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Condensate fluctuations in finite Bose-Einstein condensates at finite temperature
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A Langevin equation for the complex amplitude of a single-mode Bose-Einstein condensate is derived. The
equation is first formulated phenomenologically, defining three transport parameters. It is then also derived
microscopically. Expressions for the transport parameters in the form of Green-Kubo formulas are thereby
derived and evaluated for simple trap geometries, a cubic box with cyclic boundary conditions, and an isotropic
parabolic trap. The number fluctuations in the condensate, their correlationrtimend the temperature-
dependent collapse time of the order parameter as well as its phase-diffusion coefficient are calculated.

PACS numbs(s): 03.75.Fi, 05.30.Jp, 67.40.Db, 67.40.Fd

[. INTRODUCTION other, whose decoherence would indeed be extremely rapid.
Rather, the macroscopic wave functions are appropriately
Bose-Einstein condensation in a weakly interacting Boseviewed as robust classical objects, their quantum-mechanical
gas in three dimensions in the thermodynamic limit of anorigin (just like magnets, crystals, etmotwithstanding. This
infinitely extended system is a second-order phase transitiotioes, of course, not preclude that there may be quantum
in which an order parameter, the macroscopic wave functiorgffects, for finite condensates, which lead to corrections of
appears spontaneously with a fixed but arbitrary phase, turnhe dynamics described by the underlying classical wave
ing the global W1) gauge symmetry connected with particle- equation, the well-known Gross-Pitaevskii equafibh In a
number conservation into a spontaneously broken or hiddeaumber of paperf5] the dispersion of the phase of a trapped
symmetry. The rigidity of the phase of the order parameteBose-Einstein condensate at zero temperature was consid-
against local perturbations and the absence of any phase dfred, which is due to fluctuationsu of the chemical poten-
fusion gives rise to the Goldstone modes, which take thgjg| 4, in a finite system with fixed particle number. An ex-
form of collisionless(zerg sound or hydrodynamic sound, (ensjon of this mechanism to finite temperature was also
respectively, depending on whether the sound frequency is iBroposec[?]. This effect is not an irreversible phase diffu-

the collisionless mean-field regime or in the collision- sion, but corresponds to an effect of inhomogeneous broad-

domin_at.ed regime]. . ening, similar to the dephasing of precessing spins occurring
In finite systems, and thus also in all trapped Bose gases ’

sharp phase-transitions are impossible, and hidden symm(gesgmofsiﬁéem; ?]:?. Z':)nnhg;()g:?gogrssgqsdsenrl]ngéhp\oz t&i
tries in a rigorous sense cannot appear. However, a macrg; y gnetizat v In Spt '

scopic wave function describing a Bose-Einstein condensa ccay. of the order-parameter expectation value '|n'Bose—
still exists[2]. Its phase cannot be stable and must undergo |_nst_e|n conden_sates cJ“ue FO a T,'n'te va_nance&;_zf IS In
diffusion process, which restores thé1) gauge symmetry pr-|n0|plle rever5|blg in “revivals.” Experiments m_Bose-
over sufficiently long-time intervals. This diffusion process Einstein condensation are done at temperatgiie># «» and
is different from the Goldstone modes mentioned previouslypften even akgT> 1, wherew is the geometrical mean of
which are oscillations around a fixed value of the phase anthe three main trap frequencies. A phase-diffusion process
do not restore the symmetry. Rather, the Goldstone modeshould occur in such a regime due to the interaction of the
show up either as collision-dominated hydrodynamiccondensate with a thermal bath of collective modes and qua-
phonons or as collisionless phonons, which have also beesiparticles. An estimate of this phase diffusion is of interest
observed in the finite Bose-Einstein condensates. In théor the theory of atom lasers, because the fundamental limit
present paper | would like to discuss the dynamics of theof the linewidth of an atom laser for a given temperature
complex amplitude of a Bose-Einstein condensate containingepends on it similarly to the “Schawlow-Townes” formula
a finite number of particles, and in particular analyze the[8] for the linewidth of a laser.
diffusion of its phase. My discussion will extend and correct In this paper a theory of dissipation and thermal fluctua-
in several respects the work published in R&f. tions of a trapped Bose-Einstein condensate will be formu-
The stability of the phase difference between the macrolated. First a phenomenological framework for the theory in
scopic wave functions of two Bose-Einstein condensates in the form of a Langevin equation will be given in which
trap has been measured. In the experimental setiphe  dissipation appears via a phenomenological parameter and
relative phase was measured using a time-domain separatetie fluctuation-dissipation relation is invoked to relate it to
oscillatory-field condensate interferometer. Over the time inthree maximal intensity coefficients of the fluctuations. The
terval of 100 ms scanned in the experiment, the relativesolution of the Langevin equation then determines the relax-
phase was found to be robust. This experimental result denation of the condensate number and the diffusion of the
onstrates that the macroscopic wave functions of the condemphase, quite similar to the dynamics of a laser amplitude
sates cannot be considered as quantum-mechanical waabove threshold. Then the Langevin equation is derived from
functions of many-particle systems entangled with eachhe microscopic theory, and formulas for the phenomeno-
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logical parameters are derived. These are evaluated for @& a function of temperature, and in practice it is therefore
boxlike trap and an isotropic harmonic trap potential as aeasonable to regar@Ny) as an experimentally given and
function of temperature, particle number, and scatterindknown function of temperature. The space-dependent mean

length. Section IX contains a discussion of our results, and dumber density of the condensatenig(x) = (No)| 7o (x)|2.
comparison with earlier related work. The theory presentequ shall take the mode functiofy(x) in the Gross-

hereh mayt nothapt)plytto tthte crltlcaItLegme_, norbc?n wbe texiim'Pitaevskii equation to be real and positiy&his also means
In€é here to what extent it covers the regime below but Closgq 5.6 ot considering condensates containing vorjidé®

to T, where it may be important to take in account thephysical phase of the condensate is not carried by its mode

dynamics of the thermal cloud of noncondensed atoms, ais ion 7. but by i | litude d d
well as the excitations from the condensate. unction o, but by its complex amplitude denoted as,
where ag= \/Ng expig.

If |ao|? makes a small fluctuation away from its equilib-
rium value(Ng) the condensate mode functiafy will no
A weakly interacting Bose gas in a trap in standard notalonger satisfy Eq(2.2), but will change its form slightly. We
tion is described by the Hamiltonian shall assume that such fluctuationsNy=|a|? occur on a
5 sufficiently large time scale that the new form is again deter-
~ - Uonyn| = mined by the Gross-Pitaevskii equation, but for the changed
— | g3yt - L _p2 _ 05t ,
H_f d X(’lj[ 2mV VOO = {u)+ 2 vy condensate numbeix|? and a correspondingly changed
(2.1)  chemical potentiak, determined uniquely byw,|?; i.e., in
Eq. (2.2 the replacementsily ,(No). (1)) — (¥, | aro|?, o)
have to be made in this case:

II. MICROSCOPIC EQUATIONS OF MOTION

The total number of atomN is fixed, i.e., the Hilbert space
is the restriction of the Fock space @fto the subspace on

which N=N is satisfied(yu) is the average of the chemical ~ — (%:%/2m)V?yq+ (V(X) + Ug| aql *| ¢ho(X)|*) ho= motbo-
potential, which is a fluctuating quantity in a system whidre (2.4)

is fixed. Below we shall denote the fluctuating part of the

chemical potential byA . The presence of a Bose-Einstein We cannot expect, in general, that in any given nonequilib-
condensate in equilibrium means that mamyo¥ 1) par- rium state the difference defined byou=puo—(u) is the
ticles occupy a single mode of a macroscopic classical mattabtal deviation of the chemical potential from its equilibrium
wave, determined as the mode of lowest energy of the clasralue, because there may obviously be states \it}|?
sical Hamiltonian corresponding to E.1). The latter is  =(N,) which differ in other respects from the equilibrium
obtained by replacing the field operatgtx) in H by the  state and may therefore haue*(u). Therefore, we use the

classical fieldy(x) = V{Ng)expi¢)vo(X). We shall restrict notationsu for_ the part ozf the nonequilibrium chemical po-
our attention to sufficiently low temperatures below the criti- tential determined bya|®. - .

cal temperaturd, so that the interaction of the condensate ~ The presence of the highly occupied condensate mode
with the mean field of the thermal cloud of noncondensednakes the decomposition of the Heisenberg field operator

particles is negligible. In this way one finds that the conden- . 3 ] . _
sate moda,(x), which we take to be normalized to 1, sat- Y(x,t) = (| crol eXP(i ) () + x (X, ) exp( — i {p)t/h)
isfies the Gross-Pitaevskii equatipsy (2.5

—(ﬁz/Zm)V2@0+(V(X)+Uo<No>|T//o(X)|2)7ﬂo=<M>Tﬂo- useful, where we foII9w Bogoliuboy9] and describe the
(2.2 condensate classically(x,t) is taken to be the field opera-

. ) . tor for the particles outside the condensate. We shall assume
For a given(No) the average value of the chemical potentialy,; the temporal changes éican be considered as slow on

u follows by imposing the normalization condition the time scales of the dynamics 3f The phasap and am-
- plitude | ap| are additionalc-number variables in E¢2.5).
J d3x[grp(x)[*=1 (2.3 Therefore, the taking of expectation values from now has on
to include an integration over a distribution [af,|, and in
on the solution of the Gross-Pitaevskii equation, and therebgddition an integration over all values @i Since the total

(), like @o(x), becomes a function of the mean atom num-numberN is fixed, ()= 0 must hold for all times. However,
ber in the condensat,). As an important consequence of it will also be useful to consider expectation values in the
this fact the chemical potential of the system can be exfock space of the operatoizsand )}* alone without averag-
pressed as a function of the average number of atoms in thag over ¢. Such expectation values will be denoted as
condensate alongN,) differs from N, the fixed total num-  (---),.

ber of atoms, by the average numiat’) of noncondensed Gauge invariance, strictly speaking, is lost by splitting off
atoms, which needs to be calculated for a giydly). The  ac-number term from the field operator. However, this sym-
condition N=(Ng)+(N’) then fixes(Ny) self-consistently. metry is saved by adopting the rule that the phéasef the

In experimentally realized Bose-Einstein condensates, it is-number term in the decomposition also changes under a
possible to measuréNy) directly with reasonable accuracy gauge transformation according ¢o— ¢+ €. By this device

023609-2



CONDENSATE FLUCTUATIONS IN FINITE BOSE. . .

