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Condensate fluctuations in finite Bose-Einstein condensates at finite temperature
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Fachbereich Physik, Universita¨t-Gesamthochschule Essen, 45117 Essen, Germany

~Received 23 March 2000; published 19 July 2000!

A Langevin equation for the complex amplitude of a single-mode Bose-Einstein condensate is derived. The
equation is first formulated phenomenologically, defining three transport parameters. It is then also derived
microscopically. Expressions for the transport parameters in the form of Green-Kubo formulas are thereby
derived and evaluated for simple trap geometries, a cubic box with cyclic boundary conditions, and an isotropic
parabolic trap. The number fluctuations in the condensate, their correlation timetc , and the temperature-
dependent collapse time of the order parameter as well as its phase-diffusion coefficient are calculated.

PACS number~s!: 03.75.Fi, 05.30.Jp, 67.40.Db, 67.40.Fd
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I. INTRODUCTION

Bose-Einstein condensation in a weakly interacting B
gas in three dimensions in the thermodynamic limit of
infinitely extended system is a second-order phase trans
in which an order parameter, the macroscopic wave funct
appears spontaneously with a fixed but arbitrary phase, t
ing the global U~1! gauge symmetry connected with particl
number conservation into a spontaneously broken or hid
symmetry. The rigidity of the phase of the order parame
against local perturbations and the absence of any phase
fusion gives rise to the Goldstone modes, which take
form of collisionless~zero! sound or hydrodynamic sound
respectively, depending on whether the sound frequency
the collisionless mean-field regime or in the collisio
dominated regime@1#.

In finite systems, and thus also in all trapped Bose ga
sharp phase-transitions are impossible, and hidden sym
tries in a rigorous sense cannot appear. However, a ma
scopic wave function describing a Bose-Einstein conden
still exists@2#. Its phase cannot be stable and must underg
diffusion process, which restores the U~1! gauge symmetry
over sufficiently long-time intervals. This diffusion proce
is different from the Goldstone modes mentioned previou
which are oscillations around a fixed value of the phase
do not restore the symmetry. Rather, the Goldstone mo
show up either as collision-dominated hydrodynam
phonons or as collisionless phonons, which have also b
observed in the finite Bose-Einstein condensates. In
present paper I would like to discuss the dynamics of
complex amplitude of a Bose-Einstein condensate contain
a finite number of particles, and in particular analyze
diffusion of its phase. My discussion will extend and corre
in several respects the work published in Ref.@3#.

The stability of the phase difference between the mac
scopic wave functions of two Bose-Einstein condensates
trap has been measured. In the experimental setup@4# the
relative phase was measured using a time-domain separ
oscillatory-field condensate interferometer. Over the time
terval of 100 ms scanned in the experiment, the rela
phase was found to be robust. This experimental result d
onstrates that the macroscopic wave functions of the con
sates cannot be considered as quantum-mechanical
functions of many-particle systems entangled with ea
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other, whose decoherence would indeed be extremely ra
Rather, the macroscopic wave functions are appropria
viewed as robust classical objects, their quantum-mechan
origin ~just like magnets, crystals, etc.! notwithstanding. This
does, of course, not preclude that there may be quan
effects, for finite condensates, which lead to corrections
the dynamics described by the underlying classical w
equation, the well-known Gross-Pitaevskii equation@5#. In a
number of papers@6# the dispersion of the phase of a trapp
Bose-Einstein condensate at zero temperature was co
ered, which is due to fluctuationsdm of the chemical poten-
tial m in a finite system with fixed particle number. An ex
tension of this mechanism to finite temperature was a
proposed@7#. This effect is not an irreversible phase diffu
sion, but corresponds to an effect of inhomogeneous bro
ening, similar to the dephasing of precessing spins occur
in spin systems due to inhomogeneous broadening. As
decay of the magnetization can be reversed in spin echos
decay of the order-parameter expectation value in Bo
Einstein condensates due to a finite variance ofdm is in
principle reversible in ‘‘revivals.’’ Experiments in Bose
Einstein condensation are done at temperaturekBT@\v̄ and
often even atkBT@m, wherev̄ is the geometrical mean o
the three main trap frequencies. A phase-diffusion proc
should occur in such a regime due to the interaction of
condensate with a thermal bath of collective modes and q
siparticles. An estimate of this phase diffusion is of inter
for the theory of atom lasers, because the fundamental l
of the linewidth of an atom laser for a given temperatu
depends on it similarly to the ‘‘Schawlow-Townes’’ formul
@8# for the linewidth of a laser.

In this paper a theory of dissipation and thermal fluctu
tions of a trapped Bose-Einstein condensate will be form
lated. First a phenomenological framework for the theory
the form of a Langevin equation will be given in whic
dissipation appears via a phenomenological parameter
the fluctuation-dissipation relation is invoked to relate it
three maximal intensity coefficients of the fluctuations. T
solution of the Langevin equation then determines the re
ation of the condensate number and the diffusion of
phase, quite similar to the dynamics of a laser amplitu
above threshold. Then the Langevin equation is derived fr
the microscopic theory, and formulas for the phenome
©2000 The American Physical Society09-1
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ROBERT GRAHAM PHYSICAL REVIEW A 62 023609
logical parameters are derived. These are evaluated f
boxlike trap and an isotropic harmonic trap potential a
function of temperature, particle number, and scatter
length. Section IX contains a discussion of our results, an
comparison with earlier related work. The theory presen
here may not apply to the critical regime, nor can we exa
ine here to what extent it covers the regime below but cl
to Tc , where it may be important to take in account t
dynamics of the thermal cloud of noncondensed atoms
well as the excitations from the condensate.

II. MICROSCOPIC EQUATIONS OF MOTION

A weakly interacting Bose gas in a trap in standard no
tion is described by the Hamiltonian

Ĥ5E d3xĉ†H 2
\2

2m
¹21V~x!2^m&1

U0

2
ĉ†ĉJ ĉ.

~2.1!

The total number of atomsN is fixed, i.e., the Hilbert space
is the restriction of the Fock space ofĉ to the subspace on
which N̂5N is satisfied.̂ m& is the average of the chemica
potential, which is a fluctuating quantity in a system whereN
is fixed. Below we shall denote the fluctuating part of t
chemical potential byDm. The presence of a Bose-Einste
condensate in equilibrium means that many (N0@1) par-
ticles occupy a single mode of a macroscopic classical ma
wave, determined as the mode of lowest energy of the c
sical Hamiltonian corresponding to Eq.~2.1!. The latter is
obtained by replacing the field operatorĉ(x) in H by the
classical fieldc(x)5A^N0&exp(if)c̃0(x). We shall restrict
our attention to sufficiently low temperatures below the cr
cal temperatureTc , so that the interaction of the condensa
with the mean field of the thermal cloud of noncondens
particles is negligible. In this way one finds that the cond
sate modec̃0(x), which we take to be normalized to 1, sa
isfies the Gross-Pitaevskii equation@5#

2~\2/2m!¹2c̃01„V~x!1U0^N0&uc̃0~x!u2
…c̃05^m&c̃0 .

~2.2!

For a given̂ N0& the average value of the chemical potent
m follows by imposing the normalization condition

E d3xuc̃0~x!u251 ~2.3!

on the solution of the Gross-Pitaevskii equation, and ther

^m&, like c̃0(x), becomes a function of the mean atom nu
ber in the condensatêN0&. As an important consequence
this fact the chemical potential of the system can be
pressed as a function of the average number of atoms in
condensate alone.^N0& differs from N, the fixed total num-
ber of atoms, by the average number^N8& of noncondensed
atoms, which needs to be calculated for a given^N0&. The
condition N5^N0&1^N8& then fixes^N0& self-consistently.
In experimentally realized Bose-Einstein condensates,
possible to measurêN0& directly with reasonable accurac
02360
a
a
g
a
d
-
e

as

-

er
s-

-

d
-

l

y
-

-
he

is

as a function of temperature, and in practice it is theref
reasonable to regard̂N0& as an experimentally given an
known function of temperature. The space-dependent m
number density of the condensate isn0(x)5^N0&uc̃0(x)u2.
We shall take the mode functionc̃0(x) in the Gross-
Pitaevskii equation to be real and positive.~This also means
we are not considering condensates containing vortices.! The
physical phase of the condensate is not carried by its m
function c̃0, but by its complex amplitude denoted asa0,
wherea05AN0 expif.

If ua0u2 makes a small fluctuation away from its equilib
rium value ^N0& the condensate mode functionc0 will no
longer satisfy Eq.~2.2!, but will change its form slightly. We
shall assume that such fluctuations ofN05ua0u2 occur on a
sufficiently large time scale that the new form is again det
mined by the Gross-Pitaevskii equation, but for the chan
condensate numberua0u2 and a correspondingly change
chemical potentialm0 determined uniquely byua0u2; i.e., in
Eq. ~2.2! the replacements (c̃0 ,^N0&,^m&)→(c0 ,ua0u2,m0)
have to be made in this case:

2~\2/2m!¹2c01„V~x!1U0ua0u2uc0~x!u2
…c05m0c0 .

~2.4!

We cannot expect, in general, that in any given nonequi
rium state the difference defined byD0m5m02^m& is the
total deviation of the chemical potential from its equilibrium
value, because there may obviously be states withua0u2

5^N0& which differ in other respects from the equilibrium
state and may therefore havemÞ^m&. Therefore, we use the
notationm0 for the part of the nonequilibrium chemical po
tential determined byua0u2.

The presence of the highly occupied condensate m
makes the decomposition of the Heisenberg field operato

ĉ~x,t !5„ua0uexp~ if!c0~x!1x̂~x,t !…exp~2 i ^m&t/\!

~2.5!

useful, where we follow Bogoliubov@9# and describe the
condensate classically.x̂(x,t) is taken to be the field opera
tor for the particles outside the condensate. We shall ass
that the temporal changes inf can be considered as slow o
the time scales of the dynamics ofx̂. The phasef and am-
plitude ua0u are additionalc-number variables in Eq.~2.5!.
Therefore, the taking of expectation values from now has
to include an integration over a distribution ofua0u, and in
addition an integration over all values off. Since the total
numberN is fixed,^ĉ&50 must hold for all times. However
it will also be useful to consider expectation values in t
Fock space of the operatorsx̂ andx̂1 alone without averag-
ing over f. Such expectation values will be denoted
^¯&f .

Gauge invariance, strictly speaking, is lost by splitting o
a c-number term from the field operator. However, this sy
metry is saved by adopting the rule that the phasef of the
c-number term in the decomposition also changes unde
gauge transformation according tof→f1e. By this device
9-2
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we take into account the fact that the same change of p
would have occurred automatically, if we had not replac
the condensate term by ac number. The generator of gaug
transformations is thus taken as

N̂5 i
]

]f
u x̂,x̂†1E d3xx̂†x̂, ~2.6!

from which it is clear@cf. Eq. ~2.24!# that i (]/]f)u x̂,x̂† is a
representation ofN̂0.1 The canonical conjugate is the pha
f̂ with

exp~ i f̂ !5exp~]/]N0!x̂,x̂†. ~2.7!

Via Eq. ~2.5!, the Hamiltonian furthermore splits up ac
cording toĤ5H01Ĥ11Ĥ21Ĥ31Ĥ4, whereĤn comprises
the terms ofĤ which are ofnth order inx̂ and x̂†. Explic-
itly,

H05ua0u2E d3xc0H 2
\2

2m
¹21V~x!2m0

1
U0

2
ua0u2uc0u2J c01~m02^m&!ua0u2, ~2.8!

Ĥ15ua0u E d3xH e2 ifx̂S 2
\2

2m
¹21V~x!2^m&

1U0ua0u2c0
2Dc01~H.c.!J , ~2.9!

Ĥ25E d3xH x̂†S 2
\2

2m
¹21V~x!2m0D x̂

1
U0

2
ua0u2c0

2~e22ifx̂21e2ifx̂1214x̂†x̂ !

1~m02^m&!x̂†x̂J , ~2.10!

Ĥ35U0ua0u E d3xc0x̂†~e2 ifx̂1eifx̂†!x̂, ~2.11!

