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Inverse problems of nonlinear dynamics of vector class-A lasers
with anisotropic Kerr-type material
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~Received 18 January 2000; published 17 July 2000!

Nonlinear behavior of weakly anisotropic~vector! lasers with fast material dynamics~class-A lasers! con-
taining an anisotropic Kerr-type nonlinear material inside the cavity has been theoretically explored. Among
interesting periodic amplitude-polarization dynamics, such vector nonlinear systems exhibit important features
which are promising for progress in the elaboration of simple, inexpensive, and highly sensitive methods of
measurement. In particular, it is shown that under stationary laser operation, the turning angle of the polariza-
tion plane of the emitted field is a unique measure of the field-independent anisotropy of the Kerr material. In
contrast, dynamical features of the system behavior reflect solely influence of the third-order Kerr nonlinearity.
As a consequence, the modulus and sign of the coefficient of this nonlinearity can be determined when a
linearly polarized laser mode is destabilized at the corresponding Hopf bifurcation point. Accuracy and sen-
sitivity of the measurements in this system can be enhanced by the bistability phenomenon, which is an
inherent feature of vector lasers. The dynamics of this system subject to the action of a longitudinal magnetic
field is also investigated.

PACS number~s!: 42.55.Lt, 42.60.Mi, 42.65.2k, 42.25.Ja
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I. INTRODUCTION
Continuing interest in lasers is a consequence of prog

in quantum electronics, which leads to the developmen
new laser devices and new applications that use lasers.
cent achievements in nonlinear dynamics reveal new h
zons for laser applications: numerous nonlinear laser syst
might be effective tools for solving inverse problems wh
relevant information about inherent structure of these s
tems is extracted from the laser output parameters@1#. Fur-
thermore, results of such investigations should be not ne
sarily limited to laser physics. Indeed, many systems
known to undergo the same nonlinear phenomena irres
tive of their specificity. Hence, modeling certain situations
a nonlinear laser system helps to handle realistic case
other branches of science where these studies would be
time and/or cost consuming. An advantage of lasers is a r
tively easy measurement of parameters of the laser field

However, most of the previous works have emphasi
the nonlinear behavior of so-called scalar laser systems
these systems the emitted laser field is assumed to have
tain fixed polarization because of strong anisotropy of eit
the gain medium~as in the case of solid state or glass lase
for instance! or the laser cavity~as in the case of a laser wit
Brewster angle windows!. This is not the case for moder
commercially available lasers with axially symmetric arc
tecture. The most notable are vertical cavity surface emit
lasers~VCSELs!, fiber lasers, microchip lasers, and weak
anisotropic gas lasers with windows placed orthogonally
the resonator axis. The design of these lasers permits
polarization state of the field to evolve almost freely. Th
the polarization~vectorial! degree of freedom can be an e
sential factor in their dynamics, raising an interesting pro
lem of its impact on progress in the development of inve
methods of extracting information.

On the other hand, it is well known that intense optic
~laser! fields may induce field-dependent changes~i.e., inten-
sity and polarization sensitive! in their polarization state dur
1050-2947/2000/62~2!/023806~10!/$15.00 62 0238
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ing their propagation in a nonlinear medium@2,3#. While
these optical nonlinearities are familiar in conventional no
linear optics, i.e., when the laser field is used as a source
intense light, their effect on thenonlinear dynamicsof vector
lasers containing nonlinear material inside the cavity~in ad-
ditional to the material of the gain medium! is practically
unexplored. Actually, the synthesis of the problem of nonl
ear dynamics of vector lasers and the problem of satura
optical anisotropies constitutes a new class of challeng
objectives having large potential for applications. It shou
be also emphasized that this class of problems can be
intrinsic problem for certain lasers, as, for instance, for fib
lasers.

The main goal of this paper is to explore the effect
auxiliary vector optical nonlinearities on the laser dynam
and to show the advantages of this generalized vector p
lem for further progress in inverse methods of measu
ments. Because vectorial degree~s! of freedom in lasers con
siderably complicates their behavior@4#, significant progress
can be achieved even in the simplest case of a class-A @5#
vector laser. Recall that corresponding scalar analogs do
exhibit any remarkable dynamics at all@6#. The most famil-
iar and widely used lasers of this type are He-Ne lase
Moreover, these devices are rather convenient tools for
perimentalists since they are readily available, cost effect
and can be easily managed. In this work we study theor
cally nonlinear dynamics of such a laser containing a c
filled with anisotropic Kerr-type nonlinear material@2#. We
show that a whole complex of stationary and dynamical p
nomena exhibited by this system suggests relatively sim
highly sensitive, low cost- and power-consuming methods
measurement of the material anisotropies. It is worth not
that while measurement of the third-order nonlinearities i
rather old problem, it is still of interest because of numero
experimental difficulties extracting desirable informatio
~see Ref.@7# and references therein!.

The remainder of this paper is the following. Section II
devoted to the description of the theoretical model. In S
©2000 The American Physical Society06-1
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A. KUL’MINSKII PHYSICAL REVIEW A 62 023806
III we discuss the behavior of the laser steady states,
mode stability and time-dependent regimes. The dynamic
this system subject to the action of a longitudinal magne
field is investigated in Sec. IV. Finally, in Sec. V the ma
conclusions are summarized.