PHYSICAL REVIEW A 62 023609

we take into account the fact that the same change of phasghe termH, can be simplified using the Gross-Pitaevskii
would have occurred automatically, if we had not replacedequation(2.4), and then becomes

the condensate term bycanumber. The generator of gauge
transformations is thus taken as

. 0 3 17
=|%|;(,;(T+ d*xx "y, (2.6
from which it is clear{cf. Eq. (2.24)] thati(d/d¢)|; ;1 is a
representation ofN,.!
& with

expli )= 2.7
Via Eq. (2.5), the Hamiltonian furthermore splits up ac-
cording toH=Hg+H,+H,+H3+H,, whereH, comprises

the terms ofd which are ofnth order iny and y'. Explic-
itly,

exp(dl INg); ;-

ﬁZ
Ho:|ao|2f dsX'ﬂo[_ﬁVZ‘FV(X)_Mo
Uo 2 2 2
- el ol o+ (0~ el 23

A= laql | d* [

- —v2+V<x> ()

+U0|a0|2¢3)¢0+(H.c.)}, (2.9
H2=f d3x[5(f —%VZ-i-V(X)—,u,O);(

a2y B 29 2 47 R

+(M0_<M>);(T3(}' (2.10

Ha=Ug|e| f Exgox(e x+etx Ny, (211

. U

H4=7f dxx "X xx- (2.12

Using the Gross-Pitaevskii equatid®.4) and its derivative
with respect td |, in the Appendix we derive

Ho= L'N;' dNo(uo(No)— (). (2.13

This operator with fixedy, y™ has to be well distinguished from
the unrestrictedderivative operator(d/d¢), which is a representa-
tion of the total particle numbemMN and has as formal canonical-

conjugated with exp(®)=exp@dN).

The canonical conjugate is the phase

|:|1:|a0|(ﬂo_<ﬂ>)f dx(e " x+€xT) .
(2.19

This expression will be seen to vanish below due to an or-
thogonality condition.

The first part ofH, in Eq. (2.10 is diagonalized by intro-
ducing quasiparticle operatods, ,a!, defined by the standard
Bogoliubov transformation, with time-dependeb(t):

x(X)=e?> (u,(X)a,+vi(x)al). (2.15

u, andv , satisfy the usual Bogoliubov-Fetter equations

2

— %Ver Ue(X) — o, K(x)
ﬁ2
K(X) — EVZ—% Ueﬁ(X)-l—ﬁa),,
U (X))
v,(X) =0, (2.19
with the abbreviations
Uer(X) = V(X) = o+ 2U | arg| *tho( %),

(2.17)

K(X) =] aro|2Ugiho(X)2.

The Hamiltonianl:|2 now takes the form

ﬂz=2y ﬁwy(&I&ﬁ‘|UV|2)+(M0_<M>+ﬁ¢)f dxx"x.
(2.18

The coefficientas, andv , and the mode frequencies, also
become functions ofag|, and fluctuate(slowly) with that
number Their equilibrium values will be denoted by

u,,v,, andw,, and the corresponding operatgraccord-

ing to Eq.(2.15, asX.
Equation(2.16) is consistent with the orthonormality con-
ditions

f d*x(u,ut —v,vk)=46 (2.19

vu

f d*r(ujv,—u¥v,)=0, (2.20
which guarantee the Bose commutation relations ofdhe
and aL. A formal solution of Eq.(2.16) at zero energy
hw,=0 is given by the condensate

u,(X)= = v3(X) = ¢o(X), (2.21

0,=0.
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This solution is obviously not normalizable in the required They were evaluated in Refl0(a)] and very generally in
sensegEgs. (2.19] to furnish an acceptable solution far,  [10(b)], and are also needed bel¢see Eq(8.20]. For work
andv,, and must therefore be excluded from the sum ovein the mathematical physics literature on number fluctuations
the terms containing the operatars anda! . The existence in the condensate of the ideal Bose gas and models of the
of this formal solution implies, however, that the properly interacting Bose gas, see Reff$1,13, and references given
normalizable solutionsi, andv, and the condensate mode there. For an alternative proposal to define and calculate the

W, satisfy the important orthogonality relation number fluctuations in a Bose condensate, see [R&F.
After transformation(2.15), the Hamiltonian is now in the
form
f d®xyo(u,+v,)=0. (2.22
H:H0+H2+H3+H4, (229)

It follows from Eq. (2.15 that . A .
with Hg, H,, Hjz, and H, given by Egs.(2.13), (2.18,

f d3xw0(e’i‘/’5(+ei¢)}*)=0, 223 (2.11), and(2.12.
Ill. LANGEVIN EQUATION OF THE CONDENSATE
which in turn implies that the reduced expressi@riL4) for AMPLITUDE
Ha vanlshg_s. Using propert§2:23,_one can verify that the Neither the Gross-Pitaevskii equation nor the Bogoliubov-
decompositiofEq. (2.5)] of ¢ implies Fetter equations furnish an equation for the condensate am-
. plitude ay= /Ny expie. To find such an equation phenom-
N=|ao|*+N’, (2249 enologically we first turn to a macroscopic quantity like the
. entropy S(|ap|2,N) for a fixed particle numbeN, but re-
with stricted to a fixed arbitrary value ofy= N, exp{¢), where
Ny is the instantaneous number of particles in the condensate
N’ :f d3xxT(x) x(X) and different from the equilibrium valugN,) corresponding
to the maximum ofS(| ao|?,N). Thus({Ny) is a function of
N. The fluctuations oNy in the closed system formed by the
=> Jd3x<&1&ﬂ(uj u,+viv,) trapped condensate after the evaporative cooling has been
Vit switched off are governed by a canonical Boltzmann-
1. . Einstein distribution
Pt P(No) = 0~ exp(Si|aol2,N) k).

1... ; :
LI T R 2 We shall restrict ourselves to temperatures in the condensed
+za o, (UvT+oIUT)+06,,|v , (2.2 . X ~ . .
277 WU UL LU+ dlu) (2.29 regime outside the critical regime, whefly(N)) is much

larger than its root mean squar&ANoz(N))=\/<AN’2)
=((N'2)—(N"Y®)2 which is also a function oN. Then

S(|ao|2,N), expanded to lowest order around its maximum,
takes the form

which serves as a definition df,=|a,|?. The mean thermal
densityn’ in equilibrium can now be determined via

0’ ()= (X (0 X(x))
S(| ag|?,N)=SEV(N) +AS(] ag|?,N),

=2 (U024 0,00 PN, + 0,001, it

(226 (| aol*=(No))?
0 0
_ 5 AS(| g% N) = —kg >
with n,= (exp(Bhw,)—1)"*. 2(ANg)
The fluctuations ofN, are similarly fixed by

(3.9

The entropyS(| ag|2,N) not only determines the equilibrium
2 N2\ 2 JARI2 distribution of the condensate amplitude, but also appears in
(ANG)=(Ng) =(No)"=(aN") 2.27 its equation of motion, both in the conservative part of the
dynamics as a conserved quantity, and in the dissipative part
:2 2 [E}(E,Jrl)f d3x(T* (), (x) as a potential for the irreversible part of the dynamics. Let us
v v . first consider both parts separately.
The conservative part of the dynamicsaf is connected
with the dynamics of its phasé. According to Eqs(2.5
and(2.15), a change o) changes the total phase of the field

operatory. For this reason the dynamics ¢fis given by the
. (2.28 equation of motion

2
+

A
nVnV,+§(n,,+nv/+1)

+0,(X)v* (X))

o ~ 5 2
X’ f AU, ()0, (X) + U, (X)v,(X))
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1oAYy 1 (£(1)£(0)) =tikgT(I" +il") &(1), (39
=————= A (3.2

N R e , ,
wherel’; reappears in Eq.3.7) because of the fluctuation-

whereA u is the deviation of the chemical potential from its dissipation theorem. The form of the Langevin equafias)

equilibrium value. Such deviations may occur as a result Ogene_rallzes the _work in Ref3] by taking into account a
any fluctuations present in the system and, as discussed fgssmlg correlatmn_of the phas_e O.f the condensate gnd_of the
ready, may in particular occur as a result of fluctuations o angevin force, which may exist n condensatgs with f'ﬁ"te
the value ofN, away from its averagéNo). This part of the particle numbers due to gauge invariance, i.e., particle-

fluctuation of . we shall denote a4 u. Expanding again to numt_)e_r conferva_momH_owever, it will turn_ out later that the
e B . coefficientl”” vanishes in condensates with a real condensate
lowest order around the equilibriudy=(Ng) we can write

mode, i.e., without vortices, which can be understood gener-
) ally as a consequence of time-reversal symmetBauge
Agu= m(|ao|2—<N0)). (3.3 invariance implies that the Langevin equation &gy, includ-
0 ing the fluctuating term, must be invariant under the trans-
F]ormation ¢— ¢+ €. This makes it useful to write the fluc-
tuating term as expo(t))é(t), where (1) is a complex
noise sourcendependendf ¢, which, physically, describes
(if o) cone= Aguax (3.4) the scattering of particles in the condensate with those
0/cons™ Safi&o- outside? The coefficientsI'’, and I'” describe a possible

It is convenient to introduce the fluctuation of the free correlation of the phases &f,=¢exp(¢) and ay, i.e., the
energy byAF=—TAS. The dynamics equatio(8.4) con- existence of a squeezing in the thermal bath of uncondensed

serves|ag|? and AF. In equilibrium the right-hand side of particles, caused by the constraint of total particle-number
this equation vanishes, because thagg.=0, and the total conservation. We shall see that this effect actually does occur

phase of the condensate- ( x)t/# changes only with a rate in finite condensates, i.e., the condensate mode imprints its

given by theaveragechemical potentia{x) in equilibrium. (slowly) fluctuating phase on the noncondensed ‘“environ-

The dissipative part of the equation of motionaf near ment” due to particle number conservation in such a way
thermal equilibrium is written with the help o&F in the that the Iowgs_t—ly[ng modes are neat@tally squeezed_.
general form The multiplicative nature of the noise in E(.6) raises

the question in which stochastic calculus this equation

The systematic part of the conservative part of the equatio
of motion of @y can now be written in the form

IAF(|arg|2N) should be interpreted: in the sense of Ito, or Stratonovich, or
ﬁ(&o)dissz -Ty o> , (3.5 in some intermediate sense? This will be specified in a mo-
dag ment. Within the Gauss-Markoff assumption, the form of the

. _ - . noise force with the same positive coefficidhf=0 appear-
which contains the positive phenomenological paramer  ing in the dissipative parfEq. (3.5)], and two further real
and describes the relaxation Nf=|ao|” to its equilibrium  coefficientsI'’ andT”, is fixed by the requirement that the
value(No). Langevin equation must be consistent with the correct equi-

According to general principles of statistical thermody- |ipbrium distribution [14] p(ao'ag)zz—l exp(— AF(|ao|%,
namics[14] the relaxation proces3.5) must be accompa- N)/k,T) for the condensate. Splitting into real and imagi-
nied by some form of noise. Adding a noise-term the totalnary parts Eqs(3.7) and(3.8) become
Langevin equation of, can be written in the form