Ĥ45
U0

2 E d3xx̂†x̂†x̂x̂. ~2.12!

Using the Gross-Pitaevskii equation~2.4! and its derivative
with respect toua0u2, in the Appendix we derive

H05 Ê
N0&

ua0u2
dN0„m0~N0!2^m&…. ~2.13!

1This operator with fixedx̂,x̂† has to be well distinguished from
theunrestrictedderivative operatori (]/]f), which is a representa
tion of the total particle numberN and has as formal canonica

conjugatef̂ with exp(if̂)5exp(]/]N).
02360
se
d
The term Ĥ1 can be simplified using the Gross-Pitaevs
equation~2.4!, and then becomes

Ĥ15ua0u~m02^m&!E d3x~e2 ifx̂1eifx̂†!c0.

~2.14!

This expression will be seen to vanish below due to an
thogonality condition.

The first part ofĤ2 in Eq. ~2.10! is diagonalized by intro-
ducing quasiparticle operatorsân ,ân

† defined by the standard
Bogoliubov transformation, with time-dependentf(t):

x̂~x!5eif(
n

„un~x!ân1vn* ~x!ân
†
…. ~2.15!

un andvn satisfy the usual Bogoliubov-Fetter equations

S 2
\2

2m
¹21Ueff~x!2\vn K~x!

K~x! 2
\2

2m
¹21Ueff~x!1\vn

D
3S un~x!

vn~x! D50, ~2.16!

with the abbreviations

Ueff~x!5V~x!2m012U0ua0u2c0~x!2,
~2.17!

K~x!5ua0u2U0c0~x!2.

The HamiltonianĤ2 now takes the form

Ĥ25(
n

\vn~ân
†ân1uvnu2!1~m02^m&1\ḟ!E d3xx̂†x̂.

~2.18!

The coefficientsun andvn and the mode frequenciesvn also
become functions ofua0u, and fluctuate~slowly! with that
number. Their equilibrium values will be denoted b
ũn , ṽn , and ṽn , and the corresponding operatorx̂ accord-

ing to Eq.~2.15!, as x̂̃.
Equation~2.16! is consistent with the orthonormality con

ditions

E d3x~unum* 2vnvm* !5dnm , ~2.19!

E d3r ~un* vm2um* vn!50, ~2.20!

which guarantee the Bose commutation relations of thean

and am
† . A formal solution of Eq.~2.16! at zero energy

\vn50 is given by the condensate

un~x!52vn* ~x!5c0~x!, vn50. ~2.21!
9-3
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ROBERT GRAHAM PHYSICAL REVIEW A 62 023609
This solution is obviously not normalizable in the requir
sense@Eqs. ~2.19!# to furnish an acceptable solution forun

andvn , and must therefore be excluded from the sum o
the terms containing the operatorsân andân

† . The existence
of this formal solution implies, however, that the prope
normalizable solutionsun and vn and the condensate mod
c0 satisfy the important orthogonality relation

E d3xc0~un1vn!50. ~2.22!

It follows from Eq. ~2.15! that

E d3xc0~e2 ifx̂1eifx̂1!50, ~2.23!

which in turn implies that the reduced expression~2.14! for
Ĥ1 vanishes. Using property~2.23!, one can verify that the
decomposition@Eq. ~2.5!# of ĉ implies

N5ua0u21N̂8, ~2.24!

with

N̂85E d3xx̂†~x!x̂~x!

5(
n,m

E d3xS ân
†âm~un* um1vn* vm!

1
1

2
ânâm~unvm1vnum!

1
1

2
ân

†âm
† ~un* vm* 1vn* um* !1dnmuvnu2D , ~2.25!

which serves as a definition ofN05ua0u2. The mean therma
densityn8 in equilibrium can now be determined via

n8~x!5^x̃̂†~x!x̃̂~x!&

5(
n

$„uũn~x!u21uṽn~x!u2…n̄n1uṽn~x!u2%,

~2.26!

with n̄n5„exp(b\ṽn)21…21.
The fluctuations ofN0 are similarly fixed by

^DN0
2&5^N0

2&2^N0&
25^DN̂82& ~2.27!

5(
n

(
n8

H n̄n~ n̄n811!U E d3x„ũn* ~x!ũn8~x!

1 ṽn8~x!ṽn* ~x!…U2

1S n̄nn̄n81
1

2
~ n̄n1n̄n811! D

3U E d3x„ũn~x!ṽn8~x!1ũn8~x!ṽn~x!…U2J . ~2.28!
02360
r

They were evaluated in Ref.@10~a!# and very generally in
@10~b!#, and are also needed below@see Eq.~8.20!#. For work
in the mathematical physics literature on number fluctuati
in the condensate of the ideal Bose gas and models of
interacting Bose gas, see Refs.@11,12#, and references given
there. For an alternative proposal to define and calculate
number fluctuations in a Bose condensate, see Ref.@13#.

After transformation~2.15!, the Hamiltonian is now in the
form

Ĥ5H01Ĥ21Ĥ31Ĥ4 , ~2.29!

with H0 , Ĥ2 , Ĥ3, and Ĥ4 given by Eqs.~2.13!, ~2.18!,
~2.11!, and~2.12!.

III. LANGEVIN EQUATION OF THE CONDENSATE
AMPLITUDE

Neither the Gross-Pitaevskii equation nor the Bogoliubo
Fetter equations furnish an equation for the condensate
plitude a05AN0 expif. To find such an equation phenom
enologically we first turn to a macroscopic quantity like t
entropy S(ua0u2,N) for a fixed particle numberN, but re-
stricted to a fixed arbitrary value ofa05AN0 exp(if), where
N0 is the instantaneous number of particles in the conden
and different from the equilibrium valuêN0& corresponding
to the maximum ofS(ua0u2,N). Thus ^N0& is a function of
N. The fluctuations ofN0 in the closed system formed by th
trapped condensate after the evaporative cooling has b
switched off are governed by a canonical Boltzman
Einstein distribution

P~N0!5V21 exp„S~ ua0u2,N!/kB….

We shall restrict ourselves to temperatures in the conden
regime outside the critical regime, where^N0(N)& is much

larger than its root mean squareA^DN0
2(N)&5A^DN̂82&

5(^N̂82&2^N̂8&2)1/2, which is also a function ofN. Then
S(ua0u2,N), expanded to lowest order around its maximu
takes the form

S~ ua0u2,N!5S(eq)~N!1DS~ ua0u2,N!,

with

DS~ ua0u2,N!52kB

~ ua0u22^N0&!2

2^DN0
2&

. ~3.1!

The entropyS(ua0u2,N) not only determines the equilibrium
distribution of the condensate amplitude, but also appear
its equation of motion, both in the conservative part of t
dynamics as a conserved quantity, and in the dissipative
as a potential for the irreversible part of the dynamics. Let
first consider both parts separately.

The conservative part of the dynamics ofa0 is connected
with the dynamics of its phasef. According to Eqs.~2.5!
and~2.15!, a change off changes the total phase of the fie
operatorĉ. For this reason the dynamics off is given by the
equation of motion
9-4
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ḟ52
1

\

]^Ĥ&
]N

52
1

\
Dm, ~3.2!

whereDm is the deviation of the chemical potential from i
equilibrium value. Such deviations may occur as a resul
any fluctuations present in the system and, as discusse
ready, may in particular occur as a result of fluctuations
the value ofN0 away from its averagêN0&. This part of the
fluctuation ofm we shall denote asD0m. Expanding again to
lowest order around the equilibriumN05^N0& we can write

D0m5
]^m&
]^N0&

~ ua0u22^N0&!. ~3.3!

The systematic part of the conservative part of the equa
of motion of a0 can now be written in the form

~ i\ȧ0!cons5D0ma0 . ~3.4!

It is convenient to introduce the fluctuation of the fr
energy byDF52TDS. The dynamics equation~3.4! con-
servesua0u2 and DF. In equilibrium the right-hand side o
this equation vanishes, because thereD0m50, and the total
phase of the condensatef2^m&t/\ changes only with a rate
given by theaveragechemical potential̂m& in equilibrium.

The dissipative part of the equation of motion ofa0 near
thermal equilibrium is written with the help ofDF in the
general form

\~ȧ0!diss52G0

]DF~ ua0u2,N!

]a0*
, ~3.5!

which contains the positive phenomenological parameterG0
and describes the relaxation ofN05ua0u2 to its equilibrium
value ^N0&.

According to general principles of statistical thermod
namics@14# the relaxation process~3.5! must be accompa
nied by some form of noise. Adding a noise-term the to
Langevin equation ofa0 can be written in the form

i\ȧ05D0ma02 iG0

]DF~ ua0u2,N!

]a0*
1j~ t !exp~ if!.

~3.6!

Since the condensate amplitudea0 is a collective quantity
the noisej(t) can be assumed to be Gaussian due to
central limit theorem. In addition we shall assumej(t) to be
a white-noise force. This means that the actual correla
time tm of the noisej is assumed to be much smaller th
the time scale on which the dynamics ofa0 is observed, an
assumption which must be checked for its validity in a
concrete microscopic description.~In the microscopic theory
we describe later it is a consistent assumption because
relaxation rategc of ua0u2 turns out to be small compared t
the time scale of motion in the trap.! Thus we assume tha
^j(t)&50 and

^j* ~ t !j~0!&5\kBT~2G01G8!d~ t !, ~3.7!
02360
f
al-
f

n

l

e

n

he

^j~ t !j~0!&5\kBT~G81 iG9!d~ t !, ~3.8!

whereG0 reappears in Eq.~3.7! because of the fluctuation
dissipation theorem. The form of the Langevin equation~3.6!
generalizes the work in Ref.@3# by taking into account a
possible correlation of the phase of the condensate and o
Langevin force, which may exist in condensates with fin
particle numbers due to gauge invariance, i.e., partic
number conservation.~However, it will turn out later that the
coefficientG9 vanishes in condensates with a real condens
mode, i.e., without vortices, which can be understood gen
ally as a consequence of time-reversal symmetry.! Gauge
invariance implies that the Langevin equation fora0, includ-
ing the fluctuating term, must be invariant under the tra
formationf→f1e. This makes it useful to write the fluc
tuating term as exp„if(t)…j(t), where j(t) is a complex
noise sourceindependentof f, which, physically, describes
the scattering of particles in the condensate with th
outside.2 The coefficientsG8, and G9 describe a possible
correlation of the phases ofF05j exp(if) and a0, i.e., the
existence of a squeezing in the thermal bath of unconden
particles, caused by the constraint of total particle-num
conservation. We shall see that this effect actually does oc
in finite condensates, i.e., the condensate mode imprint
~slowly! fluctuating phase on the noncondensed ‘‘enviro
ment’’ due to particle number conservation in such a w
that the lowest-lying modes are nearlytotally squeezed.

The multiplicative nature of the noise in Eq.~3.6! raises
the question in which stochastic calculus this equat
should be interpreted: in the sense of Ito, or Stratonovich
in some intermediate sense? This will be specified in a m
ment. Within the Gauss-Markoff assumption, the form of t
noise force with the same positive coefficientG0>0 appear-
ing in the dissipative part@Eq. ~3.5!#, and two further real
coefficientsG8 andG9, is fixed by the requirement that th
Langevin equation must be consistent with the correct eq
librium distribution @14# P(a0 ,a0* )5Z21 exp„2DF(ua0u2,
N)/kBT… for the condensate. Splitting into real and imag
nary parts Eqs.~3.7! and ~3.8! become

^Re„j~ t !…Re„j~0!…&5\kBT~G01G8!d~ t !, ~3.9!

^Im„j~ t !…Im„j~0!…&5\kBTG0d~ t !, ~3.10!

^Re„j~ t !…Im„j~0!…&5
1

2
\kBTG9d~ t !. ~3.11!

2A simpler ansatz~see Ref.@3#! ignores thef dependence of the
Langevin force in Eq.~3.6!. Then the gauge invariance of th
Fokker-Planck equation which is stochastically equivalent to
Langevin equation impliesG85G950, i.e., the complex noise
F0(t) then has random-phase fluctuations which are completely
correlated with and equidistributed with respect to the conden
phasef. Note, however, that this achieves gauge invariance onl
an ensemble sense, not for each individual stochastic physical
ization which together form the ensemble. In contrast, the form
the Langevin equation considered here does enforce gauge in
ance for each stochastic realization.
9-5
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Equation~3.6! may now be rewritten

]N0

]t
522

G0

\ S N0

]DF

]N0
2kBTD1

2

\
AN0 Im„j~ t !…,

~3.12!

