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Nonlinear matter wave dynamics with a chaotic potential
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We consider the case of a cubic nonlinear Sdinger equation with an additional chaotic potential, in the
sense that such a potential produces chaotic dynamics in classical mechanics. We derive and describe an
appropriate semiclassical limit to such a nonlinear Sdimger equation, using a semiclassical interpretation of
the Wigner function, and relate this to the hydrodynamic limit of the Gross-Pitaevskii equation used in the
context of Bose-Einstein condensation. We investigate a specific example of a Gross-Pitaevskii equation with
such a chaotic potential, the one-dimensiofi&icked harmonic oscillator, and its semiclassical limit, discov-
ering in the process an interesting interference effect, where increasing the strength of the repulsive nonlin-
earity promotes localization of the wave function. We explore the feasibility of an experimental realization of
such a system in a Bose-Einstein condensate experiment, giving a concrete proposal of how to implement such
a configuration, and considering the problem of condensate depletion.

PACS numbse(s): 03.75-b, 05.45-a, 03.65.Bz, 42.50.Vk

[. INTRODUCTION use this theoretical framework to study a specific example,
the 5-kicked harmonic oscillator, describing in the process
Chaos in classical Hamiltonian systems, most simply dean interesting localization-causing interference effect pro-
fined of as the extreme sensitivity of trajectories in phasaluced by the nonlinearity. Finally we describe the possible
space to initial conditions, making long-term predictions ex-implementation of the5-kicked harmonic-oscillator potential
tremely difficult, is by now broadly understodd,2]. More  within a Bose-Einstein condensate experiment, also address-
recently, the field of quantum chaos, for our purpose meaning the reasonableness of using the Gross-Pitaevskii equation
ing the study of quantum-mechanical equivalents of classicab describe the dynamics, and considering the problem of
chaotic systems, has been the subject of much investigatigparticle loss from the condensate.
[1-3]. From this it does seem that the dynamics of quantum- The paper is organized as follows: Section Il lays out the
mechanical systems can be divided into regular and irreguldheoretical groundwork necessary in order to address the
subsets, with distinct differences between the two, just as igeneral problem of a cubic nonlinear Sctlirger equation
the case in classical mechanics. For example, due to the uri-e., the Gross-Pitaevskii equatjowith a chaotic potential.
tarity of the evolution of the state vector, there can be ndn particular, we derive an appropriate semiclassical limit to
equivalent of sensitivity to initial conditions in Hilbert space, the Gross-Pitaevskii equation, in order to separate out inter-
but there appears to be an equivalent sensitivity to perturbderence effects, which takes the form of a Liouville-like
tion which distinguishes quantum chaotic motia@n. A cer-  equation. In Sec. Ill we explicitly consider the example of a
tain amount of understanding has thus been achieved, af-kicked harmonic-oscillator potential, examining the phase-
though there are still unresolved problems, in particular howspace dynamics of a point particle, the Gross-Pitaevskii
to extract classical chaos from quantum mechaff¢s equation, and the Liouville-like equation derived in Sec. II.
Quantum dynamics are determined by the Sdimger Interpretation of the results of numerical simulations of these
equation. With the advent of successful Bose-Einstein condynamics reveals an intriguing interference effect, whereby
densate experimen{$], particularly in dilute alkali gases, an increasingly large and positive, i.egpulsivenonlinear-
there is now access to a new kind of quantum system. Thiy, inhibits diffusion in phase space. Section IV addresses
dynamics of a Bose-Einstein condensate of dilute alkali at-
oms are to a good approximation governed bgoalinear
Schralinger-like equation, the Gross-Pitaevskii equation Quantum fi—o Classical
[7,8], also reminiscent of equations appearing in the context mechanics mechanics
of nonlinear optic§9]. The question then arises: what effect
does the addition of such a nonlinearity have on the dynam-
ics of a quantum chaotic Schdimger equatiori10]? In this w0 w0
paper we first develop a theory to enable us to deal with

exactly this kind of problem. Just as in the case of quantum X
mechanics, where if one takes the limit>0 one expects to Nonlinear ko0
. - . pectsto quantum — * |Hydrodynamics
regain classical dynamics, one can also carry out this limit mechanics
for nonlinear Schrdinger equations, producing equations
reminiscent of classical hydrodynamifkl]. This intercon- FIG. 1. Schematic diagram of how nonlinear Salinger equa-

nection of different kinds of dynamics is displayed schemati+ions relate to other forms of dynamics under various limits. The
cally in Fig. 1, and is fully elucidated in this paper. We then parameteu represents the strength of the nonlinearity.
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the problem of how such a system could be realized in a p=|el? 2
dilute alkali-atom Bose-Einstein condensate experiment, and

considers the dynamics and possible growtmohconden- 4 P 9 P
sateparticles, and thus the feasibility of actually observing pP= o o* i (5& ) go} =p53. 3

the interference effects predicted by the work of Sec. Ill.
Section V consists of conclusions. There then follow five . . . -
appendixes carrying out certain calculations in more detail] "€ résulting equation of motion for the density is
the results of which are used in the main body of the paper.

d
5P~ 5 (Pp). 4
Il. THEORETICAL GROUNDWORK

A. Overview Before moving to the equation of motion fé, we first

As already stated, the main point of this section is toconsider the equation fd which is
determine an appropriate semiclassical limit to the Gross-
Pitaevskii equation, necessary for the analysis of the case of 4 1 2
the 5-kicked harmonic-oscillator potential carried out in Sec. ;> — ﬁ(&s) —VX.H)—up+ ——= \/— I 2\/_ (5)
[ll. To this end, in Sec. Il B we quickly cover the Gross-
Pitaevskii equation, and describe how one derives the hydr
dynamic equations describing the dynamics of the Gross
Pitaevskii equation in the hydrodynamic limit. It is tempting
to think of the hydrodynamic equations as equations describ- ) ) )
ing the semiclassical limit of the Gross-Pitaevskii equation, 9 o 7| P V) +up— h ‘9_\/—
but after deriving an appropriate semiclassical limit in terms ot 2m P \/; Ix2 P
of Wigner functions in Sec. Il C 1, in Sec. Il C 2 we conclu-

sively show this not to be equivalent to the hydrodynamic Taking the hydrodynamic limif8,11] consists of aban-

Fhe equation of motion for the momentum fidtds exactly
Sthe spatial derivative of Eq5):

(6)

equations. doning the term in Eq(6) proportional to%?, generally jus-
_ tified by claiming that the density is sufficiently smooth for
B. Basic concepts its derivatives to be insignificant, and resulting in
1. Gross-Pitaevskii equation P P2
In this paper we explicitly consider only one-dimensional 5 P=- x| 2m ——t+V(X,t)+up]|. (7)

systems, although the analytic results presented can easily be

generalized to two or three spatial dimensions. To simplify learl . h . I
things further, we explicitly consider only the cubic nonlin- Clearly, to obtain Eq(7), we have discarded all quantum.
earity, the simplest nonlinearity possible, resulting in thecharacter of the Gross-Pitaevskii equation. Also note that if

one-dimensional Gross-Pitaevskii equation, well known infh€ corresponding term is abandoned in E5).in the case

the context of Bose-Einstein condensation: where u=0 and V is time independent, we obtain the
Hamilton-Jacobi equation for a single particle in the poten-

2 .2 tial V, with the interpretation tha@S/dx is the canonically
|ﬁ o=—— —<p+V(X t)o+ule|e, (1)  conjugate momentum to the coordinatgl3].
at 2m g This seems to indicate that the hydrodynamic equations

(4) and(7) might be an equivalent semiclassical limit to the
where ¢(x,t) is the wave function and the strength of the =~ Gross-Pitaevskii equation with finite[Eq. (1)]. In Sec. II C
nonlinearity. Again, the analytic results here can easily bave shall determine how and why this is not so.
generalized to more complicated nonlinearities. Such a sim-
plified system demonstrates all the main features of a non-
linear Schrdinger equation, and is perfectly adequate for
illustrative purposes. This kind of simplified system is in fact 1. Expansion in powers of
experimentally accessible, for example in a Bose-Einstein
condensate experiment, as will be shown in Sec. IV.