(Re(£(1))RE(£(0))) =1ikg T(To+ ) 3(t), (3.9
Téexie). (IM(&()IM(£(0))) =fikgTT8(H),  (3.10
(3.6

. _ 9AF(Jag/%N)
|ﬁa0=A0/.La’0_|Fo—*

%)

1
Since the condensate amplitudg is a collective quantity (Re(g(t))lm(g(O)))=§ﬁkBTF &) (313

the noise&(t) can be assumed to be Gaussian due to the

central limit theorem. In addition we shall assug{¢) to be

a white-noise force. This means that the actual correlation 2, simpler ansatzsee Ref[3]) ignores thes dependence of the
t'me_Tm of the n0|se§. is assumed t(? be mUCh smaller than Langevin force in Eq.(3.6). Then the gauge invariance of the
the time scale on which the dynamics @f is observed, an  goyker-planck equation which is stochastically equivalent to the
assumption which must be checked for its validity in any| angevin equation implied”’=T"=0, i.e., the complex noise
concrete microscopic descriptiofin the microscopic theory g (1) then has random-phase fluctuations which are completely un-
we describe later it is a consistent assumption because th@rrelated with and equidistributed with respect to the condensate
relaxation ratey, of | a|? turns out to be small compared to phases. Note, however, that this achieves gauge invariance only in
the time scale of motion in the trgpThus we assume that an ensemble sense, not for each individual stochastic physical real-

(&(1))=0 and ization which together form the ensemble. In contrast, the form of
the Langevin equation considered here does enforce gauge invari-
(E* (1) &(0))y=hkgT(2T4+T") (1), (3.7  ance for each stochastic realization.
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Equation(3.6) may now be rewritten The correlation timer. is an important time scale of the
N r JAF problem. The noise sources (&(t)),Re(£(t)) must have
9No 0 correlation times short compared tgQ in order to be well
ot =2 h ( 9Ny kBT) + 5 VNo Im(&(D)), described by white noise. *
(3.12 On a time scale much larger than the correlation tirpe
the fluctuationssNy(t) in the equation for the phase can also
do 1 be considered as Gaussian white noise, with a correlation
i ﬁ\/—Re(é(t)) 313 fynction 2r( AN3) 6(t). Using this long-time approximation

in the equation for the phasg and taking the correlation of
and must in this form be interpreted as a stochastic differenthe effective white noiséNy(t) with Re(¢(t)) properly into
tial equation in the sense of Ifo. account,¢(t) is found to satisfy the Langevin equation of a
Equation (3.13 can be compared with Eq3.2). This  Wiener process,
comparison reveals that Rg€t)) must describe the fluctua-
tions of the chemical potentiadot caused by deviations of de(t)= \/D_¢dw,
|ag|? from its equilibrium value, but by other fluctuations in ) .
the system. We shall come back to this point in Sec. VIWith (dw)“=dt and a diffusion constant
below. 2 2 "
The three phenomenological coefficietitg, I'’, andI"” _(ANg) (p) ((ANg) o(m) 1 T
are dimensionless, temperature-dependent numbers, which ¢ hi(Ng) d(Noy\ kgT @(Ng) I'g
must be determined from a microscopic theory. Only one of

these coefficient¥ is connected with the fluctuations of the ——(Ty+T), (3.19
number of condensed atoms. If fluctuations of the chemical ﬁ<N )
potential due to other processes are neglected, i.e&(tiRe
=0, the remaining two coefficients are fixed at €.,
I'=-T,, I"=0. (3.14 ((p(1)— ¢(0))2=D 4t]. (3.20

This corresponds to the case of maximal squeezing of thEquation(3.19 agrees with the result of Reff3] if we as-
noise in the phase direction. sume, as in Ref.3], that there is no squeezmg in the noise,

Linearizing with respect to the small fluctuatio@, i.€., I''=I"=0 andd(u)/d(No)=kgT/(ANG) 1. Both as-
<(Np), we find sumptions will not be made in the present work, howeweér

also the corresponding discussion in Sec). IX
) 2kgT The expectation valuéay(t)) then decays exponentially
hoNg= — W<N0>F05No+ 2\(No)Im(&(1)), according to{ ao(t)) = V(Noye 2*!, with the linewidthA »
0 (3.19 given by the Schawlow-Townes-type formulay=3D .
' It is not difficult to solve Eqs(3.15 and (3.16 for the
o ) 1 phase fluctuations on time scales of the orderrof The
hip=— K SNn— (3.1  result for the mean square of the phase increment in time is

(9<NO> 0 mRe(f(t)) ,
<(¢(t)—¢(0)) )

Equation(3.15 describes the relaxation of the condensate to

the equilibrium at/Ng)={(|ao|?) on the time scale () " I
¢|t|+ 72 70Ny kgTD +<AN°><9(N 3

(3.17) X r2(e"Wme—1). (3.20)

h(ANZ)
2T o(No)kgT’

Te=

This interpolates between the diffusive long-time behavior

and the thermal fluctuations around it with the correlation . -
[Eg. (3.20] for t>7. and the short-time behavior far

function

<7

(SNo(t) SNg(t'))=(ANZ)ye It-tlIe, (3.18 T
B
(p(1)— ¢(0))?)= 7 (To+T")|t
Then the Fokker-Planck equation corresponding to Egd.2) 1 ou) [ Hp) oo

and (3.13 is #aP/at=2T g3l N[ No(9AF/aNg+ kTl INg) P], T2 3Ny (N, ><ANo>+kBTF te.
and has the desired equilibrium distributierexp(—AF/kgT). This
implies that Eq.(3.6) must be interpreted in some intermediate (3.22

sense, which we need not specify here further. In order to obtain its
version in the sense of Ito, it is best to bring E(&s12 and(3.13 The first term describes phase diffusion due to thermal fluc-
into the form of Eq.(3.6) using the Ito calculus. tuations of the chemical potential on time scales much
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shorter thanr.. The second term describes a nondiffusive
and in principle reversible phase collagée7], with the col-

lapse rate

1
')’collapse:%

I )

d(No)

)
d(No)

(AN3Y+kgTT" |,
(3.23

including a contribution from the cross-correlation between

both types of fluctuations.

IV. MICROSCOPIC DERIVATION OF THE LANGEVIN
EQUATION

The microscopic derivation of the equation of motion for
the condensate amplitude, can be carried out by using
Hamiltonian(2.29. As we did for phenomenological equa-
tions in Sec. lll, here we wish to derive the microscopic
equation of motion only to first order in the deviatiofg|
—+/{Ng)) from equilibrium.

Ho, given by Eq.(2.13), is the Hamiltonian, in the mean-
field approximation, of the pure condensate. Its free equatio
of motion is

. dHg
ihag= *=(,u,0—<,u>)a0' 4.2)
@o
from which
do(t
(z(t - —[rollao(V)[)—(w) 11k (4.2

follows. Let us first use Eq@4.2) in Eq. (2.18 to simplify
H,, and then eliminatéi, by proceeding to the Heisenberg
picture with respect to it. This changgsand y* in Hs and
H, according to

x—x()=€90 (u,ae ' +vralelet) (4.3

and its adjoinf. The transformed time-dependent Hamilto-

nians will be denoted ad5(t) andH 4(t), butH 4(t) will not
be needed in the following.
The equation of motion of the condensate amplituge

now takes the form®,with the notationH(t)=Hq+ H(t)
+Hy(t),

(4.9

PHYSICAL REVIEW A 62 023609

daol? (aﬂm
= . (4.9
dt 9D | agl vkt
We obtain
192 Nou— —— ReE' (1)~ ——5RelE' (1),
t \/<N0> <N0> (4 6)
d| ao|? 5 2
ﬁ%=z\/<NO>|m(§(t))+2J<No>5lm(§<t>),
4.7
with
. 1 - Jij
Re(g’(t))=§Uof d3x ¢/o+2<No>&<—,\¢]00>

XX (D) (t) + X ())x(1), (4.9

~ 1 ~ & 1 L1 <
m(&t)= 5o f d¥xiox" (1) (e “x(t) =€ X ()x(D).
4.9

The complex noisé(t) in Egs.(3.6)—(3.13 should be iden-
tified with

E(t)=Re(€' (1)) +i Im(&(1)). (4.10

It is indeed independent ap, as required by the gauge in-
variance of the Langevin equation, as can be seen from Egs.
(4.6) and (4.7 with Eq. (4.3. We shall see in Sec. V that

£'(t) can be replaced by @anumber.

To describe fluctuations around equilibrium, in the pre-
ceding expressions we have replaced the quantitigs,
o, )A( and ;(T by their equilibrium expressions
V(Ng), %o, x andx', and represented the difference in the
nonequilibrium state by Re(¢'(t)) and 8 Im(&(t)) in Egs.
(4.6) and (4.7). Omitting these differences altogether
amounts to neglecting the back action of the condensate on
the thermal reservoir, which describes not only a modifica-
tion of the fluctuating forces, which can indeed be neglected
for fluctuations around a stable thermodynamic equilibrium,
but also dissipation. To take the latter into account we need

to calculate the averag@$d Re(€' (1)) 4, &( 8 Im(£(1))) 4 to
lowest order in the interaction between the condensate and
the thermal cloud of atoms. The form which these quantities
must take is prescribed completely by the fluctuation-
dissipation theorem and symmetry:

For the reversible phase dynamics the back action can
only lead to a shift in the average chemical potential. Such

shifts due to the interactioﬁi3 will be small, and are ne-
glected here. For the irreversible amplitude dynamics the

“For simplicity, here we disregard the slow time dependence ofluctuation-dissipation theorem also requires the appearance

the frequenciews,, .

