows from our definition that the cavity losses are alwaystjons shows that in such a case the system always switches to
larger for they mode. As is expected, the instability thresh- the alternative stable LP mode when one of them undergoes
old for the x mode increases as the amplitude anisotropy, Hopf bifurcation. The limit cycle attractor emerging at the
Increases. Hopf bifurcation point becomes immediately unstable. Sec-
The detuning dependence Bf andB again exhibits a  ond, for largeA|, | 8], or small there are domains in which
drastic reduction in the sensitivity of the laser system to the\either one of the LP modes is stable. For this case destabi-
Kerr nonlinearity at critical values of the control parameter,jization of the stable LP steady-state leads to time-dependent
i.e., at the line edges. A representative example of this degser output with periodic oscillations of the field intensity
pendence is depicted in Fig. 3. Rapid growthBjf as de-  and polarization parameters.
tuning increases, seen in the figure, is due to two factors:  Figure 4 illustrates the development of the periodic insta-
the first laser threshold for themode is larger than that for bilities, showing the amplitude of the oscillations of the laser
the x mode [see (13)] and (ii) the gain medium nonlinear field polarization parameters, as the control paramBier
anisotropy interferes destructive(jncreasingBy) with the  varies. Figure @) depicts a situation when a limit cycle
Kerr nonlinearity. The curve dBy is rather flat for small and attractor develops from the Hopf bifurcation of tkenode
moderate § although two symmetrical abouf=0 local and vanishes at the Hopf bifurcation of tiienode. In Fig.
minima are clearly visible. This feature is of importance 4(b) periodic behavior persists until relatively large values of
since the local minimum carries information about the non-Bx . Note that when the ellipticity parameter tends to its
linear anisotropy of the gain mediufne., the cross satura- critical magnitudesg— *=« (recall, this corresponds to the
tion coefficientC,). right/left circular polarizatiop the mean value of the polar-
Figures 2a), 2(b), and 3 demonstrate that there are twoization azimuth oscillations changes from 04d2, but the
qualitatively different ways of changing the laser behaviorazimuth remains oscillating. Figure 5 displays phase trajec-
when one of the two modex (or y) loses its stability. First, tories of the periodic attractor on the plang, (@) and evo-
for small|A|, ||, or large there are domains in which both lution of the laser polarization state on the Poincspéere

B, ®(rad)

periodic behavior
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1 - - These results clearly show that such vector laser systems
can be powerful, accurate, highly sensitive, and inexpensive
tools for measurements. Indeed, the field-independent anisot-
ropy of the Kerr materialA _ (which is induced by the effect

of natural optical activity can be simply measured by regis-
tering the turning angle of the polarization plane of the emit-
ted field. Accuracy of these measurements will be limited to
the accuracy of the specific laboratory detector. However,
since the natural rotatory power of many materials is rather
strong (up to thousands grad/omthe turning angle can be
easily measured with rather high precision even with stan-
dard detectors. In contrast, the third-order nonlinearities are
very small and usually require either an intense optical field

@ (rad)

3 . ! . and/or long Kerr cells for direct measuremef#s2] or the
-2 0 2 development of alternative methofig]. However, because
B of a third-order process, even with laser sources for the

strong optical field there are problems with precision and
sensitivity of the measurements. In the proposed method
modulus of the third-order nonlinearity!3,, can be deter-
mined by measuring the control parameters at which the
Hopf bifurcations of the LP laser modes ocdsee(16)].
Since the Hopf bifurcations define eventually the ratio of the
Kerr to gain medium nonlinearitieg.e., x3,/x), sensi-
tivity of the method is rather high. Roughly, it is of the order
of the coefficienty?)I/I”. Hence, even very weak Kerr non-
linearities (of the order of 10%® esu or less should be
readily measured in an experiment. In addition, because
x® (= VaNy|di]*9%5°Kuy,y,) can be varied over a
wide range by an appropriate choice of the gain mixture or
appropriate adjusting gain, pressure of the active medium,
length of the gain tube, and so on, sensitivity of the system
FIG. 5. Phase projections of the limit cycle attractor on theCa@n be a controllable factor. High precision of the method is
plane (8, ®) and the trajectory of the laser field polarization state €nsured by the fact that all measurements can be performed
on the Poincdrephere in the case of Fig(#) and forB,=60(1),  at relatively large cavity anisotropies when the laser system
80 (2), 100(3), 115(4), 130(5), and 200(6). Sy, S;, S,, andS, is stable against environmental conditions that often limits
are the Stokes parameters. intracavity measurements in weakly anisotropic lasers.
Moreover, in practice the instability thresholdsnd, as a
consequencey{3),) can be found relatively easily in the bi-
stability domain because of sudden switches of the laser
emission from one LP mode, which is destabilized at the
_corresponding Hopf bifurcation point, to the alternative
estable orthogonally polarized mode. Clearly, such a polariza-