C. Deriving a semiclassical limit: Wigner function dynamics

We wish to carry out a consistent expansion of ED.
aroundt, in order to clearly separate classical from quantum
dynamics, and to provide order by order corrections, allow-
ing us to see what there is that is specifically “quantum”
Here we sketch out the standard derivation of the hydroabout the dynamics of the Gross-Pitaevskii equatianin
dynamic equations, in order to set notation, and so that latgsrinciple more general nonlinear ScHinger equationsun-
we can point out the differences between the hydrodynamider consideration. We do this by considering the dynamics of
limit and the genuine semiclassical limit.We rewrite thethe Wigner functionW, which is exactly equivalent to the
Gross-Pitaevskii equatidiEq. (1)] using the density and a  wave functione, in the sense that all information about the
momentum fieldP [12], defined in terms of the wave func- wave function is contained within its Wigner representation.
tion o= \/pe'S* as We define the Wigner functiofor a pure stateas

2. Hydrodynamic equations
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1 (= . exactly as in the hydrodynamic equatio) and (7). The
W(X,p)= ﬁj dre” P o* (x— 7/2) (X + 7/2). result of Eq.(11) is outlined in Appendix A.
o If we take only the zeroth term in the infinite sum, we do

®) indeed obtain a kind of Liouville equation

It is well known that the dynamics of the Wigner function of

a single particle to lowest order give simply the classical iW—iH iW— K iW 13

Liouville equation of a distribution of noninteracting par- gt Iax Pap p Pox

ticles[5]. The exact expression to all ordersfirfor the time

evolution of the Wigner functioWV is given by where

J * (_l)s % 2s (725+l (923+1 J J pz

V=3, el 3] et TR "
C)

. . . , o . i.e., there is an additional “potential” proportional to the
whereH is the single particle classical Hamiltonian function. density of the distribution in position space. This can be

How to obtain this expression is sketched in Appendix A.interpreted as a large number of classical particles initially
Setting =0, we see that we do indeed obtain the classicalaced in phase space according to some kind of distribution

Liouville equation function and interacting repulsively with one another, i.e., as
a kind of nonideal gas. If u is large, we would generally
17 Jd d Jd d - .
—W=—H—W- —H—W, (100  expect large numbers of such particles concentrated heavily
at X dp ap- X in some cell in position space to tend to drive one another

apart, meaning that large valuesgshould in the long term

be heavily disfavored.

. . o X An alternative approach would be to try and derive Eq.
negative. If we have as a classical Liouville density @ (13 y considering an ensemble of purely classical particles
distribution, W(x, p) = 8(X—Xo) 8(p—Po), We regain classi- \ith an appropriate finite interaction potential. Such a deri-
cal point dynamics. One can think of a point particle be'”gvation, however, is not necessary for our purposes, and is

regained from quantum mechanics if we have a cohererfeyong the scope of this work; what we mean by a semiclas-
state centered at=x, andp=p, and leth—0, causing the g | limit is one with no dependence dn

Wigner function to tend to just such &distribution.

Itis worth mentioning that although we talk blithely about 2. Reconciling the Wigner function dynamics with the
letting 7 tend to zero, this is in fact physically meaningless. hydrodynamic equations
As # is a constant, we must in fact expand around some . i ]
scaling parameter to do with the characteristic action scales Hydrodynamic equations can also be derived from the
of the problem at hand, such that at some point the quanturgduation of motion for the Wigner functidieq. (11)], and if
corrections should be completely dominated, at least foP"€ expects the hydrodynamic equations to describe a semi-
some characteristic tin&). Generally some appropriate pa- classical limit of the Gross-Pitaevskii equation, this should
rameter presents itself, as will be shown for the case of th@€ consistent with the semiclassical limit described by the
s-kicked harmonic oscillator potential analyzed in Sec. IiI, Liouville-like equation of Eq.(13). In this section we con-
and expansions where it is stated that the linit 0 is ex- clusively show this not to be the case, and explain why this is
plored should be interpreted in this manner. SO. _ o _

What we now wish to do is to take an equivalent limit to I terms of the Wigner functior® is defined by
that presented in Eq$9) and (10) for the Gross-Pitaevskii
equation, with the object of getting some kind of Liouville YP(X)= J'w d X 15
equation with the nonlinearity taken into account. The full P)P(x) —w PPWX.P), (19
expansion of the Wigner function dynamics governed by Eq.

so long as the initial Wigner function can in fact be inter-
preted as a classical probability densifye., is non-

(1) in terms of? turns out to be wherep(x) has already been defined by E@2). P is thus
. 5 seen to be simply the first-order momentum moment of the
iW— B iHiW-i- > (—1® (A} Wigner function. It turns out to be useful to define higher-
gt ap Ix So(2s+1)1 2 order moments as well:
2s+1 &25+1 0
AR (1 p00P,0= [ dpEwixp) 16
where we have the density The derivation of the equation of motion fpris carried
_ out in Appendix B, and is exactly the continuity equation of
p(X)= f dp'W(x,p")=|e(x)|?, (12) Eq. (4),_ correct to all orders ih. The equation of motion for
— P, again to all orders ik, turns out to be
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J J 1 P 9 The correct semiclassical limit described in terms of mo-
1P~ o[V +up]- p—sz(x)+p—m o (PP) ment equations is thus described by the system
= V(X,t)+up+ Pa| 1 9 2 1 iP: - ii[pP(X)] (20
=~ x| VXD F+upt o p—m(y—x(ﬂpp), (17 ot m ox
where o2(x) = P,(x) — P(x)? is the variance of the Wigner d Pn(x) 9
P — - -
function inp at a given point inx. at Pa(X) ax[pP(x)]
Except for the term involvingrf), Eq. (17) is identical to
the hydrodynamic equatiofY). However, it can be seen that _ i i p —npP
[PPn+1(X)]—=NPp_1(X)
Egs.(4) and(17) do not form a closed system, as the equa- pm dx
tion of motion for P(x) refers to the higher order moment 3
P2(x). There is in fact, as shown in Appendix B, an infinite X—[V(x,t)+up], (21)
chain of differential equations for the momemg(x) [14]: X
9 P.(X) 9 where we must include every value of All of this is ac-
EPn(X)=T&[pP(X)] counted for in Eq.(13). It seems clear that Eq13) is a
simpler way of describing the correct classical limit, and is
1 4 certainly easier to integrate numerically.
- p—m&—X[PPnH(X)]—nPnfl(X)
Ill. TEST SYSTEM: THE 6-KICKED HARMONIC
J OSCILLATOR
X—[V(x,t)+up]
24 A. Overview
nt (h12)%n! In this section we consider explicitly, and in detail, the
—gl (2st DIn—(s+ ]! Pn—(s+1)(X) example of the one-dimensionab-kicked harmonic-

oscillator potential, which has been studied both classically
g2st1 [15-18 and quantum mechanicalijd9—-22. This is moti-
xm[V(x,t)Jr Up]]. (18)  vated partly by the fact that to gain insight into the general
X problem, it is useful to take a simple test system, whidtajis
) , , accessible experimentally, afid) amenable to numerical at-
In each equation the quantum corrections are described Q¥ | addition, we demonstrate the occurrence of an inter-
the sum, but there is also an infinite chain of classical corggying interference effect in this particular model, where lo-
rections; the second term of EL8) refers to the higher- iz ation of the wave function in phase space is promoted
order momene,.1(x). To obatin the second hydrodynamic v, |5rger positive nonlinearities, meaning a largepulsive
equation(7) in a closed form from Eq(17), we must addi-  aricle-particle interaction in the context of Bose-Einstein
tionally make the zeroth-order moment approximation,  congensates. In Sec. il B the external potential is described,
P.(x)=P(x)". (19) and through astute scaling, the number of free parameters is
n reduced to a minimum. In Sec. lll C the phase-space dynam-
In Appendix B, this is treated in more detalil. ics of the Gross-Pitaevskii wave function are examined for
In order to reach the “hydrodynamic limit,” it is neces- Various situations, and compared with the classical point dy-
sary to kill off all the quantum corrections, but there is in factNamics and the Liouville-like equatiof13) derived in Sec.
a much more drastic approximation than only taking the limit!l C, which shows conclusively that the observed localization
#—0, as a whole chain of classical corrections must bénust be an interference effect. In Sec. 1l D these results are
abandoned at the same time. The reason for the failure of tHgterpreted and explained.
hydrodynamic equations as a semiclassical limit can be seen
by examining our initial reasoning more closely. This was B. Model
based partly on a correspondence between the hydrodynamic
limit of the linear Schrdinger equation and the equivalent
Hamilton-Jacobi equation; however, this also implicitly as-  The total potential for the classical Hamiltonian consists
sumes that thénterpretationof the quantum wave function Of @ standard harmonic potential perturbed by a time-
tends to a classicaloint The Liouville dynamics given by dependent kicking potential,
Egs.(10) and(13) describe the motion of classicdistribu-
tions As already mentioned, in the case of no nonlinearity
(u=0) one can connect the two classical cases by consider-
ing a distribution of the formW= 8(x—Xg) d(p—po), but
when one is considering a case where the dynamics are invhere x is the position,m is the particle masse is the
fluenced by the density in position spagethis is clearly harmonic frequencyK is the kick strengthk is the wave
meaningless. number, andr is the time interval between kicks.