SFor the canonically conjugate pait, and ¢ at fixed)} and )}*,
cf. Egs.(2.6) and(2.7).

of a dissipation term. If

Sy(t—t")={Im(E®)IM(E(t"))) 4 (4.1D)
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is the correlation function of the fluctuating force in Eq. L N (U e
(4.7), the back action must modify E¢4.7) to the form M®), =2U, J d°X¢hov V(Ui u,+ EU:U,L +(veu),
dlagl® 4<No>ft G g Mot) (5.3
dt ~  72ksT ) . (=t J| arg? 1
. M) =2u, fd3x¢0u (5 Vot SURU, |+ (v p),
+2(NoyIm(&(1)). (4.12 a 2
The derivation of this equation is given in Appendix B. This
stochastic differential equation still differs from the phenom-and, very similarly,
enological equatiori3.15 in two respects.
(i) The noise still has a finite correlation timeg,;.. We
shall consider these correlation functions in more detail be- _ I
low. Taking the Markovian limitry,;.—0, with M, =2U, J x| Yot 2(N0>m
0
Sy(t—t")=hkgTly8(t—t'), (4.13
Xv,|URu,+ —v*v, |+ :
Eq. (4.12 becomes Or| BB 0k On (veu)
(5.9
d|010|2
T < o> St J o IM(E(1)). 7
1(2) _ 3 0
(414) M Vi, K ZUOJ d X ¢0+2<N0> ﬁ(N >
(i) The mean-field HamiltoniarHy(|ao|?) appears in o fmm L
Eqgs.(4.12 and(4.14) instead of the free energyF (| ay|?). XUy viv,t EUZUK +(veu)

This is due to the fact that the influence of the thermal exci-
tations on the energy are not yet taken into account. Doing
this under isothermal or closed-system boundary conditions

iy (1) 1(2) coinci i (1)
we should replace the energ’yo(|a0|2) by the free energy The matrix-elementM andM coincide withM

AF(|aol?) or — TAS(|ao|?), respectively. and M@ if the dependence ofi, on (N) is negligible or
This completes our derivation of the Langevin equationvanishes, as, e.g., in homogeneous systems.
for the complex amplitude of the condensate. Mf}?,w and similarlyM ("), , describes a scattering pro-

cess in which one atom is scattered out of the condensate by
V. GREEN-KUBO EXPRESSIONS FOR THE TRANSPORT  the absorption of the two quasiparticlesand « from—and

COEFFICIENTS the emission of the new quasipartickeinto—the thermal
bath. LikewiseM?) ., and similarly M’ () . describes a

Let us now analyze the fluctuating forces in more detail. VK

Inserting the Bogoliubov transformati@a.3) into Eqs.(4.8) §catt'§er|nkg); r()jroces_s wheret an 'T‘C‘;T”I'(”gdthe;”;a' qut?]smaktuéle
and (4.9 the fluctuating forces take the forms IS absorbed, again an atom IS kicked out from the conden-

sate, and two quasiparticles and u are emitted into the
thermal bath. The scattering amplitudes for both processes

Re(%’(t))— 2 (M E MG are linearly superimposed due to the phase coherence of the
4 o condensate, which exists on the time scale of the relaxation
&TQT& e |(Z)K7Zu;2),‘)t+H_C_] process induced by the scattering process even if it is de-
stroyed on a much longer time scale.
+ (nonresonant terms (5.1 We can now calculate the correlation functions of the
fluctuating forces. Their averages over the bath of quasipar-
Im(&(t) - E [((Ms(l)w * M(Vi) ) ticles vamsh,. (Re(g(t)_)>=0=<lm(§(t))>. Their second-
I kop order correlation functions are obtained as

alala,e Sie oot o]

+ (nonresonant terms (5.2) <Re(§’(t))Re(§’(t’)))d,
Terms are called “nonresonant” if the frequencies of the =5 2 |(M’(1) * M@ 2
quasiparticles cannot add up to zero. Such terms have not Koo wou) Vi
been written out explicitly, because below we shall restrict . _ - - ,
ourselves to the resonance or rotating wave approximation in X{n,(n,+1)(n,+1)e'l@xm@rmen)t=)
which they do not contribute. The relevant matrix elements - o~~~ ,
M® andM®@ are +n,n,(n+1)e (@ @m0t (55
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(IMED))IM(E(L"))) 4

:E Z |(M(1) )*_M(Z) |2
8

K,V v, K
KV,
X{FK(WV—‘F 1)(F,u,+ 1)ei(Z)K7Z)V7;’u)(t*t’)

+1,0,(n+ e @@ 0)t-) - (5.6
(Re@' (1))IM(E(t)))

% 2 {(MEL)*=ME DM

K,V VL, K K, VL
KV,

+(M'E) %)

VU, K

X (n,+ 1) (N, + 1)n e (@x @ o)t
=M, =ML )M 0%+ M)
X (Nt 1)n,n e (@@ e) (),

(5.7

These correlation functions can be replaceddbfunctions,

provided that the frequency sums contain a flat quasicon-
tinuum of nearly resonant terms in a neighborhood of the

PHYSICAL REVIEW A 62 023609

Let us now proceed to derive formulas for the three trans-
port parameter$’y,I'’, andI"”. From

1 [+
2ot = ez | due e,

) X (5.9
rir= e [ aanaon,,

implied by Egs(3.7) and(3.8), we obtain the representations

1 2]
o=t j d(t—t' ) (IMED)IMEL)) 4, (5.10

1 %
o+’ = _thTL d(t—t")(Re(£' (1))Re(&' (1)) 4,
(5.12)
n __ 2 “ ’ ' ,
"= ﬁkBT,L d(t—t")(Re(&" (1)IM(&(t"))) 4,
(5.12

reSO”anC&UK—wV—Z’M=0 which is broad compared to the which have the form of Green-Kubo relations for the trans-
damping rates we calculate here. This assumption will bgort coefficients. Using the explicit form$.1) and(5.2) of
satisfied in sufficiently large condensates. The strengths dhe fluctuating forces, the thermal averages can be taken, and

the & functions can then be extracted from expressi@ns),
(5.6, and (5.7 by taking the time averageg”.d(t

—t)(E()EM)) g and [ d(t—t")(ET (D) EN)) 4.

Re(&’(t)), and Im(£(t)) here are given as expressions in-
volving operators Provided the Markovian approximation is
satisfied, the average of their commutators over the quasipar- ~

ticle bath are again given b§ functions in time. Explicitly,
for the coefficients of the functions we obtain

f:dt([Re(%’(t)),Re(%'(o))]hz;:0

_ ﬁdtqlm@(t)),lm(é<0>)]>¢,

(5.8
f_mdt<[Re(?<t>),Im(&<0>)]>¢
—a 2 LMY, =M@ )M D), + (M2 )*)

K,V [
—c.c){(n,+1)(n,+1)n,—(n,+1)n,n,}
X 8(w,—w,~w,)=0.

It can easily be verified that the bracKet-} in the last line
of Eq. (5.8 vanishes if it is multiplied by & function ex-

the time-integrals in Eq95.11), (5.10, and (5.12 can be
carried out, which leads to the formulas

71- —_— E—
R (1) \x _pnp(2) |2
FO ZﬁkBT E |(MKvVﬂ) MVM,K| nvnp(nx+1)

KV,

X 8w, w,—,), (5.13
r +FI:L 2 |(Mr(1) )*+M/(2) |2FF
0 ZkaBT o K, VL v, K v
X(Net+1)8(w,—w,—,), (5.14
P T S MW M@ e ®
2hikgT 5 Vi v S v
12) Ve y_ (M@ — (@ /(1)
(M7 D)= (M, — (M )" )M, )"
2 YWnn (n ~ - =
+ML N+ d(e—w,~w,).  (5.19

These expressions constitute our general results for the three
transport parameters. They have to be evaluated separately
for each individual trap geometry.

VI. RELATION TO THE FLUCTUATION
AND DISSIPATION OF THE EXCITATIONS

As pointed out after Eq(3.13), by phenomenological ar-

pressing energy conservation. As a result the fluctuatingguments, the noise term Rgt)) is not connected with the
force% in the Markovian limit can indeed be treated as a fluctuations of the number of partiCIeS in the Condensate, but

number, and will henceforth again be denotedbyhis also

must be due to other fluctuations, which are then necessarily

serves as a hice consistency-check that it is indeed possibiBermal fluctuations of the amplitudes of the excited states.
to treat the condensate classically, even after taking its intef? Our microscopic results this can be seen from the fact that

action with the quasiparticles into account.

the fluctuating force R&’(t)) according to Eq(4.8) con-

023609-9



ROBERT GRAHAM PHYSICAL REVIEW A 62 023609

tains precisely the same operator which also appears in < O>

Hs(t), and couples the atoms in the thermal cloud to theE n,(n,+1)y 2 (M3 )x+M @) |2
condensate.

In the special case where the difference between the cou- o
pling matrix elementd/1’ +2 andM 2 is negligible(which X 8w, —w,— wﬂ)[ (n,—nJn,(n,+1)

is exactly satisfied in boxlike traps, cf. Sec. Mihe intensity
I'p+TI'" of the noise source can be expressed entirely as a 1 -
property of the excitations, as we shall now demonsttate. +s,+n+Dndn+1) .
For the amplitudesy,(t) and a; (t), a quantum-Langevin

equation can be derived microscopically along the same linehe second term in the curly bracket arises from the second
employed here for the condensate amplitude. We have donerm in Eq.(6.3) by first exchanging the notations for the
this elsewher¢15] (also see Refl3]) with the result, in the  summation indices’ and « and then symmetrizing im and

(6.9

Markovian limit, u, because the matrix elements are already symmetric in
these indices. The remainder of the proof then consists sim-
da,(t) ply of noting that forw,= w,+ w, the identities
G~ e M- ya+EM, 6D o

(n,—nJn,(n,+ 1)=nMFV(WK+ 1),
with Gaussian fluctuating force operators with vanishing av- 6.6

erage and (n,+n,+1)n(n,+1)=n,n,(n,+1)

) R _ hold. Using this in Eq(6.5), and then comparing with Eq.
(gj(t)gﬂ(t’)):Zyynyﬁ(t—t’)é,,M, (5.14), establishes the sum rule. We can also note that pro-
(6.2 cesses due to Landau scattering contribute to the sum rule
with precisely twice the strength of those due to Beliaev

<[§V(t)l§;(t,)]>:27V5(t_t,)6v,ul Scattering_
Thus we see that, in general, the noise amplitudes propor-
where the damping rateg, are given by tional to the combination of matrix elementsv f)yﬂ)*
—M$) . drive the number fluctuations in the condensate,
7(No) " S while those proportional toN’$) )*+M'(2) are due to
=7 2 {I(MK’W)* + M(V,L),Kl (ny,=n,) fluctuations of the occupation numbers in the excited states,
hewn couple in the Hamiltonian to the particle number in the con-
X S(w,—w,—w,) M (M@ |2 densate, and therefore drive tiphasefluctuations in the
s Ky condensate.
1
et 5| oot o, =0 (63 Vil EVALUATION OF THE TRANSPORT PARAMETERS