Poincaresphere form concentric circumferences that occupy©" flip can be conveniently recognized in an experiment.
the west[ — m/4<®d < /4, Fig. 5b), curves 1-3 and the Frecision of the measurements of the bifurcation value of the

east[ m/4<® < — m/4, Fig. 5b), curves 4— hemispheres. control parameter in this case will be even better than that
Approaching the meridian, which delimits these hemi-registering conventional development of periodic instabilities
spheres, the polarization azimuth remains nearly congant at a supercritical Hopf bifurcation with smooth variation of
+/4) as long as the ellipticity angle is not very large andthe amplitude of the field parameter oscillations. In addition,
rapidly changes from®~+xw/4 (—m/4) to —wl/d the presenceof the instabilities for given phase anisotropy
(+ m/4) when the ellipticity angle tends to the No®outh  can be a test on the sign g3, since the Hopf bifurcations
pole. In contrast to the polarization parameters, the laser fieldre not symmetric with respect to the change of sigm of
intensity exhibits barely perceptible fluctuations around largd-inally, because this method requires only standard labora-
mean value. The amplitude of these oscillations does ndbry equipment and a relatively simple experimental setup,
depend significantly on the control parameters, although thall measurements can be done with much less effort than
average intensity gradually decreasedBasincreases. Such those involving more direct methodg,3].

time-dependent amplitude-polarization behavior of the laser It is worth noting also that in spite of the long history of
field does not qualitatively change in all the instability do- studies of nonlinear dynamics of lasers with or without nu-
mains. merous intracavity complications, the problem discussed in

S3/50

for several values oBy . Clearly, at the Hopf bifurcation
point (Fig. 5, curve 1 both polarization parameters behave
harmonically, which is a consequence of the critical slowing
down near a bifurcation poiftl9]. Moving away from this
bifurcation point phase projections deform, reflecting the in
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this work remains practically unexplored while it is interest- 03 T T = = o omiseion
ing both from fundamental and applied points of view. This (a)

is due to the fact that only recent theoretical works have -
clarified the crucial role of polarizatiofor, more generally,
vectoria) degree of freedom in development of laser insta- 0.2
bilities [4,6,14,20—-22 In particular, it has been shown that -
vectorial degrees of freedom are responsible for complex dy-<

X, -mode BXN'[

BIR

namics in single longitudinal-transverse-polarization mode B
nonautonomous class-f23] and autonomous class{24] 04

vector lasers that was impossible in the scalar case. That i . 3

why we believe that our results along with a straightforward bistability £

experimental arrangement might stimulate experimental in- 53

vestigations of vectorially induced instabilities in laser sys- 0.0 . : .
tems. -0.06 -0.04 -0.02 0.00

(rad)
03 - T ——————3

IV. ZEEMAN LASER | )
It is well known that even a weak magnetic field, such as B
that of the Earth, can significantly modify behavior of vector
lasers[6,17,20,25—-2Y Here we investigate an effect of the
longitudinal magnetic field on the dynamics of our laser non-
linear system. A parameter describing the magnetic field<
(Ag) will be rescaled to the Doppler profile widttK() and

X -mode

denoted af\g=Ag/Ku. The motion equations for this case 0.t
are given by the complete systeit0).

Equationg10) no longer admit LP solutions. Moreover, it
is hardly possible to find analytically the laser steady states. 00

