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Nonlinear matter wave dynamics with a chaotic potential
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We consider the case of a cubic nonlinear Schro¨dinger equation with an additional chaotic potential, in the
sense that such a potential produces chaotic dynamics in classical mechanics. We derive and describe an
appropriate semiclassical limit to such a nonlinear Schro¨dinger equation, using a semiclassical interpretation of
the Wigner function, and relate this to the hydrodynamic limit of the Gross-Pitaevskii equation used in the
context of Bose-Einstein condensation. We investigate a specific example of a Gross-Pitaevskii equation with
such a chaotic potential, the one-dimensionald-kicked harmonic oscillator, and its semiclassical limit, discov-
ering in the process an interesting interference effect, where increasing the strength of the repulsive nonlin-
earity promotes localization of the wave function. We explore the feasibility of an experimental realization of
such a system in a Bose-Einstein condensate experiment, giving a concrete proposal of how to implement such
a configuration, and considering the problem of condensate depletion.

PACS number~s!: 03.75.2b, 05.45.2a, 03.65.Bz, 42.50.Vk
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I. INTRODUCTION

Chaos in classical Hamiltonian systems, most simply
fined of as the extreme sensitivity of trajectories in pha
space to initial conditions, making long-term predictions e
tremely difficult, is by now broadly understood@1,2#. More
recently, the field of quantum chaos, for our purpose me
ing the study of quantum-mechanical equivalents of class
chaotic systems, has been the subject of much investiga
@1–3#. From this it does seem that the dynamics of quantu
mechanical systems can be divided into regular and irreg
subsets, with distinct differences between the two, just a
the case in classical mechanics. For example, due to the
tarity of the evolution of the state vector, there can be
equivalent of sensitivity to initial conditions in Hilbert spac
but there appears to be an equivalent sensitivity to pertu
tion which distinguishes quantum chaotic motion@4#. A cer-
tain amount of understanding has thus been achieved
though there are still unresolved problems, in particular h
to extract classical chaos from quantum mechanics@5#.

Quantum dynamics are determined by the Schro¨dinger
equation. With the advent of successful Bose-Einstein c
densate experiments@6#, particularly in dilute alkali gases
there is now access to a new kind of quantum system.
dynamics of a Bose-Einstein condensate of dilute alkali
oms are to a good approximation governed by anonlinear
Schrödinger-like equation, the Gross-Pitaevskii equati
@7,8#, also reminiscent of equations appearing in the con
of nonlinear optics@9#. The question then arises: what effe
does the addition of such a nonlinearity have on the dyn
ics of a quantum chaotic Schro¨dinger equation@10#? In this
paper we first develop a theory to enable us to deal w
exactly this kind of problem. Just as in the case of quant
mechanics, where if one takes the limit\→0 one expects to
regain classical dynamics, one can also carry out this li
for nonlinear Schro¨dinger equations, producing equatio
reminiscent of classical hydrodynamics@11#. This intercon-
nection of different kinds of dynamics is displayed schem
cally in Fig. 1, and is fully elucidated in this paper. We th
1050-2947/2000/62~2!/023612~21!/$15.00 62 0236
-
e
-

n-
al
on
-

ar
is
ni-
o

a-

al-
w

n-

e
t-

xt

-

h
m

it

i-

use this theoretical framework to study a specific examp
the d-kicked harmonic oscillator, describing in the proce
an interesting localization-causing interference effect p
duced by the nonlinearity. Finally we describe the possi
implementation of thed-kicked harmonic-oscillator potentia
within a Bose-Einstein condensate experiment, also addr
ing the reasonableness of using the Gross-Pitaevskii equa
to describe the dynamics, and considering the problem
particle loss from the condensate.

The paper is organized as follows: Section II lays out
theoretical groundwork necessary in order to address
general problem of a cubic nonlinear Schro¨dinger equation
~i.e., the Gross-Pitaevskii equation! with a chaotic potential.
In particular, we derive an appropriate semiclassical limit
the Gross-Pitaevskii equation, in order to separate out in
ference effects, which takes the form of a Liouville-lik
equation. In Sec. III we explicitly consider the example o
d-kicked harmonic-oscillator potential, examining the pha
space dynamics of a point particle, the Gross-Pitaev
equation, and the Liouville-like equation derived in Sec.
Interpretation of the results of numerical simulations of the
dynamics reveals an intriguing interference effect, where
an increasingly large and positive, i.e.,repulsivenonlinear-
ity, inhibits diffusion in phase space. Section IV addres

FIG. 1. Schematic diagram of how nonlinear Schro¨dinger equa-
tions relate to other forms of dynamics under various limits. T
parameteru represents the strength of the nonlinearity.
©2000 The American Physical Society12-1
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the problem of how such a system could be realized i
dilute alkali-atom Bose-Einstein condensate experiment,
considers the dynamics and possible growth ofnonconden-
sateparticles, and thus the feasibility of actually observi
the interference effects predicted by the work of Sec.
Section V consists of conclusions. There then follow fi
appendixes carrying out certain calculations in more de
the results of which are used in the main body of the pap

II. THEORETICAL GROUNDWORK

A. Overview

As already stated, the main point of this section is
determine an appropriate semiclassical limit to the Gro
Pitaevskii equation, necessary for the analysis of the cas
thed-kicked harmonic-oscillator potential carried out in Se
III. To this end, in Sec. II B we quickly cover the Gros
Pitaevskii equation, and describe how one derives the hy
dynamic equations describing the dynamics of the Gro
Pitaevskii equation in the hydrodynamic limit. It is temptin
to think of the hydrodynamic equations as equations desc
ing the semiclassical limit of the Gross-Pitaevskii equati
but after deriving an appropriate semiclassical limit in ter
of Wigner functions in Sec. II C 1, in Sec. II C 2 we concl
sively show this not to be equivalent to the hydrodynam
equations.

B. Basic concepts

1. Gross-Pitaevskii equation

In this paper we explicitly consider only one-dimension
systems, although the analytic results presented can easi
generalized to two or three spatial dimensions. To simp
things further, we explicitly consider only the cubic nonli
earity, the simplest nonlinearity possible, resulting in t
one-dimensional Gross-Pitaevskii equation, well known
the context of Bose-Einstein condensation:

i\
]

]t
w52

\2

2m

]2

]x2
w1V~x,t !w1uuwu2w, ~1!

wherew(x,t) is the wave function andu the strength of the
nonlinearity. Again, the analytic results here can easily
generalized to more complicated nonlinearities. Such a s
plified system demonstrates all the main features of a n
linear Schro¨dinger equation, and is perfectly adequate
illustrative purposes. This kind of simplified system is in fa
experimentally accessible, for example in a Bose-Eins
condensate experiment, as will be shown in Sec. IV.

2. Hydrodynamic equations

Here we sketch out the standard derivation of the hyd
dynamic equations, in order to set notation, and so that l
we can point out the differences between the hydrodyna
limit and the genuine semiclassical limit.We rewrite t
Gross-Pitaevskii equation@Eq. ~1!# using the densityr and a
momentum fieldP @12#, defined in terms of the wave func
tion w5AreiS/\ as
02361
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r5uwu2, ~2!

rP5
\

2i Fw*
]

]x
w2S ]

]x
w* DwG5r

]

]x
S. ~3!

The resulting equation of motion for the density is

]

]t
r52

]

]x
~Pr!. ~4!

Before moving to the equation of motion forP, we first
consider the equation forS, which is

]

]t
S52

1

2m S ]

]x
SD 2

2V~x,t !2ur1
\2

2mAr

]2

]x2
Ar. ~5!

The equation of motion for the momentum fieldP is exactly
the spatial derivative of Eq.~5!:

]

]t
P52

]

]x F P2

2m
1V~x,t !1ur2

\2

2mAr

]2

]x2
ArG . ~6!

Taking the hydrodynamic limit@8,11# consists of aban-
doning the term in Eq.~6! proportional to\2, generally jus-
tified by claiming that the densityr is sufficiently smooth for
its derivatives to be insignificant, and resulting in

]

]t
P52

]

]x F P2

2m
1V~x,t !1urG . ~7!

Clearly, to obtain Eq.~7!, we have discarded all quantum
character of the Gross-Pitaevskii equation. Also note tha
the corresponding term is abandoned in Eq.~5! in the case
where u50 and V is time independent, we obtain th
Hamilton-Jacobi equation for a single particle in the pote
tial V, with the interpretation that]S/]x is the canonically
conjugate momentum to the coordinatex @13#.

This seems to indicate that the hydrodynamic equati
~4! and ~7! might be an equivalent semiclassical limit to th
Gross-Pitaevskii equation with finiteu @Eq. ~1!#. In Sec. II C
we shall determine how and why this is not so.

C. Deriving a semiclassical limit: Wigner function dynamics

1. Expansion in powers of\

We wish to carry out a consistent expansion of Eq.~1!
around\, in order to clearly separate classical from quantu
dynamics, and to provide order by order corrections, allo
ing us to see what there is that is specifically ‘‘quantum
about the dynamics of the Gross-Pitaevskii equation~or in
principle more general nonlinear Schro¨dinger equations! un-
der consideration. We do this by considering the dynamic
the Wigner functionW, which is exactly equivalent to the
wave functionw, in the sense that all information about th
wave function is contained within its Wigner representatio

We define the Wigner function~for a pure state! as
2-2
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W~x,p!5
1

2p\E2`

`

dte2 ipt/\w* ~x2t/2!w~x1t/2!.

~8!