FOR A BOXLIKE TRAP

The first term describes the Landau damping of the mede o simplicity we consider now a trap consisting of a cube

by scattering a quasiparticle from mogleto modex, and is  f |engthL with cyclic boundary conditions. In the following
equivalent to a result derived in R¢L6] by the golden rule.  gqyilibrium values of all parameters are implied, but in this
The second term in Eq6.3) describes Beliaev damping, section we shall omit the tilde and wrige for () to sim-

where the mode decays into two modes and u. It sur- ity our notation. The normalized and v coefficients in

vives even forT—0, Whereﬁkﬂo for all modes. this case are
Let us now establish the connection betwdgn-1"" and
the damping ratey, , as given by Eq(6.3). We shall show E,+p22m 1
that the simple sum rule giPy X/h, (7.2
\/2Eyp7/m \/—
[o+D'= LZ n,(n,+1)y (6.4) 2om 1
0 3<N >kBT v v V.= —Py |pV x/h (7.2)
v J2E pz/m \/—
holds. To see this, we need to consider )
with
pz 2
8In the general case the coupling of the condensate mode to the E,= +u MZ, (7.3
noncondensate modes differs from the coupling between the non- 2m
condensate modes and the relation betwiégh I'', and they, is . . R
less direct. andp,=#A(2n/L)n,, with integer vecton,,.
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A. Transport coefficients 2/a\? Se,Te,—e,1,)
The squares of the relevant matrix elementsEqQ=E, To= 7\L 525 e,e,(e,7e,)
+E, become v
kgT
2 B
|(M(l) )* (2) |2 UO w = XG(SV’SIM va)F(syiSM;hwo), (78)
K, VL V,u.,K V EEE n n+n1 ,
7.4 2(a Sle,te,—¢,
( ) FO-‘FF,: = 2 ( o +p,)
, m\L oy e,e,(e,te,)
UO G(Evv ’ M)
M@ yx (@122 ( ) S\ wrmp P , KT
(M) + My = E,EE, MMt XG(SV,SM,—a)F(s,,,sﬂ,L , (7.9
(7_5) hwg
with
with keT
F 8,,,8;“%
G(x,y,a)=a’+ (x+y)?(BVa?+x*\a’+y’—xy 0
Bhwg(e,+e,)
+2a(Ja?+ X2+ a2+ y?+ a)) _ fio € ’ _
kBT (eﬁhwo(afrs#)_ 1)(eﬁﬁ“’08u— 1)(eﬁhw0£”‘_ 1)
+(X+Y)(X(Va?+y?+ a)+y(Va?+ X%+ a)) (710
2 2 2 2
+2a(Ja+x+a)(Va +ty“+a) Here we scaled the scattering length mUg/47A2 with L,
+a(xX2+y2+ a?). (7.6 and the enerzgleE 2andE and p andkgT with the energy
hwo=(27h)“/2mL*?, def|n|ng
The transport coefficients are then expressed as the simple e,= (N’ +a)?—a?, (7.1
result E—
£1eu= (N, +0,) %+ a)?—a?, (7.12
I"=0, (7.7 with a=ulhw,.
The double sums over, andn,, start withn values with
and |ﬁ|= 1. They are approximated by integrals according to
|
e,e,(e,te,)(--)de, de,
de,te,—e, )= ’7TJ f 2 (7.13
EM ( =) 1+2a J1+2a \/(s +a2)(8 +a®) (e, +e )2+a2)

Here (--) is any smooth function o, ande, . In all experiments so farg>1 is satisfied, i.e. we can replagd + 2a
—+/2a. This leaves us with the integral expressions

kgT
£,,8,,a)F sv,sﬂ,— de,de,
T j f (7.14
o Za J\Za \/(8 +a2)(8 +a®)((e,+e )2+a2)
kgT
( slu,—a)F - ds ds
R .
0 Za JZa \/(s +a2)(8 +a?)((e, +8#)2+a2) (719
The expression for I'y and the asymptotic behavior fore,,e,—0: G(e,,s, |a|)F(8,,,8 KeT/hwg)

—18(KgT/hwo)?1 e & u(e,T&,)] make it amply clear that the states with the smaIIest energjesa make a large
contribution tol'y (but not to F0+F ). To calculate this contribution it is permittetb useBhwge, <1 and Bliwpe , <1
under the integral, and to approximate

"We actually need the additional conditiaﬁlhwo< kgT.
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kgT

#,ﬁwo

(7.1

-  [kgT)\? 1
Ev,® A (e, Te,)e.E,

in addition to approximating

\/s,zj—i- az\/si—k az\/(a,,+ aﬂ)z—i- a’=a’,

and neglecting terms of ordeﬁ/az.
This contribution tol";, which we shall denote aB,
then reduces to

a 2

kT2
L

fiwg

FOOZ 367

o w© 1
X EEEEE—— .
f\'ﬁ dSVJ‘\’E ds,u, SVSM(8V+8M) (7 17)

The double integral can be evaluated @&/« In2, which
yields the final result

a\?(fiwg| M KT )2
rw=ssrmizna{ 7| ][0

2 12 2., 34
=1.59...(T) (l) N3 KeTca'm .
(No) #2

(7.18

PHYSICAL REVIEW A 62 023609

quencies, sa¥,, is small compared tg, while the other is
larger, of ordery or evenkgT. With respect toe, a low-
energy asymptotics may then still be used. We then obtain

ee]
ds,,f_ de,
V2a

G(0e,,a)—G(0,00)
X

sv(si-i- a?)

4

01 P

a

V2a

L

eﬁﬁwosﬂ

(eﬁhwosﬂ_ 1)2 !
(7.20

where we have set an upper cutoff for the small energy at a
fraction g of the chemical potential. Most of the, integral
comes from a range around and we may therefore replace
the thermal function by its asymptotics f@#%wee,—0,
which is (kBT/ﬁwosﬂ)z. The integrals can then be per-
formed, with the result

a\? o?u | (kgT)?
FOl—l%(E) |n(2ﬁwo>

fiwop
19 (T)2 N [kgTca’m 1/2| ( q2,u>
=122..|=| 7o~ ———| Inls—|.
T <NO> h? 2fwg
(7.21

The second form of this expression is obtained by eliminat-
ing V=_L2 in favor of the critical temperature of the equiva- We conclude that this contribution 1, is smaller than the

lent ideal Bose gas at the same density via

V=(N/{(312)(27h2 kg T m)>2, (7.19

leading term Iy, by the order of
(hwol w) 2 In(qPu/2h wy).

Let us now turn to the expressions fog—1I"go—I'g; and

magnitude

There is yet another particularly important contribution tol'o+I'". They can be simplified for>1 by rescalinge,
I'y due to the infrared singularity of the integrand; we shalland ¢, by «, and taking the limity2/a—0 for the lower

denote it ad oy, where onlyone of the two excitation fre-

boundaries of the rescaled integrals. In this way we find

G( 1)F< —kBT)
X,yl X!Yy
M

FO_FOO_FOlZZW E ﬁ_(uo J’O deO dy

VOC+1)(y?+ 1) (x+y)?+1)’

(kBT>2 18 x(x2+1)(y2+\/)72+_1—1)+y(y2+1)(x2+\/m—1))
_(fsl + . (722
o)\ Xy(X+y) X2y?(x%+1)(y?+1)
G( DF| xy, 2T
o ooy e
To+T _ZW(L) (ﬁwo fo dxfo dy\/(x2+1)(y2+1)((x+y)2+1)’ (723

where we used the scaling property

1F £, 8y kgT
a’«a

a "hwga

kgT
# ,hwo

F(s,,,s ) (7.29

temperature-dependent transport parameters of the conden-
sate for boxlike traps. In general, the integrals have to be
done numerically. We shall here consider some asymptotic
results only.

First we consider these expressions asymptotically for

Equations(7.22 and (7.23 are the complete result for the kgT/u>1. Then the integrals receive important contribu-
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tions fromx andy of the order of 1, i.e., from quasiparticle- For the contributionsl“g“) andI'"®) from quasiparticles
energies of the order of the chemical potential, and also fronith energies aroungk, we can approximate (x,y,kgT/u)
values ofx andy large compared to 1, i.e., quasiparticle according to Eq(7.16), and find

energies of ordekgT. The contributionsI'{™) and I'"*)

2 2
from large energies can be determined in leading power in Fg“)ng“) a (kgT)
(kgT/u) by approximating L] fiwou
1/2
keT| ( T)Z N [kgT.a’m
— | = =g (WkeD(x+) =0.028...B{| =— =< ),
F(X’y' ) KaT - (2 AT (Nop | 42
and rescaling andy by kgT/x. In the integral&for 'y and (7.27)
I'pc+T’, we can then lefu/kgT—0 without any problem, a\|2(kgT)?
using the propertyG(x,y,0)=4xy(x+y), whereupon they  [{*)+T'W=p’®)]| - B
are easily evaluated with the asymptotic results hwop
2 o\ 12
a\%kgT T kgT.a’m - | 1) N[ keTea™m
) 1) () ) Bl  PBlc =0.0248...B"# ,
ry’+r =TIy —87T(L) ﬁwo_l'z ST, PR Te) (No) 52
(7.26 (7.29
We see that the result fdt’ ) vanishes to this order. with the number8{*) andB’(® defined by the integrals

G(x,y,1)
VOC+1)(y?+ 1) ((x+Y)?+ D)xy(x+Y)

18 XOC+H1)(Y2+ Y2+ 1-1)+y(y?+ 1) (x> + Yx°+1—-1)

Bg’”=27rfo dxf dy

0

P G(x,y,—1)
r(p) = ,
o 277]0 dxfo Y o DA Dy Dyt y) (7.39

We can conclude that the contribution from quasiparticles asmallest powers ok andy in the integrands. The integrals
energies of ordeg is larger(for I'y by an order of magni- are easily evaluated with the asymptotic low-temperature re-
tude kgT/u«) than the contribution from energies of order sults

kT, but T{" is, in large condensates, still subdominant to

I'gp by the order of m_agnitudeﬁwo/,u. o a\2kgT T kgT.a?m

Now let us consider also the low-temperature limit, Iy—Too= 3677(—) ——=572.. — —
namely,  kgT/u<1 or, equivalently,  T/T, L) fag Te &
<(kgT.a’m/%?)Y2 In this region it is not necessary to dis- (7.32
tinguishN and(Ng). The integrals now receive their contri-
butions forx andy both small compared to 1, but we can still 189 (a\? u (kgT\’
use approximatiori7.25. For smallx andy we can expand Fo+I'"'= - 7T m(—

o\ M
G(X,y,1)=18+3(x2+y2+xy) T\ keTca2m) 2
(7.30) =0.36. . (T_c) —hz . (7.33

PN 2
G(xy, =) =5oXy (x+y)".
As long as the temperature is high enough to satigfy

. . L >\ uhwg, the partl’ still dominates the value df .
To obtain the leading term it is enough to keep only the pi@o partt oo 0

B. Particle-number fluctuations

8In the high-energy regime the subtractions of the infrared- We follow the procedure of Giorgingt al. [10(a)], and
divergent terms in the integrand of E.22 are of no importance. deduce the particle-number fluctuations in the condensate
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from the number fluctuation in the thermal cloud. This leads C. Particle-number relaxation rate
to Eqg. (2.28, which we evaluate using the expressions for