]f

]t
52

1

\
D0m2

1

\AN0

Re„j~ t !…, ~3.13!

and must in this form be interpreted as a stochastic differ
tial equation in the sense of Ito.3

Equation ~3.13! can be compared with Eq.~3.2!. This
comparison reveals that Re„j(t)… must describe the fluctua
tions of the chemical potentialnot caused by deviations o
ua0u2 from its equilibrium value, but by other fluctuations
the system. We shall come back to this point in Sec.
below.

The three phenomenological coefficientsG0 , G8, andG9
are dimensionless, temperature-dependent numbers, w
must be determined from a microscopic theory. Only one
these coefficientsG0 is connected with the fluctuations of th
number of condensed atoms. If fluctuations of the chem
potential due to other processes are neglected, i.e., Rej(t)
50, the remaining two coefficients are fixed at

G852G0 , G950. ~3.14!

This corresponds to the case of maximal squeezing of
noise in the phase direction.

Linearizing with respect to the small fluctuationsdN0
!^N0&, we find

\dṄ052
2kBT

^DN0
2&

^N0&G0dN012A^N0&Im„j~ t !…,

~3.15!

\ḟ52
]^m&
]^N0&

dN02
1

A^N0&
Re„j~ t !…. ~3.16!

Equation~3.15! describes the relaxation of the condensate
the equilibrium at̂ N0&5^ua0u2& on the time scale

tc5
\^DN0

2&
2G0^N0&kBT

, ~3.17!

and the thermal fluctuations around it with the correlat
function

^dN0~ t !dN0~ t8!&5^DN0
2&e2ut2t8u/tc. ~3.18!

3Then the Fokker-Planck equation corresponding to Eqs.~3.12!
and ~3.13! is \]P/]t52G0]/]N0@N0(]DF/]N01kBT]/]N0)P#,
and has the desired equilibrium distribution;exp(2DF/kBT). This
implies that Eq.~3.6! must be interpreted in some intermedia
sense, which we need not specify here further. In order to obtai
version in the sense of Ito, it is best to bring Eqs.~3.12! and~3.13!
into the form of Eq.~3.6! using the Ito calculus.
02360
n-

I
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o

The correlation timetc is an important time scale of th
problem. The noise sources Im„j(t)…,Re„j(t)… must have
correlation times short compared totc in order to be well
described by white noise.

On a time scale much larger than the correlation timetc
the fluctuationsdN0(t) in the equation for the phase can al
be considered as Gaussian white noise, with a correla
function 2tc^DN0

2&d(t). Using this long-time approximation
in the equation for the phasef and taking the correlation o
the effective white noisedN0(t) with Re„j(t)… properly into
account,f(t) is found to satisfy the Langevin equation of
Wiener process,

df~ t !5ADfdw,

with (dw)25dt and a diffusion constant

Df5
^DN0

2&
\^N0&

]^m&
]^N0&

S ^DN0
2&

kBT

]^m&
]^N0&

1

G0
1

G9

G0
D

1
kBT

\^N0&
~G01G8!, ~3.19!

i.e.,

^„f~ t !2f~0!…2&5Dfutu. ~3.20!

Equation~3.19! agrees with the result of Ref.@3# if we as-
sume, as in Ref.@3#, that there is no squeezing in the nois
i.e., G85G950 and]^m&/]^N0&5kBT/^DN0

2&21. Both as-
sumptions will not be made in the present work, however~cf.
also the corresponding discussion in Sec. IX!.

The expectation valuêa0(t)& then decays exponentiall
according tô a0(t)&5A^N0&e

2Dnutu, with the linewidthDn
given by the Schawlow-Townes-type formulaDn5 1

2 Df .
It is not difficult to solve Eqs.~3.15! and ~3.16! for the

phase fluctuations on time scales of the order oftc . The
result for the mean square of the phase increment in tim

^„f~ t !2f~0!…2&

5Dfutu1
2

\2

]^m&
]^N0&

S kBTG91^DN0
2&

]^m&
]^N0&

D
3tc

2~e2utu/tc21!. ~3.21!

This interpolates between the diffusive long-time behav
@Eq. ~3.20!# for t@tc and the short-time behavior fort
!tc :

^„f~ t !2f~0!…2&5
kBT

\^N0&
~G01G8!utu

1
1

\2

]^m&
]^N0&

S ]^m&
]^N0&

^DN0
2&1kBTG9D t2.

~3.22!

The first term describes phase diffusion due to thermal fl
tuations of the chemical potential on time scales mu

its
9-6
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shorter thantc . The second term describes a nondiffusi
and in principle reversible phase collapse@6,7#, with the col-
lapse rate

gcollapse5
1

\
A ]^m&

]^N0&
S ]^m&
]^N0&

^DN0
2&1kBTG9D ,

~3.23!

including a contribution from the cross-correlation betwe
both types of fluctuations.

IV. MICROSCOPIC DERIVATION OF THE LANGEVIN
EQUATION

The microscopic derivation of the equation of motion f
the condensate amplitudea0 can be carried out by usin
Hamiltonian~2.29!. As we did for phenomenological equa
tions in Sec. III, here we wish to derive the microscop
equation of motion only to first order in the deviation (ua0u
2A^N0&) from equilibrium.

H0, given by Eq.~2.13!, is the Hamiltonian, in the mean
field approximation, of the pure condensate. Its free equa
of motion is

i\ȧ05
]H0

]a0*
5~m02^m&!a0 , ~4.1!

from which

df~ t !

dt
52@m0„ua0~ t !u2

…2^m&#/\ ~4.2!

follows. Let us first use Eq.~4.2! in Eq. ~2.18! to simplify
Ĥ2, and then eliminateĤ2 by proceeding to the Heisenber
picture with respect to it. This changesx̂ and x̂1 in Ĥ3 and
Ĥ4 according to

x̂→x̂~ t !5eif(t)(
n

~unâne2 ivnt1vn* ân
†eivnt! ~4.3!

and its adjoint.4 The transformed time-dependent Hamilt
nians will be denoted asĤ3(t) andĤ4(t), but Ĥ4(t) will not
be needed in the following.

The equation of motion of the condensate amplitudea0

now takes the forms,5 with the notationĤ(t)5H01Ĥ3(t)
1Ĥ4(t),

\
df

dt
52S ]Ĥ~ t !

]ua0u2
D

f,x̂,x̂†

, ~4.4!

4For simplicity, here we disregard the slow time dependence
the frequenciesvn .

5For the canonically conjugate pairN0 andf at fixed x̂ and x̂†,
cf. Eqs.~2.6! and ~2.7!.
02360
n

n

\
dua0u2

dt
5S ]Ĥ~ t !

]f
D

ua0u,x̂,x̂†

. ~4.5!

We obtain

\
df

dt
52D0m2

1

A^N0&
Re„ĵ8~ t !…2

1

A^N0&
d Re„ĵ8~ t !…,

~4.6!

\
dua0u2

dt
52A^N0&Im„ĵ~ t !…12A^N0&d Im„ĵ~ t !…,

~4.7!

with

Re„ĵ8~ t !…5
1

2
U0E d3xS c̃012^N0&

]c̃0

]^N0&
D

3 x̂̃†~ t !„e2 ifx̂̃~ t !1eifx̂̃†~ t !…x̂̃~ t !, ~4.8!

Im„ĵ~ t !…5
1

2i
U0E d3xc̃0x̂̃†~ t !„e2 ifx̂̃~ t !2eifx̂̃†~ t !…x̂̃~ t !.

~4.9!

The complex noisej(t) in Eqs.~3.6!–~3.13! should be iden-
tified with

ĵ~ t !5Re„ĵ8~ t !…1 i Im„ĵ~ t !…. ~4.10!

It is indeed independent off, as required by the gauge in
variance of the Langevin equation, as can be seen from
~4.6! and ~4.7! with Eq. ~4.3!. We shall see in Sec. V tha
ĵ8(t) can be replaced by ac number.

To describe fluctuations around equilibrium, in the pr
ceding expressions we have replaced the quantitiesua0u2,
c0 , x̂, and x̂† by their equilibrium expressions

A^N0&, c̃0 , x̂̃ and x̂̃†, and represented the difference in th
nonequilibrium state byd Re„ĵ8(t)… and d Im„ĵ(t)… in Eqs.
~4.6! and ~4.7!. Omitting these differences altogethe
amounts to neglecting the back action of the condensate
the thermal reservoir, which describes not only a modifi
tion of the fluctuating forces, which can indeed be neglec
for fluctuations around a stable thermodynamic equilibriu
but also dissipation. To take the latter into account we n
to calculate the averagesd^d Re„ĵ8(t)…&f ,d^d Im„ĵ(t)…&f to
lowest order in the interaction between the condensate
the thermal cloud of atoms. The form which these quantit
must take is prescribed completely by the fluctuatio
dissipation theorem and symmetry:

For the reversible phase dynamics the back action
only lead to a shift in the average chemical potential. Su
shifts due to the interactionĤ3 will be small, and are ne-
glected here. For the irreversible amplitude dynamics
fluctuation-dissipation theorem also requires the appeara
of a dissipation term. If

SJJ~ t2t8!5^Im„ĵ~ t !…Im„ĵ~ t8!…&f ~4.11!

f

9-7
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is the correlation function of the fluctuating force in E
~4.7!, the back action must modify Eq.~4.7! to the form

\
dua0u2

dt
52

4^N0&
\kBT E2`

t

dt8SJJ~ t2t8!
]H0~ t8!

]ua0u2

12A^N0&Im„ĵ~ t !…. ~4.12!

The derivation of this equation is given in Appendix B. Th
stochastic differential equation still differs from the pheno
enological equation~3.15! in two respects.

~i! The noise still has a finite correlation timetmic . We
shall consider these correlation functions in more detail
low. Taking the Markovian limittmic→0, with

SJJ~ t2t8!5\kBTG0d~ t2t8!, ~4.13!

Eq. ~4.12! becomes

dua0u2

dt
522

G0

\
^N0&

]H0

]ua0u2
1

2

\
A^N0&Im„ĵ~ t !….

~4.14!

~ii ! The mean-field HamiltonianH0(ua0u2) appears in
Eqs.~4.12! and~4.14! instead of the free energyDF(ua0u2).
This is due to the fact that the influence of the thermal ex
tations on the energy are not yet taken into account. Do
this under isothermal or closed-system boundary conditi
we should replace the energyH0(ua0u2) by the free energy
DF(ua0u2) or 2TDS(ua0u2), respectively.

This completes our derivation of the Langevin equat
for the complex amplitude of the condensate.

V. GREEN-KUBO EXPRESSIONS FOR THE TRANSPORT
COEFFICIENTS

Let us now analyze the fluctuating forces in more det
Inserting the Bogoliubov transformation~4.3! into Eqs.~4.8!
and ~4.9! the fluctuating forces take the forms

Re„ĵ8~ t !…5
1

4 (
knm

@„~M 8k,nm
(1) !* 1M 8nm,k

(2)
…

ân
†âm

† âke2 i (ṽk2ṽn2ṽm)t1H.c.#

1~nonresonant terms!, ~5.1!

Im„ĵ~ t !…5
1

4i (
knm

@„~Mk,nm
(1) !* 2M nm,k

(2)
…

ân
†âm

† âke2 i (ṽk2ṽn2ṽm)t2H.c.#

1~nonresonant terms!. ~5.2!

Terms are called ‘‘nonresonant’’ if the frequencies of t
quasiparticles cannot add up to zero. Such terms have
been written out explicitly, because below we shall rest
ourselves to the resonance or rotating wave approximatio
which they do not contribute. The relevant matrix eleme
M (1) andM (2) are
02360
-

-

i-
g
s

l.

ot
t
in
s

Mk,nm
(1) 52U0E d3xc̃0ṽnS ũk* ũm1

1

2
ṽk* ṽmD1~n↔m!,

~5.3!