II. LASER MODEL

Theoretical treatment of the problem is based on the Jo
matrix and vector approach, which has been discusse
detail in Refs.@6,8,9#. According to that method, the electr
field, considered in the usual plane-wave approximation
described by the Jones vectorE

E5FEx(1)e
iwx(1)

Ey(2)e
iwy(2)

Ge2 ivt8,

whereEx,y (E6) andwx,y (w6) are the slowly varying am-
plitudes and phases of the two orthogonal components o
electric field in the Cartesian~circular! basis;v is frequency
of the laser field, andt8 is time in seconds. Alternatively, th
Jones vectorE can be expressed in terms of the field inte
sity I 5Eh

•E (Eh is the Hermitian conjugate vector ofE),
ellipticity angle b or, equivalently, ellipticity j5tanhb
[(E12E2)/(E11E2), and azimuth of the long axis of th
polarization ellipseF[(w12w2)/2. In the Cartesian basi
it takes the form@8#

E5A I

cosh 2bFcos~F1 ib!

sin~F1 ib!
Gei (w82vt). ~1!

Here w8[(w11w2)/2 is the mean~global! phase of the
electric field, and timet is expressed in round-trip units (t
5t8c/2nL, wherec is the light velocity andnL is the optical
length of the laser cavity!.

Each anisotropic element inside the cavity, including
gain medium, can be described by a 232 Jones matrix. Be-
cause these matrices do not necessarily commute, the o
of all the anisotropic elements in a laser is significant. To
the geometry of the problem the following assumptions
done. First, the laser resonator is of a Fabry-Pe´rot type. Sec-
ond, the laser gain medium is placed next to the isotropic
fully reflecting mirror. It is worthwhile to note that this is th
approximation, which enables an additive contribution of
field-dependent gain medium anisotropy and the anisotr
of the cavity@6#, which is a typical situation in the model
based on the Lamb approach@10#. Third, a Kerr cell with
nonlinear material is placed next to the gain medium. Fou
an auxiliary linearly~i.e., in the Cartesian basis! anisotropic
element is incorporated into the resonator. The role of
latter element is twofold. On the one hand, without this e
ment an effect of the optical anisotropies of the Kerr mate
in such a laser configuration would disappear. On the o
hand, it is quite natural to incorporate such an element s
in most cases the cavity optics is not perfect specifically
the Cartesian basis. Furthermore, under certain condit
these numerous anisotropies, which are normally spr
throughout the cavity, can be replaced by an effective e
02380
e
of
c

es
in

is

he

-

e

der
x
e

d

e
y

,

e
-
l

er
ce
n
ns
ad
-

ment with controllable anisotropy@11#. Thus geometry of the
setup will be as depicted in Fig. 1.

Because the effect of the cavity and the gain medium
be taken into account additively, we can focus on the cav
anisotropy alone. Later, the rate of change of the elec
field due to the cavity will be added to the lasing equatio
For the laser configuration shown in Fig. 1, the cavity over
matrix, which includes all anisotropies except the nonline
anisotropy of the gain medium, can be written in the follo
ing form:

Âr5K̂bÂbÂf K̂ f5K̂bÂK̂ f . ~2!

Here subscriptf (b) refers to forward~backward! matrix.
The Jones matrixÂ of the anisotropic element with aligne
amplitude and phase anisotropies in the Cartesian basis

Â5S pxe
iD 0

0 pye
2 iDD[S «1 0

0 «2
D , ~3!

wherepx,y are the amplitude transmission factors of the re
nator for two orthogonally polarized laser modes, i.e., th
are quantities within the range@0,1#. Their maximum values,
i.e., px5py51, correspond to the absence of anisotropic
sorption in the cavity. Any anisotropy in thex (y) direction
reducespx (py). ParameterD is the cavity linear phase an
isotropy which is measured in radians~for example, there is
no phase anisotropy whenD50, whereasD5p/4 corre-
sponds to a quarter wave plate!.

Next, let us determine matricesK̂ f and K̂b . Assuming
that the decay rate of the nonlinear polarization of the K
material is much larger than the decay rate of the laser fi
which can be readily met in class A lasers, overall pha
shifts of left (2) and right ~1! circularly polarized~CP!
components of the laser field in the Kerr cell can be cons
ered to be time independent and expressed as@2,12,13#

f65f6
OA1g l 8S 12B

2
uE6u21

11B

2
uE7u2D . ~4!

Here the first term (f6
OA) describes field-independent pha

shifts of the CP components of the laser field, which c
appear due to the effect of natural optical activity in the K
material. The second term provides nonlinear phase accu
lations. l 8 is the length of the Kerr cell,g58pvx1111

(3) /n0c;
n0 is the linear refractive index;B5x1221

(3) /x1111
(3) ; x1221

(3) and
x1111

(3) are components of the susceptibility tensor of rank
uE1u2 (uE2u2) is the intensity of the right~left! CP compo-

FIG. 1. Scheme for the nonlinear laser system considered in

work. M1 andM2 are the mirrors;Â and K̂ are the Jones matrice
of the bare laser cavity and the Kerr cell, respectively. The arr
shows the forward direction for the field propagation.
6-2
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INVERSE PROBLEMS OF NONLINEAR DYNAMICS OF . . . PHYSICAL REVIEW A62 023806
nent, which can be expressed in terms of the total field
tensity I and ellipticity angleb as

uE6u25
exp~62b!

2 cosh 2b
I .

Then matricesK̂ f and K̂b in a circular basis read

K̂ f (b)5expS 6 iD16 i
g l 8I

2 D S exp~6 iDK! 0

0 exp~7 iDK!
D ,

~5!

where the upper~lower! sign corresponds to the forwar
~backward! matrix. In Eq. ~5! the following notations have
been usedDK5D22g l 8BI(tanh 2b)/2 and 2D65f1

OA

6f2
OA .

Substituting expressions~3! and ~5!, written in the same
frame, into expression~2!, the cavity Jones matrix in the
Cartesian basis takes the form

Âr5
«11«2

2
Î 1

«12«2

2 S cos 2DK sin 2DK

sin 2DK 2cos 2DK
D , ~6!

where Î is a unit 232 matrix. As one can see, the field
independent and nonlinearisotropic phase shift (D1

1g l 8I /2) has been explicitly disappeared from the cav
matrix Âr , which is an advantage of the Fabry-Pe´rot laser
cavity geometry.