1. External potential

2,,2

Mo ”
V(X,t)= +Kcos{kx)2_ st—n7), (22

2
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2. Scaling
There are two basic parameters: the kick strergtiand 10~
the strength of the nonlinearity. Additionally there is#, 5 pd

which we have expanded around in Sec. Il C. The parameters ;L. 7
K andu need to be rescaled so that they remain equivalent in
different regimes, as determined by a scaling parameter
which takes the place df. In the case of thé-kicked har- ~10p-
monic oscillator there is a natural dimensionless scaling pa-
rametery?, where 7 is the Lamb-Dicke parameter

FIG. 2. Poincaresections of the phase-space dynamics of the
[ % classical 5-kicked harmonic oscillator(a) Single unstable initial
n= me (23 condition forming a stochastic web spr_eading through phase space.
(b) Closeup of the phase space, showing the closed curves charac-
teristic of regular dynamics. In both cases=27/6,x=1, andx

It should also be pointed out that s a real physical mag- andp are dimensionless, scaled as defined in E2®8). and (29)
e ' ' '

nitude, which really can be adjusted in the laboratory, unlik
. We call the dimensionless kicking strengih and the

dimensionless nonlinearity strengh kick strengthx [17]. For k not too large, these form an

Arnol'd stochastic web which spreads through all of phase
space, and has a characterigtisymmetry. For largec, one

2
K= Kk , (24)  Observes global chaos. Note that Arnol'd diffusi@8] can
V2me? occur in systems of less than two dimensions when the con-
ditions for the KAM (Kolmogorov-Arnol’d-Mosey theorem
ukd [1,24] are not fulfilled, as is the case hdr6—-18.
V== (25 Here [and also in the following numerical work on the
Z\Em‘*’ Gross-Pitaevskii equatiofil) and Liouville equation(13)]

we consider the case wherg=27/6 andx=1. The scaled

It is shown in Appendix C thak and v have an equivalent position and momentum are defined as

effect on the overall dynamics for any value »f
If, as is often the case when the trapping potential is har-

~  kx
monic, the Gross-Pitaevskii equation has been rescaled in X=—== 75X}, (28)
terms of harmonic coordinates x{= Vmw/AiX, pp V2
=p/Jmhw), then it can be written in terms of these dimen- K
sionless parameters as p= P__ 7P (29)
V2mo
9 1 9° v ,
i—¢=—5—¢+V(xp,the+ —|el°p, (26) These scaled variables are chosen so that the phase-space
ath 2 (7)(2 3 . . . . . .
h 7 dynamics of a classical point particle described in terms of
) . them are affected only by and r,. As can be seen, they
X K 2 E correspond exactly to the scaled harmonic position and mo-
V(Xh,th)—z'f‘_\/EnzCOi 277X)n:7w (S(th_nTh). mentum WhenI]:l.

(27) It can be seen in Fig. 2 that the phase space, in this case
havirg a 6 symmetry, consists of a stochastic web of chaotic
The wave functions have been rescaled so that they are progynamics, where an initial condition can spread throughout
erly normalized with respect to the harmonic position coor-Phase space, enclosing cells of stable dynamics. A trajectory
dinate, and the time evolution is with respect to the dimeninitially inside one of these stable cells will generally be held
sionless timet,= wt. It is this form of the Gross-Pitaevskii in a ring of six cells, equidistant from the center, for all time

equation that we use in our numerical simulations. (with the exception of the particle initially in the central cell,
where it stays[15].

C. Model phase-space dynamics 2. Gross-Pitaevskii equation

1. Classical point dynamics In this section and in Sec. Ill C 3, we always work with

The dynamics of a classical poinst particle id&icked the harmonically scaled positiox, and momentunp,, and
harmonic potential have been described fairly extensivelyith the dimensionless timg,. For the sake of brevity we
elsewherd15—-18. Briefly, we choose a value far,. Fora  omit theh subscript, and thus write these variables simply as
given 7 there is only one free parameter which affects thex, p, andt (or 7).
phase-space dynamicg. There is a resonance condition  We integrate numerically, using a split operator method
mw=27r/qg (r/qg is a positive rational, wherg>2), whereby [25], the Gross-Pitaevskii equation as given in E2f) con-
there are interconnecting channels of chaotic dynamics in theidering only the harmonic potential for periods of time of
phase spacfl7,18, the thickness of which depends on the length 7, punctuated by the exact mapping
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10 10 10 10
- - - -
Po Po - - Po Po - -
- N - N
-10 -10 -10 -10
=20 -10 0 10 20 -10 0 10 20 =10 0 10 20 -10 0 10
X X X X
© (d) (© (d)
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X X X X
FIG. 3. Pseudocolor plot of time-averaged Wigner functions FIG. 4. As for Fig. 3, whera=0.1.

whenv=0, i.e.,linear Schralinger equation dynamics, in the two
cases ofp=1, for (@) an unstable initial condition angh) a stable  condition[Fig. 3(b)] simply circles around phase space, as
initial condition; andy= 2, for (c) an unstable initial condition, and would an initial coherent state in a simple harmonic poten-
(d) a stable initial condition. Position and momentum are scaled injal. The wave function is clearly somewhat deforniedthe
dimensionless harmonic units, and black means large and positivegse of a harmonic potential we would see perfect circles
but is otherwise well localized and well behaved. In the case
(P(X,t+):e—ixCOS(\e’?WX)/»f?nﬂp(xlt—), (30 of »=2, one might be forgiven for thinking that whether the
initial condition is ostensibly stable or not is of negligible
which accounts for the effect of the instantanedukicks. ~ importance. The fact thay is larger has the effect that the
This was carried out for various values ofand 7, where  phase space is smaller compared to the size of the initial
k=1 andr=2%/6 in every case. wave function(as plotted here, using harmonic upjtand
We have calculated théme-averagedWigner function, —also quantum corrections play a larger rgéee Appendix
by which we mean the average of all the Wigner functionsC), leading to the “tunneling” seen in Fig.(8), through
determined just before eachkick, for 100 kick periods. The ~classically forbidden areas of phase space. This tunneling
initial wave functions are displaced ground states. That is¢an take place because the eigenstates of the Floquet opera-
the ground state of the Gross-Pitaevskii equation is detettor F describing the period from just before one kick to just
mined numerically, for each value of We then locate the before the next,
center of the wave function at a point which is in a regular or o i
chaotic region of the theclassical single-particlephase |‘::e—i(x2+ pz)rlze—ixcos(&nx)/&n{ (31)
space. “Unstable” initial wave packets are centeredxat
=27/ » (harmonic unity, and “stable” initial wave pack- are highly delocalize{i19-21], as is described in Appendix
ets atx=2+2#/ . The initial wave functions are thus cen- D.
tered exactly either in the middle of a cell in phase space, or In Fig. 4 equivalent plots are shown when a nonlinearity
in an area dominated by web dynamics. These displacedf v=0.1 is added to the Gross-Pitaevskii equation. It can be
states are the natural equivalent of coherent states for a cubseen that this does not make very much difference to the
nonlinear Schidinger equation. Just like coherent states, thephase-space dynamics compared to no nonlineéFity. 3),
density profile keeps its shape in a simple harmonic potentialvhich is not really unexpected.
as it oscillates back and forth. This oscillating excitation is When, as shown in Fig. 5, a nonlinearity o 1 is added
the so-called Kohn modg26]. to the Gross-Pitaevskii equation, it can be seen that this does
First, in Fig. 3, we show the case of no nonlinearity, formake a difference. Intriguingly, given that the interaction
the sake of reference. In this case the initial conditions ar@otential is more strongly repulsive, the phase-space dynam-
simply coherent states. Note that because it is possible facs appear to be more strongly localized. In the case of an
the Wigner function to have negative values, the color repunstable initial conditioriFigs. 5a) and 5c)] the web struc-
resenting zero is in general different in each pseudocoloture is noticeably reduced, and whereas in F{g) there was
plot. Thus in each plot there is a “background” color, which significant tunneling leading to a very delocalized phase
represents zero, with a superimposed pattern made up space distribution, in Fig. (8) this has effectively disap-
darker and lighter shades. Note that fgpr 1, the unstable peared.
initial condition [Fig. 3(@)] appears to move through phase In Fig. 6, wherev= 10, this is even more marked. Where
space following the stochastic web, whereas the stable initiah=1, in the case of an unstable initial conditigrig. 6(a)],
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(a) (b) (a) (b)
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FIG. 5. As for Fig. 3, whera=1. FIG. 7. Pseudocolor plot of time-averaged distributions under-

going Liouville dynamics when/=0.1, in the two cases of=1,

densi b d d a “rina” in oh for (a) an unstable initial condition anh) a stable initial condition;
ensity seems to be concentrated around a "ring” in p aseolndnzz,for(a) an unstable initial condition an) a stable initial

space, based around how far out in phase space the initighgition, Position and momentum are scaled in dimensionless har-
condition was. Wherey=2 [Figs. 6c) and &d)], whether  nonic units, and black means large and positive.
the initial condition is ostensibly stable or unstable, we see

only six symmetrically placed round blobs of density, analo- Equation(13) can be qualitatively determined numerically

gous to a coherent state in a harmonic potential. by taking an ensemble of starting points from some desired
distribution, using Hamilton’s equations of motion to deter-
3. Liouville equation mine the trajectories, and using the numerically determined