M nm,k
(2) 52U0E d3xc̃0ũn* S ṽm* ṽk1

1

2
ũm* ũkD1~n↔m!,

and, very similarly,

M 8k,nm
(1) 52U0E d3xS c̃012^N0&

]c̃0

]^N0&
D

3 ṽnS ũk* ũm1
1

2
ṽk* ṽmD1~n↔m!,

~5.4!

M 8nm,k
(2) 52U0E d3xS c̃012^N0&

]c̃0

]^N0&
D

3ũn* S ṽm* ṽk1
1

2
ũm* ũkD1~n↔m!.

The matrix-elementsM 8(1) andM 8(2) coincide withM (1)

and M (2) if the dependence ofc̃0 on ^N0& is negligible or
vanishes, as, e.g., in homogeneous systems.

Mk,nm
(1) , and similarlyM 8k,nm

(1) , describes a scattering pro
cess in which one atom is scattered out of the condensat
the absorption of the two quasiparticlesn andm from—and
the emission of the new quasiparticlek into—the thermal
bath. LikewiseM nm,k

(2) , and similarly M 8nm,k
(2) , describes a

scattering process where an incoming thermal quasipartick
is absorbed, again an atom is kicked out from the cond
sate, and two quasiparticlesn and m are emitted into the
thermal bath. The scattering amplitudes for both proces
are linearly superimposed due to the phase coherence o
condensate, which exists on the time scale of the relaxa
process induced by the scattering process even if it is
stroyed on a much longer time scale.

We can now calculate the correlation functions of t
fluctuating forces. Their averages over the bath of quasip

ticles vanish, ^Re„ĵ(t)…&505^Im„ĵ(t)…&. Their second-
order correlation functions are obtained as

^Re„ĵ8~ t !…Re„ĵ8~ t8!…&f

5
1

8 (
k,n,m

u~M 8k,nm
(1) !* 1M 8nm,k

(2) u2

3$n̄k~ n̄n11!~ n̄m11!ei (ṽk2ṽn2ṽm)(t2t8)

1n̄nn̄m~ n̄k11!e2 i (ṽk2ṽn2ṽm)(t2t8)%, ~5.5!
9-8
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^Im„ĵ~ t !…Im„ĵ~ t8!…&f

5
1

8 (
k,n,m

u~Mk,nm
(1) !* 2M nm,k

(2) u2

3$n̄k~ n̄n11!~ n̄m11!ei (ṽk2ṽn2ṽm)(t2t8)

1n̄nn̄m~ n̄k11!e2 i (ṽk2ṽn2ṽm)(t2t8)%, ~5.6!

^Re„ĵ8~ t !…Im„ĵ~ t8!…&f

5
1

8i (
k,n,m

$„~Mk,nm
(1) !* 2M nm,k

(2)
…„M 8k,nm

(1) 1~M 8nm,k
(2) !* …

3~ n̄n11!~ n̄m11!n̄kei (ṽk2ṽn2ṽm)(t2t8)

2„Mk,nm
(1) 2~M nm,k

(2) !* …„~M 8k,nm
(1) !* 1M 8nm,k

(2)
…

3~ n̄k11!n̄nn̄me2 i (ṽk2ṽn2ṽm)(t2t8)%. ~5.7!

These correlation functions can be replaced byd functions,
provided that the frequency sums contain a flat quasic
tinuum of nearly resonant terms in a neighborhood of
resonanceṽk2ṽn2ṽm50 which is broad compared to th
damping rates we calculate here. This assumption will
satisfied in sufficiently large condensates. The strength
thed functions can then be extracted from expressions~5.5!,
~5.6!, and ~5.7! by taking the time averages*2`

` d(t

2t8)^ĵ(t) ĵ(t8)&f and*2`
` d(t2t8)^ĵ1(t) ĵ(t8)&f .

Re„ĵ8(t)…, and Im„ĵ(t)… here are given as expressions i
volving operators. Provided the Markovian approximation
satisfied, the average of their commutators over the quas
ticle bath are again given byd functions in time. Explicitly,
for the coefficients of thed functions we obtain

E
2`

`

dt^@Re„ĵ8~ t !…,Re„ĵ8~0!…#&f50

5E
2`

`

dt^@ Im„ĵ~ t !…,Im„ĵ~0!…#&f,

~5.8!

E
2`

`

dt^@Re„j 8̂~ t !…,Im„ĵ~0!…#&f

5
p

8i (
k,n,m

@„~Mk,nm
(1) !* 2M nm,k

(2)
…„M 8k,nm

(1) 1~M 8nm,k
(2) !* …

2c.c.#$~ n̄n11!~ n̄m11!n̄k2~ n̄k11!n̄nn̄m%

3d~ṽk2ṽn2ṽm!50.

It can easily be verified that the bracket$¯% in the last line
of Eq. ~5.8! vanishes if it is multiplied by ad function ex-
pressing energy conservation. As a result the fluctua
force ĵ in the Markovian limit can indeed be treated as ac
number, and will henceforth again be denoted byj. This also
serves as a nice consistency-check that it is indeed pos
to treat the condensate classically, even after taking its in
action with the quasiparticles into account.
02360
n-
e

e
of

ar-
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Let us now proceed to derive formulas for the three tra
port parametersG0 ,G8, andG9. From

2G01G85
1

\kBTE2`

1`

dt^j* ~ t !j~0!&f ,

~5.9!

G81 iG95
1

\kBTE2`

1`

dt^j~ t !j~0!&f ,

implied by Eqs.~3.7! and~3.8!, we obtain the representation

G05
1

\kBT È
`

d~ t2t8!^Im„j~ t !…Im„j~ t8!…&f , ~5.10!

G01G85
1

\kBT È
`

d~ t2t8!^Re„j8~ t !…Re„j8~ t8!…&f ,

~5.11!

G95
2

\kBT È
`

d~ t2t8!^Re„j8~ t !…Im„j~ t8!…&f ,

~5.12!

which have the form of Green-Kubo relations for the tran
port coefficients. Using the explicit forms~5.1! and ~5.2! of
the fluctuating forces, the thermal averages can be taken,
the time-integrals in Eqs.~5.11!, ~5.10!, and ~5.12! can be
carried out, which leads to the formulas

G05
p

2\kBT (
k,n,m

u~Mk,nm
(1) !* 2M nm,k

(2) u2n̄nn̄m~ n̄k11!

3d~ṽk2ṽm2ṽn!, ~5.13!

G01G85
p

2\kBT (
k,n,m

u~M 8k,nm
(1) !* 1M 8nm,k

(2) u2n̄nn̄m

3~ n̄k11!d~ṽk2ṽm2ṽn!, ~5.14!

G95
2 ip

2\kBT (
k,n,m

$„~Mk,nm
(1) !* 2M nm,k

(2)
…„M 8k,nm

(1)

1~M 8nm,k
(2) !* …2„Mk,nm

(1) 2~M nm,k
(2) !* …„~M 8k,nm

(1) !*

1M 8nm,k
(2)

…%n̄nn̄m~ n̄k11!d~ṽk2ṽm2ṽn!. ~5.15!

These expressions constitute our general results for the t
transport parameters. They have to be evaluated separ
for each individual trap geometry.

VI. RELATION TO THE FLUCTUATION
AND DISSIPATION OF THE EXCITATIONS

As pointed out after Eq.~3.13!, by phenomenological ar
guments, the noise term Re„j(t)… is not connected with the
fluctuations of the number of particles in the condensate,
must be due to other fluctuations, which are then necess
thermal fluctuations of the amplitudes of the excited sta
In our microscopic results this can be seen from the fact
the fluctuating force Re„ĵ8(t)… according to Eq.~4.8! con-
9-9
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tains precisely the same operator which also appear
Ĥ3(t), and couples the atoms in the thermal cloud to
condensate.

In the special case where the difference between the
pling matrix elementsM 8(1,2) andM (1,2) is negligible~which
is exactly satisfied in boxlike traps, cf. Sec. VII! the intensity
G01G8 of the noise source can be expressed entirely a
property of the excitations, as we shall now demonstra6

For the amplitudesân(t) and ân
1(t), a quantum-Langevin

equation can be derived microscopically along the same l
employed here for the condensate amplitude. We have d
this elsewhere@15# ~also see Ref.@3#! with the result, in the
Markovian limit,

dân~ t !

dt
52 ivnân~ t !2gnân~ t !1 ĵn~ t !, ~6.1!

with Gaussian fluctuating force operators with vanishing
erage and

^ĵn
1~ t !ĵm~ t8!&52gnn̄nd~ t2t8!dnm ,

~6.2!

^@ ĵn~ t !,ĵm
1~ t8!#&52gnd~ t2t8!dnm ,

where the damping ratesgn are given by

gn5
p^N0&

\2 (
k,m

H u~Mk,nm
(1) !* 1M nm,k

(2) u2~ n̄m2n̄k!

3d~vk2vm2vn!1uM n,km
(1) 1~Mkm,n

(2) !* u2

3S n̄k1
1

2D d~vk1vm2vn!J . ~6.3!

The first term describes the Landau damping of the modn
by scattering a quasiparticle from modem to modek, and is
equivalent to a result derived in Ref.@16# by the golden rule.
The second term in Eq.~6.3! describes Beliaev damping
where the moden decays into two modesk and m. It sur-
vives even forT→0, wheren̄k→0 for all modes.

Let us now establish the connection betweenG01G8 and
the damping ratesgn , as given by Eq.~6.3!. We shall show
that the simple sum rule

G01G85
\

3^N0&kBT (
n

n̄n~ n̄n11!gn ~6.4!

holds. To see this, we need to consider

6In the general case the coupling of the condensate mode to
noncondensate modes differs from the coupling between the
condensate modes and the relation betweenG01G8, and thegn is
less direct.
02360
in
e

u-

a
.

es
ne

-

(
n

n̄n~ n̄n11!gn5
p^N0&

\2 (
kmn

u~Mk,nm
(1) !* 1M nm,k

(2) u2

3d~vk2vn2vm!H ~ n̄m2n̄k!n̄n~ n̄n11!

1
1

2
~ n̄m1n̄n11!n̄k~ n̄k11!J . ~6.5!

The second term in the curly bracket arises from the sec
term in Eq. ~6.3! by first exchanging the notations for th
summation indicesn andk and then symmetrizing inn and
m, because the matrix elements are already symmetri
these indices. The remainder of the proof then consists s
ply of noting that forvk5vn1vm the identities

~ n̄m2n̄k!n̄n~ n̄n11!5n̄mn̄n~ n̄k11!,
~6.6!

~ n̄m1n̄n11!n̄k~ n̄k11!5n̄mn̄n~ n̄k11!

hold. Using this in Eq.~6.5!, and then comparing with Eq
~5.14!, establishes the sum rule. We can also note that p
cesses due to Landau scattering contribute to the sum
with precisely twice the strength of those due to Belia
scattering.

Thus we see that, in general, the noise amplitudes pro
tional to the combination of matrix elements (Mk,nm

(1) )*
2M nm,k

(2) drive the number fluctuations in the condensate
while those proportional to (M 8k,nm

(1) )* 1M 8nm,k
(2) are due to

fluctuations of the occupation numbers in the excited sta
couple in the Hamiltonian to the particle number in the co
densate, and therefore drive thephasefluctuations in the
condensate.

VII. EVALUATION OF THE TRANSPORT PARAMETERS
FOR A BOXLIKE TRAP

For simplicity we consider now a trap consisting of a cu
of lengthL with cyclic boundary conditions. In the following
equilibrium values of all parameters are implied, but in th
section we shall omit the tilde and writem for ^m& to sim-
plify our notation. The normalizedu and v coefficients in
this case are

un5
En1pn

2/2m

A2Enpn
2/m

1

AV
eipW n•xW /\, ~7.1!

vn52
En2pn

2/2m

A2Enpn
2/m

1

AV
eipW n•xW /\, ~7.2!

with

En5AS pn
2

2m
1m D 2

2m2, ~7.3!

andpW n5\(2p/L)nW n , with integer vectornW n .

he
n-
9-10
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A. Transport coefficients

The squares of the relevant matrix elements forEk5En

1Em become

u~Mk,nm
(1) !* 2M nm,k

(2) u25S U0

V D 2G~En ,Em ,m!