To complete with the rate of change of the laser field d
to the cavity, we need to know eigenvalues and eigenvec
of matrix ~6!. It is easily seen that the eigenvalues ofÂr
remain the same as in the case of the absence of the
cell, i.e., they are«1 and «2. EigenvectorsE1,2 ~or, equiva-
lently, f 1,2[F1,21 ib1,2) can be conveniently found usin
the following formulas@8,14#:

a121a21

a112a22
52cot@F11F21 i ~b11b2!#, ~7!

a122a21

a112a22
52

cos@F12F21 i ~b12b2!#

sin@F11F21 i ~b11b2!#
.

Hereai j are the elements of matrix~6!. The second expres
sion in Eq.~7! implies that

F12F256p/2, b15b2 . ~8!

Since the parameterDK is real, the first expression in Eq.~7!
gives

F25p/21D22g l 8BI~ tanh 2b!/2, b15b250. ~9!

Recall thatI andb are instantaneous parameters of the la
field. Expressions~8! and ~9! explicitly establish that the
eigenmodes of the considered laser system are orthog
and linearly polarized. It is worth noting that the polarizati
azimuth of the cavity eigenmodeF1 ~or F2) behaves just as
it does when a strong linearly polarized optical field prop
gates through a Kerr cell placed outside a laser cavity@2,3#.
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Conditions~8! and~9! allow us to employ the same model a
in Ref. @6#. For a laser subject to the action of a longitudin
magnetic field~so-called Zeeman lasers! it is given by Eqs.
~30! in @6# ~it is not repeated here for the sake of compa
ness!. Properties of the Kerr cell in the equations are simp
regarded by the parameterF8[F2F2 of that model.

Actually, the parameter of the third-order nonlinearity
rather small and for many materials it ranges from 10215 to
10213 esu ~or from 10223 to 10221 SI! @3,15#. Meanwhile,
the average intensity of a cw laser isI;104 Watt m22 @16#
and utanh 2bu<1. Hence, our laser model can be simplifie
by expanding trigonometrical functions containing term
with optical nonlinearity in series and keeping only terms
the first order. The field intensityI must also be properly
rescaled

2
g l 8BI tanh 2b

t0
52

4l 8Bx1111
(3)

lxm
(3)

J tanh 2b

52
4l 8x1221

(3)

lxm
(3)

J tanh 2b[2BKJ tanh 2b,

where BK54l 8x1221
(3) ( lxm

(3))21 is a new nonlinearity
parameter, which is proportional to the ratio of th
Kerr to gain media third-order nonlinearities;xm

(3)

5ApNmud12u4/9\3Kug1g2 ; Ku5DvD /(2Aln 2); DvD is
the width of the Doppler profile at half-amplitude;Nm5N2
2N1 is the difference between the populations of the up
~2! and lower~1! levels in the absence of lasing and spon
neous emission from the level 2 to the level 1;\ is the Plank
constant;ud12u is the normalized matrix element of the ele
tric dipole moment of the lasing transition;g1 andg2 are the
population decay rates of the levels 1 and 2, respectively;l is
the gain medium length; andJ52I ud12u2/3\g1g2 is rescaled
intensity of the laser field.

Finally, the master lasing equations become

J̇54J$P2JP0Re~M 2 tanh 2b1M 1!1tanh 2b ReDW̄%/P0

22gPJ$~12cos 2F9/cosh 2b!/t0

1BKJ tanh 2b sin 2F9/cosh 2b%,

ḃ52$gP cos 2F9 sinh 2b1vP sin 2F9 cosh 2b%/t0

22J ReM 212~ReDW̄!/P01BK$gP sin 2F9 sinh 2b

2vP cos 2F9cosh 2b%J tanh 2b, ~10!

Ḟ52$gP sin 2F9 cosh 2b2vP cos 2F9 sinh 2b%/t0

12J Im M 222~ Im DW̄!/P02BK$gP cos 2F9 cosh 2b

1vP sin 2F9 sinh 2b%J tanh 2b.

Here the overdot means a derivative with respect to resc
time t[tt0 ; F9[F2D2 ; P5U2h21; U is a real part of
the complex error function which governs the laser ga
h21 denotes isotropic losses;gP1 ivP[1/22«2/2«1 ; M 6
6-3
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5$F̄1e22b6F̄2e2b1(SA6SB)e2b1(SC6SD)e22b%/cosh 2b.
Note, parametersSA[D̄1a1Ḡ1a ; SB[D̄2b1Ḡ2b ; SC

[D̄1b1Ḡ1b ; SD[D̄2a1Ḡ2a and F̄6 are independent o
the laser field amplitude-polarization parameters

D̄6a5a6

L1

G
, D̄6b5a6

L21L (2)~72DB8 !

G7 iDB
,

Ḡ6a5a6

L1

G1 id7
, Ḡ6b5a6

L2

G1 id7
,

F̄65a6

L (2)~72DB8 !

G1 id7
, a65

9

4
expH 2S d7

KuD 2J .

Hered65d6DB8 ; d5v2v0 is the atomic detuning;v0 is
the frequency of the center of the gain profile;DB8
5gLmBB; gL is the Lande´ factor,mB is the Bohr magneton
B is the magnetic-field strength; 2G is the homogeneous pro
file width; L65L (0)/36L (1)/21L (2)/6 and L (k)(x)
5(n51,2Ln(k)(gn

(k)1 ix)212L3(k)(g1
(k)1ix)21(g2

(k)1ix)21.
The angular-momentum functionsLn(k) are expressed in
term of the 6j Wigner’s symbols@9#; k denotes the tensoria
orders, which are scalar (k50), vector (k51), and tensor
(k52). Scalar, vector, and tensorial parameters in the la
are the total population of upper and lower manifolds, a
the atomic magnetic dipole and electric quadrupole, resp
tively. g1,2

(k) are the corresponding decay rates. In the follo
ing we will assume thatg1,2[g1,2

(0)5g1,2
(1)5g1,2

(2) . Explicit ex-
pressions for other parameters used in Eq.~10! are given in
Refs.@6,9#.