. . . : o coarse-grained density for the overall potential governing the
Here we wish to investigate the semiclassical limit of the,5tion of the individual points. Obviously the coarse-

dynamics of the Gross-Pitaevskii equation withb&icked  grained density must be determined sufficiently frequently so
harmonic oscillator potentidEq. (26)]. The appropriate dy-  that phetween times when it is determined, it does not change
namics are described in general by Eg3). As with the  engugh to have a very significant effect on the dynamics.
Gross-P_ltaeysku equation, in our case thls_ can be cqrrled OYthis is in some sense analogous to the split-step method we
py considering only the harmonic potentlgllfor periods thave used to integrate the nonlinear Sdimger equation,
time 7, punctuated by an exact map describing the momenyhere as the time steps shrink to length zero, the approxi-

tum kick. mate solution convergd#n principle) to the exact solution.
In each case the initial distribution is chosen by determin-
(a) (b) ing the ground state of the harmonic potential Gross-
Pitaevskii equatior{for appropriatev and %), shifting it so
10 10 that the center of the wave function is at an unstable or stable
fixed point(in the classical, single-particle sensealculat-
Po O Do o~ o~ ing the Wigner function, and interpreting this as a classical
probability distribution inx andp. The ground-state Wigner
=10 _10 2 e function in the case of a harmonic potential is always strictly
non-negative, so one can always do this.
-20  -10 0 10 -20  -10 0 10 Note that althoughy does not enter into the dynamics of
© o (d) o Eq. (13) directly, by the above recipe it does enter by way of
the choice of the initial condition, which affects the effective
10 10 potential due to the distribution’s density in position space,
e and so on. The time-averaged density distribution plots in
Po o Po - = Figs. 7-9 are chosen to have initial conditions and scaling
.e exactly equivalent to the time-averaged Wigner function
-10 -10 plots shown in Figs. 4—6.
In Fig. 7 we see the density distribution averaged over
=20 -10 )‘C) 10 -20 -10 2 10 100 kicks for the case wherg=0.1. The dynamics are es-
sentially similar to those show in Fig. 2 for various single
FIG. 6. As for Fig. 3, where=10. trajectories, and we observe a much lesser degree of distri-
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(a) (b) the initial distribution seems too large for the cells, and even
in the stable case there is some diffusion outwards through
10 10 phase space.
< J Finally we consider the case whewe- 10, shown in Fig.
D o ~ Do ~ ~ 9. There is significant additional diffusion through phase
L space for the unstable initial condition, compared to the
-10 -10 cases ofv=0.1(Fig. 7) and 1(Fig. 8). Even for the suppos-
edly stable initial condition there is some density which has
o | o n found its way onto the stochastic web, and appears to be
© (d diffusing outward. Nevertheless, the basic structure of the
single-particle stochastic web appears to be retained.
10 . There thus appears to be a clear trend, where the larger
N the interaction parameter, the greater the degree of diffu-
& P o v % sion outward through phase space, but nevertheless along
routes typical for single-particle dynamics. This has a simple
-10 -10 explanation: wherv is large and the distribution is highly
localized, the distribution tends to push itself apart. After this
0 10 -10 0 10 L. . . .
x x initial explosion through phase spa@tively encouraged in
_ the unstable parts of phase spadbe contribution by the
FIG. 8. As for Fig. 7, wherv=1. density to the effective potential is small, and so the by now
thinly spread distribution undergoes local dynamics equiva-
bution through phase space when compared to the full Gros$ent to single noninteracting classical particles, chaotic or
Pitaevskii equatiorisee Fig. 4 In particular we see no tun- stable, depending on the location in phase space.
neling in Fig. 7d), compared to Fig. @). The dynamics in
the cases of “unstable” initial conditions perhaps do not
appear to be very strongly chaotic. Remember that only 100
kicks have been applied, and that in the case of the single 1. Overview
particle classicab-kicked harmonic oscillator, there astow

-10

D. Interpretation

chaotic dynamics along the stochastic W&b—17), with an 'I_'he most interesting thlng shown by _these nhumerical ex-
periments, is the conclusive demonstration that the localiza-

overall tendency to diffuse “outwards” in phase space. We,. o i )
have examined the case of 100 kicks only in order to directl);[Ion observed in F|gs._5 and 6 is dug to interference effects,
. : : caused by terms of higher order #nin Eq. (11) (or more
compare with t_he the numerically determined Gross'correctly, higher order im?, as shown in Appendix CThe
Pltﬁev\\llzkgfgr?]?nn;uﬁé. 8, which shows analogous dynamicsimmtiv.e picture (.)f a stronger r_epl_JIsi\{e interacti_on dr_iving
to Fig. 7 for the case thai=1, we observe some increased f[he ngne( funct.lon—.nguvnIe distribution apart, is fu‘l‘ﬂlled
. ’ . . ~ - in the semiclassical limit, but breaks down when all “quan-
spreading out through phase space, still contained within th?um” corrections are accounted for
characteristic_ c.e_lls form_e_d by the stochastic web in the case The increasing degree of Iocalizétion shown with increas-
of the stable initial condition for=1. In the case of=2, ing v in the Gross-Pitaevskii dynamics can also be qualita-
tively explained. As is shown in Appendix D, in the case of
(a) (b) linear Schrdinger equation dynamics, the Floquet eigen-
states are highly delocalized, due to extra symmetries con-
10 | 10 o~ & nected to the fact that the wave function is kicked exactly six
/3 times per oscillation period. The presence of delocalized
P o - -~ eigenstates means that the wave function tends to spread
v throughout phase space with ease; along the stochastic web if
-10 -10 the initial condition is in a classically unstable part of phase
space, and possibly by tunneling from cell to dglfomoted
by large ) if the wave function is initially in a stable part of
© (d) phase space. With increasingthis symmetry is more and
more perturbed, to a point where this ability to spread freely
18 18 through phase space is lost. Interference effects due to
~ N higher-order terms of the density in Ed.1), act to hold the
@ P o " cm wave function together, in contrast to the Liouville type dy-
namics described by E413).

-10 -10

10 _10 0 10 2. Density in position space

-10 0
X X

On this note it is instructive to look at the kinds of den-
FIG. 9. As for Fig. 7, wherv=10. sities actually produced. We consider the final wave func-
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FIG. 10. Plots of ¢(x)|? after the application of 100 kicks and FIG. 12. As for Fig. 10, but fow=10.

wherev=0.1, in the cases of,=1, for (a) an unstable initial con-

dition and(b) stable initial condition; andy= 2, for (c) an unstable more strongly emphasize@lso see Appendix C Between
initial condition and(d) a stable initial condition. Position is scaled kicks, the non-Liouville corrections are due onlydfx), as
in dimensionless harmonic units. the derivatives ok2 vanish.
) ] ] ] Considering the cases of Figs.(aRand 12b) in particu-
tion, produced after 100 kicks, at a time just before a hyposar, one might ask what there is about these densities which
thetical 101st kick. In Fig. 10 we see plots|af(x)|* for the  seemingly so totally dominates the dynamics. We consider
casev=0.1. Unsurprisingly, for the unstable cases, and alsqne initial state, which is simply a shifted ground state. The
for the stable case wheng=2, the states are highly delocal- ground state of the Gross-Pitaevskii equation lie somewhere
ized in position space, with a great deal of fine structure. Imetween the cases of a Gaussiaon nonlinearity and the
Flg 11, this has Substantia”y ChanQEd; the densities WhiC'Thomas-Fermi ||m|][8:|' which is essentia”y an inverted pa-
were very complex are now much simplified, and even thgapola(large nonlinearity. With regard to the parameters we
stable initial condition forp=1 appears to have less struc- have chosen to use, the degree of “Thomas-Fermi-ness” is
ture whenv=1 compared ta=0.1. Whenv is increased to  proportional tov/ %°. In the Thomas-Fermi limit, there are no
10, as shown in Fig. 12, there is still some structure to thﬁhigher-order derivatives gf. A Gaussian, however, has an
densities wherep=1, wheras in the case wherg=2 there infinite number of derivatives. For Figs. (8 and 12b),
appears now to be none. v/7%=1.25 only. The initial state density is thus more
Obviously much more radical change is induced for thegaussian than paraboloid, and the large value of the effective

case ofy=2 when increasing. Bearing in mind that)* is % ensures that corrections due to the inevitable higher-order
our effectivez, it is clear from Eq.(11) that higher-order derivatives are substantial.

derivatives in the effective potentia(x,t) +up(x) will be Briefly, the application of a kick scrambles the phase of
the position representation of a wave function; the density in
(@ ®) position space is instantaneously unaffected, however. When

05 looking at Eq.(11) we see that corrections due to higher-

order derivatives op will be emphasized for larger effective
%, in our caser?. The effect of these corrections appears to
be a strong tendency for ttshapeof the wave function to be
preserved.
In this work, we have not really explored the regime of
20 -10 10 20 20 -10 10 20 very large nonlinearities. In view of the fact that in the
©) d Thomas-Fermi limit for the ground state there are no correc-
08 tions to the Liouville-like equation of Eq13), it is possible

0
X
06 A\}k that the kind of very pronounced localization observed for
0
X

()
()

03
the case ofp=2 might again be suppressed for much larger

02 .