A more efficient way in such a case is the numerical integra- 0.
tion of the system. Numerical scanning of the parameter sub- A (rad)
space (A, Ag) gives qualitatively different results for small
and |arge Kerr non”nearity Figure 6 illustrates a different FIG. 6. The HOpf bifurcations of the steady states of the Zeeman
structure of phase space f& =57 (smal) and B,=100 laser are depicted in the subspads Q) for »=1.33, 6=0, p
(large. =0.999, and(a BK=5_7 and(b) Bx=100. T_he remaining param-
Before continuing, let us recall that in a Zeeman lasecters correspond to Fig. 2. For other notations, see the text.
with no Kerr cell the steady-state solutions are, generally, . L . i
elliptically polarized (EP). Their helicity is determined by this behavior is more sensitive to the change\gf. At first,
the signs ofAg andA in such a way that the former (y) an increase ofAg results in the progressive enla_lr_ging ms_ta-
LP mode for negative\ and positiveAg becomes the left b|||ty_ _domain K. _However! thereafter the b|s_tab|I|ty and in-
(righty EP mode. Changing the sign df to positive, the stability K domains .diminigh and tEtaIIy vanish through in-
helicities of both EP solutions interchanf@l. Because for Verse Hopf bifurcatlo.nsBK and B’,‘< for Ag=0.1XKu and
large A the ellipticity of these modes is negligible, it is con- 25=0.1&u, respectively. Outside the instability domains
venient to retain notationg andy for the new EP states. and to the leftright) of the boundanBy; (Bjy), the stable
However, they will be used with subscriftsandR to refer ~ solution forAg>0 is thex, (Xg) mode. Thus, thgr mode
to their helicity. For example, fong>0 and A<OQ the is stable only inside the bistability domain while themode
former x (y) mode corresponding to Fig. 2 becomes a left-iS never stable foAg>0 and such a relatively large ampli-
(right-) handed EP mode with close to Orf2) azimuth, i.e., tude anisotropy [§=0.999). Figure &) shows that for large
X, (yr) mode. Consequently, fakg>0 andA>0 one has Bk instability domains associated with the effects of the
xg andy, modes. magnetic field and the Kerr nonlinearity collide producing
For Sma”BK [F|g Qa] two qua"tative]y different types combined |nStab|l|ty domai©. From the “above” this do-
of laser behavior are distinguished. For smll time- main is confined by the Hopf bifurcation of the mode
dependent dynamics is mainly governed by the applied madg:B&"). In domain | theyg mode is stabilized by the Hopf
netic field [6]. An impact of the nonlinearityB, onto this  bifurcation ByR The bistability domain of the and yg
behavior is the asymmetry of the instability dom&ihcon-  modes distinguished by the Hopf bn‘urcatlcﬁéR and BX" is
fined by the Hopf bifurcation8}; and B}, which destabi- hatched. Again, there are neither bistability nor instabilities
lize thex, andxg modes, respectivelithey are not present to the right of the boundar}, where the laser operates on
in the case of the laser with no magnetic flelthstabilities  the xg mode. Note that for smalh and Ag the Hopf bifur-
attributed to the Kerr nonlinearitydomain K) and the cations turn to be saddle-node bifurcations as discussed in
bistable behavior of thg, andyg modes constitute an alter- [6] (they are not shown in Fig.)6
native type of the laser behavior. In contrast to the first type, For the sake of illustration, the behavior of the laser field
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another extreme valugs(— + =), the azimuth rotation again
becomes periodic oscillations but now it oscillates around
the mean value which is close #/2. Similar behavior with
rotating azimuth occurs in domain Ch. Ellipticity of the field
in the instability domains evolves periodically in time in ac-
cordance with the sequence: right EP LP — left EP —

LP —-.-, and so on. In between the domains Ca and Cb
laser emission is stable. Tlyg mode in this domain is sta-
bilized by theBYX Hopf bifurcation.

V. CONCLUSIONS

-4 . ' . ' : ' We have presented the results of analytical and numerical
-0.06 -0.04 -0.02 0.00 studies of nonlinear dynamics of a classFabry-Peot

A (rad) weakly anisotropic laser containing a Kerr cell filled with an
anisotropic third-order nonlinear material. Field-independent
anisotropy of the Kerr material was induced by the effect of
natural optical activity. Anisotropy of the bare laser cavity
was assumed to be lineére., in the Cartesian bagisince
this was the case for many realistic weakly anisotropic lasers.
As a specific but rather general example, a typical commer-
cially available He-Ne laser operating at=1.15 um (]
=1—]j'=2) has been considered in all numerical illustra-
tions.