EnEmEk
dnW k ,nW n1nW m

,

~7.4!

u~Mk,nm
(1) !* 1M nm,k

(2) u25S U0

V D 2G~En ,Em ,2m!

EnEmEk
dnW k ,nW n1nW m

,

~7.5!

with

G~x,y,a!5Aa21~x1y!2
„3Aa21x2Aa21y22xy

12a~Aa21x21Aa21y21a!…

1~x1y!„x~Aa21y21a!1y~Aa21x21a!…

12a~Aa21x21a!~Aa21y21a!

1a~x21y21a2!. ~7.6!

The transport coefficients are then expressed as the si
result

G950, ~7.7!

and
02360
ple

G05
2

p S a

L D 2

(
nW n ,nW m

d~«n1«m2«n1m!

«n«m~«n1«m!

3G~«n ,«m ,a!FS «n ,«m ,
kBT

\v0
D , ~7.8!

G01G85
2

p S a

L D 2

(
nW n ,nW m

d~«n1«m2«n1m!

«n«m~«n1«m!

3G~«n ,«m ,2a!FS «n ,«m ,
kBT

\v0
D , ~7.9!

with

FS «n ,«m ,
kBT

\v0
D

5
\v0

kBT

eb\v0(«n1«m)

~eb\v0(«n1«m)21!~eb\v0«n21!~eb\v0«m21!
.

~7.10!

Here we scaled the scattering lengtha5mU0/4p\2 with L,
and the energiesEn andEm andm andkBT with the energy
\v05(2p\)2/2mL2, defining

«n5A~nn
21a!22a2, ~7.11!

«n1m5A
„~nW n1nW m!21a…22a2, ~7.12!

with a5m/\v0 .
The double sums overnW n andnW m start withnW values with

unW u51. They are approximated by integrals according to
(
nW n ,nW m

d~«n1«m2«n1m!~¯ !5p2E
A112a

` E
A112a

` «n«m~«n1«m!~¯ !d«nd«m

A~«n
21a2!~«m

2 1a2!„~«n1«m!21a2
…

. ~7.13!

Here (̄ ) is any smooth function of«n and «m . In all experiments so far,a@1 is satisfied, i.e. we can replaceA112a
→A2a. This leaves us with the integral expressions

G052pS a

L D 2E
A2a

` E
A2a

`
G~«n ,«m ,a!FS «n ,«m ,

kBT

\v0
Dd«nd«m

A~«n
21a2!~«m

2 1a2!„~«n1«m!21a2
…

, ~7.14!

G01G852pS a

L D 2E
A2a

` E
A2a

`
G~«n ,«m ,2a!FS «n ,«m ,

kBT

\v0
Dd«nd«m

A~«n
21a2!~«m

2 1a2!„~«n1«m!21a2
…

. ~7.15!

The expression for G0 and the asymptotic behavior for«n ,«m→0: G(«n ,«m ,uau)F(«n ,«m ,kBT/\v0)
→18(kBT/\v0)21/@«n«m(«n1«m)# make it amply clear that the states with the smallest energies«n!a make a large
contribution toG0 ~but not to G01G8). To calculate this contribution it is permitted7 to useb\v0«n!1 andb\v0«m!1
under the integral, and to approximate

7We actually need the additional conditionAm\v0!kBT.
9-11
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FS «n ,«m ,
kBT

\v0
D5S kBT

\v0
D 2 1

~«n1«m!«n«m
~7.16!

in addition to approximating

A«n
21a2A«m

2 1a2A~«n1«m!21a2>a3,

and neglecting terms of order«n
2/a2.

This contribution toG0, which we shall denote asG00,
then reduces to

G00536pS a

L D 2S kBT

\v0
D 2

3E
A2a

`

d«nE
A2a

`

d«m

1

«n«m~«n1«m!
. ~7.17!

The double integral can be evaluated asA2/a ln 2, which
yields the final result

G00536pA2 ln 2S a

L D 2S \v0

m D 1/2S kBT

\v0
D 2

51.59 . . .S T

Tc
D 2S N

^N0&
D 1/2

N1/3S kBTca
2m

\2 D 3/4

.

~7.18!

The second form of this expression is obtained by elimin
ing V5L3 in favor of the critical temperature of the equiv
lent ideal Bose gas at the same density via

V5„N/z~3/2!…~2p\2/kBTcm!3/2. ~7.19!

There is yet another particularly important contribution
G0 due to the infrared singularity of the integrand; we sh
denote it asG01, where onlyone of the two excitation fre-
e

02360
t-

l

quencies, sayEn , is small compared tom, while the other is
larger, of orderm or evenkBT. With respect toen a low-
energy asymptotics may then still be used. We then obta

G015
4p

a S a

L D 2E
A2a

qa

d«nE
A2a

`

d«m

3
G~0,«m ,a!2G~0,0,a!

«n~«m
2 1a2!

eb\v0«m

~eb\v0«m21!2
,

~7.20!

where we have set an upper cutoff for the small energy
fraction q of the chemical potential. Most of the«m integral
comes from a range arounda, and we may therefore replac
the thermal function by its asymptotics forb\v0«m→0,
which is (kBT/\v0«m)2. The integrals can then be pe
formed, with the result

G01516pS a

L D 2

lnS q2m

2\v0
D ~kBT!2

\v0m

51.22 . . .S T

Tc
D 2 N

^N0&
S kBTca

2m

\2 D 1/2

lnS q2m

2\v0
D .

~7.21!

We conclude that this contribution toG0 is smaller than the
leading term G00 by the order of magnitude
(\v0 /m)1/2 ln(q2m/2\v0).

Let us now turn to the expressions forG02G002G01 and
G01G8. They can be simplified fora@1 by rescaling«n

and «m by a, and taking the limitA2/a→0 for the lower
boundaries of the rescaled integrals. In this way we find
G02G002G0152pS a

L D 2S m

\v0
D E

0

`

dxE
0

`

dyF G~x,y,1!FS x,y,
kBT

m D
A~x211!~y211!„~x1y!211…

,

2S kBT

m D 2S 18

xy~x1y!
18

x~x211!~y21Ay21121!1y~y211!~x21Ax21121!

x2y2~x211!~y211!
D G , ~7.22!

G01G852pS a

L D 2S m

\v0
D E

0

`

dxE
0

`

dy

G~x,y,21!FS x,y,
kBT

m D
A~x211!~y211!„~x1y!211…

, ~7.23!
den-
be

otic

for
u-
where we used the scaling property

FS «n ,«m ,
kBT

\v0
D5

1

a
FS «n

a
,
«m

a
,

kBT

\v0a D . ~7.24!

Equations~7.22! and ~7.23! are the complete result for th
temperature-dependent transport parameters of the con
sate for boxlike traps. In general, the integrals have to
done numerically. We shall here consider some asympt
results only.

First we consider these expressions asymptotically
kBT/m@1. Then the integrals receive important contrib
9-12
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tions fromx andy of the order of 1, i.e., from quasiparticle
energies of the order of the chemical potential, and also fr
values of x and y large compared to 1, i.e., quasipartic
energies of orderkBT. The contributionsG0

(.) and G8(.)

from large energies can be determined in leading powe
(kBT/m) by approximating

FS x,y,
kBT

m D.
m

kBT
e2(m/kBT)(x1y), ~7.25!

and rescalingx andy by kBT/m. In the integrals8 for G0 and
G01G8, we can then letm/kBT→0 without any problem,
using the propertyG(x,y,0)54xy(x1y), whereupon they
are easily evaluated with the asymptotic results

G0
(.)1G8(.).G0

(.).8pS a

L D 2kBT

\v0
51.27 . . .

T

Tc

kBTca
2m

\2
.

~7.26!

We see that the result forG8(.) vanishes to this order.
a

er
to

it

-
i-
ill

he

ed
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For the contributionsG0
(m) and G8(m) from quasiparticles

with energies aroundm, we can approximateF(x,y,kBT/m)
according to Eq.~7.16!, and find

G0
(m).B0

(m)S a

L D 2~kBT!2

\v0m

50.0243 . . .B0
(m)S T

Tc
D 2 N

^N0&
S kBTca

2m

\2 D 1/2

,

~7.27!

G0
(m)1G8(m).B8(m)S a

L D 2~kBT!2

\v0m

50.0243 . . .B8(m)S T

Tc
D 2 N

^N0&
S kBTca

2m

\2 D 1/2

,

~7.28!

with the numbersB0
(m) andB8(m) defined by the integrals
B0
(m)52pE

0

`

dxE
0

`

dyF G~x,y,1!

A~x211!~y211!„~x1y!211…xy~x1y!

2
18

xy~x1y!
28

x~x211!~y21Ay21121!1y~y211!~x21Ax21121!

x2y2~x211!~y211!
G , ~7.29!

B8(m)52pE
0

`

dxE
0

`

dy
G~x,y,21!

A~x211!~y211!„~x1y!211…xy~x1y!
. ~7.30!
s
re-

sate
We can conclude that the contribution from quasiparticles
energies of orderm is larger~for G0 by an order of magni-
tude kBT/m) than the contribution from energies of ord
kBT, but G0

(m) is, in large condensates, still subdominant
G00 by the order of magnitudeA\v0 /m.

Now let us consider also the low-temperature lim
namely, kBT/m!1 or, equivalently, T/Tc
!(kBTca

2m/\2)1/2. In this region it is not necessary to dis
tinguishN and^N0&. The integrals now receive their contr
butions forx andy both small compared to 1, but we can st
use approximation~7.25!. For smallx andy we can expand

G~x,y,1!.1813~x21y21xy!

~7.31!

G~x,y,21!.
9

32
x2y2~x1y!2.

To obtain the leading term it is enough to keep only t

8In the high-energy regime the subtractions of the infrar
divergent terms in the integrand of Eq.~7.22! are of no importance.
t

,

smallest powers ofx and y in the integrands. The integral
are easily evaluated with the asymptotic low-temperature
sults

G02G00536pS a

L D 2kBT

\v0
55.72 . . .

T

Tc

kBTca
2m

\2
,

~7.32!

G01G85
189

2
pS a

L D 2 m

\v0
S kBT

m D 7

50.366 . . . S T

Tc
D 7S kBTca

2m

\2 D 22

. ~7.33!

As long as the temperature is high enough to satisfykBT
@Am\v0, the partG00 still dominates the value ofG0.

B. Particle-number fluctuations

We follow the procedure of Giorginiet al. @10~a!#, and
deduce the particle-number fluctuations in the conden

-
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from the number fluctuation in the thermal cloud. This lea
to Eq. ~2.28!, which we evaluate using the expressions
un ,vn , andEn . We obtain

^DN0
2&5(

n

2n̄n~ n̄n11!~En
212m2!1m2

2En
2

. ~7.34!

Approximated by an integral, this becomes

^DN0
2&5pE

A112a

` d«

«
AA«21a22a

«21a2

3S a21
«212a2

2S sinh
b\v0«

2 D 2D . ~7.35!

The dominant contribution comes from the lower bound
of the integration@10# which contributes, fora@1,

^DN0
2&.2pS kBT

\v0
D 2

5A8S mkBT

\2 D 2

V4/3, ~7.36!

with

A85
1

2p3
50.0161 . . . . ~7.37!

More precisely the dominant contribution to^DN0
2& is given

by the discrete sum@10#

^DN0
2&52m2~kBT!2(

n

1

En
4

, ~7.38!

which gives the same expression as Eq.~7.36!, but with the
prefactor9

A5
2

~2p!4 (
nW nÞ0

1

nn
4

50.021 . . . . ~7.39!

If we eliminate the volume in favor of the critical temper
ture of the ideal Bose gas of the same density via Eq.~7.19!
we obtain

^DN0
2&5A

~2p!2

z~3/2!4/3S T

Tc
D 2

N4/3. ~7.40!

At temperatureT50 a similar evaluation of Eq.~2.28! gives

^DN0
2&uT5052Ap~aN!3/2V21/2. ~7.41!