It is well known that the dynamics of the Wigner function
a single particle to lowest order give simply the classi
Liouville equation of a distribution of noninteracting pa
ticles @5#. The exact expression to all orders in\ for the time
evolution of the Wigner functionW is given by

]

]t
W5(

s50

`
~21!s

~2s11!! S \

2D 2s ]2s11

]x2s11
H

]2s11

]p2s11
W2

]

]p
H

]

]x
W,

~9!

whereH is the single particle classical Hamiltonian functio
How to obtain this expression is sketched in Appendix
Setting\50, we see that we do indeed obtain the class
Liouville equation

]

]t
W5

]

]x
H

]

]p
W2

]

]p
H

]

]x
W, ~10!

so long as the initial Wigner function can in fact be inte
preted as a classical probability density~i.e., is non-
negative!. If we have as a classical Liouville density ad
distribution,W(x,p)5d(x2x0)d(p2p0), we regain classi-
cal point dynamics. One can think of a point particle bei
regained from quantum mechanics if we have a cohe
state centered atx5x0 andp5p0 and let\→0, causing the
Wigner function to tend to just such ad distribution.

It is worth mentioning that although we talk blithely abo
letting \ tend to zero, this is in fact physically meaningles
As \ is a constant, we must in fact expand around so
scaling parameter to do with the characteristic action sc
of the problem at hand, such that at some point the quan
corrections should be completely dominated, at least
some characteristic time@5#. Generally some appropriate pa
rameter presents itself, as will be shown for the case of
d-kicked harmonic oscillator potential analyzed in Sec.
and expansions where it is stated that the limit\→0 is ex-
plored should be interpreted in this manner.

What we now wish to do is to take an equivalent limit
that presented in Eqs.~9! and ~10! for the Gross-Pitaevski
equation, with the object of getting some kind of Liouvil
equation with the nonlinearity taken into account. The f
expansion of the Wigner function dynamics governed by
~1! in terms of\ turns out to be

]

]t
W52

]

]p
H

]

]x
W1(

s50

`
~21!s

~2s11!! S \

2D 2s

3
]2s11

]x2s11
@H1ur#

]2s11

]p2s11
W, ~11!

where we have the density

r~x!5E
2`

`

dp8W~x,p8!5uw~x!u2, ~12!
02361
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exactly as in the hydrodynamic equations,~4! and ~7!. The
result of Eq.~11! is outlined in Appendix A.

If we take only the zeroth term in the infinite sum, we d
indeed obtain a kind of Liouville equation

]

]t
W5

]

]x
Hr

]

]p
W2

]

]p
Hr

]

]x
W, ~13!

where

Hr5
p2

2m
1V~x,t !1ur, ~14!

i.e., there is an additional ‘‘potential’’ proportional to th
density of the distribution in position space. This can
interpreted as a large number of classical particles initia
placed in phase space according to some kind of distribu
function and interacting repulsively with one another, i.e.,
a kind of nonideal gas. If u is large, we would generally
expect large numbers of such particles concentrated hea
in some cell in position space to tend to drive one anot
apart, meaning that large values ofr should in the long term
be heavily disfavored.

An alternative approach would be to try and derive E
~13! by considering an ensemble of purely classical partic
with an appropriate finite interaction potential. Such a de
vation, however, is not necessary for our purposes, an
beyond the scope of this work; what we mean by a semic
sical limit is one with no dependence on\.

2. Reconciling the Wigner function dynamics with the
hydrodynamic equations

Hydrodynamic equations can also be derived from
equation of motion for the Wigner function@Eq. ~11!#, and if
one expects the hydrodynamic equations to describe a s
classical limit of the Gross-Pitaevskii equation, this shou
be consistent with the semiclassical limit described by
Liouville-like equation of Eq.~13!. In this section we con-
clusively show this not to be the case, and explain why thi
so.

In terms of the Wigner function,P is defined by

r~x!P~x!5E
2`

`

dppW~x,p!, ~15!

wherer(x) has already been defined by Eq.~12!. P is thus
seen to be simply the first-order momentum moment of
Wigner function. It turns out to be useful to define highe
order moments as well:

r~x!Pn~x!5E
2`

`

dppnW~x,p!. ~16!

The derivation of the equation of motion forr is carried
out in Appendix B, and is exactly the continuity equation
Eq. ~4!, correct to all orders in\. The equation of motion for
P, again to all orders in\, turns out to be
2-3



r

t
a
t

te

d
o

ic

-
c
i

b
f t
e
as
am
nt
s

rit
de

o-

is

e

ally

ral

-
ter-
lo-
ted

in
ed,
rs is
am-
for
dy-

on
are

sts
e-

GARDINER, JAKSCH, DUM, CIRAC, AND ZOLLER PHYSICAL REVIEW A62 023612
]

]t
P52

]

]x
@V~x,t !1ur#2

1

rm
P2~x!1

P

rm

]

]x
~rP!

52
]

]x FV~x,t !1ur1
P2

2mG2
1

rm

]

]x
~sp

2r!, ~17!

wheresp
2(x)5P2(x)2P(x)2 is the variance of the Wigne

function in p at a given point inx.
Except for the term involvingsp

2 , Eq. ~17! is identical to
the hydrodynamic equation~7!. However, it can be seen tha
Eqs.~4! and ~17! do not form a closed system, as the equ
tion of motion for P(x) refers to the higher order momen
P2(x). There is in fact, as shown in Appendix B, an infini
chain of differential equations for the momentsPn(x) @14#:

]

]t
Pn~x!5

Pn~x!

r

]

]x
@rP~x!#

2
1

rm

]

]x
@rPn11~x!#2nPn21~x!

3
]

]x
@V~x,t !1ur#

2 (
s51

n21 H ~\/2!2sn!

~2s11!! @n2~s11!#!
Pn2(s11)~x!

3
]2s11

]x2s11
@V~x,t !1ur#J . ~18!

In each equation the quantum corrections are describe
the sum, but there is also an infinite chain of classical c
rections; the second term of Eq.~18! refers to the higher-
order momentPn11(x). To obatin the second hydrodynam
equation~7! in a closed form from Eq.~17!, we must addi-
tionally make the zeroth-order moment approximation,

Pn~x!5P~x!n. ~19!

In Appendix B, this is treated in more detail.
In order to reach the ‘‘hydrodynamic limit,’’ it is neces

sary to kill off all the quantum corrections, but there is in fa
a much more drastic approximation than only taking the lim
\→0, as a whole chain of classical corrections must
abandoned at the same time. The reason for the failure o
hydrodynamic equations as a semiclassical limit can be s
by examining our initial reasoning more closely. This w
based partly on a correspondence between the hydrodyn
limit of the linear Schro¨dinger equation and the equivale
Hamilton-Jacobi equation; however, this also implicitly a
sumes that theinterpretationof the quantum wave function
tends to a classicalpoint. The Liouville dynamics given by
Eqs.~10! and ~13! describe the motion of classicaldistribu-
tions. As already mentioned, in the case of no nonlinea
(u50) one can connect the two classical cases by consi
ing a distribution of the formW5d(x2x0)d(p2p0), but
when one is considering a case where the dynamics are
fluenced by the density in position spacer, this is clearly
meaningless.
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The correct semiclassical limit described in terms of m
ment equations is thus described by the system

]

]t
r52

1

m

]

]x
@rP~x!#, ~20!

]

]t
Pn~x!5

Pn~x!

r

]

]x
@rP~x!#

2
1

rm

]

]x
@rPn11~x!#2nPn21~x!

3
]

]x
@V~x,t !1ur#, ~21!

where we must include every value ofn. All of this is ac-
counted for in Eq.~13!. It seems clear that Eq.~13! is a
simpler way of describing the correct classical limit, and
certainly easier to integrate numerically.

III. TEST SYSTEM: THE d-KICKED HARMONIC
OSCILLATOR

A. Overview

In this section we consider explicitly, and in detail, th
example of the one-dimensionald-kicked harmonic-
oscillator potential, which has been studied both classic
@15–18# and quantum mechanically@19–22#. This is moti-
vated partly by the fact that to gain insight into the gene
problem, it is useful to take a simple test system, which is~a!
accessible experimentally, and~b! amenable to numerical at
tack. In addition, we demonstrate the occurrence of an in
esting interference effect in this particular model, where
calization of the wave function in phase space is promo
by larger positive nonlinearities, meaning a largerrepulsive
particle-particle interaction in the context of Bose-Einste
condensates. In Sec. III B the external potential is describ
and through astute scaling, the number of free paramete
reduced to a minimum. In Sec. III C the phase-space dyn
ics of the Gross-Pitaevskii wave function are examined
various situations, and compared with the classical point
namics and the Liouville-like equation~13! derived in Sec.
II C, which shows conclusively that the observed localizati
must be an interference effect. In Sec. III D these results
interpreted and explained.

B. Model

1. External potential

The total potential for the classical Hamiltonian consi
of a standard harmonic potential perturbed by a tim
dependent kicking potential,

V~x,t !5
mv2x2

2
1K cos~kx! (

n52`

`

d~ t2nt!, ~22!

where x is the position,m is the particle mass,v is the
harmonic frequency,K is the kick strength,k is the wave
number, andt is the time interval between kicks.
2-4
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2. Scaling

There are two basic parameters: the kick strengthK, and
the strength of the nonlinearityu. Additionally there is\,
which we have expanded around in Sec. II C. The parame
K andu need to be rescaled so that they remain equivalen
different regimes, as determined by a scaling param
which takes the place of\. In the case of thed-kicked har-
monic oscillator there is a natural dimensionless scaling
rameterh2, whereh is the Lamb-Dicke parameter

h5kA \

2mv
. ~23!