. We are now in a position to evaluate the r from
u,,v,, andg,. We obtain b a@al

Eq. (3.1 using the results fo(ANS) (numbers are calcu-

ZFV(FV+1)(E,2,+2M2)+M2 lated with the prefactoA’) andI'y=I"¢y. We obtain

ANG)= (7.34
(aNo E 2E2 1 (No)  keTcam| **ksT,
Ye= =180, ¢ N | 42 h
Approximated by an integral, this becomes ¢ ¢ h (7.42
N de  [JVe?+a?—a This result also applies in the low-temperature region, be-
(aNg) = T & 24 o2 cause it makes use only of the results {&N3) and I',
which also hold in that region.
£2+ 242 To obtain an idea of order of magnitudes, we compare
X[ a?+ Bhaoge 2| (7.39  this and the following results with the damping raigof the
2| sinh > 0 ) lowest-lying modes, which are given 1p$6—18
28\ keT T keT.a2m) “2ksT
The dominant contribution comes from the lower boundary 70:31 218 406, —N-13 2B C? m B¢
of the integratior{ 10] which contributes, fow>1, 4 1L h " Te h h
(7.43
) ke |*_ o[ MkeT) s W hat the relaxati is of the ord
(ANgGY=2m oo =A’ hz V (7.36 e see that the relaxation rajg Is of the order
0
o keTca’m v
with Y~ N L (7.49
' i: The proportionality factor is of the order qfu/% wq, and is
A 0.016l.... (7.37 _ . .
273 large in large and strongly interacting condensates. Thus the

relaxation of the condensate to its equilibrium is faster than
More precisely the dominant contribution ¢AN3) is given  the relaxation of the low-lying collective modes, but slower

by the discrete surfil(Q] than the frequency of the lowest-lying modes, which is
V2woult.
1
2\ _
(ANG)=2u?(kgT)? = (7.39 D. Phase collapse rate

v

The phase collapse rate is given by Eg§.23, and re-
which gives the same expression as E436), but with the  quires only the results fofA N2) andI"”=0. At zero tem-
prefacto? perature it reduces to

A= (22) %—0.0Z. cee (7.39 'ycollapselT 0= ﬁ (9<N ) \ ANO>|T 0 (7.49
T

V

3¢

- . . from which we obtain
If we eliminate the volume in favor of the critical tempera-

ture of the ideal Bose gas of the same density via(Ed.9
. 236... 3/4ﬁa
we obtain YeollapsdT=0= Y (ano) m
(2m)? 2 718
2\ _ 413 2
(ANZ) Ag(3/2)4’3 = N* (7.40 oe0 .kBTC kgT.a’m i_
f %2 JN
At temperaturel =0 a similar evaluation of Eq2.28 gives (7.46
(ANZY|r_o=2\m(aN)¥2y 12, (7.4)  For finite temperature we obtain

keT keT.a2m|
° 1’3(—B g ) . (7.47

? i i i Yecollapse— 0.8%.. .TN
Formula(7.39 differs from the one given in Ref10(a)] by a

factor 2~ % whereas the numerical result differs by yet another fac- _ _ _
tor; the formula(7.41) differs from the one in Ref{10@@)] by a By comparison with Eq(7.43, we see thay,japseis of the
factor 2. order of yy, and is therefore large large condensates smaller
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thany.. In summary, the phase collapse is not effective in
large condensates because it occurs with a natgapse

<v. and is at the same time restricted to a time interval 1 (kBTcazm

At<1/y., since for larger times phase diffusion takes over. Dszsﬁ)z —0.36%.. N 5

In the low-temperature regimeT< u, we instead obtain

1/2 kBTC
f

(7.53

E. Phase-diffusion rate This is much smaller tha®{;”, by an order of magnitude

The phase-diffusion coefficient is a somewhat compli-factor (u/KgT¢) 4N,
cated quantity because it receives contributions from several o _
processes which are physically distinct. We consider the dif- 3- Fluctuations in the thermal cloud at energies of order p
ferent contributions separately, and also distinguish the two From Eq.(3.19 this contribution is given by

temperature regimes of high temperatdgl > ., for which
we give the result first, and low temperatukg,T < u .

1. Low-frequency condensate number fluctuations

From Eq.(3.19 we infer, withI'g=1T"y,

1 du \?
(a) _ 2
Dy _ﬁkBT<No>Foo(<ANO> (9<No>) ’ (7.49

which is evaluated as

Y8 keT,

< N0> 1/2N 16 4
(7.49

The same result holds in the low-temperature regkg@
<. In comparison withy, [Eq. (7.43)], it is of the order

- 14 hwg
3 ')’ -~ _7 L]
0 \V P 0

(7.50

T ( kgT.ma?
(a): o B'c
D{?=0.08% .. 'Tc< 5

kgT.ma?

() _N-1/3
D¢ N 2

and is much smaller in large and strongly interacting conden
sates. Still this contribution to the phase-diffusion rate is al
ways the dominant one at low temperatures and may dom

nate even at higher temperatufsse below.
2. Condensate number fluctuations due to quasiparticles
around energies [
Splitting T'g=T g+ (I'g— "o and expanding to first or-
der,

T 2
I'Go

= — y 7-5
o~ Too (7.53

we estimate as contributiod? from the higher-frequency
condensate number fluctuations describedIy-T'y,, as
given by Eq.(7.26),

(7.52

which is in absolute value smaller than the contribuw)

from low-energy excitations by the order of magnitude factor

L (To+T") (7.54
¢ h(Ng)  ° ’ '
which is evaluated to
3 5\ 112
D=0.0248 . . .B’(“)(l) N_[KsTca'm) “kelc
¢ Tel (Ng)2 52 7
(7.55

This contribution differs fromD{” by the order of magni-
tude factor T/T.)?Vuhwo/kgT., and is therefore much
smaller.

For temperaturekgT<<u we instead find

T)B 1 [kgTea?m| kT,
h 1
(7.56)

DW=0.36.. .(—
¢ Te <N0> h2

which is again negligibly small compared B .

_In summary, the phase diffusion is caused dominantly by
the low-frequency particle-number fluctuations in the con-
f;iensate, and the phase-diffusion constant is given by Eqg.
(7.49. It is proportional to temperature, and scales propor-
tional to N~2 for fixed T, or proportional toN 2 for a
fixed volume of the trap.

VIIl. EVALUATION OF THE TRANSPORT PARAMETERS
FOR AN ISOTROPIC HARMONIC TRAP

In this section we consider the more realistic case of con-
densates in a parabolic trapping potentiab%xZIZ, which
we assume to be isotropic for simplicity. In order to analyze
the noise InG&(t)) driving the fluctuations ofa,|?, we must
consider in detail the relevant linear combination of matrix
elements:

(ME2,)% =M, =2Uq [ %ol (8,-F ) (@78 +55T0)

—u kol v,k (8.1

In the following we shall make use of the local density

Vhwo/w. This contribution is therefore negligible in very and Thomas-Fermi approximation, restricting ourselves to
large condensates. In not so large condensates the complédege condensates. For high-lying states we can then use the

integral in the result fol"y needs to be evaluated.

local energies in the Thomas-Fermi approximation,
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E(p,x)= \/ 4

2m

2 2
+| Uono(x)|) —Ugn3(x) 0 (u—V(x)),

(8.2

with the condensate density

No(X) = (No)| ¥o(X)|2= ({1} Uo) (1= (x/r1£)?), (8.3)

and the Thomas-Fermi radius
) 1/3

Frr= \/W:(

15U o(No)

T(,U«) (8.4)

PHYSICAL REVIEW A 62 023609

Jldxx2'+2[P,(2“)(x)]2=1. (8.10
0

In the phonon part of the excitation spectrum, we have

Uy=—v,~ o, *2. Furthermore, in that low-energy region
the statistical factor in Eq95.13—(5.15 is well approxi-
mated byn,n,n,~(ksT)*/%%0,w,0,. Just as in the case

of boxlike traps, the frequency factors in the denominator,
together with similar further factors in the denominator com-
ing from the matrix elements, make the phonon contribution
to the sums in Eq(5.13 the dominant one, at least in large
condensates, and we shall therefore concentrate on this con-
tribution in the following. This frequency range has a natural

The high-lying quasiparticle modes can be represented simizpper cutoff af )/, where the collective phonons go over

larly to the spatially homogeneous case as

E.+p32m
U, (X)= 2 e'PeXih,
V2E, pi/m
(8.9
2
vK(X)=—EK pKlzme”’x'x’ﬁ.

\/ZEszK/m

The low-lying collective modes can be represented as

B [Ugng(x) 1 | #o,
UV(X)—< TEV‘FE m)xv(x),

(8.6
B [Ugnox) 1 | 4o,
UV(X)—(— TZ)VﬂLE m)){u(x)v
with
f a3 x,(0)]?=1. 8.7

The mode functiony,(x) are known in the hydrodynamic
(long-wavelength and Thomas-Fermi approximatidni9—
24] by analytic solutions of the Bogoliubov equations. In
spatially isotropic parabolic traps they have the fdif]

iP(Zn
320,
TF

DX/t 16) (XIT18) Yim( 6,0) O (1= X/ 1¢).
(8.8

Xo(X)=

The polynomialsP{*"(x) of degree 2 are the normalized

solutions of the radial part of the Bogoliubov-Fetter equa-

tions in the Thomas-Fermi and long-wavelength limit
[19,2]] given by[21]

2y NANH2043 L,y dY
PV (x)= ' X N
n: d(x )

X[X2n+2l+l(1_x2)n]’ (89)

with the normalization

smoothly into particlelike excitations.

For E, ,E, ,E,<(u) the matrix elementsN{) )* and
Mfi)’,( are given by the integral

1) yx o\ (2)
(M)~ =M (8.11

/15 3U0<1u’>3/25mk m,+m,
87 r3.\2E,E,(E,+E,)

xJ(n,,n,,n, ;L) CLm,  ILm,),

(8.12
whereJ denotes the integral
J(Ne,ny, 0ttt
— 1d (1 —x2)2xt Lt p (N
=/, XXT(1— X)X “P
X (0P 0P (%)
and the Clebsch-Gordan coefficier®|,|l,m,,lI,m,) are

given by the angle integral

C(ll,m,.1,m,)

- f QY] o (B0, (6,0)Y1, m, (6,9)

if |IM—IV|sIKsIM+IV, otherwise they vanish. Below we
1 2
shall have to calculate, e.gzmwm#|(|\/|§(’3m)*_M(DM)’K|21
where we can make use of the sum rule for—1,|<I,
<|,+I
mo v

> [Cddl,m, 1,m,) =

My

11

v

so that the Clebsch-Gordan coefficients need actually not be
used explicitly.