9Formula ~7.39! differs from the one given in Ref.@10~a!# by a
factor 224 whereas the numerical result differs by yet another f
tor; the formula~7.41! differs from the one in Ref.@10~a!# by a
factor 2.
02360
s
r
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C. Particle-number relaxation rate

We are now in a position to evaluate the ratetc
21 from

Eq. ~3.17! using the results for̂DN0
2& ~numbers are calcu

lated with the prefactorA8) andG0.G00. We obtain

gc5
1

tc
518.0 . . .

T

Tc
A^N0&

N S kBTca
2m

\2 D 3/4
kBTc

\
.

~7.42!

This result also applies in the low-temperature region,
cause it makes use only of the results for^DN0

2& and G0,
which also hold in that region.

To obtain an idea of order of magnitudes, we comp
this and the following results with the damping rateg0 of the
lowest-lying modes, which are given by@16–18#

g05
3p2

4 S a

L D kBT

\
54.06 . . .

T

Tc
N21/3S kBTca

2m

\2 D 1/2
kBTc

\
.

~7.43!

We see that the relaxation rategc is of the order

gc;N1/3S kBTca
2m

\2 D 1/4

g0 . ~7.44!

The proportionality factor is of the order ofAm/\v0, and is
large in large and strongly interacting condensates. Thus
relaxation of the condensate to its equilibrium is faster th
the relaxation of the low-lying collective modes, but slow
than the frequency of the lowest-lying modes, which
A2v0m/\.

D. Phase collapse rate

The phase collapse rate is given by Eq.~3.23!, and re-
quires only the results for̂D N0

2& and G950. At zero tem-
perature it reduces to

gcollapseuT505
1

\

]m

]^N0&
A^DN0

2&uT50, ~7.45!

from which we obtain

gcollapseuT505
23.6 . . .

AV
~an0!3/4

\a

m

52.50 . . .
kBTc

\ S kBTca
2m

\2 D 7/8
1

AN
.

~7.46!

For finite temperature we obtain

gcollapse50.876 . . .
kBT

\
N21/3S kBTca

2m

\2 D 1/2

. ~7.47!

By comparison with Eq.~7.43!, we see thatgcollapse is of the
order ofg0, and is therefore large large condensates sma

-
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thangc . In summary, the phase collapse is not effective
large condensates because it occurs with a rategcollapse
,gc and is at the same time restricted to a time inter
Dt,1/gc , since for larger times phase diffusion takes ov

E. Phase-diffusion rate

The phase-diffusion coefficient is a somewhat comp
cated quantity because it receives contributions from sev
processes which are physically distinct. We consider the
ferent contributions separately, and also distinguish the
temperature regimes of high temperature,kBT.m, for which
we give the result first, and low temperature,kBT,m .

1. Low-frequency condensate number fluctuations

From Eq.~3.19! we infer, withG05G00,

Df
(a)5

1

\kBT^N0&G00
S ^DN0

2&
]m

]^N0&
D 2

, ~7.48!

which is evaluated as

Df
(a)50.0853 . . .

T

Tc
S kBTcma2

\2 D 1/4
1

^N0&
1/2N1/6

kBTc

\
.

~7.49!

The same result holds in the low-temperature regimekBT
,m. In comparison withg0 @Eq. ~7.43!#, it is of the order

Df
(a);N21/3S kBTcma2

\2 D 21/4

, g0;A\v0

m
g0 ,

~7.50!

and is much smaller in large and strongly interacting cond
sates. Still this contribution to the phase-diffusion rate is
ways the dominant one at low temperatures and may do
nate even at higher temperatures~see below!.

2. Condensate number fluctuations due to quasiparticles
around energies µ

Splitting G05G001(G02G00) and expanding to first or
der,

1

G0
5

1

G00
2

G02G00

G00
2

, ~7.51!

we estimate as contributionDf
(b) from the higher-frequency

condensate number fluctuations described byG02G00, as
given by Eq.~7.26!,

Df
(b);2

T

Tc

1

^N0&

kBTc

\
, ~7.52!

which is in absolute value smaller than the contributionDf
(a)

from low-energy excitations by the order of magnitude fac
A\v0 /m. This contribution is therefore negligible in ver
large condensates. In not so large condensates the com
integral in the result forG0 needs to be evaluated.
02360
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In the low-temperature regimekBT,m, we instead obtain

Df
(b)520.306 . . .

1

N S kBTca
2m

\ D 1/2kBTc

\
. ~7.53!

This is much smaller thanDf
(a) , by an order of magnitude

factor (m/kBTc)
1/2/N1/3.

3. Fluctuations in the thermal cloud at energies of order µ

From Eq.~3.19! this contribution is given by

Df
(g)5

kBT

\^N0&
~G01G8!, ~7.54!

which is evaluated to

Df
(g)50.0243 . . .B8(m)S T

Tc
D 3 N

^N0&
2 S kBTca

2m

\2 D 1/2
kBTc

\
.

~7.55!

This contribution differs fromDf
(a) by the order of magni-

tude factor (T/Tc)
2Am\v0/kBTc , and is therefore much

smaller.
For temperatureskBT,m we instead find

Df
(g)50.366 . . . S T

Tc
D 8 1

^N0&
S kBTca

2m

\2 D 22
kBTc

\
,

~7.56!

which is again negligibly small compared toDf
(a) .

In summary, the phase diffusion is caused dominantly
the low-frequency particle-number fluctuations in the co
densate, and the phase-diffusion constant is given by
~7.49!. It is proportional to temperature, and scales prop
tional to N22/3 for fixed Tc , or proportional toN21/2 for a
fixed volume of the trap.

VIII. EVALUATION OF THE TRANSPORT PARAMETERS
FOR AN ISOTROPIC HARMONIC TRAP

In this section we consider the more realistic case of c
densates in a parabolic trapping potentialmv0

2x2/2, which
we assume to be isotropic for simplicity. In order to analy
the noise Im„j(t)… driving the fluctuations ofua0u2, we must
consider in detail the relevant linear combination of mat
elements:

~Mk,nm
(1) !* 2M nm,k

(2) 52U0E d3xc0$~ ũk2 ṽk!~ ũm* ṽn* 1 ṽm* ũn* !

2ũkũm* ũn* 1 ṽkṽm* ṽn* %. ~8.1!

In the following we shall make use of the local dens
and Thomas-Fermi approximation, restricting ourselves
large condensates. For high-lying states we can then use
local energies in the Thomas-Fermi approximation,
9-15
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E~p,x!5AS p2

2m
1uU0n0~x!u D 2

2U0
2n0

2~x!Q„m2V~x!…,

~8.2!

with the condensate density

n0~x!5^N0&uc̃0~x!u25~^m&/U0!~12„x/r TF!2
…, ~8.3!

and the Thomas-Fermi radius

r TF5A2^m&/mv0
25S 15U0^N0&

8p^m& D 1/3

. ~8.4!

The high-lying quasiparticle modes can be represented s
larly to the spatially homogeneous case as

uk~x!5
Ek1pk

2/2m

A2Ekpk
2/m

eipk•x/\,

~8.5!

vk~x!52
Ek2pk

2/2m

A2Ekpk
2/m

eipk•x/\.

The low-lying collective modes can be represented as

un~x!5SAU0n0~x!

2\ṽn

1
1

2
A \ṽn

2U0n0~x!D xn~x!,

~8.6!

vn~x!5S 2AU0n0~x!

2\ṽn

1
1

2
A \ṽn

2U0n0~x!D xn~x!,

with

E d3xuxn~x!u251. ~8.7!

The mode functionsxn(x) are known in the hydrodynami
~long-wavelength! and Thomas-Fermi approximation@19–
24# by analytic solutions of the Bogoliubov equations.
spatially isotropic parabolic traps they have the form@19#

xn~x!5
1

r TF
3/2

Pln

(2nn)
~x/r TF!~x/r TF! lYlm~u,w!Q~12x/r TF!.

~8.8!

The polynomialsPl
(2n)(x) of degree 2n are the normalized

solutions of the radial part of the Bogoliubov-Fetter equ
tions in the Thomas-Fermi and long-wavelength lim
@19,21# given by @21#

Pl
(2n)~x!5

A4n12l13

n!
x22l21

dn

d~x2!n

3@x2n12l11~12x2!n#, ~8.9!

with the normalization
02360
i-

-

E
0

1

dxx2l12@Pl
(2n)~x!#251. ~8.10!

In the phonon part of the excitation spectrum, we ha
ul.2vl;ṽl

21/2. Furthermore, in that low-energy regio
the statistical factor in Eqs.~5.13!–~5.15! is well approxi-
mated byn̄nn̄mn̄k'(kBT)3/\3ṽkṽnṽm . Just as in the case
of boxlike traps, the frequency factors in the denominat
together with similar further factors in the denominator co
ing from the matrix elements, make the phonon contribut
to the sums in Eq.~5.13! the dominant one, at least in larg
condensates, and we shall therefore concentrate on this
tribution in the following. This frequency range has a natu
upper cutoff at̂ m&/\, where the collective phonons go ove
smoothly into particlelike excitations.

For Ek ,En ,Em!^m& the matrix elements (Mk,nm
(1) )* and

M nm,k
(2) are given by the integral

~Mk,nm
(1) !* '2M nm,k

(2) ~8.11!

'2A15

8p

3U0^m&3/2dmk ,mn1mm

r TF
3 A2EnEm~En1Em!

3J~nk ,nn ,nm ; lk ,ln ,lm!C~ lku lmmm ,lnmn!,

~8.12!

whereJ denotes the integral

J~nk ,nn ,nm ; lk ,ln ,lm!

5E
0

1

dxx2~12x2!2xlk1 ln1 lmPlk

(2nk)

3~x!Pln

(2nn)
~x!Plm

(2nm)
~x!

and the Clebsch-Gordan coefficientsC( lku lmmm ,lnmn) are
given by the angle integral

C~ lku lmmm ,lnmn!

5E dVYlk ,mn1mm
* ~u,w!Ylm ,mm

~u,w!Yln ,mn
~u,w!

if u lm2 lnu< lk< lm1 ln , otherwise they vanish. Below w
shall have to calculate, e.g.,(mn ,mm

u(Mk,nm
(1) )* 2M nm,k

(2) u2,

where we can make use of the sum rule foru lm2 lnu< lk
< lm1 ln ,

(
mn ,mm

zC~ lku lmmm ,lnmn!z251,

so that the Clebsch-Gordan coefficients need actually no
used explicitly.

In order to have well-defined expressions for the rate
efficients, we again need to smooth thed function expressing
energy conservation, which is done physically by experim
tal imperfections or limitations in resolution. Here this ca
be done by replacing the discrete sum over the ‘‘quant
number’’ lk by an integral
9-16
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(
lk

d~Ek2En2Em!~¯ !

'E dEk

1

dEk /dlk
d~Ek2En2Em!~¯ !

5E dEk

En1Em

~\v0!2~nk11/2!
d~Ek2En2Em!~¯ ! ~8.13!

where we used an expression for the excitation energies@19#:

Ek5\v0ek ,

ek5A2nk
212nklk13nk1 lk. ~8.14!

We introduced the dimensionless eigenvaluesek,n,m which
will appear in the ensuing expressions from now on. T
integration overEk with the d function then picks out the
energy valueEk5En1Em , so thatlk becomes a functionlk

(0)

of the other quantum numbers:

lk
(0)5

~en1em!222nk
223nk

2nk11
.

or
g
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e
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02360
e

The inequalities

u ln2 lmu< lk
(0)< ln1 lm

then imply thatnk must lie in the interval

nk2<nk<nk1 ,

with

nk65
1

2
„Au ln6 lmu21u ln6 lmu19/412~en1em!2

2u ln6 lmu23/2….

Using all this, from Eq.~5.13! we obtain

G05B00S a

d0

kBT

\v0
D 2

5B00

T2

Tc
2

kBTca
2m

\2 S N

z~3! D
1/3

,

~8.15!

where\v0 is now eliminated in favor ofkBTc via the rela-
tion \v05kBTc„z(3)/N…

1/3, and where the temperature- an
particle-number-independent positive real numberB00 is de-
fined by the multiple sums
B005
135p2

2 (
nn

(
nm

(
ln

(
lm

(
nk5nk2

nk1 ~2lk
(0)11!J2~nk ,nn ,nm ; lk

(0) ,ln ,lm!

en
2em

2 ~en1em!~2nk11!
. ~8.16!
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The result forG0 agrees, except for the numerical prefact
with the result of Ref.@3# which was evaluated there usin
the local-density approximation and imposing a lower cut
for the excitation frequencies at the geometrical mean

frequencyv̄. It can also be compared with the correspond
result@Eq. ~7.18!# for the boxlike trap, which shows the sam
dependence on temperature and particle number~if we stipu-
late ^N0&;N), but the comparison of the prefactor is pro
lematic because the condensate in the parabolic trap has
length scalesd0 and r TF , whereas in the boxlike trap onl
the length scaleL is relevant.