0.4

()2
()2

0.1 0.2

3. Density in momentum space

0

05
04

0.4
03 03
02 S s
0.1 0.1
0 0

0

p

0

X

20 -10 10 20 20 -10 10 20 For the sake of comparison, in Figs. 13—15 we show the
corresponding momentum densities to the position densities
FIG. 11. As for Fig. 10, but fov=1. of Figs. 10—-12. The densities in position and momentum
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(a) (®) (a) (d)
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FIG. 13. Plots of ¢(p)|? after the application of 100 kicks and FIG. 15. As for Fig. 13, but fow= 10.

wherev=0.1, in the cases ofy/=1, for (a) an unstable initial con-
dition and(b) a stable initial condition; andy=2, for (c) an un- by a laser, was described in R€28]. This can in principle
stable initial condition andd) a stable initial condition. Momentum be readily extended to a periodically driven Bose-Einstein
is scaled in dimensionless harmonic units. condensate. In Sec. IV B it is shown how a Gross-Pitaevskii
equation with ad-kicked harmonic-oscillator potential can
space essentially correspond, in that complex structure in ontge produced by periodically kicking an already formed con-
indicates complex structure in the other. This is not surprisdensate with a far-detuned standing wave. In Sec. IV C we
ing, if we consider the kinds of Wigner functions displayed consider in a very basic way the problem of noncondensate
in Figs. 4-6. particles, i.e., the generation of noncondensate particles, and
thus the depletion of condensate particles, finding that one
cannot be sure in every case considered in Sec. Il that the
Gross-Pitaevskii equation is an appropriate description of the
dynamics for the particle numbers common in current ex-
A. Overview periments. We note, however, that in principle one can al-

ways start with a sufficiently large particle number, so that,

A SEries of pioneering experiments investigating quantun}or the time scales considered, particle loss can be considered
chaos with atom-optical systems has been carried out by Raj-

zen and co-workerf27,41,43, mainly for a quantum real- hegligible.

ization of the-kicked rotor. We take a similar approach: a ) . .

possible physical realization of thitkicked harmonic oscil- B. Two-level atoms interacting with a far-off-resonance laser
lator, consisting of a single trapped ion periodically driven 1. Single particle

IV. PHYSICAL MODEL: DRIVEN BOSE-EINSTEIN
CONDENSATE

We begin by regarding a single two-level atom. In the
(@ (®) direction, it is trapped in a harmonic potential of frequency

025 05 w, and driven time dependently by a laser field of Rabi fre-
Y S o4 quency()(t), wave numbek, and frequencyn, . We disre-
& 015 & o3 gard motional degrees of freedom in thandz directions as
S S being presently uninteresting, and arrive at the Hamiltonian
0.1 0.2
0.05 0.1 operator
$H 0 o 10 2 H 10 0 1w 2 . P2 me™® & R
© °* @ 7 H=25-+ ——+ 5{wo(|e)(el~|g)(g]) + cogkx)
0.6 .
03 X[Q(t)e LY e)(g|+H.c]}. (32
A < 04
= 04 o~
% % 03 In a rotating frame defined by
— o2 — 02 . _
o1 U=exd —iw t(le)(e|-[g)(a])/2], (33
1] 1]
oA g e 2 10 % and in the limit of large detuningA|=|w — wo|>|Q(1)],

|e) can be adiabatically eliminated to give, after transforma-
FIG. 14. As for Fig. 13, but fow=1. tion to an appropriate rotating frame,
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N E)Z Mw?X? Q(t)? « v _ Mw?x? +ﬁ(r\/;02 ok i 5
H= 2m+ > + > aA [cog 2kx)+1]|g)(g. (x,t)= 5 8A cog X)n?m (t—n7).
(34) (40)
The laser is periodically switched on and off, giving a series We assume the radial frequeney to be very large com-
of short pulses, approximated by Gaussians pared to the axial frequency (cigar-shaped trapping con-
figuration, and thus assume that every particle is in the
* . harmonic-oscillator ground state ynand z. With this as-
O(1)2=02 >, e (t=n7o7 (35)  sumption we can integrate ovgrandz, reducing to a single
n=-= dimension

which approximate a series @ kicks in the limit c—0. o
Note also that we require>1/A; otherwise the laser is too H= dx¥'(x)
spectrally broad. Thus we finally have —

h? 9°
— % ﬁ +V(X,t)

- P2 meX? & 0?2
H:p_+ 0} 0\/;

omtT T2 T8

914

PI) T (x) [P (x), (41)

R * whereg,y= Mwg/27h =2k w,a,.
x[cog2kx)+1]|g)(g| X S(t—n7).  (36)
n=-e 3. Asymptotic expansion: Sketch of derivation

) ] ] of Gross-Pitaevskii equation
Because we assume that the atom is always in electronic

state|g), the|g)(g| operator can be effectively abandoned. Using the particle number conserving formalism of Castin
The extra+1 simply adds a global phase, which can easilyand Dum[29], we split the field operatol’ of the many

be accounted for, and so this can be further simplified to particle system into a condensate part and a noncondensate
part:

"2 25,2 2 *
p* | mo¢  ho\mO cog2kx) 3 s(t—nv). T (x,0) = eal XD, (1 + ST (x,D), (42)

+
2m 2 8A
(37) . . -
where ¢, is the exactcondensate wave function, ardd
This is exactly the Hamiltonian for the quantuakicked describes the noncondensate particles. Introducing the opera-
Harmonic oscillator, except that we have cdsfdnstead of tor

coskX). As far as scaling is concerned, this means we must 1

in turn considern’ =27 instead ofy as the appropriate di- Ao,y =—al (t)s¥(x,t) (43)
. e il N ‘PEX

mensionless parameter. \/ﬁ

A=

2. Many particles: Second quantized formalism . . . LA
yP . it is possible to make asymptotic expansions\qf(x,t) and

Itis clear that if we consider a many-particle system, theny_ (x t), such that
the above derivation is independent of any particle-particle

interactions which do not change the internal states of the 1 1
atoms. We thus consider the model Hamiltonian of a weakly Apm A+—=AD+A@ .. (44)
interacting Bose gas, in second quantized form \/ﬁ N
=f dx¥ (%) —h—2V2+V(x t)+9\iﬁ(x)\if(x) ¥ (x) 1 1
. 2m T2 ! Pox= o+ =W+ —g@+. -, (45)
(39) N N
where ¥ is the particle-field operatog=4n#i2as/m, and  whereN is the total particle-number operator.
a, is theswave scattering length. We tak&x,t) to be Thus, to lowest order, the condensate particles are de-
scribed by (x). The time evolution of this can be shown to
Maw? be given by the Gross-Pitaevskii equati@®], which in our
r 2 2 .
V)=V, + ——(y™+2), (39 caseis
where the potential in the direction is exactly that derived J h? o
P y h e~ = om e ¢V )e+Ngigle|’e,  (46)

above, i.e., ot 2m g

023612-11



GARDINER, JAKSCH, DUM, CIRAC, AND ZOLLER PHYSICAL REVIEW A62 023612

whereN is the total number of particles. In turn, the noncon- Bk’S are time independer|29]. We see that the time-
densate particles are described to lowest ordef by, t). dependence of Eq51) is thus contained completely within
The Gross-Pitaevskii equation which we have arrived a{u,|u,) and(v,Jv,). A system initially prepared at tempera-

in Eq. (46) can be rewritten in terms of the dimensionlesstyre T has<blbk>:[eXpEk/kBT)_l]ila and so, if we take
parameters;’, «, andv, as described in Sec. Il B 2, where the |imit T—0, we obtain

| 2%
77, =k E! (47)

(8N(1)= 2 (vi(D)]vi(t)). (52
B fik2o w202 48 k=1
T 2meA (48)
3 We thus wish to study the dynamics pf,(t)) to obtain
8Nk w,ag X .
v= . (490 some idea of the change in the number of noncondensate
V2mo? particles, in an analogous fashion to the work of Castin and
Dum, when investigating the behavior of a condensate held
C. Noncondensate particles in a time-dependent isotropic harmonic potenf20]. Note

that because the Gross-Pitaevskii equationaslinear, it is
possible to have chaos in the sense of exponential sensitivity
The mean number of the non-condensate particles is give initial conditions within the Hilbert space. If this is the
by (6N)=[dx(s¥"6W¥), which to lowest order may be de- case, the above estimate(@(t)) will grow automatically,
scribed byfdx(ATA). Inturn, AT andA can be expanded as due to the fact that this estimate is essentially from a linear-
R . . ization around the Gross-Pitaevskii solutif80]. Thus the
At 5 (”k(x't) prl Uk (x,0) rate of growth of this estimate of SN(t)) is similar to the
Af(x,t)] k=1 K vi(X,t) 1K ug (x,t) /)’ Lyapunov exponent for the divergence of trajectories in
(50) phase space for discrete classical systems.
The dynamics of th¢u,(t)) and|v,(t)) are given by

1. Background: Dynamics beyond the Gross-Pitaevskii equation

+
k

o

which gives rise to the following equation describing the
mean number of noncondensate particles to lowest order in

the perturbation expansion: d [ ug®) (D))
| el e
) . . dt| (1) o)
(oN(V)= 2, (bibi{uD]u(t))+(bibict 1)
X(ui(D)|vk(). (5))  where
|
£ty | FerO T NaRQOILGDIM  NaQ(De(0*Q* () ) -
~NgiQ* (De(x,D*?Q(t)  —Hep~Ng1dQ* (D] e(x,D)[?Q* (1))
|
and where we have defined the Gross-Pitaevskii “Hamil- Q*:1_|¢*><¢*| (57)
tonian” ,
where|¢*) is defined by(x|¢* )= ¢* (X) = (¢|x).
2
He(t) = Zp—m+V(§(,t)+u|go(§(,t)|2—§(t). (55) 2. Dynamics of¢ SN (t))

To determine hova(t)) changes over time, we need to

- . determine the dynamics ¢ (t)), which are coupled to the
The phase factoé(t) is equal to the ground-state chemical ) .
poterﬁ)tial w for af(hllrmor?ic potentia? whemp(x,t) is the dynamics of uy(t)) thrpugh Eq.(53). We thus need to Inte-
Gross-Pitaevskii equation ground state. The projection opgrate_ Eq'(53)’ and to integrate E53), we need as initial
eratorsQ andQ* are given by conditions|u(0)) and|v(0)). :
The initial conditiongu,(0)) and|v(0)), for ¢(x) in the
ground state for a harmonic potential, are determined by di-

Q=1-|¢X¢l, (56)  agonalizingl, where(X,t) is chosen to correspond to the
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FIG. 16. Semilog plot ofv,|v,) with respect to the number of kicks for k=1, ...,15: k=1 (solid line), k=2 (dotted ling, k=3
(dash-dotted ling k=4 (dashed ling k=5 (circles, k=6 (crosses k=7 (pluse$, k=8 (squares k=9 (diamonds$, k=10 (downward-
pointing triangleg, k=11 (upward-pointing trianglesk= 12 (left-pointing triangleg k= 13 (right-pointing triangles k= 14 (pentagrams
andk= 15 (hexagramg wheren’' =1 andv=1. (a) shows data for the “unstable” initial condition, where the leading term after 100 kicks
is for k=1. (b) shows data for the “stable” initial condition, where the leading term corresponéis-@.