III. STEADY STATES AND DYNAMICS OF THE LASER
SYSTEM WITH NO MAGNETIC FIELD

To get insight into the physics of nonlinear phenome
exhibited by the system, in this section we assume that
magnetic field is absent. Mathematically this means thatDW̄
in Eq. ~10! is zero. Self- (M 1) and cross- (M 2) saturation
coefficients for this case considerably simplify@6#

M 1[RC153~g11g2!R exp$2dKu
2 %$L1~0!12L1~2!%/G,

~11!

M 2[RC2 tanh 2b59 tanh 2b~g11g2!R exp$2dKu
2 %

3$L1~1!2L1~2!%/2G.

Here R[Rr1 iRm511(12 id/G)/(11d2/G2), Rr and Rm
are real, anddKu5d/Ku.

Lasing equations in the absence of the magnetic field
mit both elliptically polarized~EP! and linearly polarized
~LP! solutions. Due to the fact that the EP solutions exist
a very narrow domain of phase space@6,17# which, in addi-
tion, is hardly accessible experimentally, we will not foc
on them.

The LP solutions of the problem are

Jx5P/P0RrC1 , bx50, Fx2D250,
02380
er
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n

Jy5~P/P02gP /t0!/RrC1 , by50, Fy2D256p/2.
~12!

The first conclusion is that the presence of the termD2 in
Eq. ~12! is the only difference of these solutions with respe
to the LP states of the laser with no Kerr cell.

Similar to the problem of a bare weakly anisotropic las
the linear stability analysis of the LP solutions~12! reveals
that the full set of linearized equations~or the corresponding
Jacobian matrix! can be separated into two subsets. The fi
subset, which represents the scalar degree of freedom, l
to a single real intensity eigenvaluel1 for each of the two
LP states

l1
x524P/P0 , ~13!

l1
y524~P/P02gP /t0!.

These eigenvalues are associated with ordinary behavio
the laser field in many scalar class A lasers. They determ
the stability of thex- andy- laser modes with respect to th
perturbation of the mode intensity. In other words, they d
fine first laser threshold, i.e., onset of the laser emiss
when the laser gain becomes larger than the cavity los
Asymmetry in expressions~13! is owing to the fact that thex
mode is considered to be always tuned to the resona
while the frequency of they mode has an offset proportiona
to the cavity anisotropy offset.

The second subset characterizes the vectorial degre
freedom and provides a pair of polarization eigenvaluesl2,3

l2,3
x 5@22gP22Jx8RrC22vPJx8BK

6AvPx8 1vPJx8BK~vPJx8BK14Jx8RrC214gP!#/t0 ,

~14!

l2,3
y 5@12gP22Jy8RrC21vPJy8BK

6AvPy8 1vPJy8BK~vPJy8BK24Jy8RrC214gP!#/t0 .

Here vPx(y)8 54J
x(y)

82
Rr

2C2
224vP

2 78vPJx(y)8 RmC2 is the

saturated frequency of the polarization relaxation oscillatio
for the x- (y-! mode in a laser with no Kerr cell; the uppe
~lower! sign in vPx(y)8 denotes thex (y) mode; Jx(y)8
[t0Jx(y) .

It can be seen that in agreement with Eq.~9!, amplitude-
polarization parameters of the emitted LP laser field do
depend on the strength of the Kerr nonlinearity. Furthermo
neither the intensity nor the ellipticity of this field is affecte
by the field-independent anisotropy (D2) of the Kerr cell.
Unlike this fact, polarization azimuth depends linearly
D2 . This azimuth behavior is similar to that found in co
ventional experiments in nonlinear optics@2,3#. However, an
impressive feature of synthesis of the problems of vec
lasers and vector nonlinearities lies in the fact that these n
linearities do affect thestability of the LP laser modes. Thus
it can be said that such a vector laser system sets apart
tributions of the field-independent anisotropyD2 and non-
linear Kerr anisotropy naturally, without any further comp
6-4
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cation of the experimental setup. Consequently, t
phenomenon can be employed for measurements of t
optical anisotropies that will be discussed at the end of
section.

Equations~14! admit both pitchfork and Hopf bifurca
tions. However, expressions for the pitchfork bifurcations
the x andy modes do not contain the nonlinearity parame
BK and, in effect, they are precisely the same as for a la
with no Kerr cell. Since their analysis can be found in R
@6#, we will not concentrate on them.

In contrast, the Hopf bifurcations do depend onBK . They
are subject to the following conditions for thex andy modes,
respectively:

2gP12Jx8RrC21vPBKJx850, ~15!

2gP22Jy8RrC21vPBKJy850.

With no Kerr nonlinearity (BK50), Eqs. ~15! recover the
results of Ref.@6#, giving no possibility of Hopf instabilities
for the x mode whenC2.0 ( j→ j 811 lasers!. In fact, our
problem can be even naturally restricted assuming thatC2 is
positive because this is the case for most of the commerc
available He-Ne lasers. WhenBKÞ0 the first expression in
Eq. ~15! is no longer strictly positive. Hence both of the
can cross zero defining instability thresholds for both mo

BK
x 522~gP1Jx8Rr uC2u!/vPJx8 , ~16!

BK
y 522~gP2Jy8Rr uC2u!/vPJy8 .