It should also be pointed out thath is a real physical mag
nitude, which really can be adjusted in the laboratory, unl
\. We call the dimensionless kicking strengthk, and the
dimensionless nonlinearity strengthy:

k5
Kk2

A2mv2
, ~24!

y5
uk3

2A2mv2
. ~25!

It is shown in Appendix C thatk andy have an equivalen
effect on the overall dynamics for any value ofh.

If, as is often the case when the trapping potential is h
monic, the Gross-Pitaevskii equation has been rescale
terms of harmonic coordinates (x̂h5Amv/\ x̂, p̂h

5 p̂/Am\v), then it can be written in terms of these dime
sionless parameters as

i
]

]th
w52

1

2

]2

]xh
2
w1V~xh ,th!w1

y

h3
uwu2w, ~26!

V~xh ,th!5
xh

2

2
1

k

A2h2
cos~A2hx! (

n52`

`

d~ th2nth!.

~27!

The wave functions have been rescaled so that they are p
erly normalized with respect to the harmonic position co
dinate, and the time evolution is with respect to the dim
sionless timeth5vt. It is this form of the Gross-Pitaevsk
equation that we use in our numerical simulations.

C. Model phase-space dynamics

1. Classical point dynamics

The dynamics of a classical poinst particle in ad-kicked
harmonic potential have been described fairly extensiv
elsewhere@15–18#. Briefly, we choose a value forth . For a
given t there is only one free parameter which affects
phase-space dynamics:k. There is a resonance conditio
th52pr /q (r /q is a positive rational, whereq.2), whereby
there are interconnecting channels of chaotic dynamics in
phase space@17,18#, the thickness of which depends on th
02361
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kick strengthk @17#. For k not too large, these form an
Arnol’d stochastic web which spreads through all of pha
space, and has a characteristicq symmetry. For largek, one
observes global chaos. Note that Arnol’d diffusion@23# can
occur in systems of less than two dimensions when the c
ditions for the KAM ~Kolmogorov-Arnol’d-Moser! theorem
@1,24# are not fulfilled, as is the case here@16–18#.

Here @and also in the following numerical work on th
Gross-Pitaevskii equation~1! and Liouville equation~13!#
we consider the case whereth52p/6 andk51. The scaled
position and momentum are defined as

x̃5
kx

A2
5hxh , ~28!

p̃5
kp

A2mv
5hph . ~29!

These scaled variables are chosen so that the phase-
dynamics of a classical point particle described in terms
them are affected only byk and th . As can be seen, the
correspond exactly to the scaled harmonic position and
mentum whenh51.

It can be seen in Fig. 2 that the phase space, in this c
having a 6 symmetry, consists of a stochastic web of chao
dynamics, where an initial condition can spread through
phase space, enclosing cells of stable dynamics. A trajec
initially inside one of these stable cells will generally be he
in a ring of six cells, equidistant from the center, for all tim
~with the exception of the particle initially in the central ce
where it stays! @15#.

2. Gross-Pitaevskii equation

In this section and in Sec. III C 3, we always work wi
the harmonically scaled positionxh and momentumph and
with the dimensionless timeth . For the sake of brevity we
omit theh subscript, and thus write these variables simply
x, p, andt ~or t).

We integrate numerically, using a split operator meth
@25#, the Gross-Pitaevskii equation as given in Eq.~26! con-
sidering only the harmonic potential for periods of time
lengtht, punctuated by the exact mapping

FIG. 2. Poincare´ sections of the phase-space dynamics of
classicald-kicked harmonic oscillator.~a! Single unstable initial
condition forming a stochastic web spreading through phase sp
~b! Closeup of the phase space, showing the closed curves ch
teristic of regular dynamics. In both casesth52p/6,k51, andx
andp are dimensionless, scaled as defined in Eqs.~28! and ~29!.
2-5
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w~x,t1!5e2 ik cos(A2hx)/A2h2
w~x,t2!, ~30!

which accounts for the effect of the instantaneousd kicks.
This was carried out for various values ofy and h, where
k51 andt52p/6 in every case.

We have calculated thetime-averagedWigner function,
by which we mean the average of all the Wigner functio
determined just before eachd kick, for 100 kick periods. The
initial wave functions are displaced ground states. That
the ground state of the Gross-Pitaevskii equation is de
mined numerically, for each value ofy. We then locate the
center of the wave function at a point which is in a regular
chaotic region of the theclassical single-particlephase
space. ‘‘Unstable’’ initial wave packets are centered ax
5A2p/h ~harmonic units!, and ‘‘stable’’ initial wave pack-
ets atx52A2p/h. The initial wave functions are thus cen
tered exactly either in the middle of a cell in phase space
in an area dominated by web dynamics. These displa
states are the natural equivalent of coherent states for a c
nonlinear Schro¨dinger equation. Just like coherent states,
density profile keeps its shape in a simple harmonic poten
as it oscillates back and forth. This oscillating excitation
the so-called Kohn mode@26#.

First, in Fig. 3, we show the case of no nonlinearity, f
the sake of reference. In this case the initial conditions
simply coherent states. Note that because it is possible
the Wigner function to have negative values, the color r
resenting zero is in general different in each pseudoc
plot. Thus in each plot there is a ‘‘background’’ color, whic
represents zero, with a superimposed pattern made u
darker and lighter shades. Note that forh51, the unstable
initial condition @Fig. 3~a!# appears to move through pha
space following the stochastic web, whereas the stable in

FIG. 3. Pseudocolor plot of time-averaged Wigner functio
wheny50, i.e., linear Schrödinger equation dynamics, in the tw
cases ofh51, for ~a! an unstable initial condition and~b! a stable
initial condition; andh52, for ~c! an unstable initial condition, and
~d! a stable initial condition. Position and momentum are scale
dimensionless harmonic units, and black means large and pos
02361
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condition @Fig. 3~b!# simply circles around phase space,
would an initial coherent state in a simple harmonic pote
tial. The wave function is clearly somewhat deformed~in the
case of a harmonic potential we would see perfect circle!,
but is otherwise well localized and well behaved. In the ca
of h52, one might be forgiven for thinking that whether th
initial condition is ostensibly stable or not is of negligib
importance. The fact thath is larger has the effect that th
phase space is smaller compared to the size of the in
wave function~as plotted here, using harmonic units!, and
also quantum corrections play a larger role~see Appendix
C!, leading to the ‘‘tunneling’’ seen in Fig. 3~d!, through
classically forbidden areas of phase space. This tunne
can take place because the eigenstates of the Floquet o
tor F̂ describing the period from just before one kick to ju
before the next,

F̂5e2 i ( x̂21 p̂2)t/2e2 ik cos(A2h x̂)/A2h2
, ~31!

are highly delocalized@19–21#, as is described in Appendix
D.

In Fig. 4 equivalent plots are shown when a nonlinear
of y50.1 is added to the Gross-Pitaevskii equation. It can
seen that this does not make very much difference to
phase-space dynamics compared to no nonlinearity~Fig. 3!,
which is not really unexpected.

When, as shown in Fig. 5, a nonlinearity ofy51 is added
to the Gross-Pitaevskii equation, it can be seen that this d
make a difference. Intriguingly, given that the interacti
potential is more strongly repulsive, the phase-space dyn
ics appear to be more strongly localized. In the case of
unstable initial condition@Figs. 5~a! and 5~c!# the web struc-
ture is noticeably reduced, and whereas in Fig. 4~d! there was
significant tunneling leading to a very delocalized pha
space distribution, in Fig. 5~d! this has effectively disap-
peared.

In Fig. 6, wherey510, this is even more marked. Whe
h51, in the case of an unstable initial condition@Fig. 6~a!#,

s

n
e.

FIG. 4. As for Fig. 3, wherey50.1.
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NONLINEAR MATTER WAVE DYNAMICS WITH A . . . PHYSICAL REVIEW A 62 023612
density seems to be concentrated around a ‘‘ring’’ in ph
space, based around how far out in phase space the in
condition was. Whereh52 @Figs. 6~c! and 6~d!#, whether
the initial condition is ostensibly stable or unstable, we s
only six symmetrically placed round blobs of density, ana
gous to a coherent state in a harmonic potential.

3. Liouville equation

Here we wish to investigate the semiclassical limit of t
dynamics of the Gross-Pitaevskii equation with ad-kicked
harmonic oscillator potential@Eq. ~26!#. The appropriate dy-
namics are described in general by Eq.~13!. As with the
Gross-Pitaevskii equation, in our case this can be carried
by considering only the harmonic potential for periods
time t, punctuated by an exact map describing the mom
tum kick.

FIG. 5. As for Fig. 3, wherey51.

FIG. 6. As for Fig. 3, wherey510.
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Equation~13! can be qualitatively determined numerical
by taking an ensemble of starting points from some des
distribution, using Hamilton’s equations of motion to dete
mine the trajectories, and using the numerically determin
coarse-grained density for the overall potential governing
motion of the individual points. Obviously the coars
grained density must be determined sufficiently frequently
that, between times when it is determined, it does not cha
enough to have a very significant effect on the dynam
This is in some sense analogous to the split-step method
have used to integrate the nonlinear Schro¨dinger equation,
where as the time steps shrink to length zero, the appr
mate solution converges~in principle! to the exact solution.