It is shown that such a nonlinear system can exhibit peri-
odic amplitude-polarization instabilities of a single
longitudinal-transverse-polarization pattern. These instabili-

012 T 008 T oo0a ' 0.00 ties, which are readily accessible experimentally, are attrib-
A (rad) uted to the vectorial degree of freedom and they are not
allowed when the field polarization state is fixed. More im-

FIG. 7. One parameter diagram of the ellipticity an@leas a  portant is that the vectorial degree of freedom results in a
function of the phase anisotropy f@ =57, Ag=0.1(a) andBx  qualitatively new phase in elaboration of inverse methods of
=100, Ag=0.15(b). The other parameters are the same as in Figmeasurements. Specifically, the whole complex of static and
6. Continuous(dashedl lines show maximaminima) of 8. For  dynamical phenomena displayed by this system gives rise to
other notations, see the text. a comprehensive, inexpensive, highly sensitive, and effective

method of measurement of material anisotropies. Moreover,
ellipticity corresponding to Figs.(6) and 6b) for Ag;=0.1  static and dynamical features of the system naturally separate
andAg=0.15 is depicted in Figs.(@ and 7b), respectively. contributions of the field-independent and nonlinear
Figure Ta) clearly shows that dynamics in the instability anisotropies.
domainsM andK is qualitatively different. While in domain In particular, it is found that basic steady states of this
K one observes a small amplitude weakly dependenfon vector nonlinear laser system are orthogonal modes, which
oscillations, in domaimM the amplitude of the ellipticity os- are linearly polarizedLP) in the Cartesian basis. Under sta-
cillations changes significantly. The behavior of the polarizationary laser operation, anisotropies of the Kerr material af-
tion azimuth in domairK is qualitatively similar to that of fect the only parameter of the laser field, i.e., the field polar-
the ellipticity. However, in domairM the azimuth shows ization azimuth. Half of the turning angle of the polarization
oscillating behavior only at the domain edges. In between thelane of the emitted laser field provides the magnitude of the
two large spikes, i.e., when the ellipticity angBetends to  field-independent anisotropy of the Kerr material. Direction
infinity, the azimuth turns out to be continuously rotating of the polarization plane rotation gives sign of this anisot-
instead of oscillating. The latter feature is a characteristicopy. Although the Kerr nonlinearity has no effect on the LP
feature of Zeeman lasetsompare with Fig. 4 in which po- laser steady states, an impressive feature of this system is
larization azimuth remains oscillating in spite of the fact thatthat it does affect thstability of these modes and, as a con-
B undergoes the extreme vallyes sequence, the laser time-dependent behavior. The onset of

For largeB [Fig. 7(b)] periodic behavior of the polariza- the instabilities(i.e., the Hopf bifurcationin the system de-
tion parameters in the instability domains Ca and Cb is moréines the ratioy{3)’/x{)I. Obviously, this fact can be em-
pronounced. One can see that for modefate a minimum  ployed for measurements of the nonlinear anisotropy of the
of the ellipticity oscillations goes te-0. This is the point matter. Moreover, because the Hopf bifurcations are propor-
where polarization azimuth oscillation@round a mean tional to theratio of the material nonlinearities, such a
value close to 0) become a continuous rotation, which isnethod might be very sensitive because nonlinear processes
directly attributed to the influence of the magnetic field. Atin the gain and Kerr media are of the same third order. The
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presence of the instabilities for a given laser cavity phasdaboratory equipment and straightforward experimental ar-
anisotropy is a test on the sign ,Qﬁ)zr rangement, all measurements can be done with much less
From the experimental point of view, the system investi-effort than in the case of employing direct methods of mea-
gated admits an easy registration of the instability thresholdsurement.
for the x andy modes(and, consequently, parametpﬁ)z]) The effects of the cavity amplitude and phase anisotropy,
because the laser cavity anisotropy should not be too wedkser field detuning, and gain on the behavior of the Hopf
for that. Furthermore, high accuracy of the method can evehifurcations is studied in detail. The main conclusion is that
be enhanced by the bistability phenomenon: when the lasdarge gain, amplitude anisotropy, and detuning and exces-
mode loses its stability in the bistability domain, the lasersively small and large cavity phase anisotropy decrease the
emission is found to suddenly switch to the alternative stabldaser sensitivity to the Kerr nonlinearity. We have also inves-
LP mode. Such a polarization flip can be easily revealed iriigated dynamics of this laser system subject to the action of
an experiment and measured with high precision. Indeed, i& longitudinal magnetic field. Because the Kerr nonlinearity
the laser output field propagates through a polarizer alignets more efficient at relatively large and moderats, its
with the field polarization plane, the loss of the stability of effect on the laser dynamics can be readily set apart from
this mode will result in the total disappearance of the lasethat of the magnetic field wheB , is small. For largeBy|,
emission after the polarizer. No doubt, registration of thisthe laser time-dependent behavior is a combined response of
behavior can be easily performed even in an automatic marthe system to the effects of the Kerr nonlinearity and the
ner. Finally, because this method requires only standardhagnetic field.
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