Careful inspection of the expression forBK
x reveals that thex

mode can be destabilized only for certainBK for which
sin 2D is not complex. The minimum value of this parame
when sin 2D is still real is

BKx
min562A12p214Jx8

2Rr
2C2

214Jx8Rr uC2u/Jx8p, ~17!

where the parameter characterizing the amplitude anisot
has been denoted asp[py /px .

For numerical illustration this problem must be quanti
tively specified. For the sake of definiteness, aj 51→ j 8
52 He-Ne laser operating atl51.15 mm will be consid-
ered. This laser transition is characterized by the angu
momentum functionsL1(0)5 1

15 , L1(1)5 1
20 , and L1(2)

5 7
300. Other parameters of this laser are taken from@18#:

Ku5480 MHz, G595 MHz, g1549.92 MHz, and g2
545.12 MHz. The key free parameters for numerical cal
lations in this work will be the phase anisotropyD, the pa-
rameter of the amplitude anisotropyp, detuningd, and laser
isotropic lossesh21. These are the parameters that can
readily controllable experimentally. Since the expressio
~16! and ~17! remain unchanged whenD (vP) and BK
change their sign simultaneously, only negative parame
of the phase anisotropy will be explored in this section.
results for positiveD (vP) can be simply obtained by
changing the sign ofBK to the opposite sign.

In Fig. 2 the Hopf instability boundaries for thex and y
modes of the tuned to the resonance (d50) laser are repre
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sented in the (h, BK) and (D, BK) planes. The curves in Fig
2~a! are plotted for several values ofD given in the figure
and fixed amplitude anisotropy (p50.998). In Fig. 2~b! pa-
rameterh was kept fixed ath51.33 while several curves ar
depicted for different values ofp ~also given in the figure!. In
both these figures thex (y) mode is stable ‘‘below’’
~‘‘above’’ ! continuous~dashed! curves.

Figure 2~a! shows that bifurcation values ofBK rapidly
increase for both modes as the laser net gain decrease
equivalently, the losses (h21) increase. This can be easil
understood because for lower intensity the Kerr nonlinea
becomes weaker. Dependence ofBK

x andBK
y on the anisotro-

piesD andp is not so simple@Fig. 2~b!#. In the limit of small
amplitude and phase anisotropy, the dominant factor in
termining the critical value ofBK is the denominator in Eq
~16!. This explains the rapid grows ofBK

x,y when D ap-
proaches zero. Physically this occurs because of progres
compensation of the optical effects in the Kerr cell due
Fabry-Pe´rot geometry of the laser system when the anis

FIG. 2. The Hopf bifurcation points of the LPx ~continuous
lines! and y ~dashed lines! modes and the values ofBKx

min ~dashed-
dotted lines! are shown in the subspaces (h, BK) ~a! and (D, BK)
~b! for different magnitudes of the phase~a! and the amplitude~b!
anisotropy~given in the figure!. Other free parameters are fixed
d50 andp50.998~a! andh51.33 ~b!. The remaining parameter
are the same as those adopted in Sec. III. Note, the dashed-d
curve in~a! is barely perceptible. Thex (y) LP laser mode is stable
‘‘below’’ ~‘‘above’’ ! the corresponding continuous~dashed! curves.
The bistability and the instability domains are pointed by arro
with two arrowheads.
6-5
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ropy of the cavity amplitude-phase plate goes to zero~Fig.
1!. Increasing the amplitude anisotropy~i.e., decreasingp)
makes the change ofBK

x and BK
y to be smoother for smal

uDu. A qualitative change in the behavior ofBK
y for small

amplitude anisotropy@for p50.9995 in Fig. 2~b!# is owing to
an interplay among the cavity linear (gP) and gain medium
nonlinear (2Jx8RrC2) anisotropies which enter in the stabilit
criteria ~15! with opposite signs. Thus, small cavity pha
anisotropy is an unfavorable factor for the appearance
instabilities. IncreasinguDu, the sensitivity of the laser sys
tem to the Kerr nonlinearity increases. However, relativ
large uDu again gives rise to progressively increasing the
stability threshold due to the dominant role of the polariz
tion decay rategP (gP@RrC2 , vP) for largeuDu, although,
this growth is not as sharp as in the case whenuDu is small.
Figure 2~b! displays that thex mode has a larger domain i
which it takes minimal values ofBK than they mode. This
follows from our definition that the cavity losses are alwa
larger for they mode. As is expected, the instability thres
old for the x mode increases as the amplitude anisotro
increases.

The detuning dependence ofBK
x andBK

y again exhibits a
drastic reduction in the sensitivity of the laser system to
Kerr nonlinearity at critical values of the control paramet
i.e., at the line edges. A representative example of this
pendence is depicted in Fig. 3. Rapid growth ofBK

y as de-
tuning increases, seen in the figure, is due to two factors~i!
the first laser threshold for they mode is larger than that fo
the x mode @see ~13!# and ~ii ! the gain medium nonlinea
anisotropy interferes destructively~increasingBK

y ) with the
Kerr nonlinearity. The curve ofBK

x is rather flat for small and
moderated although two symmetrical aboutd50 local
minima are clearly visible. This feature is of importan
since the local minimum carries information about the no
linear anisotropy of the gain medium~i.e., the cross satura
tion coefficientC2).

Figures 2~a!, 2~b!, and 3 demonstrate that there are tw
qualitatively different ways of changing the laser behav
when one of the two modes (x or y) loses its stability. First,
for small uDu, udu, or largeh there are domains in which bot

FIG. 3. The same as in Fig. 2 but in the subspace (dKu , BK).
The free parameters are fixed ath51.33; D520.017 rad andp
50.999.
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modes are stable. Numerical integration of the laser eq
tions shows that in such a case the system always switch
the alternative stable LP mode when one of them underg
a Hopf bifurcation. The limit cycle attractor emerging at th
Hopf bifurcation point becomes immediately unstable. S
ond, for largeuDu, udu, or smallh there are domains in which
neither one of the LP modes is stable. For this case des
lization of the stable LP steady-state leads to time-depen
laser output with periodic oscillations of the field intensi
and polarization parameters.