In each case the initial distribution is chosen by determ
ing the ground state of the harmonic potential Gro
Pitaevskii equation~for appropriatey and h), shifting it so
that the center of the wave function is at an unstable or sta
fixed point ~in the classical, single-particle sense!, calculat-
ing the Wigner function, and interpreting this as a classi
probability distribution inx andp. The ground-state Wigne
function in the case of a harmonic potential is always stric
non-negative, so one can always do this.

Note that althoughh does not enter into the dynamics o
Eq. ~13! directly, by the above recipe it does enter by way
the choice of the initial condition, which affects the effectiv
potential due to the distribution’s density in position spa
and so on. The time-averaged density distribution plots
Figs. 7–9 are chosen to have initial conditions and sca
exactly equivalent to the time-averaged Wigner functi
plots shown in Figs. 4–6.

In Fig. 7 we see the density distribution averaged o
100 kicks for the case wherey50.1. The dynamics are es
sentially similar to those show in Fig. 2 for various sing
trajectories, and we observe a much lesser degree of d

FIG. 7. Pseudocolor plot of time-averaged distributions und
going Liouville dynamics wheny50.1, in the two cases ofh51,
for ~a! an unstable initial condition and~b! a stable initial condition;
andh52, for ~a! an unstable initial condition and~b! a stable initial
condition. Position and momentum are scaled in dimensionless
monic units, and black means large and positive.
2-7
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GARDINER, JAKSCH, DUM, CIRAC, AND ZOLLER PHYSICAL REVIEW A62 023612
bution through phase space when compared to the full Gr
Pitaevskii equation~see Fig. 4!. In particular we see no tun
neling in Fig. 7~d!, compared to Fig. 4~d!. The dynamics in
the cases of ‘‘unstable’’ initial conditions perhaps do n
appear to be very strongly chaotic. Remember that only
kicks have been applied, and that in the case of the sin
particle classicald-kicked harmonic oscillator, there areslow
chaotic dynamics along the stochastic web@15–17#, with an
overall tendency to diffuse ‘‘outwards’’ in phase space. W
have examined the case of 100 kicks only in order to dire
compare with the the numerically determined Gro
Pitaevskii dynamics.

If we examine Fig. 8, which shows analogous dynam
to Fig. 7 for the case thaty51, we observe some increase
spreading out through phase space, still contained within
characteristic cells formed by the stochastic web in the c
of the stable initial condition forh51. In the case ofh52,

FIG. 8. As for Fig. 7, wheny51.

FIG. 9. As for Fig. 7, wheny510.
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the initial distribution seems too large for the cells, and ev
in the stable case there is some diffusion outwards thro
phase space.

Finally we consider the case wherey510, shown in Fig.
9. There is significant additional diffusion through pha
space for the unstable initial condition, compared to
cases ofy50.1 ~Fig. 7! and 1~Fig. 8!. Even for the suppos-
edly stable initial condition there is some density which h
found its way onto the stochastic web, and appears to
diffusing outward. Nevertheless, the basic structure of
single-particle stochastic web appears to be retained.

There thus appears to be a clear trend, where the la
the interaction parametery, the greater the degree of diffu
sion outward through phase space, but nevertheless a
routes typical for single-particle dynamics. This has a sim
explanation: wheny is large and the distribution is highly
localized, the distribution tends to push itself apart. After t
initial explosion through phase space~actively encouraged in
the unstable parts of phase space!, the contribution by the
density to the effective potential is small, and so the by n
thinly spread distribution undergoes local dynamics equi
lent to single noninteracting classical particles, chaotic
stable, depending on the location in phase space.

D. Interpretation

1. Overview

The most interesting thing shown by these numerical
periments, is the conclusive demonstration that the local
tion observed in Figs. 5 and 6 is due to interference effe
caused by terms of higher order in\ in Eq. ~11! ~or more
correctly, higher order inh2, as shown in Appendix C!. The
intuitive picture of a stronger repulsive interaction drivin
the Wigner function–Liouville distribution apart, is fulfilled
in the semiclassical limit, but breaks down when all ‘‘qua
tum’’ corrections are accounted for.

The increasing degree of localization shown with incre
ing y in the Gross-Pitaevskii dynamics can also be qual
tively explained. As is shown in Appendix D, in the case
linear Schro¨dinger equation dynamics, the Floquet eige
states are highly delocalized, due to extra symmetries c
nected to the fact that the wave function is kicked exactly
times per oscillation period. The presence of delocaliz
eigenstates means that the wave function tends to sp
throughout phase space with ease; along the stochastic w
the initial condition is in a classically unstable part of pha
space, and possibly by tunneling from cell to cell~promoted
by largeh) if the wave function is initially in a stable part o
phase space. With increasingy this symmetry is more and
more perturbed, to a point where this ability to spread fre
through phase space is lost. Interference effects due
higher-order terms of the density in Eq.~11!, act to hold the
wave function together, in contrast to the Liouville type d
namics described by Eq.~13!.

2. Density in position space

On this note it is instructive to look at the kinds of de
sities actually produced. We consider the final wave fu
2-8
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NONLINEAR MATTER WAVE DYNAMICS WITH A . . . PHYSICAL REVIEW A 62 023612
tion, produced after 100 kicks, at a time just before a hy
thetical 101st kick. In Fig. 10 we see plots ofuw(x)u2 for the
casey50.1. Unsurprisingly, for the unstable cases, and a
for the stable case whereh52, the states are highly deloca
ized in position space, with a great deal of fine structure
Fig. 11, this has substantially changed; the densities wh
were very complex are now much simplified, and even
stable initial condition forh51 appears to have less stru
ture wheny51 compared toy50.1. Wheny is increased to
10, as shown in Fig. 12, there is still some structure to
densities whereh51, wheras in the case whereh52 there
appears now to be none.

Obviously much more radical change is induced for
case ofh52 when increasingy. Bearing in mind thath2 is
our effective\, it is clear from Eq.~11! that higher-order
derivatives in the effective potentialV(x,t)1ur(x) will be

FIG. 10. Plots ofuw(x)u2 after the application of 100 kicks an
wherey50.1, in the cases ofh51, for ~a! an unstable initial con-
dition and~b! stable initial condition; andh52, for ~c! an unstable
initial condition and~d! a stable initial condition. Position is scale
in dimensionless harmonic units.

FIG. 11. As for Fig. 10, but fory51.
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more strongly emphasized~also see Appendix C!. Between
kicks, the non-Liouville corrections are due only tor(x), as
the derivatives ofx2 vanish.

Considering the cases of Figs. 12~a! and 12~b! in particu-
lar, one might ask what there is about these densities wh
seemingly so totally dominates the dynamics. We consi
the initial state, which is simply a shifted ground state. T
ground state of the Gross-Pitaevskii equation lie somewh
between the cases of a Gaussian~no nonlinearity! and the
Thomas-Fermi limit@8#, which is essentially an inverted pa
rabola~large nonlinearity!. With regard to the parameters w
have chosen to use, the degree of ‘‘Thomas-Fermi-ness
proportional toy/h3. In the Thomas-Fermi limit, there are n
higher-order derivatives ofr. A Gaussian, however, has a
infinite number of derivatives. For Figs. 12~a! and 12~b!,
y/h351.25 only. The initial state density is thus mo
Gaussian than paraboloid, and the large value of the effec
\ ensures that corrections due to the inevitable higher-o
derivatives are substantial.

Briefly, the application of a kick scrambles the phase
the position representation of a wave function; the density
position space is instantaneously unaffected, however. W
looking at Eq.~11! we see that corrections due to highe
order derivatives ofr will be emphasized for larger effectiv
\, in our caseh2. The effect of these corrections appears
be a strong tendency for theshapeof the wave function to be
preserved.

In this work, we have not really explored the regime
very large nonlinearities. In view of the fact that in th
Thomas-Fermi limit for the ground state there are no corr
tions to the Liouville-like equation of Eq.~13!, it is possible
that the kind of very pronounced localization observed
the case ofh52 might again be suppressed for much larg
y.

3. Density in momentum space

For the sake of comparison, in Figs. 13–15 we show
corresponding momentum densities to the position dens
of Figs. 10–12. The densities in position and moment

FIG. 12. As for Fig. 10, but fory510.
2-9
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GARDINER, JAKSCH, DUM, CIRAC, AND ZOLLER PHYSICAL REVIEW A62 023612
space essentially correspond, in that complex structure in
indicates complex structure in the other. This is not surp
ing, if we consider the kinds of Wigner functions display
in Figs. 4–6.

IV. PHYSICAL MODEL: DRIVEN BOSE-EINSTEIN
CONDENSATE

A. Overview

A series of pioneering experiments investigating quant
chaos with atom-optical systems has been carried out by
zen and co-workers@27,41,42#, mainly for a quantum real-
ization of thed-kicked rotor. We take a similar approach:
possible physical realization of thed-kicked harmonic oscil-
lator, consisting of a single trapped ion periodically driv

FIG. 13. Plots ofuw(p)u2 after the application of 100 kicks an
wherey50.1, in the cases ofh51, for ~a! an unstable initial con-
dition and ~b! a stable initial condition; andh52, for ~c! an un-
stable initial condition and~d! a stable initial condition. Momentum
is scaled in dimensionless harmonic units.

FIG. 14. As for Fig. 13, but fory51.
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by a laser, was described in Ref.@28#. This can in principle
be readily extended to a periodically driven Bose-Einst
condensate. In Sec. IV B it is shown how a Gross-Pitaev
equation with ad-kicked harmonic-oscillator potential ca
be produced by periodically kicking an already formed co
densate with a far-detuned standing wave. In Sec. IV C
consider in a very basic way the problem of noncondens
particles, i.e., the generation of noncondensate particles,
thus the depletion of condensate particles, finding that
cannot be sure in every case considered in Sec. III that
Gross-Pitaevskii equation is an appropriate description of
dynamics for the particle numbers common in current
periments. We note, however, that in principle one can
ways start with a sufficiently large particle number, so th
for the time scales considered, particle loss can be consid
negligible.