Gross-Pitaevskii equation ground state for a harmonic potermentioned, the density profile gf(x) remains unchanged as
tial, and&(t) = w. For this we need to determine the ground- it oscillates back and fortkwithout kicks; the same is also
state condensate wave functigri{x) and the ground-state true ofu,(x) anduv(x). Once we have the initial conditions
chemical potentiale. This is achieved by propagating the we can start integrating Eg53).
Gross-Pitaevskii equation in imaginary time, where we use a
split-operator metho¢i25]. 3. Numerical results

We t'hen determine: in the pos'ition representation, where We numerically integrated E¢53) for the first 15u,(x)
¢(x,0) is the previously determined ground state aj¢) vi(x) pairs over a time span of 100 kicks, using a split-

_ . . . "2 . .
=u. We use a Fourier grif31] to describep® in the posi-  ,herator method described in some detail in Appendix E,
tion representation. We then diagonalzenumerically, and  arajiel to numerical integration of the Gross-Pitaevski

gain as the resultant set of eigenvectors equation, also using a split-operator metti28]. Just before
N each kick each of the inner products,|v,) were deter-

(uk(x)) v (X)) [ e(x) 0 ) (59) mined, which are plotted against time in Figs. 16—19 for

v () ug(x))" 0 STl (%)) ] various parameter regimes for which we have already inves-

tigated the Gross-Pitaevskii dynamics. The ‘“stable” and
with eigenvalues{E,,—E,,0,0}, respectively[29]. These ‘“unstable” initial conditions referred to are those of the ini-
eigenvectors must be properly normaliZ&9], so that tial Gross-Pitaevskii wave functiofwhich in turn deter-
mines the initial conditions of each of thg(x) andv(x)
* * % modeg, and are exactly those taken in the integrations of the
j_wdxu’k‘(x)uk,(x)— f_xdka (XJvie (X) = dige - Gross-Pitaevskii equagon described in Sec. II% 1. To reiter-
(59) ate, the data presented in the plots in this section correspond
exactly to the phase-space plots presented in Sec. |l B 1 for
Our initial condition for the Gross-Pitaevskii equation is the appropriate values efand %', with regards to the initial
in general a shifted ground state, that is, we take the groundsondition. Figures 16 and 17 correspond to Figs. 5 and 8, and
state wave function, and instantaneously translate it in posiFigs. 18 and 19 correspond to Figs. 6 and 9.
tion space, otherwise altering nothing. Physically, this could In Fig. 16, wherep’' =1 andv=1, we see a marked dif-
be achieved by almost instantaneously translating the centégrence between the “stable” and “unstable” cases. In the
of the harmonic potential, so thaf—(x—a)?. Instanta- “unstable” case we see a much greater growtufv,)’s.
neously, this would leave the Gross-Pitaevskii wave functiorinterestingly, thek=1 mode in the stable case does not on
and theuy(x) andv,(x) modes unchanged. If we then re- average seem to grow at all, instead undergoing quasiregular
express everything in terms »f =x—a, we end up with the oscillations in time. The leading terms are also differdnt:
sameequationsin terms ofx’ as we had initially in terms of =1 for the unstable case, akd-2 in the unstable case.
X, but the wave functions are transformed: Compared to Fig. 16, the “stable” and “unstable” cases
{e(X),u (%), v (X)}—{e (X’ +a),u (X’ +a),v,(x'+a)}. shown in Fig. 17(where the only difference is that' =2),
Thus if the initial Gross-Pitaevskii wave function is sim- appear comparatively similar. In particular there does not
ply a shifted ground state, then the appropriate initighnd  seem to be a great deal more growth of|v,) in the “un
vy are correspondingly shifted from those determined ftbm stable” case when compared to the “stable” case.
for the ground-state condensate wave function. This set of We see the same pattern repeated in Figs. 18 and 19,
initial conditions is in fact somewhat special; as previouslywhere v is now 10. In Fig. 18, thev,|v,)’s very rapidly
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FIG. 17. As for Fig. 16, except thaj’=2 andv=1. In (a) the leading term is fok=3, and in(b) for k=6.

grow in the “unstable” case when compared to the “stable” |u,),|v,) pairs is essentially the same as that describing the
case, whereas in Fig. 19, wher¢=2, the difference is not evolution of linearized orthogonal perturbations of the
nearly so marked(and in any case the growth of the Gross-Pitaevskii wave functior29], this is not unexpected.
(vilvy)'s is generally less This in some sense reflects the
observed Wigner function dynamics in Sec. Il B 1, where
there does not seem to be such a strong qualitative difference
between the “unstable” and “stable” cases wherg=2 We first examine our best estimate fa#N(t)), which is
for any value ofv, in contrast to the cases whepe=1. One  s15 ¢, (t)|v,(t)), wheret is expressed as the number of
should bear in mind that although the dimensionless nonling;-ks |n Fig. 20 this is plotted for each case where 1
earity strengthw is the same in .bOth Figs_. 16 and 17, the against the number of kicks, and in Fig. 21 for 10. Inter-
actual repulsive interactiohu,4 is proportional tov/ 7’3, estingly, forv=1 and 7' =2, total growth appears to be

One might argue then that one would expect that there "Imost exactly linear in time, after a short buildup period; as

generally Ies; deplepon fro'.“ the wave func.tlon descrlped b¥10ted above growth does not appear to be that different when
the Gross-Pitaevskii equation. The evolution ofx,t) is : " . . .,
comparing the “stable” and “unstable” cases. Fgf =1,

also important, however/'3=1, wherev=1 and»’'=1 h th . | d substantial diff bet
is not that different fromu/ »'3=1.25, wherev=10 and»’ thoe\zlvt?/\\/lgr(,:as:;e IS a clear and substantial difierence between

=2, but the evolutions of thév,|v,)’s are different. There > -

appears to be some correspondence between the Gross-Whenv is increased to 10, as shown in Fig. 21, growth
Pitaevskii phase-space dynamics shown in Figs. 5 and 6 arRpcomes more erratic. We see that for the unstable case
the evolutions of thev,|v)’s, in that when there is a sig- Wheren'=1, ;2 (v,Jv)) ends up being very large, mak-
nificant difference between the “stable” and “unstable” ing it unlikely that an experiment for this parameter regime
cases, this shows up in the dynamics of ¢hglv,)'s corre-  would follow Gross-Pitaevskii dynamics. The general pattern
sponding to these different cases. Also, a more “smooth”observed in Fig. 20 is repeated here, but with larger numbers.
phase-space pldas for»’ =2 compared to;’ =1 in Figs. 5  Note, however, that the beginnings of a clear differentiation
and 6 appears to correspond to a smoother evolution of thdetween the degree of growth for the “stable” and “un-
(vilvy)’'s (Figs. 17 and 19 compared with Figs. 16 and.18 stable” cases whem’=2 appear to be occurring; in both
As the equation describing the time evolution of thecases growth is certainly not linear with time.

4. Comparison with experimental parameters

20 40 60 80 100 0 20 40 60 80 100

<

FIG. 18. As for Fig. 16, except that’ =1 andv=10. In () the leading term is fok=1, and in(b) for k=1 and 5.
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0 20 40 60 80 100 0 20 40 60 80 100
n n

FIG. 19. As for Fig. 16, except thaj’ =2 andv=10. In(a) the leading term is fok=4, and in(b) for k=6.