Figure 4 illustrates the development of the periodic ins
bilities, showing the amplitude of the oscillations of the las
field polarization parameters, as the control parameterBK
varies. Figure 4~a! depicts a situation when a limit cycl
attractor develops from the Hopf bifurcation of thex mode
and vanishes at the Hopf bifurcation of they mode. In Fig.
4~b! periodic behavior persists until relatively large values
BK . Note that when the ellipticity parameter tends to
critical magnitudes,b→6` ~recall, this corresponds to th
right/left circular polarization!, the mean value of the polar
ization azimuth oscillations changes from 0 top/2, but the
azimuth remains oscillating. Figure 5 displays phase tra
tories of the periodic attractor on the plane (b, F) and evo-
lution of the laser polarization state on the Poincare´ sphere

FIG. 4. One parameter diagram of the ellipticity parameterb
~continuous lines! and the polarization azimuth~dashed lines! as a
function of the nonlinearity parameterBK for d50, h51.33, p
50.999, and~a! D520.025 rad and~b! D520.035 rad. Lower
~upper! curves show maxima~minima! of the variables.
6-6
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INVERSE PROBLEMS OF NONLINEAR DYNAMICS OF . . . PHYSICAL REVIEW A62 023806
for several values ofBK . Clearly, at the Hopf bifurcation
point ~Fig. 5, curve 1! both polarization parameters beha
harmonically, which is a consequence of the critical slow
down near a bifurcation point@19#. Moving away from this
bifurcation point phase projections deform, reflecting the
fluence of the specific physical situation. Trajectories on
Poincare´ sphere form concentric circumferences that occu
the west@2p/4,F,p/4, Fig. 5~b!, curves 1–3# and the
east@p/4,F,2p/4, Fig. 5~b!, curves 4–6# hemispheres.
Approaching the meridian, which delimits these hem
spheres, the polarization azimuth remains nearly constan~at
6p/4) as long as the ellipticity angle is not very large a
rapidly changes from F'1p/4 (2p/4) to 2p/4
(1p/4) when the ellipticity angle tends to the North~South!
pole. In contrast to the polarization parameters, the laser
intensity exhibits barely perceptible fluctuations around la
mean value. The amplitude of these oscillations does
depend significantly on the control parameters, although
average intensity gradually decreases asBK increases. Such
time-dependent amplitude-polarization behavior of the la
field does not qualitatively change in all the instability d
mains.

FIG. 5. Phase projections of the limit cycle attractor on t
plane (b, F) and the trajectory of the laser field polarization sta
on the Poincare´ sphere in the case of Fig. 4~b! and forBK560 ~1!,
80 ~2!, 100 ~3!, 115 ~4!, 130 ~5!, and 200~6!. S0 , S1 , S2, andS3

are the Stokes parameters.
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These results clearly show that such vector laser syst
can be powerful, accurate, highly sensitive, and inexpens
tools for measurements. Indeed, the field-independent an
ropy of the Kerr materialD2 ~which is induced by the effec
of natural optical activity! can be simply measured by regi
tering the turning angle of the polarization plane of the em
ted field. Accuracy of these measurements will be limited
the accuracy of the specific laboratory detector. Howev
since the natural rotatory power of many materials is rat
strong ~up to thousands grad/cm!, the turning angle can be
easily measured with rather high precision even with st
dard detectors. In contrast, the third-order nonlinearities
very small and usually require either an intense optical fi
and/or long Kerr cells for direct measurements@3,2# or the
development of alternative methods@7#. However, because
of a third-order process, even with laser sources for
strong optical field there are problems with precision a
sensitivity of the measurements. In the proposed met
modulus of the third-order nonlinearityx1221

(3) can be deter-
mined by measuring the control parameters at which
Hopf bifurcations of the LP laser modes occur@see ~16!#.
Since the Hopf bifurcations define eventually the ratio of t
Kerr to gain medium nonlinearities~i.e., x1221

(3) /xm
(3)), sensi-

tivity of the method is rather high. Roughly, it is of the ord
of the coefficientxm

(3)l / l 8. Hence, even very weak Kerr non
linearities ~of the order of 10215 esu or less! should be
readily measured in an experiment. In addition, beca
xm

(3) (5ApNmud12u4/9\3Kug1g2) can be varied over a
wide range by an appropriate choice of the gain mixture
appropriate adjusting gain, pressure of the active medi
length of the gain tube, and so on, sensitivity of the syst
can be a controllable factor. High precision of the method
ensured by the fact that all measurements can be perfor
at relatively large cavity anisotropies when the laser sys
is stable against environmental conditions that often lim
intracavity measurements in weakly anisotropic lase
Moreover, in practice the instability thresholds~and, as a
consequence,x1221

(3) ) can be found relatively easily in the b
stability domain because of sudden switches of the la
emission from one LP mode, which is destabilized at
corresponding Hopf bifurcation point, to the alternati
stable orthogonally polarized mode. Clearly, such a polar
tion flip can be conveniently recognized in an experime
Precision of the measurements of the bifurcation value of
control parameter in this case will be even better than t
registering conventional development of periodic instabilit
at a supercritical Hopf bifurcation with smooth variation
the amplitude of the field parameter oscillations. In additio
the presenceof the instabilities for given phase anisotrop
can be a test on the sign ofx1221

(3) since the Hopf bifurcations
are not symmetric with respect to the change of sign ofD.
Finally, because this method requires only standard lab
tory equipment and a relatively simple experimental set
all measurements can be done with much less effort t
those involving more direct methods@2,3#.