B. Two-level atoms interacting with a far-off-resonance laser

1. Single particle

We begin by regarding a single two-level atom. In thex
direction, it is trapped in a harmonic potential of frequen
v, and driven time dependently by a laser field of Rabi f
quencyV(t), wave numberk, and frequencyvL . We disre-
gard motional degrees of freedom in they andz directions as
being presently uninteresting, and arrive at the Hamilton
operator

Ĥ5
p̂2

2m
1

mv2x̂2

2
1

\

2
$v0~ ue&^eu2ug&^gu!1cos~kx̂!

3@V~ t !e2 ivLtue&^gu1H.c.#%. ~32!

In a rotating frame defined by

Û5exp@2 ivLt~ ue&^eu2ug&^gu!/2#, ~33!

and in the limit of large detuninguDu5uvL2v0u@uV(t)u,
ue& can be adiabatically eliminated to give, after transform
tion to an appropriate rotating frame,

FIG. 15. As for Fig. 13, but fory510.
2-10
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Ĥ5
p̂2

2m
1

mv2x̂2

2
1

\

2

V~ t !2

4D
@cos~2kx̂!11#ug&^gu.

~34!

The laser is periodically switched on and off, giving a ser
of short pulses, approximated by Gaussians

V~ t !25V2 (
n52`

`

e2(t2nt)2/s2
, ~35!

which approximate a series ofd kicks in the limit s→0.
Note also that we requires@1/D; otherwise the laser is too
spectrally broad. Thus we finally have

Ĥ5
p̂2

2m
1

mv2x̂2

2
1

\sApV2

8D

3@cos~2kx̂!11#ug&^gu (
n52`

`

d~ t2nt!. ~36!

Because we assume that the atom is always in electr
stateug&, the ug&^gu operator can be effectively abandone
The extra11 simply adds a global phase, which can eas
be accounted for, and so this can be further simplified to

Ĥ5
p̂2

2m
1

mv2x̂2

2
1

\sApV2

8D
cos~2kx̂! (

n52`

`

d~ t2nt!.

~37!

This is exactly the Hamiltonian for the quantumd-kicked
Harmonic oscillator, except that we have cos(2kx̂) instead of
cos(kx̂). As far as scaling is concerned, this means we m
in turn considerh852h instead ofh as the appropriate di
mensionless parameter.

2. Many particles: Second quantized formalism

It is clear that if we consider a many-particle system, th
the above derivation is independent of any particle-part
interactions which do not change the internal states of
atoms. We thus consider the model Hamiltonian of a wea
interacting Bose gas, in second quantized form

Ĥ5E
2`

`

dxĈ†~x!F2
\2

2m
¹21V~x,t !1

g

2
Ĉ†~x!Ĉ~x!GĈ~x!,

~38!

where Ĉ is the particle-field operator,g54p\2as /m, and
as is thes-wave scattering length. We takeV(x,t) to be

V~x,t !5V~x,t !1
mv r

2

2
~y21z2!, ~39!

where the potential in thex direction is exactly that derived
above, i.e.,
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V~x,t !5
mv2x2

2
1

\sApV2

8D
cos~2kx! (

n52`

`

d~ t2nt!.

~40!

We assume the radial frequencyv r to be very large com-
pared to the axial frequencyv ~cigar-shaped trapping con
figuration!, and thus assume that every particle is in t
harmonic-oscillator ground state iny and z. With this as-
sumption we can integrate overy andz, reducing to a single
dimension

Ĥ5E
2`

`

dxĈ†~x!F2
\2

2m

]2

]x2
1V~x,t !

1
g1d

2
Ĉ†~x!Ĉ~x!GĈ~x!, ~41!

whereg1d5mvg/2p\52\v ras .

3. Asymptotic expansion: Sketch of derivation
of Gross-Pitaevskii equation

Using the particle number conserving formalism of Cas
and Dum @29#, we split the field operatorĈ of the many
particle system into a condensate part and a nonconden
part:

Ĉ~x,t !5wex~x,t !âwex
~ t !1dĈ~x,t !, ~42!

wherewex is the exactcondensate wave function, anddĈ
describes the noncondensate particles. Introducing the op
tor

L̂ex~x,t !5
1

AN̂
âwex

† ~ t !dĈ~x,t !, ~43!

it is possible to make asymptotic expansions ofL̂ex(x,t) and
wex(x,t), such that

L̂ex5L̂1
1

AN̂
L̂ (1)1

1

N̂
L̂ (2)1•••, ~44!

wex5w1
1

AN̂
w (1)1

1

N̂
w (2)1•••, ~45!

whereN̂ is the total particle-number operator.
Thus, to lowest order, the condensate particles are

scribed byw(x). The time evolution of this can be shown t
be given by the Gross-Pitaevskii equation@29#, which in our
case is

i\
]

]t
w52

\2

2m

]2

]x2
w1V~x,t !w1Ng1duwu2w, ~46!
2-11



n

a
ss
e

n

iv
-
s

he
r

-

-

sate
nd
eld

ivity
e

ar-

in

GARDINER, JAKSCH, DUM, CIRAC, AND ZOLLER PHYSICAL REVIEW A62 023612
whereN is the total number of particles. In turn, the nonco
densate particles are described to lowest order byL̂(x,t).

The Gross-Pitaevskii equation which we have arrived
in Eq. ~46! can be rewritten in terms of the dimensionle
parametersh8, k, andy, as described in Sec. III B 2, wher

h85kA 2\

mv
, ~47!

k5
\k2sAp/2V2

2mvD
, ~48!

y5
8\Nk3v ras

A2mv2
. ~49!

C. Noncondensate particles

1. Background: Dynamics beyond the Gross-Pitaevskii equatio

The mean number of the non-condensate particles is g
by ^dN̂&5*dx^dĈ†dĈ&, which to lowest order may be de
scribed by*dx^L̂†L̂&. In turn,L̂† andL̂ can be expanded a

S L̂~x,t !

L̂†~x,t !
D 5 (

k51

`

b̂kS uk~x,t !

vk~x,t ! D 1 (
k51

`

b̂k
†S vk* ~x,t !

uk* ~x,t !
D ,

~50!

which gives rise to the following equation describing t
mean number of noncondensate particles to lowest orde
the perturbation expansion:

^dN̂~ t !&5 (
k51

`

^b̂k
†b̂k&^uk~ t !uuk~ t !&1^b̂k

†b̂k11&

3^vk~ t !uvk~ t !&. ~51!
il

al

o
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b̂k’s are time independent@29#. We see that the time
dependence of Eq.~51! is thus contained completely within
^ukuuk& and^vkuvk&. A system initially prepared at tempera
ture T has ^bk

†bk&5@exp(Ek /kBT)21#21, and so, if we take
the limit T→0, we obtain

^dN̂~ t !&5 (
k51

`

^vk~ t !uvk~ t !&. ~52!

We thus wish to study the dynamics ofuvk(t)& to obtain
some idea of the change in the number of nonconden
particles, in an analogous fashion to the work of Castin a
Dum, when investigating the behavior of a condensate h
in a time-dependent isotropic harmonic potential@30#. Note
that because the Gross-Pitaevskii equation isnonlinear, it is
possible to have chaos in the sense of exponential sensit
to initial conditions within the Hilbert space. If this is th

case, the above estimate of^dN̂(t)& will grow automatically,
due to the fact that this estimate is essentially from a line
ization around the Gross-Pitaevskii solution@30#. Thus the

rate of growth of this estimate of̂dN̂(t)& is similar to the
Lyapunov exponent for the divergence of trajectories
phase space for discrete classical systems.

The dynamics of theuuk(t)& and uvk(t)& are given by

i\
d

dt S uuk~ t !&

uvk~ t !&
D 5L~ t !S uuk~ t !&

uvk~ t !&
D , ~53!

where
L~ t !5S ĤGP~ t !1Ng1dQ̂~ t !uw~ x̂,t !u2Q̂~ t ! Ng1dQ̂~ t !w~ x̂,t !2Q̂* ~ t !

2Ng1dQ̂* ~ t !w~ x̂,t !* 2Q̂~ t ! 2ĤGP2Ng1dQ̂* ~ t !uw~ x̂,t !u2Q̂* ~ t !
D , ~54!
o

di-
e

and where we have defined the Gross-Pitaevskii ‘‘Ham
tonian’’

ĤGP~ t !5
p̂2

2m
1V~ x̂,t !1uuw~ x̂,t !u22j~ t !. ~55!

The phase factorj(t) is equal to the ground-state chemic
potential m for a harmonic potential whenw(x,t) is the
Gross-Pitaevskii equation ground state. The projection
eratorsQ̂ andQ̂* are given by

Q̂512uw&^wu, ~56!
-

p-

Q̂* 512uw* &^w* u, ~57!

whereuw* & is defined bŷ xuw* &5w* (x)5^wux&.

2. Dynamics ofŠdN̂„t…‹

To determine hoŵdN̂(t)& changes over time, we need t
determine the dynamics ofuvk(t)&, which are coupled to the
dynamics ofuuk(t)& through Eq.~53!. We thus need to inte-
grate Eq.~53!, and to integrate Eq.~53!, we need as initial
conditionsuuk(0)& and uvk(0)&.