Overall, our results can be interpreted as similar to thos¢he Gross-Pitaevskii wave function is even more pro-
obtained in Ref[30] for the case of a time-dependent har- nounced. Also note that even for a small nonlinearityvof
monic potential. When one would expect classically chaotic=1, there is still a pronounced difference in the Gross-
behavior, one observes rapid growth of thg|v)’s. Pitaevskii equation phase-space dynantigee Fig. $ com-

To examine the behavior of a possible experimental realpared to the case where there is no nonlinedfiyg. 3), for
ization of this scheme, we consider rubidium 87, which hasoth »'=1 and »'=2, and here the numbers also seem
an swave scattering length ofig="5.1x10 °m [32], and  more promising for the nonlinearity-induced localizing effect
sodium 23 6,=2.75x10 °m) [33]. Substituting Eq.47)  to be observed, corresponding to our numerical integrations

into EqQ. (49), we can rewritev, so that of the Gross-Pitaevskii equation.
/m
v= %ZNwrasﬂ/s (60) V. CONCLUSIONS

We have explicitly derived an appropriate semiclassical

is expressed in terms of’, which is more convenient for our limit for a general cubic nonlinear Schtimger equation, or
purposes. Using EqB0), as a general relation for the num- Gross-Pitaevskii equation, and find it to be a Liouville-type

ber of particles we obtaifl =\ o/®, , where equation, with a term involving the density in position space.
" We have shown how and why this differs from the hydrody-

P namic limit of the Gross-Pitaevskii equation. In particular,
=\/= 3 (61)  this derivation shows how an eccentric wave functig(x)
M2asn can produce large deviations from this semiclassical limit,

. . . through higher-order corrections involving derivatives of the
The values of in units of s™*2 for the parameter regimes ghhig g

we have investigated are summarized in Table I. (a) ®)
We let w,=10w, remembering that we should havg 100 4
significantly larger thanw, we take this to be a reasonable
minimum, bearing in mind that the values of the harmonic A, Al
potential ground-state chemical potentialie between 0.55 = =,
and 3.11 in units ofiw, as shown in Table |. We then obtain ¢ 40 A
N=v/\Jw,, where v=\+/1/10. Numerical values fow in 20 1
units of s 2, wherew, = 10w are also displayed in Table. I. 0 0
In principle this leaves us one free parameter to tweak; the — ° 50 100 0 0 100
smaller the radial frequency, the lardéican be, and the less od © 0s d
significant the effect of the growth of the number of particles ) ’
not described by the Gross-Pitaevskii equation. This would o3 04
mean that we could reasonably expect to describe the dy% A03
namics of the particles largely with the Gross-Pitaevskii & & 02
equation, with small corrections accounted for by E5). N oo1 o
In practice, trapping frequencies for alkali atoms such as )
rubidium and sodium lie between about 1 and 100 Hz. The % 50 100 % 50 100
n n

growth of =2 (v, |v,) in the “unstable” case, where
=10 andy’=1, is thus far too high for this simplest inter-  FiG. 20. Plots ofSi (v\Jv\) against the number of kicks,

pretation of the real dynamics. The cases whete-2 look  wherev=1, in the two cases of' =1, for (a) an unstable initial
more promising, and here in fact the interesting effect ofcondition and(b) a stable initial condition; and;’ =2, for (c) an

nonlinearity induced localization within the phase space olunstable initial condition and) a stable initial condition.
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T 2 =200
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1 100 APPENDIX A: DERIVATION OF WIGNER FUNCTION
. , DYNAMICS
0 50 100 0 50 100 .
1. Definitions
© " @ " . . .
100 50 Defining the Wigner function for a pure state as
80 40 1 (=
A6 A 30 W(x,p)= mf dre  P7ho* (x— 712) (x+ 7/2),
S = e
v 40 M 20 (A1)
20 10
s s 100 0, 5 100 we take the time derivative
n n

FIG. 21. Corresponds exactly to Fig. 20, except thatlO. %W(X,p)=%W(x,p)sp+ %W(va)Nb (A2)
density p(x) =|@(x)|?, in addition to effects due to an un- _ _ . o

usual potential. We have numerically investigated a simplgvhere we have split up the differential equation into a part
test system, the one-dimensionakicked harmonic oscilla- Which is governed by the single particle linear dynamics
tor, studying the dynamics of the Gross-Pitaevskii equatiorfSP. and a part which is governed by the nonlinea(M).
and the appropriate Liouville-type equation. For moderate
nonlinearity strengths we have found that there is a localiza-
tion effect explicitly due to interferences caused by the non-
linearity. We have outlined a possible experimental imple-
mentation of such a system in a Bose-Einstein condensate
experiment, and have investigated numerically to what de- —w(x,p)gp=
gree the Gross-Pitaevskii equation correctly describes the dy-‘9t

namics of the bulk of the particles for certain test cases. .
From this we have determined a lowest-order estimate for X(x+ 712 @) = (@|x— 7/2)(x+ 7/2|H| ¢)].
the growth in the number of noncondensate particles. We (A3)
have found that for this system this depends strongly on the

parameter regime ofy’ and v under study, and that this The expansion we desire is exactly that used by Zurek and
seems to correspond to the kinds of phase-space dynamiggz in investigating the quantum-classical bound&tyand

observed in the Gross-Pitaevskii equation. We have comy pased on work originally carried out by Moyg84] and
pared the numbers obtained with realistic experimental pagyigner[35]:

rameters for condensates formed from sodium or rubidium
atoms.

2. Single-particle dynamics

The single-particle dynamics are described by

i o ) “
ﬁfﬁdTe”p/ﬁ[<(p|H|X— 7'/2>

J *® (_ 1)3 A 2s (?25+1 6,23+1
—W(X,p)sp= 2 1 (— H w
ACKNOWLEDGMENTS o 50 (251 2] gyt gpert
We thank J. R. Anglin, for helping clear up a number of 9 iW (Ad)
points on the work in Sec. Il C 2, M. G. Raizen, Th. Busch, p Ix

TABLE I. Values ofA andv for sodium 23 and rubidium 87, when in the parameter regimesaofd »’
under study. Also displayed are the values of the numerically determined ground-state chemical potential
for the appropriate values af and 7', in units off .

Na23 RE*
v 7' " A v N v
1 1 0.8%w 9.55x10° s7¥2  3.02x10° s¥2  2.65x10° s 12  8.38< 1% s 17
2 05%w 1.19x10° s Y2 37710 s %2 331x10% s 2  1.05x10% s 17
10 1 31%0w  955x10% s Y2 3.02x10* s Y2 265x10* s Y2 8.38x10° s 12
2 09%w 1.19x10% s Y2 37710 s 12 331x10° s Y2  1.05x10° s 1?2
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3. Nonlinear dynamics

For a simple cubic nonlinearity| ¢|?¢, we can express
IW(X,p)nL/dt as

Jd o ) o
EW(X,p)NL= f dr[e—'m/ﬁf dp'[W(x—7/2,p")

2wh?) -

—W(x+ le,p’)]f dp'e Tp"’hW(x,p")}.
(A5)

We expandW(x— 7/2,p")—W(x+7/2,p’) as a McLaurin
series:

1/2)25+1
2s5+1)!

=36

—W(x P)n

2s+1

o

xf_m

X f dp/ITZSJrleirp”/hW(X’pn).

dp’ W(x,p')f dre !/

(?X25+1

(AB)

Using the chain rule and Fourier’s integral theorem, we ar-

rive at

— 412 )25+ 1 (925-%— 1

Jd
EW(X:p)NL:

= (2s+ 1)l gy2stl
2s+1
f dp'W(x,p") Zs+lW(x,lo)-

(A7)

4. Combined result

Combining Eqgs.(A4) and (A7), we obtain the Wigner
function dynamics to all orders ifi of the cubic nonlinear
Schralinger equation with arbitrary potential, in one dimen-
sion:

* ( 1)5 2s (925+1 (3,25+l
Z 25+ 1)! ) &X25+1[H+up](9p25+1

J J
- %H W (A8)

which as its semiclassical limiti(—0) has a Liouville-like
equation

J 9
—W——[H Up]—W——H—

W
ap ox

(A9)

wherep is the Wigner function integrated ovpr as defined
in Eq. (12). This derivation can be easily generalized for
other nonlinearities and to two and three dimensions.

PHYSICAL REVIEW A 62023612
APPENDIX B: RE DERIVATION
OF THE HYDRODYNAMIC EQUATIONS
1. Definitions

The densityp has already been defined in Ed.2). in
terms of the Wigner function The quanti®y is defined in
terms of the Wigner function as

pP=j dppW. (B1)

2. Regaining the first hydrodynamic equation

The equation of motion fop is given by

(—1)° ﬁ)

0 (2s+1)!
25+l
W— f dp

e

Due to the fact thatV(x,p) and all of its derivatives are
equal to zero ax= * o, something we make frequent use of,
this simplifies to the continuity equation

2s (925+1

(9
at?

W—H.

X ap (B2)

(9 2s+1

J

P (B3)

—E&(P )

using the definition of Eq(B1).

3. Equations for higher-order moments

We now turn to the equation of motion fé. We have,
from Eq.(B1)

9 1 (e ~ (-1)° (% 2s p2s+1
—P=—J dpp| 2, 1k
at pJ)-w S0 (2s+1)1\ 2] py2stl
X[V(x,t)+ = P9 + i P
[V(x,t) UP] oo e p—m&(P ).
(B4)
The integral of the Wigner function overp,

[ . dppa®sTWi/ap?s*l, is equal to—p whens=0, and is
otherwise equal to zero. We therefore have

Sy

(B5)

d
J— _— + e
g P [V(X t)+up] om X

P o
—(pP).