It is worth noting also that in spite of the long history o
studies of nonlinear dynamics of lasers with or without n
merous intracavity complications, the problem discussed
6-7
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A. KUL’MINSKII PHYSICAL REVIEW A 62 023806
this work remains practically unexplored while it is intere
ing both from fundamental and applied points of view. Th
is due to the fact that only recent theoretical works ha
clarified the crucial role of polarization~or, more generally,
vectorial! degree of freedom in development of laser ins
bilities @4,6,14,20–22#. In particular, it has been shown th
vectorial degrees of freedom are responsible for complex
namics in single longitudinal-transverse-polarization mo
nonautonomous class-A@23# and autonomous class-B@24#
vector lasers that was impossible in the scalar case. Th
why we believe that our results along with a straightforwa
experimental arrangement might stimulate experimental
vestigations of vectorially induced instabilities in laser sy
tems.

IV. ZEEMAN LASER

It is well known that even a weak magnetic field, such
that of the Earth, can significantly modify behavior of vect
lasers@6,17,20,25–27#. Here we investigate an effect of th
longitudinal magnetic field on the dynamics of our laser no
linear system. A parameter describing the magnetic fi
(DB8 ) will be rescaled to the Doppler profile width (Ku) and
denoted asDB[DB8 /Ku. The motion equations for this cas
are given by the complete system~10!.

Equations~10! no longer admit LP solutions. Moreover,
is hardly possible to find analytically the laser steady sta
A more efficient way in such a case is the numerical integ
tion of the system. Numerical scanning of the parameter s
space (D, DB) gives qualitatively different results for sma
and large Kerr nonlinearity. Figure 6 illustrates a differe
structure of phase space forBK557 ~small! and BK5100
~large!.

Before continuing, let us recall that in a Zeeman la
with no Kerr cell the steady-state solutions are, genera
elliptically polarized ~EP!. Their helicity is determined by
the signs ofDB andD in such a way that the formerx (y)
LP mode for negativeD and positiveDB becomes the left
~right! EP mode. Changing the sign ofD to positive, the
helicities of both EP solutions interchange@6#. Because for
largeD the ellipticity of these modes is negligible, it is con
venient to retain notationsx and y for the new EP states
However, they will be used with subscriptsL andR to refer
to their helicity. For example, forDB.0 and D,0 the
former x ~y! mode corresponding to Fig. 2 becomes a le
~right-! handed EP mode with close to 0 (p/2) azimuth, i.e.,
xL (yR) mode. Consequently, forDB.0 andD.0 one has
xR andyL modes.

For smallBK @Fig. 6~a!# two qualitatively different types
of laser behavior are distinguished. For smalluDu time-
dependent dynamics is mainly governed by the applied m
netic field @6#. An impact of the nonlinearityBK onto this
behavior is the asymmetry of the instability domainM con-
fined by the Hopf bifurcationsBM

xL andBM
xR , which destabi-

lize thexL andxR modes, respectively~they are not presen
in the case of the laser with no magnetic field!. Instabilities
attributed to the Kerr nonlinearity~domain K) and the
bistable behavior of thexL andyR modes constitute an alter
native type of the laser behavior. In contrast to the first ty
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this behavior is more sensitive to the change ofDB . At first,
an increase ofDB results in the progressive enlarging inst
bility domain K. However, thereafter the bistability and in
stability K domains diminish and totally vanish through in
verse Hopf bifurcationsBK

yR and BK
xL for DB*0.13Ku and

DB*0.18Ku, respectively. Outside the instability domain
and to the left~right! of the boundaryBM

xL (BM
xR), the stable

solution forDB.0 is thexL (xR) mode. Thus, theyR mode
is stable only inside the bistability domain while theyL mode
is never stable forDB.0 and such a relatively large ampl
tude anisotropy (p50.999). Figure 6~b! shows that for large
BK instability domains associated with the effects of t
magnetic field and the Kerr nonlinearity collide producin
combined instability domainC. From the ‘‘above’’ this do-
main is confined by the Hopf bifurcation of thexL mode
(BC

xL). In domain I theyR mode is stabilized by the Hop
bifurcation BK

yR . The bistability domain of thexL and yR

modes distinguished by the Hopf bifurcationsBK
yR andBM

xL is
hatched. Again, there are neither bistability nor instabilit
to the right of the boundaryBM

xR , where the laser operates o
the xR mode. Note that for smallD andDB the Hopf bifur-
cations turn to be saddle-node bifurcations as discusse
@6# ~they are not shown in Fig. 6!.

For the sake of illustration, the behavior of the laser fie

FIG. 6. The Hopf bifurcations of the steady states of the Zeem
laser are depicted in the subspace (D, DB) for h51.33, d50, p
50.999, and~a! BK557 and~b! BK5100. The remaining param
eters correspond to Fig. 2. For other notations, see the text.
6-8
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INVERSE PROBLEMS OF NONLINEAR DYNAMICS OF . . . PHYSICAL REVIEW A62 023806
ellipticity corresponding to Figs. 6~a! and 6~b! for DB50.1
andDB50.15 is depicted in Figs. 7~a! and 7~b!, respectively.
Figure 7~a! clearly shows that dynamics in the instabili
domainsM andK is qualitatively different. While in domain
K one observes a small amplitude weakly dependent oD
oscillations, in domainM the amplitude of the ellipticity os-
cillations changes significantly. The behavior of the polari
tion azimuth in domainK is qualitatively similar to that of
the ellipticity. However, in domainM the azimuth shows
oscillating behavior only at the domain edges. In between
two large spikes, i.e., when the ellipticity angleb tends to
infinity, the azimuth turns out to be continuously rotatin
instead of oscillating. The latter feature is a characteri
feature of Zeeman lasers~compare with Fig. 4 in which po-
larization azimuth remains oscillating in spite of the fact th
b undergoes the extreme values!.