The initial conditionsuuk(0)& anduvk(0)&, for w(x) in the
ground state for a harmonic potential, are determined by
agonalizingL, wherew( x̂,t) is chosen to correspond to th
2-12
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FIG. 16. Semilog plot of̂ vkuvk& with respect to the number of kicksn, for k51, . . .,15: k51 ~solid line!, k52 ~dotted line!, k53
~dash-dotted line!, k54 ~dashed line!, k55 ~circles!, k56 ~crosses!, k57 ~pluses!, k58 ~squares!, k59 ~diamonds!, k510 ~downward-
pointing triangles!, k511 ~upward-pointing triangles!, k512 ~left-pointing triangles!, k513 ~right-pointing triangles!, k514 ~pentagrams!,
andk515 ~hexagrams!, whereh851 andy51. ~a! shows data for the ‘‘unstable’’ initial condition, where the leading term after 100 k
is for k51. ~b! shows data for the ‘‘stable’’ initial condition, where the leading term corresponds tok52.
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19,
Gross-Pitaevskii equation ground state for a harmonic po
tial, andj(t)5m. For this we need to determine the groun
state condensate wave functionw(x) and the ground-state
chemical potentialm. This is achieved by propagating th
Gross-Pitaevskii equation in imaginary time, where we us
split-operator method@25#.

We then determineL in the position representation, whe
w(x,t) is the previously determined ground state andj(t)
5m. We use a Fourier grid@31# to describep̂2 in the posi-
tion representation. We then diagonalizeL numerically, and
gain as the resultant set of eigenvectors

H S uk~x!

vk~x!
D ,S vk* ~x!

uk* ~x!
D ,S w~x!

0 D ,S 0

w* ~x!
D J , ~58!

with eigenvalues$Ek ,2Ek ,0,0%, respectively@29#. These
eigenvectors must be properly normalized@29#, so that

E
2`

`

dxuk* ~x!uk8~x!2E
2`

`

dxvk* ~x!vk8~x!5dkk8 .

~59!

Our initial condition for the Gross-Pitaevskii equation
in general a shifted ground state, that is, we take the grou
state wave function, and instantaneously translate it in p
tion space, otherwise altering nothing. Physically, this co
be achieved by almost instantaneously translating the ce
of the harmonic potential, so thatx2→(x2a)2. Instanta-
neously, this would leave the Gross-Pitaevskii wave funct
and theuk(x) and vk(x) modes unchanged. If we then re
express everything in terms ofx85x2a, we end up with the
sameequationsin terms ofx8 as we had initially in terms of
x, but the wave functions are transformed:
$w(x),uk(x),vk(x)%→$w(x81a),uk(x81a),vk(x81a)%.

Thus if the initial Gross-Pitaevskii wave function is sim
ply a shifted ground state, then the appropriate initialuk and
vk are correspondingly shifted from those determined fromL
for the ground-state condensate wave function. This se
initial conditions is in fact somewhat special; as previou
02361
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mentioned, the density profile ofw(x) remains unchanged a
it oscillates back and forth~without kicks!; the same is also
true ofuk(x) andvk(x). Once we have the initial condition
we can start integrating Eq.~53!.

3. Numerical results

We numerically integrated Eq.~53! for the first 15uk(x),
vk(x) pairs over a time span of 100 kicks, using a sp
operator method described in some detail in Appendix
parallel to numerical integration of the Gross-Pitaevs
equation, also using a split-operator method@25#. Just before
each kick each of the inner products^vkuvk& were deter-
mined, which are plotted against time in Figs. 16–19
various parameter regimes for which we have already inv
tigated the Gross-Pitaevskii dynamics. The ‘‘stable’’ a
‘‘unstable’’ initial conditions referred to are those of the in
tial Gross-Pitaevskii wave function@which in turn deter-
mines the initial conditions of each of theuk(x) and vk(x)
modes#, and are exactly those taken in the integrations of
Gross-Pitaevskii equation described in Sec. II B 1. To reit
ate, the data presented in the plots in this section corresp
exactly to the phase-space plots presented in Sec. II B 1
the appropriate values ofy andh8, with regards to the initial
condition. Figures 16 and 17 correspond to Figs. 5 and 8,
Figs. 18 and 19 correspond to Figs. 6 and 9.

In Fig. 16, whereh851 andy51, we see a marked dif
ference between the ‘‘stable’’ and ‘‘unstable’’ cases. In t
‘‘unstable’’ case we see a much greater growth of^vkuvk& ’s.
Interestingly, thek51 mode in the stable case does not
average seem to grow at all, instead undergoing quasireg
oscillations in time. The leading terms are also differentk
51 for the unstable case, andk52 in the unstable case.

Compared to Fig. 16, the ‘‘stable’’ and ‘‘unstable’’ case
shown in Fig. 17~where the only difference is thath852),
appear comparatively similar. In particular there does
seem to be a great deal more growth of^vkuvk& in the ‘‘un-
stable’’ case when compared to the ‘‘stable’’ case.

We see the same pattern repeated in Figs. 18 and
where y is now 10. In Fig. 18, thê vkuvk& ’s very rapidly
2-13
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FIG. 17. As for Fig. 16, except thath852 andy51. In ~a! the leading term is fork53, and in~b! for k56.
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grow in the ‘‘unstable’’ case when compared to the ‘‘stabl
case, whereas in Fig. 19, whereh852, the difference is not
nearly so marked~and in any case the growth of th
^vkuvk& ’s is generally less!. This in some sense reflects th
observed Wigner function dynamics in Sec. II B 1, whe
there does not seem to be such a strong qualitative differe
between the ‘‘unstable’’ and ‘‘stable’’ cases whereh852
for any value ofy, in contrast to the cases whereh851. One
should bear in mind that although the dimensionless non
earity strengthy is the same in both Figs. 16 and 17, t
actual repulsive interactionNu1d is proportional toy/h83.
One might argue then that one would expect that ther
generally less depletion from the wave function described
the Gross-Pitaevskii equation. The evolution ofw(x,t) is
also important, however:y/h8351, wherey51 andh851
is not that different fromy/h8351.25, wherey510 andh8
52, but the evolutions of thêvkuvk& ’s are different. There
appears to be some correspondence between the G
Pitaevskii phase-space dynamics shown in Figs. 5 and 6
the evolutions of thêvkuvk& ’s, in that when there is a sig
nificant difference between the ‘‘stable’’ and ‘‘unstable
cases, this shows up in the dynamics of the^vkuvk& ’s corre-
sponding to these different cases. Also, a more ‘‘smoo
phase-space plot~as forh852 compared toh851 in Figs. 5
and 6! appears to correspond to a smoother evolution of
^vkuvk& ’s ~Figs. 17 and 19 compared with Figs. 16 and 1!.
As the equation describing the time evolution of t
02361
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uuk&,uvk& pairs is essentially the same as that describing
evolution of linearized orthogonal perturbations of t
Gross-Pitaevskii wave function@29#, this is not unexpected

4. Comparison with experimental parameters

We first examine our best estimate for^dN̂(t)&, which is
(k51

15 ^vk(t)uvk(t)&, where t is expressed as the number
kicks. In Fig. 20 this is plotted for each case wherey51
against the number of kicks, and in Fig. 21 fory510. Inter-
estingly, for y51 and h852, total growth appears to b
almost exactly linear in time, after a short buildup period;
noted above growth does not appear to be that different w
comparing the ‘‘stable’’ and ‘‘unstable’’ cases. Forh851,
however, there is a clear and substantial difference betw
the two cases.

When y is increased to 10, as shown in Fig. 21, grow
becomes more erratic. We see that for the unstable c
whereh851, (k51

15 ^vkuvk& ends up being very large, mak
ing it unlikely that an experiment for this parameter regim
would follow Gross-Pitaevskii dynamics. The general patte
observed in Fig. 20 is repeated here, but with larger numb
Note, however, that the beginnings of a clear differentiat
between the degree of growth for the ‘‘stable’’ and ‘‘un
stable’’ cases whenh852 appear to be occurring; in bot
cases growth is certainly not linear with time.
FIG. 18. As for Fig. 16, except thath851 andy510. In ~a! the leading term is fork51, and in~b! for k51 and 5.
2-14
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FIG. 19. As for Fig. 16, except thath852 andy510. In ~a! the leading term is fork54, and in~b! for k56.
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Overall, our results can be interpreted as similar to th
obtained in Ref.@30# for the case of a time-dependent ha
monic potential. When one would expect classically chao
behavior, one observes rapid growth of the^vkuvk& ’s.

To examine the behavior of a possible experimental re
ization of this scheme, we consider rubidium 87, which h
an s-wave scattering length ofas55.131029m @32#, and
sodium 23 (as52.7531029m) @33#. Substituting Eq.~47!
into Eq. ~49!, we can rewritey, so that

y5A m

\v
2Nv rash83 ~60!

is expressed in terms ofh8, which is more convenient for ou
purposes. Using Eq.~60!, as a general relation for the num
ber of particles we obtainN5lAv/v r , where

l5A\

m

y

2ash83
. ~61!

The values ofl in units of s21/2 for the parameter regime
we have investigated are summarized in Table I.