+_
pm gx

Clearly Egs.(B3) and (B4) do not form a closed system of
equations, due to the presence of the second-order moment
P»(x), where

Pn(x)= f dpp"W(x,p). (B6)

p(X)

023612-17



GARDINER, JAKSCH, DUM, CIRAC, AND ZOLLER PHYSICAL REVIEW A62 023612

It is relatively simple to derive a chain of equations of mo- APPENDIX C: RESCALED WIGNER FUNCTION
tion for all P,(x): DYNAMICS FOR THE &-KICKED HARMONIC
OSCILLATOR
d 1~ d Pa(x) o ) )
EP”(X):EJ dpp"EW— P (B7) As dimensionless parameters we hayex, and v, de-

fined in Egs.(23), (24) and (25), respectively. We have as
dimensionless coordinate and canonically conjugate momen-

Substituting in Eqs(A8) and(B3) we obtain, as the general tm the variables of Eq€28) and (29), and use the dimen-

form, sionless timet,= wt. Using this, we can write the dimen-
J P.(X) & sionless single-particle Hamiltonian functions as
2 Pn(¥)= om < [PP(X)] -,
1 4 H= %ﬁ/(},th), (CY
- p—ma—X[PPnﬂ(X)]—nPn—l(X)
IV +u VRt =+ ~oos B 3 sty-nm), (€2
IX ' d 22 n=—c

! (h12)%en! the Gross-Pitaevskii equatigiq. (1)] as
—321 s+ Din—(s+ D] s+
Cd - 772072., o U
2s+1 IRQD:—?ﬁ@JF VX, e+ —lel%e, (C3
X gV Tupl (B9) " o "

and the equation of motion for the Wigner function as
The system of equatior{®83) and(B8), wheren ranges from

1 to «, thus describes the full dynamics of the Gross- 5 _ = (—1)S [5?\% g%t _  _ 925t1 _
. i, ) TS Y (T By
Pitaevskii equatiorfl) [14]. 07thW 2 2511 2 a;(25+1[H vp]ﬁBZSHW
4. Regaining the second hydrodynamic equation J_ .
We consider a set of solutions of the moments where B %ng' (C4)

P.(x)=P(x)". Taking Eq.(B8) and setting: =0, i.e., ignor-
ing all quantum corrections, we substitute this solution in,The wave function, Wigner function, and density have been

which after differentiation results in rescaled so that they are properly normalized:
d nP(x)" o -
n-19% __ v _
nP(x)"" = P(X) o P(x) o=\2/ke, (C5)
9 2mw?
_ 17 -
nP()" " [V(x,t)+up], W= % w, (C6)
(B9)
where we can immediately carry out cancellations, to finally p= f | dpW. (C7)
arrive at -
d d [P(x)? In the expansion shown in EQC4), it can clearly be seen
S P == — 5 ~V(x)+up|, (B10)  that if 7 is varied, then this is completely independent of all

other rescaled quantities. We thus see thfats an appropri-
which is the second hydrodynamic equati@h Thus hydro- ~ate expansion parameter, and that the other dimensionless
dynamic equations describing dynamics in the hydrodynami®arametersc andv are correctly scaled to be independent of
limit [8,11] are valid wheneveri—0 and P (x)=P(x)".  the expansion parameter. If one takes only the zero-order
This condition can be expressed in terms of Liouville distri-term in the sumy drops out completely.

butions as

APPENDIX D: CRYSTAL SYMMETRY

n

1(~ 1(~

_f dpp”(x)W(x,p)={—f dppWix.p)| . (BL) AND NONLOCALIZATION

pJe pJe 1. Classical background
which is in general fulfilled foW(x,p) = p(X) 5[ p— pPo(X) 1, Consider the classicad-kicked harmonic oscillator de-
wherepy(x) is some single-valued function af scribed in Eq(C1). The symmetry properties of this system
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have been extensively investigated by Zaslavsky and cahat cos(2rkr/q) e OVk,r e Z. There is is thus aexacttrans-

workers [15—18; we recapitulate some of this to provide
context.
One can determine a kick to kick mapping terms cof

=(x+ip)/V2:

. K -
Ani1=| apti ESII’\(&,{F ay)le

—ioT

(D1)

If wr=27r/q, then we can write the mapping aftgikicks
as

q-1

> sin(ap. ok, )el?™ e (D2)
k=0

K

Qpyq=aptl \/E
Keeping terms inx up to first order only, we observe an
approximaterotationalg symmetry in phase spa¢&6,18]; if
we substitutex,,, with 8,= «,e'?™/9,1 e 7, we end up with
Br+q=@n+q€ 2™ There can also be a translational sym-
metry in phase space, i.68,=a,+ ¥=Bniq=Aniqt VY
e C. Note that it is only possible to combine a rotatiowgal
symmetry with translational symmetry whemgeq,
={1,2,3,4,6 [36].

Translational symmetry demands

gq-1
E Sin(an+j+a:+j)ei277kr/q
k=0
q-1
_ ; i2mkr/
= 2, Sin(Bnjt Br. €™, (DY)
which in  turn implies B+ B k= an+kt anik

+27l;V K,IceZ. Thus Eq.(D2) for B,,4 can be simpli-
fied to

K

V2

Bn+q: antyoti

q-1
X kZO SiN(an skt ap + vt v ) €2,

(D4)

where y,= ye~'27K9_ The condition for translational sym-

metry is thus reduced tg,+ vy = 2ml,, which implies
y—7*
2

I =1ocoq2mkr/q)—i sin(2wkr/q).  (D5)

If we now let k.=qg/2=m or (qxm)/2, depending on
whether or noq is even, we obtain

I, +li
21,

cog 2wk, r/q)= e, (D6)

iv—v*

sin(27rk+r/q)=Ik7—Ik+eZ. (D7)

w

This implies that cos(@/q) (), and it is known that this can
only be true ifge q.={1,2,3,4,8 [37]. This directly implies

lational orcrystalsymmetry in phase space, fqe g, only.
There are an infinite number of values pffor which this
applies, determinable from Egd6) and (D7).

2. Quantum expression

Broadly following the treatment of Borgonovi and Re-
buzzini[20], we consider the unitary displacement operator
D(a)=ea' ~@*a=gi(®x~¢0) [3g]. The operatora’ and a
are the quantum harmonic-oscillator creation and annihila-
tion operators, and the operatorsaind p, are scaled in har-
monic units. The displacement operator acting on a wave
function is a quantum analog to translating a classical point
particle in phase space. We now consider the Floquet opera-
tor E=e~i(@'a+12org=ix cosia+all\27° and determine the
commutation properties of it with the displacement operator.

Using elementary properties of coherent st@83, it can
be seen that

D(a)FY

q-1
_ H {e—i(éTéJr 12)2mtlqg—ix cos[p(a+a— ak—a;)]/@f}
k=0

XD(a), (D8)
where a, = a€'2™"9_ The product of Floquet operatof
corresponds to the mapping of E@2) which we used to
investigate classical symmetry properties.

Thus D(a) commutes withF9 if 7(a+ o)) = V2 né,
=2, I e ZVk. Using this we arrive, similarly to the deri-
vation of Eq.(D5), at

*

(a—a”)ny
I =locog2mkr/q)—i sin(2wkr/q). (D9)

V2w

Analogously to the classical casg(a) commutes withF9

if and only if qe q.. This implies that folg e q., the eigen-
states ofF9 are invariant under certain displacements, of
which there are an infinite number, and are thus extended.
Localization is not expected to take place, similarly to the
case of quantum resonances id-&icked rotor[21,39.

APPENDIX E: INTEGRATION OF THE L EQUATION.
From Ref.[29], we know that
d [|u(t) lug(t))
| ( () _ [l

"t o) Ivk(t)>)’

and that the corresponding time evolution operator
Q) Q(0)
Ug(t) . (B2

0 0
The operator/gp(t) is the time evolution operator corre-
sponding toLgg(t), given by

(ED)

0
Q* (1)

0
Q*(0)

Ut)
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UQD(;(,t)Z
—V(X,t)—2u|e(X,t)|2—pZ2m/

V(X,t)+2u|o(X,t)|2+ p?/2m

“ E3
—ue(x,t)*? E3

Lepl(t)=

In our case, the potential is that of tidekicked harmonic

oscillator. Integrating between kicks, we consild’eé&) to be
time independent. Note, however, that(t) is still in prin-
ciple time dependent throughy(x,t). Thus, taking very
small time stepa\t, the evolution is given approximately by

=|u(0)) and|V,(0))=|v,(0)), and determinediu,(t)) and
lv(t)) from |U,(t)) and|V(t)) by projection, just before
each kick.

The effect of a kick is given by

u X,t+ efixcos(v‘?nx)/\s?nzu Xt~
Ui(t+AD)) ~ e iLepDAUA V(D) (E4) ( kEX t+;) :< i 1c cosWZ nx) N2 7> ‘ - ) (ES)
[Vi(t+At)) V() ) e © vt
The time evolution operatoe™'“cDAU% can be split into  In Sec. IV C 3, the procedure outlined above was used, in

position- and momentum-dependent parts, and the time eva@onjunction with numerical integration of the Gross-
lution was then determined using a split-operator method, oPitaevskii equation, and also by a split-operator method with
which there are many variationg0]. We set |U,(0)) matching time stepg41,42.
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