For largeBK @Fig. 7~b!# periodic behavior of the polariza
tion parameters in the instability domains Ca and Cb is m
pronounced. One can see that for moderateuDu, a minimum
of the ellipticity oscillations goes to2`. This is the point
where polarization azimuth oscillations~around a mean
value close to 0) become a continuous rotation, which
directly attributed to the influence of the magnetic field.

FIG. 7. One parameter diagram of the ellipticity angleb as a
function of the phase anisotropy forBK557, DB50.1 ~a! and BK

5100, DB50.15 ~b!. The other parameters are the same as in F
6. Continuous~dashed! lines show maxima~minima! of b. For
other notations, see the text.
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another extreme value (b→1`), the azimuth rotation again
becomes periodic oscillations but now it oscillates arou
the mean value which is close top/2. Similar behavior with
rotating azimuth occurs in domain Cb. Ellipticity of the fie
in the instability domains evolves periodically in time in a
cordance with the sequence: right EP→ LP → left EP →
LP →•••, and so on. In between the domains Ca and
laser emission is stable. TheyR mode in this domain is sta
bilized by theBK

yR Hopf bifurcation.

V. CONCLUSIONS

We have presented the results of analytical and numer
studies of nonlinear dynamics of a class-A Fabry-Pe´rot
weakly anisotropic laser containing a Kerr cell filled with a
anisotropic third-order nonlinear material. Field-independ
anisotropy of the Kerr material was induced by the effect
natural optical activity. Anisotropy of the bare laser cav
was assumed to be linear~i.e., in the Cartesian basis! since
this was the case for many realistic weakly anisotropic las
As a specific but rather general example, a typical comm
cially available He-Ne laser operating atl51.15 mm ( j
51→ j 852) has been considered in all numerical illustr
tions.

It is shown that such a nonlinear system can exhibit p
odic amplitude-polarization instabilities of a sing
longitudinal-transverse-polarization pattern. These instab
ties, which are readily accessible experimentally, are att
uted to the vectorial degree of freedom and they are
allowed when the field polarization state is fixed. More im
portant is that the vectorial degree of freedom results i
qualitatively new phase in elaboration of inverse methods
measurements. Specifically, the whole complex of static
dynamical phenomena displayed by this system gives ris
a comprehensive, inexpensive, highly sensitive, and effec
method of measurement of material anisotropies. Moreo
static and dynamical features of the system naturally sepa
contributions of the field-independent and nonline
anisotropies.

In particular, it is found that basic steady states of t
vector nonlinear laser system are orthogonal modes, wh
are linearly polarized~LP! in the Cartesian basis. Under st
tionary laser operation, anisotropies of the Kerr material
fect the only parameter of the laser field, i.e., the field pol
ization azimuth. Half of the turning angle of the polarizatio
plane of the emitted laser field provides the magnitude of
field-independent anisotropy of the Kerr material. Directi
of the polarization plane rotation gives sign of this anis
ropy. Although the Kerr nonlinearity has no effect on the L
laser steady states, an impressive feature of this syste
that it does affect thestability of these modes and, as a co
sequence, the laser time-dependent behavior. The ons
the instabilities~i.e., the Hopf bifurcation! in the system de-
fines the ratiox1221

(3) l 8/xm
(3)l . Obviously, this fact can be em

ployed for measurements of the nonlinear anisotropy of
matter. Moreover, because the Hopf bifurcations are prop
tional to the ratio of the material nonlinearities, such
method might be very sensitive because nonlinear proce
in the gain and Kerr media are of the same third order. T

.

6-9



as

ti
ld

e
ve
as
e
b

d,
ne
of
se
hi
a
a

ar-
less

ea-

py,
pf
at
es-
the
s-
of

ity

om

e of
the
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presence of the instabilities for a given laser cavity ph
anisotropy is a test on the sign ofx1221

(3) .
From the experimental point of view, the system inves

gated admits an easy registration of the instability thresho
for the x andy modes~and, consequently, parameterx1221

(3) )
because the laser cavity anisotropy should not be too w
for that. Furthermore, high accuracy of the method can e
be enhanced by the bistability phenomenon: when the l
mode loses its stability in the bistability domain, the las
emission is found to suddenly switch to the alternative sta
LP mode. Such a polarization flip can be easily revealed
an experiment and measured with high precision. Indee
the laser output field propagates through a polarizer alig
with the field polarization plane, the loss of the stability
this mode will result in the total disappearance of the la
emission after the polarizer. No doubt, registration of t
behavior can be easily performed even in an automatic m
ner. Finally, because this method requires only stand
op

-

G.

pl.
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laboratory equipment and straightforward experimental
rangement, all measurements can be done with much
effort than in the case of employing direct methods of m
surement.

The effects of the cavity amplitude and phase anisotro
laser field detuning, and gain on the behavior of the Ho
bifurcations is studied in detail. The main conclusion is th
large gain, amplitude anisotropy, and detuning and exc
sively small and large cavity phase anisotropy decrease
laser sensitivity to the Kerr nonlinearity. We have also inve
tigated dynamics of this laser system subject to the action
a longitudinal magnetic field. Because the Kerr nonlinear
is more efficient at relatively large and moderateuDu, its
effect on the laser dynamics can be readily set apart fr
that of the magnetic field whenBK , is small. For largeuBKu,
the laser time-dependent behavior is a combined respons
the system to the effects of the Kerr nonlinearity and
magnetic field.
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