We let v r510v, remembering that we should havev r
significantly larger thanv, we take this to be a reasonab
minimum, bearing in mind that the values of the harmo
potential ground-state chemical potentialm lie between 0.55
and 3.11 in units of\v, as shown in Table I. We then obta
N5n/Av r , where n5lA1/10. Numerical values forn in
units of s21/2, wherev r510v are also displayed in Table.
In principle this leaves us one free parameter to tweak;
smaller the radial frequency, the largerN can be, and the les
significant the effect of the growth of the number of partic
not described by the Gross-Pitaevskii equation. This wo
mean that we could reasonably expect to describe the
namics of the particles largely with the Gross-Pitaevs
equation, with small corrections accounted for by Eq.~53!.

In practice, trapping frequencies for alkali atoms such
rubidium and sodium lie between about 1 and 100 Hz. T
growth of (k51

15 ^vkuvk& in the ‘‘unstable’’ case, wherey
510 andh851, is thus far too high for this simplest inte
pretation of the real dynamics. The cases whereh852 look
more promising, and here in fact the interesting effect
nonlinearity induced localization within the phase space
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the Gross-Pitaevskii wave function is even more p
nounced. Also note that even for a small nonlinearity oy
51, there is still a pronounced difference in the Gros
Pitaevskii equation phase-space dynamics~see Fig. 5! com-
pared to the case where there is no nonlinearity~Fig. 3!, for
both h851 and h852, and here the numbers also see
more promising for the nonlinearity-induced localizing effe
to be observed, corresponding to our numerical integrati
of the Gross-Pitaevskii equation.

V. CONCLUSIONS

We have explicitly derived an appropriate semiclassi
limit for a general cubic nonlinear Schro¨dinger equation, or
Gross-Pitaevskii equation, and find it to be a Liouville-ty
equation, with a term involving the density in position spa
We have shown how and why this differs from the hydrod
namic limit of the Gross-Pitaevskii equation. In particula
this derivation shows how an eccentric wave functionw(x)
can produce large deviations from this semiclassical lim
through higher-order corrections involving derivatives of t

FIG. 20. Plots of(k51
15 ^vkuvk& against the number of kicksn,

wherey51, in the two cases ofh851, for ~a! an unstable initial
condition and~b! a stable initial condition; andh852, for ~c! an
unstable initial condition and~d! a stable initial condition.
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GARDINER, JAKSCH, DUM, CIRAC, AND ZOLLER PHYSICAL REVIEW A62 023612
densityr(x)5uw(x)u2, in addition to effects due to an un
usual potential. We have numerically investigated a sim
test system, the one-dimensionald-kicked harmonic oscilla-
tor, studying the dynamics of the Gross-Pitaevskii equat
and the appropriate Liouville-type equation. For moder
nonlinearity strengths we have found that there is a local
tion effect explicitly due to interferences caused by the n
linearity. We have outlined a possible experimental imp
mentation of such a system in a Bose-Einstein conden
experiment, and have investigated numerically to what
gree the Gross-Pitaevskii equation correctly describes the
namics of the bulk of the particles for certain test cas
From this we have determined a lowest-order estimate
the growth in the number of noncondensate particles.
have found that for this system this depends strongly on
parameter regime ofh8 and y under study, and that thi
seems to correspond to the kinds of phase-space dyna
observed in the Gross-Pitaevskii equation. We have c
pared the numbers obtained with realistic experimental
rameters for condensates formed from sodium or rubid
atoms.
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APPENDIX A: DERIVATION OF WIGNER FUNCTION
DYNAMICS

1. Definitions

Defining the Wigner function for a pure state as

W~x,p!5
1

2p\E2`

`

dte2 ipt/\w* ~x2t/2!w~x1t/2!,

~A1!

we take the time derivative

]

]t
W~x,p!5

]

]t
W~x,p!SP1

]

]t
W~x,p!NL , ~A2!

where we have split up the differential equation into a p
which is governed by the single particle linear dynam
~SP!, and a part which is governed by the nonlinearity~NL!.

2. Single-particle dynamics

The single-particle dynamics are described by

]

]t
W~x,p!SP5

i

2p\2E2`

`

dte2 i tp/\@^wuĤux2t/2&

3^x1t/2uw&2^wux2t/2&^x1t/2uĤuw&#.

~A3!

The expansion we desire is exactly that used by Zurek
Paz in investigating the quantum-classical boundary@5#, and
is based on work originally carried out by Moyal@34# and
Wigner @35#:

]

]t
W~x,p!SP5(

s50

`
~21!s

~2s11!! S \

2D 2s ]2s11

]x2s11
H

]2s11

]p2s11
W

2
]

]p
H

]

]x
W. ~A4!
ntial

TABLE I. Values ofl andn for sodium 23 and rubidium 87, when in the parameter regimes ofy andh8

under study. Also displayed are the values of the numerically determined ground-state chemical potem
for the appropriate values ofy andh8, in units of\v.

Na23 Rb87

y h8 m l n l n

1 1 0.87\v 9.553103 s21/2 3.023103 s21/2 2.653103 s21/2 8.383102 s21/2

2 0.55\v 1.193103 s21/2 3.773102 s21/2 3.313102 s21/2 1.053102 s21/2

10 1 3.11\v 9.553104 s21/2 3.023104 s21/2 2.653104 s21/2 8.383103 s21/2

2 0.95\v 1.193104 s21/2 3.773103 s21/2 3.313103 s21/2 1.053103 s21/2
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3. Nonlinear dynamics

For a simple cubic nonlinearityuuwu2w, we can express
]W(x,p)NL /]t as

]

]t
W~x,p!NL5

iu

2p\2E2`

`

dtH e2 i tp/\E
2`

`

dp8@W~x2t/2,p8!

2W~x1t/2,p8!#E
2`

`

dp9ei tp9/\W~x,p9!J .

~A5!

We expandW(x2t/2,p8)2W(x1t/2,p8) as a McLaurin
series:

]

]t
W~x,p!NL52

iu

p\2 (
s50

`
~1/2!2s11

~2s11!!

3E
2`

`

dp8
]2s11

]x2s11
W~x,p8!E

2`

`

dte2 i tp/\

3E
2`

`

dp9t2s11ei tp9/\W~x,p9!. ~A6!

Using the chain rule and Fourier’s integral theorem, we
rive at

]

]t
W~x,p!NL52 i

2u

p\ (
s50

`
~2\/2i !2s11

~2s11!!

]2s11

]x2s11

3F E
2`

`

dp8W~x,p8!G ]2s11

]p2s11
W~x,p!.

~A7!

4. Combined result

Combining Eqs.~A4! and ~A7!, we obtain the Wigner
function dynamics to all orders in\ of the cubic nonlinear
Schrödinger equation with arbitrary potential, in one dime
sion:

]

]t
W5(

s50

`
~21!s

~2s11!! S \

2D 2s ]2s11

]x2s11
@H1ur#

]2s11

]p2s11
W

2
]

]p
H

]

]x
W, ~A8!

which as its semiclassical limit (\→0) has a Liouville-like
equation

]

]t
W5

]

]x
@H1ur#

]

]p
W2

]

]p
H

]

]x
W, ~A9!

wherer is the Wigner function integrated overp, as defined
in Eq. ~12!. This derivation can be easily generalized f
other nonlinearities and to two and three dimensions.
02361
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APPENDIX B: RE DERIVATION
OF THE HYDRODYNAMIC EQUATIONS

1. Definitions

The densityr has already been defined in Eq.~12!. in
terms of the Wigner function The quantityP is defined in
terms of the Wigner function as

rP5E
2`

`

dppW. ~B1!

2. Regaining the first hydrodynamic equation

The equation of motion forr is given by

]

]t
r5(

s50

`
~21!s

~2s11!! S \

2D 2s ]2s11

]x2s11
@H1ur#

3E
2`

`

dp
]2s11

]p2s11
W2E

2`

`

dp
]

]x
W

]

]p
H. ~B2!

Due to the fact thatW(x,p) and all of its derivatives are
equal to zero atx56`, something we make frequent use o
this simplifies to the continuity equation

]

]t
r52

1

m

]

]x
~rP! ~B3!

using the definition of Eq.~B1!.

3. Equations for higher-order moments

We now turn to the equation of motion forP. We have,
from Eq. ~B1!

]

]t
P5

1

rE2`

`

dppH (
s50

`
~21!s

~2s11!! S \

2D 2s ]2s11

]x2s11

3@V~x,t !1ur#
]2s11

]p2s11
W2

p

m

]

]x
WJ 1

P

rm

]

]x
~rP!.

~B4!

The integral of the Wigner function over p,
*2`

` dpp]2s11W/]p2s11, is equal to2r whens50, and is
otherwise equal to zero. We therefore have

]

]t
P52

]

]x
@V~x,t !1ur#2

1

rm

]

]x S E
2`

`

dpp2WD
1

P

rm

]

]x
~rP!. ~B5!

Clearly Eqs.~B3! and ~B4! do not form a closed system o
equations, due to the presence of the second-order mom
P2(x), where

Pn~x!5
1

r~x!
E

2`

`

dppnW~x,p!. ~B6!
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It is relatively simple to derive a chain of equations of m
tion for all Pn(x):

]

]t
Pn~x!5

1

rE2`

`

dppn
]

]t
W2

Pn~x!

r

]

]t
r. ~B7!

Substituting in Eqs.~A8! and~B3! we obtain, as the genera
form,

]

]t
Pn~x!5

Pn~x!

rm

]

]x
@rP~x!#

2
1

rm

]

]x
@rPn11~x!#2nPn21~x!

3
]

]x
@V~x,t !1ur#

2 (
s51

n21 H ~\/2!2sn!

~2s11!! @n2~s11!#!
Pn2(s11)~x!

3
]2s11

]x2s11
@V~x,t !1ur#J . ~B8!