Property~8.11! of the matrix elements implies thatlow-
lying excitations do not contribute toG01G8. The reality of
the matrix elements furthermore implies thatG9 vanishes.
These remarkably simple results mean that the noise so
j(t) introduced in Eq.~3.6! is purely imaginary, correspond
ing to a total squeezing in the direction of the phasef. In
other words, the coupling of the condensate to the collec
excitations introduces adirect Langevin noise source onl
for the number fluctuationsdN0, not the phase variablef.10

The fact thatG01G850 for the contribution from the
low-lying states implies that the contributions from th

10The latter is of course affected by the noise-source indirec
because the fluctuations ofdN0 driven by the latter cause fluctua
tions in the chemical potential.
,

f
p

g

wo

ce

e

higher-lying states must also be considered in order to ev
ate the small~compared toG0) but finite value of this quan-
tity. For this purpose we need to consider the matrix elem
(M 8k,nm

(1) )* 1M 8nm,k
(2) . It differs from the matrix elements we

have considered so far by the replacementc̃0(x)→c̃0(x)
12^N0&]c̃0(x)/]^N0& in the matrix element. In the
Thomas-Fermi approximation this is tantamount to the
placement

c̃0~x!→~2/5!c̃0~x!/~12x2/r TF
2 !. ~8.17!

Physically this implies a reduced coupling of the therm
fluctuations with the center of the condensate and a stron
enhanced coupling at its boundary, as one would expect
fluctuations located in the thermal cloud. A mathemati
consequence is the fact that the integrals defining these
trix elements diverge at the boundary in the Thomas-Fe
approximation, meaning that here we encounter the lim
tions of that approximation. Instead of a full-fledged exte
sion of the theory beyond the Thomas-Fermi, approximat
it will be sufficient for our purposes here to cure its deficie
cies by substituting as a cutoff the finite thickness of t
boundary layer given by@25#

d5
1

2
r TFS \v0

^m& D 2/3

.

,
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The matrix element itself is then evaluated in the loc
density approximation@25#, where we can make use to goo
purpose of the analysis already performed in Sec. VII. T
finite volume V5L3 @and the associated \v0
5(2p\)2/2mL2, which is not to be confused with the tra
frequency calledv0 in the present section# is then an arbi-
trary local subvolume of the condensate, introduced me
as a technical device like a quantization volume. It must
sufficiently small so that the condensate within it can
treated as homogeneous, and sufficiently large that we
replace sums over local momenta by integrals. At the end
have to check for consistency whether the result is ind
independent of the choice of this volume. The result obtai
in this way is the local average of result~7.28! for the ho-
mogneous case, which now becomes space dependen
cause we have to substitute a space-dependent chemica
tential m→^m&(12x2/r TF

2 ). This local result can be written

G0~x!1G8~x!5
B8(m)

2p2

~kBT!2a2m

\2^m&~12x2/r TF
2 !

,

and is indeed independent of the choice ofV. The local av-
erage has to be performed with the weight„c̃0(x)
12^N0&]c̃0(x)/]^N0&…

2 determined from Eq.~8.17!. Doing
the average and regulating the divergency of the integra
the boundary of the condensate by the physical cutoff,
obtain

G01G85
3

10

21/3

152/15p2
B8(m)S kBT

\v0
D 2

^N0&
22/15S a

d0
D 28/15

50.024 . . .B8(m)S T

Tc
D 2S N

^N0&
D 2/15

3N2/9S kBTca
2m

\2 D 14/15

. ~8.18!

In order to extract results for the relaxation rate of t
condensate number and the phase-diffusion rate, it is
necessary to know the mean square of the number fluc
tions ^DN0

2&. This can be evaluated from Eq.~2.28!, using
the fact that these fluctuations are also dominated by
low-lying modes@10~a!#. The result of this calculation to
leading order in (\v0 /kBT) is

^DN0
2&5AS ^N0&a

d0
D 4/5S kBT

\v0
D 2

~8.19!

5
A

„z~3!…8/15S T

Tc
D 2S ^N0&

N D 4/5

N4/3S kBTca
2m

\2 D 2/5

,

~8.20!

with the numberA given by the multiple sums
02360
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e
e
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e

A5
~15!4/5

2 (
n

(
n8

(
l

2l11

„e~n,l!e~n8,l!…2

3U E
0

1

dx~12x2!x2(l11)Pl
(2n)~x!Pl

(2n8)~x!U2

.

~8.21!

In order to find the scaling of̂DN0
2& in the thermodynamic

limit N→`,v0→0,kBTc5\v0„N/z(3)…1/3 fixed, it is neces-
sary to use the form of the preceding results in which\v0 is
eliminated in favor ofkBTc and to usê N0&;N. Then the
scaling ^DN0

2&;N4/3 derived in Ref.@10~a!# is recovered.
The particle-number relaxation rate now follows from Eq
~3.17! and ~8.15! as

gc5
2B00

A
^N0&

1/5S a

d0
D 6/5kBT

\

5
2„z~3!…1/5B00

A

T

Tc
S ^N0&

N D 1/5S kBTca
2m

\2 D 3/5
kBTc

\
.

~8.22!

This is the largest of the various rates we calculate here,
is still small compared tov0, the inverse time scale of mo
tion in the trap, by the order of magnitudeN22/3(Na/d0)6/5.

The phase-collapse rate is obtained from Eq.~3.23!. At
TÞ0 ~ more precisely, above a crossover temperature
order\v0), we find

gcollapse5
152/5A1/2

5
^N0&

21/5S a

d0
D 4/5kBT

\

5
152/5

„z~3!…2/15A1/2

5

T

Tc
S N

^N0&
D 1/5

3N21/3S kBTca
2m

\2 D 2/5
kBTc

\
. ~8.23!

Apart from the numerical prefactor, this is the sam
asymptotic expression as obtained for the damping rateg0 of
the low-lying collective modes~see, e.g., Ref.@15#!. It is
smaller thangc by the order of magnitude (^N0&a/d0)22/5,
i.e., the phase collapse remains inefficient before phase
fusion takes over.

The phase-diffusion constantDf
(a) , due to the exchange

of particles between the condensate and low-lying exc
tions, is obtained by inserting the results for^DN0

2& andG00

in Eq. ~3.19!:

Df
(a)5

~15!4/5A2

25B00
^N0&

23/5S a

d0
D 2/5kBT

\

5
154/5

„z~3!…1/15A2

25B00

T

Tc
S N

^N0&
D 3/5

3N22/3S kBTca
2m

\2 D 1/5
kBTc

\
. ~8.24!
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It is smaller thangcollapse, again by the order of magnitud
of (^N0&a/d0)22/5.

Finally, the contribution of the fluctuations in the therm
cloud to the phase diffusion is also obtained from Eq.~3.19!
by inserting result~8.18! for G01G8:

Df
(g)5

3

10

21/3B8(m)

152/15p2
^N0&

217/15S a

d0
D 28/15S kBT

\v0
D 2 kBT

\

5
3

10

21/3
„z~3!…216/45B8(m)

152/15p2 S T

Tc
D 3S N

^N0&
D 17/15

3N27/9S kBTca
2m

\2 D 14/15
kBTc

\
. ~8.25!

The differs from the previous rates, which were all prop
tional to temperature, by the stronger temperature dep
dence ;T3. However, this contribution toDf remains
smaller than Df

(a) by an order of magnitude
N21/9(kBTca

2m/\2)11/15(T/Tc)
2.

IX. DISCUSSION AND CONCLUSION

In this paper we have put forward a detailed theory
fluctuation and relaxation processes of the condensat
thermal equilibrium with the cloud of its excitations. For
given number of particlesN0 in the condensate, we hav
defined the condensate mode as the corresponding nor
ized solution of the Gross-Pitaevskii equation, at the sa
time defining theN0-dependent part of the chemical pote
tial. The equilibrium value of̂ N0& is distinguished as the
value ofN0 for which the number of particles in the therm
cloud in equilibriumwith the condensate plusN0 is equal to
N. We have calculated the fluctuations ofN0 around its equi-
librium value, as well as the fluctuations of the phase of
complex amplitudea0 of the condensate withua0u25N0. In
a general phenomenological framework presented in the
part of this paper, we were able to separate the fluctuation
the complex condensate amplitude into several contributio
which have different physical origins.

~i! The fluctuation of the atom number in the condensa
which are driven by the exchange of atoms between the c
densate and the thermal cloud.

~ii ! The fluctuation of the chemical potential with tw
different contributions, namely, the fluctuations ofm due to
number fluctuations in the condensate, and the faster fluc
tions of m at constantN0 caused by number fluctuations
the excitations.

The importance of number fluctuations in the condens
assumed at first in the phenomenological approach due to
importance ofN0 for the value of the chemical potential, bu
later born out by the microscopic calculations, leads to
appearance of the linear relaxation ratesgc of the condensate
number as an important characteristic inverse time scal
the problem. At times much shorter thangc

21 , a phase dif-
fusion of the condensate phase due to the fast number
tuations in the excitations can occur. In the same regim
process of collapse may also occur due to the revers
02360
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spreading of the phase caused by the static uncertainty inN0,
and the associated chemical potential. At times large co
pared togc

21 , the number fluctuations in the condensate
dynamical and irreversible, and lead to the replacemen
the reversible collapse by an irreversible phase diffusion w
a larger diffusion rate than in the short-time regime.

The second and larger part of this paper was devote
microscopic theory. First we provided a microscopic deriv
tion of the phenomenological Langevin equation, establis
microscopic formulas for all phenomenological paramete
and also exhibited the relation between the short-time di
sion rate and fluctuation rates of the population numbers
excitations via a sum rule. Then a microscopic theory w
used to evaluate the transport parameters and the va
rates as functions of the temperature, particle number,
the scattering length of the interaction potential. The eva
ation was done for two simple cases—the cubic box-l
trap, where the form of the condensate mode does not
pend onN0 and the thermal cloud penetrates the condens
homogeneously; and the isotropic harmonic trap, where
form of the condensate-mode changes withN0 and the ther-
mal cloud is located preferentially near the boundaries of
condensate. The physically important results for both kin
of traps are similar, even though they have to differ, ob
ously, in the details of the scalings with the atom-numb
and the scattering length. A calculation of the transport
rameters reveals some interesting physical results.

~i! The fluctuations driving the absolute valueua0u and the
phasef of a0 are quite different in strength, those drivin
ua0u being much stronger. The reason for this is a p
nounced squeezing of the bath of thermal excitations w
respect to the instantaneous phase of the condensate.
squeezing reaches nearly 100% for the lowest-lying mod
which is the reason that fluctuations off are practically not
driven by such modes. On the other hand, the contributi
of high-lying modes to the fluctuating forces drivingua0u
and f are nearly the same~after the obvious normalization
with ua0u), i.e., there is no squeezing in this~much weaker!
contribution to the noise.

~ii ! The cross-correlation between the fluctuations driv
ua0u andf are found to vanish exactly in a real condensa
where both the Gross-Pitaevskii equation and
Bogoliubov-Fetter equations are real, and all solutions
~but need not! be taken as real. This can also be understo
as a general consequence of time-reversal symmetry:f is a
velocity potential and therefore odd under time revers
while ua0u is even under time reversal. Their fluctuatin
forces therefore transform oppositely. In a time revers
symmetric condensate~no vortices!, the cross-correlation be
tween even and odd quantities under time reversal must
ish.