In order to have well-defined expressions for the rate co-
efficients, we again need to smooth #h&unction expressing
energy conservation, which is done physically by experimen-
tal imperfections or limitations in resolution. Here this can
be done by replacing the discrete sum over the “quantum
number” |, by an integral
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The inequalities

> SE—E,~E,()

, L=1,|<IO<1,+1,

K

1 then imply thatn, must lie in the interval
~f dExm o(E,—E,—E, (")

N._<n.,sn,,,

:f dE ﬂ&EK_EV_EM)(“') (8.13 with

“(hwo)?(n+1/2) 1
Nee=5 (L AL, 2 1,[+9/4+ 2(e, +e,)?
where we used an expression for the excitation enefgs
E.=hoee,, —=|1,=1,|=3/2).
e.=v2n2+2n,+3n,+l,. (8.14 Using all this, from Eq(5.13 we obtain
2 2 2 1/3
We introduced the dimensionless eigenvalegs , which I'o=Bg ikB_T) = OOT_ZM l) ,
will appear in the ensuing expressions from now on. The do 7o L ¢3)

integration overE, with the & function then picks out the (8.19
energy valu€,=E, +E,, sothal, becomes a functiorﬁ(o)
of the other quantum numbers:

(e,+e,)°—2n%-3n,

wherefi wg is now eliminated in favor okgT, via the rela-
tion wo=kgT(£(3)/N)*3, and where the temperature- and

[0 particle-number-independent positive real numBgy is de-
« 2n,+1 ' fined by the multiple sums
|
13572 o 20941)32(n 0,0, 19000
00— 2 2 2 E 2 2 L z (816)
n, n, L, 1, n=n_ eyeﬂ(e,,+eﬂ)(2n,(+ l)

The result forl"y agrees, except for the numerical prefactor,higher-lying states must also be considered in order to evalu-
with the result of Ref[3] which was evaluated there using ate the smallcompared td"y) but finite value of this quan-
the local-density approximation and imposing a lower cutofftity. For this purpose we need to consider the matrix element
for the excitation frequencies at the geometrical mean tragM ') )* +M ’(Vi),,(. It differs from the matrix elements we

J— VR ~ ~
frequencyw. It can also be compared with the correspondinghave considered so far by the replacemegtx) — o(x)
result[Eq. (7.18] for the boxlike trap, which shows the same +2(Ng)di(x)/d(Ny) in the matrix element. In the
dependence on temperature and particle nurtibese stipu-  Thomas-Fermi approximation this is tantamount to the re-
late (Ng)~N), but the comparison of the prefactor is prob- placement
lematic because the condensate in the parabolic trap has two
length scalesly andrrg, whereas in the boxlike trap only Po(X)—(215) Pro(x)/(1—x3Ir2p). (8.17
the length scalé is relevant.

Property(8.11) of the matrix elements implies thaw- _ o _
lying excitations do not contribute #6,+1I"’. The reality of Physically this implies a reduced coupling of the thermal
the matrix elements furthermore implies tHat vanishes. fluctuations with the center of the condensate and a strongly
These remarkably simple results mean that the noise sour&hanced coupling at its boundary, as one would expect for
£(t) introduced in Eq(3.6) is purely imaginary, correspond- fluctuations located in the thermal cloud. A mathematical
ing to a total squeeziné in the direction of tr,1e phaseln consequence is the fact that the integrals defining these ma-
other words, the coupling of the condensate to the coIIectivgg(pf(l)e(?%zqsnd'\r/:égi"?; t&ztbﬁg?ed?\% Ienn::hoeur-lrtgcr)r?hf-lli:rﬁirtr:-l
feerCtILaglcr)lzfnLné:c}?uuciﬁ;iilrzgﬁ Lig??r\:'en ?g:: vsa?rlije:(t:); %‘ly tipns of that approximation. Instead of a fuII.-erdged exten-

The fact thatlt+ T’ =0 fg,r the corllatribution from .the sion of the theory beyond the Thomas-Fermi, approximation

0 =

low-Ivi ol hat th ibut ; h it will be sufficient for our purposes here to cure its deficien-
ow-lying states implies that the contributions from the .o 1y supstituting as a cutoff the finite thickness of the

boundary layer given bj25]
The latter is of course affected by the noise-source indirectly, 213
because the fluctuations 6N, driven by the latter cause fluctua- 1 (ﬁwo)

d=srrel —
tions in the chemical potential. 2 TRl ()
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The matrix element itself is then evaluated in the local- (15)%45 21+1
density approximatioh25], where we can make use to good A= >

purpose of the analysis already performed in Sec. VII. The 2 N on
finte volume V=L® [and the associatedZw,
=(27h)2/2mL?, which is not to be confused with the trap X
frequency calledwg in the present sectidris then an arbi-

trary local subvolume of the condensate, introduced merely (8.21)

as a technical device like a quantization volume. It must be

sufficiently small so that the condensate within it can beln order to find the scaling o@ANé) in the thermodynamic
treated as homogeneous, and sufficiently large that we cdimit N— o, wy— 0kgT.=%wo(N/Z(3))*° fixed it is neces-
replace sums over local momenta by integrals. At the end weary to use the form of the preceding results in whieky, is
have to check for consistency whether the result is indeedliminated in favor ofkgT. and to use/Ng)~N. Then the
independent of the choice of this volume. The result obtaine@ca|ing<ANg>~N4’3 derived in Ref.[10(a)] is recovered.
in this way is the local average of resuit.28 for the ho-  The particle-number relaxation rate now follows from Egs.
mogneous case, which now becomes space dependent, §8:17) and(8.15 as

cause we have to substitute a space-dependent chemical po-

7T (e(n,he(n’,))?

1 ’ 2
JO dX(l—X2)X2(|+1)p|(2n)(X)P|(2n )(X)

tential u— (u)(1—x3/r2;). This local result can be written 2Boo, ., @) %°keT
Y= (No)™ =] ——
A do] &
r(w) 2,2 a5
Fo(X)‘i‘r,(X): B (kBT) am , B 2(5(3))1/55001 <N0> 1/5 kBTCaZm kBTc
272 B u)(1—x3r3p) = A AN -2 -
(8.22

and is indeed independent of the choiceVofThe local av-
erage has to be performed with the weigkio(x) This is the largest of the various rates we calculate here, but

~ : : is still small compared ta,, the inverse time scale of mo-
+2(Ng)dtho(x)/ 3(Ng))? determined from Eq(8.17). Doing IS st 0 o3 6/5
the average and regulating the divergency of the integral 40 In the trap, by the order of magnitudie”=*(Na/do)™"

the boundary of the condensate by the physical cutoff, we The phase-colla}pse rate is obtained from E23. At
T#0 ( more precisely, above a crossover temperature of

obtain
orderfiwg), we find
213 keT )2 a 2815 157°A12 [ a|¥keT
I — ! -2/ - — J— —
Forl"= 10 152152 . (M)(ﬁwo) (Noy ls(d_o Veollapse 5 (No) do h
T 2 N 2/15 _152/5(§(3))2/15A1/2 T( N )1/5
= H(w)| — = —
oom...ow| 2| T
2 2/5
keT.a2m) ™ _y3l KeTca"m) "kgT,
X NZ/Q( B ;2 ) ) (818) XN hz h . (823

Apart from the numerical prefactor, this is the same
In order to extract results for the relaxation rate of theasymptotic expression as obtained for the damping ygief
condensate number and the phase-diffusion rate, it is alsie low-lying collective modegsee, e.g., Ref[15]). It is
necessary to know the mean square of the number fluctusmaller thany, by the order of magnitude(Ko)a/dg) 2",
tions (AN3). This can be evaluated from E(R.28, using I-e., the phase collapse remains inefficient before phase dif-
the fact that these fluctuations are also dominated by th&usion takes over.
low-lying modes[10(a)]. The result of this calculation to  The phase-diffusion constal{"”, due to the exchange

leading order in fwq/kgT) is of particles between the condensate and low-lying excita-
tions, is obtained by inserting the results {@rN3) andT o,
, (Ng)a| “5( kgT |2 in Eq. (3.19:
(AN0>:A< d ﬁ_wo) (8.19 " (15)45n2 o @) 25keT
P4 gm0 g
:L(I)Z(M)‘”E’Nm kaTea’m) * | 1595(¢(3))15R2 T( N )3/5
(€31 Te/ | N W) 520 28 Tel(Ng
(8. XNZB( kBTcazm) Vs T .
with the numberA given by the multiple sums h? h
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It is smaller thany,apse; @gain by the order of magnitude spreading of the phase caused by the static uncertaimy,in

of ((Ng)a/dg) ~2>. and the associated chemical potential. At times large com-
Finally, the contribution of the fluctuations in the thermal pared toy. *, the number fluctuations in the condensate are

cloud to the phase diffusion is also obtained from 319  dynamical and irreversible, and lead to the replacement of

by inserting result8.18) for I',+1"": the reversible collapse by an irreversible phase diffusion with
a larger diffusion rate than in the short-time regime.

D) — 3 2% 17,15( a | *% kT | 2k T The second and larger part of this paper was devoted to
4 10 152/15, 2< 0 do hoo) *h microscopic theory. First we provided a microscopic deriva-
tion of the phenomenological Langevin equation, established

3 23((3))" 161 (W) [ T\3/ N |1715 microscopic fo_rmulas for aI_I phenomenological parameters,
=— <_) <_) and also exhibited the relation between the short-time diffu-
10 15%/1572 Te) \(No) sion rate and fluctuation rates of the population numbers of

5\ 14/15 excitations via a sum rule. Then a microscopic theory was

XN?,Q( kgTca m) KgTec (8.25 used to evaluate the transport parameters and the various

#2 ho ' rates as functions of the temperature, particle number, and

the scattering length of the interaction potential. The evalu-
The differs from the previous rates, which were all propor-ation was done for two simple cases—the cubic box-like
tional to temperature, by the stronger temperature deperrap, where the form of the condensate mode does not de-
dence ~T3. However, this contribution toD, remains pend onN, and the thermal cloud penetrates the condensate
smaller than D(“) by an order of magnitude homogeneously; and the isotropic harmonic trap, where the