The system of equations~B3! and~B8!, wheren ranges from
1 to `, thus describes the full dynamics of the Gros
Pitaevskii equation~1! @14#.

4. Regaining the second hydrodynamic equation

We consider a set of solutions of the moments wh
Pn(x)5P(x)n. Taking Eq.~B8! and setting\50, i.e., ignor-
ing all quantum corrections, we substitute this solution
which after differentiation results in

nP~x!n21
]

]t
P~x!52

nP~x!n

m

]

]x
P~x!

2nP~x!n21
]

]x
@V~x,t !1ur#,

~B9!

where we can immediately carry out cancellations, to fina
arrive at

]

]t
P~x!52

]

]x FP~x!2

2m
V~x,t !1urG , ~B10!

which is the second hydrodynamic equation~7!. Thus hydro-
dynamic equations describing dynamics in the hydrodyna
limit @8,11# are valid whenever\→0 and Pn(x)5P(x)n.
This condition can be expressed in terms of Liouville dis
butions as

1

r È
`

dppn~x!W~x,p!5F1

r È
`

dppW~x,p!Gn

, ~B11!

which is in general fulfilled forW(x,p)5r(x)d@p2p0(x)#,
wherep0(x) is some single-valued function ofx.
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APPENDIX C: RESCALED WIGNER FUNCTION
DYNAMICS FOR THE d-KICKED HARMONIC

OSCILLATOR

As dimensionless parameters we haveh, k, and y, de-
fined in Eqs.~23!, ~24! and ~25!, respectively. We have a
dimensionless coordinate and canonically conjugate mom
tum the variables of Eqs.~28! and ~29!, and use the dimen
sionless timeth5vt. Using this, we can write the dimen
sionless single-particle Hamiltonian functions as

H̃5
p̃2

2
1Ṽ~ x̃,th!, ~C1!

Ṽ~ x̃,th!5
x̃2

2
1

k

A2
cos~A2x̃! (

n52`

`

d~ th2nth!, ~C2!

the Gross-Pitaevskii equation@Eq. ~1!# as

i
]

]th
w̃52

h2

2

]2

] x̃2
w̃1

1

h2
Ṽ~ x̃, t̃ !w̃1

y

h2
uw̃u2w̃, ~C3!

and the equation of motion for the Wigner function as

]

]th
W̃5(

s50

`
~21!s

~2s11!! S h2

2 D 2s ]2s11

] x̃2s11
@H̃1yr̃#

]2s11

] p̃2s11
W̃

2
]

] p̃
H̃

]

] x̃
W̃. ~C4!

The wave function, Wigner function, and density have be
rescaled so that they are properly normalized:

w̃5AA2/kw, ~C5!

W̃5
2mv2

k2
W, ~C6!

r̃5E
2`

`

dp̃W̃. ~C7!

In the expansion shown in Eq.~C4!, it can clearly be seen
that if h is varied, then this is completely independent of
other rescaled quantities. We thus see thath2 is an appropri-
ate expansion parameter, and that the other dimension
parametersk andy are correctly scaled to be independent
the expansion parameter. If one takes only the zero-o
term in the sum,h drops out completely.

APPENDIX D: CRYSTAL SYMMETRY
AND NONLOCALIZATION

1. Classical background

Consider the classicald-kicked harmonic oscillator de
scribed in Eq.~C1!. The symmetry properties of this syste
2-18
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have been extensively investigated by Zaslavsky and
workers @15–18#; we recapitulate some of this to provid
context.

One can determine a kick to kick mapping terms ofa

5( x̃1 i p̃)/A2:

an115Fan1 i
k

A2
sin~an1an* !Ge2 ivt. ~D1!

If vt52pr /q, then we can write the mapping afterq kicks
as

an1q5an1 i
k

A2
(
k50

q21

sin~an1k1an1k* !ei2pkr/q. ~D2!

Keeping terms ink up to first order only, we observe a
approximaterotationalq symmetry in phase space@16,18#; if
we substitutean , with bn5anei2p l /q,l PZ, we end up with
bn1q5an1qei2p l /q. There can also be a translational sym
metry in phase space, i.e.,bn5an1g⇒bn1q5an1q1g,g
PC. Note that it is only possible to combine a rotationalq
symmetry with translational symmetry whenqPqc
5$1,2,3,4,6% @36#.

Translational symmetry demands

(
k50

q21

sin~an1 j1an1 j* !ei2pkr/q

5 (
k50

q21

sin~bn1 j1bn1 j* !ei2pkr/q, ~D3!

which in turn implies bn1 j1bn1k* 5an1k1an1k*
12p l k ;; k,l kPZ. Thus Eq.~D2! for bn1q can be simpli-
fied to

bn1q5an1g01 i
k

A2

3 (
k50

q21

sin~an1k1an1k* 1gk1gk* !ei2pkr/q,

~D4!

wheregk5ge2 i2pkr/q. The condition for translational sym
metry is thus reduced togk1gk* 52p l k , which implies

l k5 l 0cos~2pkr/q!2 i
g2g*

2p
sin~2pkr/q!. ~D5!

If we now let k65q/26m or (q6m)/2, depending on
whether or notq is even, we obtain

cos~2pk1r /q!5
l k1

1 l k2

2l 0
PQ, ~D6!

i
g2g*

p
sin~2pk1r /q!5 l k2

2 l k1
PZ. ~D7!

This implies that cos(2p/q)PQ, and it is known that this can
only be true ifqPqc5$1,2,3,4,6% @37#. This directly implies
02361
o-

-

that cos(2pkr/q)PQ;k,r PZ. There is is thus anexacttrans-
lational orcrystal symmetry in phase space, forqPqc only.
There are an infinite number of values ofg for which this
applies, determinable from Eqs.~D6! and ~D7!.

2. Quantum expression

Broadly following the treatment of Borgonovi and Re
buzzini @20#, we consider the unitary displacement opera
D(a)5eaâ†2a* â5ei (Ã x̂2j p̂) @38#. The operatorsâ† and â
are the quantum harmonic-oscillator creation and annih
tion operators, and the operatorsx̂ and p̂, are scaled in har-
monic units. The displacement operator acting on a w
function is a quantum analog to translating a classical po
particle in phase space. We now consider the Floquet op
tor F̂5e2 i (â†â11/2)vte2 ik cos[h(â1â†)]/A2h2

, and determine the
commutation properties of it with the displacement opera

Using elementary properties of coherent states@38#, it can
be seen that

D~a!F̂q

5 )
k50

q21

$e2 i (â†â11/2)2pr /qe2 ik cos[h(â1â2ak2ak* )]/A2h2
%

3D~a!, ~D8!

whereak5aei2pkr/q. The product of Floquet operatorsF̂q

corresponds to the mapping of Eq.~D2! which we used to
investigate classical symmetry properties.

Thus D(a) commutes withF̂q if h(ak1ak* )5A2hjk

52p l k , l kPZ;k. Using this we arrive, similarly to the deri
vation of Eq.~D5!, at

l k5 l 0cos~2pkr/q!2 i
~a2a* !h

A2p
sin~2pkr/q!. ~D9!

Analogously to the classical case,D(a) commutes withF̂q

if and only if qPqc . This implies that forqPqc , the eigen-
states ofF̂q are invariant under certain displacements,
which there are an infinite number, and are thus extend
Localization is not expected to take place, similarly to t
case of quantum resonances in ad-kicked rotor@21,39#.

APPENDIX E: INTEGRATION OF THE L EQUATION.

From Ref.@29#, we know that

i\
d

dt S uuk~ t !&

uvk~ t !&
D 5LS uuk~ t !&

uvk~ t !&
D , ~E1!

and that the corresponding time evolution operator

U~ t !5S Q̂~ t ! 0

0 Q̂* ~ t !
D UGP~ t !S Q̂~0! 0

0 Q̂* ~0!
D . ~E2!

The operatorUGP(t) is the time evolution operator corre
sponding toLGP(t), given by
2-19
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LGP~ t !5S V~ x̂,t !12uuw~ x̂,t !u21 p̂2/2m uw~ x̂,t !2

2uw~ x̂,t !* 2 2V~ x̂,t !22uuw~ x̂,t !u22 p̂2/2m
D . ~E3!
y

ev
,

, in
s-
ith
In our case, the potential is that of thed-kicked harmonic
oscillator. Integrating between kicks, we considerV( x̂) to be
time independent. Note, however, thatLGP(t) is still in prin-
ciple time dependent throughw(x,t). Thus, taking very
small time stepsDt, the evolution is given approximately b

S uUk(t1Dt)&

uVk(t1Dt)&
D'e2 iLGP(t)Dt/\S uUk(t)&

uVk(t)&
D . ~E4!

The time evolution operatore2 iLGP(t)Dt/\ can be split into
position- and momentum-dependent parts, and the time
lution was then determined using a split-operator method
which there are many variations@40#. We set uUk(0)&
si-

cs

o

t,
.M

an

n

v.

N.
s
,

02361
o-
of

5uuk(0)& and uVk(0)&5uvk(0)&, and determineduuk(t)& and
uvk(t)& from uUk(t)& and uVk(t)& by projection, just before
each kick.

The effect of a kick is given by

S uk~x,t1!

vk~x,t1!
D 5S e2 ik cos(A2hx)/A2h2

uk~x,t2!

eik cos(A2hx)/A2h2
vk~x,t2!

D . ~E5!

In Sec. IV C 3, the procedure outlined above was used
conjunction with numerical integration of the Gros
Pitaevskii equation, and also by a split-operator method w
matching time steps@41,42#.
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