It turns out that the relaxation rategc of the atom number
in the condensate is the largest of the calculated rates
particular it is larger than the collapse rate and the pha
diffusion rate which, likegc , are proportional to temperatur
in the regimekBT.m. It is also larger than the decay rates
the lowest-lying collective modesg0, which might look sur-
prising because at the same time the theory tells us thatgc is
dominated by particle-transfer rates between condensate
9-19
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ROBERT GRAHAM PHYSICAL REVIEW A 62 023609
low-lying modes. However, it is clear thatgc ought to be
larger thang0 because the condensate couples to all lo
lying modes in parallel, which increases the number of de
channels by a factor proportional to the ratio of the chem
potential and the lowest-lying mode frequency.

The next largest rate we find is the thermal phase-colla
rategcollapse. It turns out to have the same functional depe
dence onT, a, ^N0&, andN as the decay rate of the lowes
lying collective modes. I cannot see any fundamental rea
for this coincidence, and have to count it as just that. Ph
cally the smallness ofgcollapse/gc means that the phase co
lapse will not be observable at finite temperature, becau
can only lead to a decay factor exp„2 1

2 (gcollapse/gc)
2
… very

close to 1 before phase diffusion takes over.
Finally, the phase-diffusion rateDf is the smallest of the

rates calculated here. We find the simple result that the ra
gc /g0 and g0 /Df are of about equal orders of magnitud
given by the ratio ofm to the smallest excitation energy
which is \v0 for the harmonic trap andAm/m(2p\/L) for
the boxlike trap. Instead ofg0 we may also takegc in these
ratios with the same conclusion.Df , like the rategc , is
found to be dominated by the atom-number exchange
tween the condensate and the low-lying modes.

This observation actually explains the coincidence of
two ratios we have just indicated and turns them into a p
cise relation: In Eq.~3.19!, for Df , we putG950, which is
exact for real condensate modes, and the neglectG01G8,
which comes from high-lying excitations. Then multiplyin
the resulting expression forDf , with gc5tc

21 from Eq.
~3.17!, we readily find

1

2
Dfgc5gcollapse

2 , ~9.1!

with gcollapse from Eq. ~3.23! again withG950.
Let us now compare our results with related ones found

the literature. Most closely related to the present work
goal and scope is a paper by Jakschet al. @26# on the inten-
sity and amplitude fluctuations of a Bose-Einstein cond
sate at finite temperature, which builds on extensive ea
work by Gardiner and Zoller with collaborators~cf. the ref-
erences given in Ref.@26#!. Unlike the present paper, it als
takes trap losses into account. The theory presented in
@26# is based on a conceptual division of the Bose gas
two energy regions called the condensate band and the
condensate band. In this construction the boundary betw
the two regions is chosen in such a way that the noncond
sate band is not significantly affected by the mean field of
condensate, while the influence of excitations in the cond
sate band is neglected. Thus the main physical differenc
Ref. @26# from to the present work is that it neglects fluctu
tions of particles from the condensate mode to quasipar
modes, as well as to very low-lying one-particle excitatio

Conversely, in the present work we avoid the division
the energy region into two parts. We find, as we have d
cussed, that the exchange of particles between the con
sate and the low-lying modes makes not only an import
contribution, but in fact the dominant contribution, to th
relaxation rate of the condensate number and the ph
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diffusion rate, determining their dependence on temperat
atom number, population of the condensate, and scatte
length.

The importance of the particle exchange between lo
lying excitations for the phase diffusion of the condens
and the number-relaxation rategc was first pointed out in
Ref. @3#, while for theintensityof the number fluctuations in
the condensate this was already shown in Ref.@10~a!#. The
theory put forward in Ref.@3# already proceeded along e
sentially the same lines we follow here, but it had som
shortcomings which we overcome and correct in the pres
work: The squeezing of the noise from the thermal clo
with respect to the phase of the condensate was briefly
marked upon in Ref.@3#, but was not taken into account i
the calculation of the transport coefficients presented th
and in the formula for phase diffusion. Moreover, in the co
servative part of the Langevin equation~3.6! D0m was re-
placed by]DF(uau2)/]ua0u2 in Ref. @3#, which, on scrutiny,
appears questionable when used in conjunction with the fl
tuation formulas~2.27! and ~2.28! for ^DN0

2&. After all, nei-
ther D0m nor DF are equilibrium quantities. The use of th
aforementioned relation between them is therefore avoi
here.

Even though in the present paper I have opted for the
of the fluctuation formulas~2.27! and ~2.28!, which in
my opinion have a firm basis, it is only fair to mention th
they are still under debate in the current literature; see, e
Ref. @13#. In another recent paper with some bearing
this topic Bergeman,et al. @27# used, as equilibrium distri-
bution for the condensate numberP(N0);exp@„^m&N0
2 5

14 (15N0a/d0)2/5N0…/kBT#, @cf. the discussion after thei
Eq. ~21!#, which implies^DN0

2&;T^N0&
3/5, a result which is

rather different, both in temperature dependence and in s
ing, from the particle number, from the result~8.19! on
which our present calculations have been based. It is c
that not the method but the details of our results on
dynamics of the fluctuations of the condensate wo
change, if the results on the statics were to be chang
Needless to say, a resolution of the theoretical debate c
cerning the correct approach to the statics seems urgent
would be highly welcome. Conversely, experimental resu
on the dynamics~i.e., on gc and Df) would also help to
decide, by applying the theory presented here, which of
approaches to the statics of the number fluctuations in
condensate proposed in the literature describes the phy
correctly.

A quantum kinetic theory of trapped atomic gases w
also formulated by Stoof@28#. In Ref. @28# the general
coupled Fokker-Planck equations of the condensate and
excited modes was presented and applied to the kinetic
the formation of a condensate. This problem was also stud
by Gardineret al. @29# as well as Kagan and Svistunov@30#,
where also earlier work by further authors is quoted.

By contrast the present work has focused on the fluct
tions around the equilibrium state of the condensate,after it
has been formed. However, the application of our appro
to the kinetics of the formation of a condensate would be
interesting goal for future work.
9-20
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Experimentally, the ratesgc and Df we have calculated
should be measurable. The rategc may be observable as th
relaxation rate of the condensate back to its equilibrium s
after creating a nonequilibrium state by a sudden sm
change of temperature via evaporative cooling. The sum
the phase-diffusion rates of two condensates could be m
sured by monitoring the phase difference between them a
it was initially fixed by measurement or preparation at
reference-timet50. Methods for measuring phase diffe
ences in Bose-Einstein condensates were recently dem
strated@4,31,32#. It is to be hoped, therefore, that phase d
fusion in Bose-Einstein condensates—a fundamental pro
intimately linked to the spontaneously broken gauge sym
try in a finite system—will be measured in the near futur
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APPENDIX A

Here we wish to derive expression~2.13! for H0. Using
the Gross-Pitaevskii equation~2.4! we put Eq.~2.8! into the
form

H05~m02^m&!ua0u22
U0

2
ua0u4E d3xc0

4 . ~A1!

Taking the derivative with respect toua0u2, we obtain

]H0

]ua0u2
5m02^m&1ua0u2S ]m0

]ua0u2
2U0E d3xc0

42ua0u2U0

3E d3xc0
2

]c0
2

]ua0u2
D . ~A2!

To evaluate this further, we use Eq.~2.4! and its derivative
with respect toua0u2:

S 2
\2

2m
¹21V2m013U0ua0u2c0

2D ]c0

]ua0u2

5S ]m0

]ua0u2
2U0c0

2D c0 . ~A3!

Multiplying Eq. ~A3! with c0 and integrating over space
using the Gross-Pitaevskii equation~2.4! after partial inte-
gration, we derive the identity

U0ua0u2E d3xc0
2

]c0
2

]ua0u2
5

]m0

]ua0u2
2U0E c0

4d3x, ~A4!

which is used in Eq.~A2! to yield ]H0 /]ua0u25m02^m&,
and upon integration results in Eq.~2.13!.
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APPENDIX B

Here we wish to derive Eq.~4.14!. This is achieved if we
succeed is showing that the coupling of the condensate
the thermal cloud via

Ĥ35U0A^N0&E d3xc̃0x̂̃†~e2 ifx̂̃1eifx̂̃†!x̂̃ ~B1!

gives rise to the systematic change of Im„ĵ(t)…, to first order
in the interaction, of

d^Im„ĵ~ t !…&f52
2A^N0&
\kBT E

2`

t

dt8SJJ~ t2t8!
]H0~ t8!

]ua0u2
,

~B2!

because this can then be used in Eq.~4.7! to yield Eq.~4.14!.
In Eq. ~B1! we could putua0u5A^N0&, since we linearize
around equilibrium and only wish to calculate the dissipat
in ua0u2 which is conjugate tof, the variable we kept in Eq
~B1!. Standard first-order perturbation theory with an ad
batic switch-on of the interaction gives, withe→10,

d^Im„ĵ~ t !…&f52
i

\E2`

t

dt8^@ Im„ĵ~ t !…,Ĥ3~ t8!#&feet8.

~B3!

We can rewrite this as

d^Im„ĵ~ t !…&f522iA^N0&E
2`

t

dt8„xJĵ
9 ~ t,t8!e2 if(t8)

1xJĵ19 ~ t,t8!eif(t8)
…eet8, ~B4!

where we introduced the response functions

xJĵ
9 ~ t,t8!5

1

2\
^@ Im„ĵ~ t !…,ĵ~ t8!#&fQ~ t2t8!,

~B5!

xJĵ19 ~ t,t8!5
1

2\
^@ Im„ĵ~ t !…,ĵ†~ t8!#&fQ~ t2t8!,

with

ĵ~ t !5U0E d3xc̃0x̂̃†~ t !x̂̃~ t !x̂̃~ t !. ~B6!

Here Q(t2t8) is the Heaviside step function. We shall d
fine Q(0)50 without loss of generality. The fluctuation
dissipation theorem~in the classical frequency domain\v
!kBT) ensures the relations

xJĵ
9 ~ t,t8!52

iQ~ t2t8!

2kBT

]

]t8
SJĵ~ t,t8!,

~B7!

xJĵ19 ~ t,t8!52
iQ~ t2t8!

2kBT

]

]t8
SJĵ1~ t,t8!,
9-21
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with the correlation functions11

SJĵ~ t,t8!5^Im„ĵ~ t !…ĵ~ t8!&f ,
~B8!

SJĵ1~ t,t8!5^Im„ĵ~ t !…ĵ1~ t8!&f .

We can use Eq.~B7! in Eq. ~B4!, and apply a partial inte-
gration in t8, to obtain

d^Im„ĵ~ t !…&f5
A^N0&
ikBT E

2`

t

dt8„SJĵ~ t,t8!e2 if(t8)

2SJĵ1~ t,t8!eif(t8)
…

df~ t8!

dt8
eet8

2
A^N0&
kBT

„SJĵ~ t,t !e2 if(t)1SJĵ1~ t,t !eif(t)
…,

~B9!

11Im„ĵ(t)… according to Eq.~4.9! contains an explicit externa
time dependence viaf(t), in addition to the internal time depen

dence ofx̂̃(t),x̂̃†(t) via their Heisenberg equations of motion. Th
explicit time dependence has to be taken into account when ap
ing the fluctuation-dissipation theorem. We avoid this additio
step by applying the time derivative in the fluctuation-dissipat
relation~B7! directly to thesecondtime argumentt8, with of course
the appropriate extra minus sign.
s

ll,

tt

v
.

02360
which can be rewritten as

d^Im„ĵ~ t !…&f5
2A^N0&

kBT E
2`

t

dt8SJJ~ t,t8!
df~ t8!

dt8

2
2A^N0&

kBT
SJR~ t,t !, ~B10!

with SJJ(t,t8) defined by Eqs.~4.9! and ~4.11! and

SJR~ t,t8!5
1

4i
^„ĵ~ t !e2 if(t)2 ĵ†~ t !eif(t)

…„ĵ~ t8!e2 if(t8)

1 ĵ†~ t8!eif(t8)
…&f . ~B11!

The constant term withSJR(t,t) amounts to a small shift o
the equilibrium value ofm in the final result, which we shal
neglect like other terms contributing to such shifts. The
using Eq.~4.2!, we set\df(t8)/dt852]H0(t8)/]ua0u2 in
Eq. ~B10! which establishes Eq.~B1! and hence Eq.~4.14!.ly-
ys.
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