N~ Y(kgT.a m/hz)ll’liT/T )2. form of the condensate-mode changes withand the ther-
mal cloud is located preferentially near the boundaries of the
IX. DISCUSSION AND CONCLUSION condensate. The physically important results for both kinds

of traps are similar, even though they have to differ, obvi-
In this paper we have put forward a detailed theory ofously, in the details of the scalings with the atom-numbers
fluctuation and relaxation processes of the condensate iand the scattering length. A calculation of the transport pa-
thermal equilibrium with the cloud of its excitations. For a rameters reveals some interesting physical results.
given number of particleN, in the condensate, we have (i) The fluctuations driving the absolute valug| and the
defined the condensate mode as the corresponding normg@haseq of a, are quite different in strength, those driving
ized solution of the Gross-Pitaevskii equation, at the samera,| being much stronger. The reason for this is a pro-
time defining theN,-dependent part of the chemical poten- nounced squeezing of the bath of thermal excitations with
tial. The equilibrium value ofNo) is distinguished as the respect to the instantaneous phase of the condensate. This
value of Ny for which the number of particles in the thermal squeezing reaches nearly 100% for the lowest-lying modes,
cloudin equilibriumwith the condensate plus, is equal to  which is the reason that fluctuations ¢fare practically not
N. We have calculated the fluctuationsi§ around its equi-  driven by such modes. On the other hand, the contributions
librium value, as well as the fluctuations of the phase of theof high-lying modes to the fluctuating forces drivingy|
complex amplitudex, of the condensate withwo|?=Ng. I and ¢ are nearly the samé@fter the obvious normalization
a general phenomenological framework presented in the firstith |«q|), i.e., there is no squeezing in tHisiuch weaker
part of this paper, we were able to separate the fluctuations @ontribution to the noise.
the complex condensate amplitude into several contributions, (ii) The cross-correlation between the fluctuations driving
which have different physical origins. |ag| and ¢ are found to vanish exactly in a real condensate,
(i) The fluctuation of the atom number in the condensatewhere both the Gross-Pitaevskii equation and the
which are driven by the exchange of atoms between the corBogoliubov-Fetter equations are real, and all solutions can
densate and the thermal cloud. (but need notbe taken as real. This can also be understood
(i) The fluctuation of the chemical potential with two as a general consequence of time-reversal symmétig:a
different contributions, namely, the fluctuations @ofdue to  velocity potential and therefore odd under time reversal,
number fluctuations in the condensate, and the faster fluctuavhile |«y| is even under time reversal. Their fluctuating
tions of u at constantN, caused by number fluctuations in forces therefore transform oppositely. In a time reversal-
the excitations. symmetric condensateo vortices, the cross-correlation be-
The importance of number fluctuations in the condensatetween even and odd quantities under time reversal must van-
assumed at first in the phenomenological approach due to thsh.
importance ofN, for the value of the chemical potential, but It turns out that the relaxation rate, of the atom number
later born out by the microscopic calculations, leads to thén the condensate is the largest of the calculated rates. In
appearance of the linear relaxation rajgf the condensate particular it is larger than the collapse rate and the phase-
number as an important characteristic inverse time scale dfiffusion rate which, likey,, are proportional to temperature
the problem. At times much shorter tha@l, a phase dif- inthe regimekgT> u. It is also larger than the decay rates of
fusion of the condensate phase due to the fast number fluthe lowest-lying collective modeg,, which might look sur-
tuations in the excitations can occur. In the same regime grising because at the same time the theory tells usythist
process of collapse may also occur due to the reversibldominated by particle-transfer rates between condensate and
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low-lying modes. However, it is clear that, ought to be diffusion rate, determining their dependence on temperature,
larger thany, because the condensate couples to all low-atom number, population of the condensate, and scattering
lying modes in parallel, which increases the number of decajength.
channels by a factor proportional to the ratio of the chemical The importance of the particle exchange between low-
potential and the lowest-lying mode frequency. lying excitations for the phase diffusion of the condensate
The next largest rate we find is the thermal phase-collapsgnd the number-relaxation rate, was first pointed out in
rate ycoapse: It turns out to have the same functional depen-Ref. [3], while for theintensityof the number fluctuations in
dence onT, a, (No), andN as the decay rate of the lowest- the condensate this was already shown in RE)@)]. The
lying collective modes. | cannot see any fundamental reasoheory put forward in Ref[3] already proceeded along es-
for this coincidence, and have to count it as just that. PhySi'sentiaIIy the same lines we follow here, but it had some
cally th‘? smaliness Ofcojiapse/ ¥ means that the phase col- shortcomings which we overcome and correct in the present
lapse will not be observable at finite temperature, because Fork: The squeezing of the noise from the thermal cloud
can only lead to a decay facto_r E(Xp%(yco"apse/ ¥e)?) very with respect to the phase of the condensate was briefly re-
close to 1 before phase diffusion takes over. marked upon in Ref(3], but was not taken into account in

Finally, the phase-diffusion ra@,, is the smallest of the the calculation of the transport coefficients presented there
rates calculated here. We find the simple result that the ratio? P P

ve! 7o and yo/D 4 are of about equal orders of magnitude, and in.the formula for phase gliffusion.. Moreover, in the con-
given by the ratio ofu to the smallest excitation energy, S€'vative part of t2he Lang(_avm equatied.6) Aou was re-
which isf wg for the harmonic trap andu/m(2mA/L) for placed byaAF(_|a| )/daro|* in Ref._[3], w_h|ch,_on s<_:rut|ny,

the boxlike trap. Instead of, we may also takey, in these appgars guestionable when used in conjzunctlon with thg fluc-
ratios with the same conclusiol,, like the ratey,, is  tuation formulag2.27 and(2.28 for (ANg). After all, nei-
found to be dominated by the atom-number exchange beherAou nor AF are equilibrium quantities. The use of the
tween the condensate and the low-lying modes. aforementioned relation between them is therefore avoided

This observation actually explains the coincidence of thehere.

two ratios we have just indicated and turns them into a pre- Even though in the present paper | have opted for the use
cise relation: In Eq(3.19), for D,,, we putl'"=0, which is of the fluctuation formulas(2.27 and (2.28, which in
exact for real condensate modes, and the nedlgetI’’,  my opinion have a firm basis, it is only fair to mention that
which comes from high-lying excitations. Then multiplying they are still under debate in the current literature; see, e.g.,
the resulting expression fab,, with ye=1,* from Eq. Ref. [13]. In another recent paper with some bearing on

(3.17, we readily find this topic Bergemanet al. [27] used, as equilibrium distri-
bution for the condensate numbe?(Ng)~exd ((u)Ng
1 5 — 2 (15Ngaldg)?®Ng)/kgT], [cf. the discussion after their
5D ¢7c= Yeonapse: 0D Eq.(21)], which implies(AN3)~T(Ng)*®, a result which is
rather different, both in temperature dependence and in scal-
With yeoliapse from Eq. (3.23 again with['"=0. ing, from the particle number, from the resyB.19 on

Let us now compare our results with related ones found irwhich our present calculations have been based. It is clear
the literature. Most closely related to the present work inthat not the method but the details of our results on the
goal and scope is a paper by Jaksthal. [26] on the inten- dynamics of the fluctuations of the condensate would
sity and amplitude fluctuations of a Bose-Einstein conden€hange, if the results on the statics were to be changed.
sate at finite temperature, which builds on extensive earlieNeedless to say, a resolution of the theoretical debate con-
work by Gardiner and Zoller with collaborato¢sf. the ref-  cerning the correct approach to the statics seems urgent, and
erences given in Ref26]). Unlike the present paper, it also would be highly welcome. Conversely, experimental results
takes trap losses into account. The theory presented in Redn the dynamicgi.e., ony., and D,) would also help to
[26] is based on a conceptual division of the Bose gas intaecide, by applying the theory presented here, which of the
two energy regions called the condensate band and the noapproaches to the statics of the number fluctuations in the
condensate band. In this construction the boundary betweaondensate proposed in the literature describes the physics
the two regions is chosen in such a way that the noncondercorrectly.
sate band is not significantly affected by the mean field of the A quantum kinetic theory of trapped atomic gases was
condensate, while the influence of excitations in the condenalso formulated by Stoof28]. In Ref. [28] the general
sate band is neglected. Thus the main physical difference afoupled Fokker-Planck equations of the condensate and the
Ref.[26] from to the present work is that it neglects fluctua- excited modes was presented and applied to the kinetics of
tions of particles from the condensate mode to quasiparticléhe formation of a condensate. This problem was also studied
modes, as well as to very low-lying one-particle excitations.by Gardineret al.[29] as well as Kagan and Svistung30],

Conversely, in the present work we avoid the division ofwhere also earlier work by further authors is quoted.
the energy region into two parts. We find, as we have dis- By contrast the present work has focused on the fluctua-
cussed, that the exchange of particles between the condetiens around the equilibrium state of the condensattey it
sate and the low-lying modes makes not only an importanhas been formed. However, the application of our approach
contribution, but in fact the dominant contribution, to the to the kinetics of the formation of a condensate would be an
relaxation rate of the condensate number and the phaseteresting goal for future work.
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Experimentally, the ratey. andD , we have calculated APPENDIX B
should be measurable. The ratgmay be observable as the
relaxation rate of the condensate back to its equilibrium state
after creating a nonequilibrium state by a sudden smal
change of temperature via evaporative cooling. The sum o
the phase-diffusion rates of two condensates could be mea- ~ A o
sured by monitoring the phase difference between them after Hy=Ugy No)f d3xgox (e ¥y +e Ny  (BL)
it was initially fixed by measurement or preparation at a
reference-timet=0. Methods for measuring phase differ- . . . - )
ences in Bose-Einstein condensates were recently demofilves rise to the systematic change ol(t)), to first order
strated[4,31,32. It is to be hoped, therefore, that phase dif-'" the interaction, of
fusion in Bose-Einstein condensates—a fundamental process ,
intimately linked to the spontaneously broken gauge symme- 5<Im(%(t))> _ _2V<N0>Jt dt’ Sy (t—t’) IHo(t")
try in a finite system—uwill be measured in the near future. ¢ akgT J_ 9 |2 '

(B2)

Here we wish to derive Ed4.14). This is achieved if we
ucceed is showing that the coupling of the condensate and
e thermal cloud via

d| g
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knowledged. This work was been supported by the Deutschground equilibrium and only wish to calculate the dissipation
Forschungsgemeinschaft through the Sonderforschungsber|a|? which is conjugate tap, the variable we kept in Eq.
reich 237 “Unordnung und grof3e Fluktuationen.” (B1). Standard first-order perturbation theory with an adia-

batic switch-on of the interaction gives, with— +0,

APPENDIX A ]
. i [t . . ,
Here we wish to derive expressi@B.13 for H,. Using &Im(&(1))) 4= _ﬁj dt’([Im(&(1)),Ha(t")]) 4 .
the Gross-Pitaevskii equatid@.4) we put Eq.(2.9) into the o

form (B3)

U We can rewrite this as
Ho= (po— ()| aol*— 70|a0|4f d*xyg. (A1) . .
S(mE)) =21 (Ng) | dt (et 40

Taking the derivative with respect ter|?, we obtain

+ X (L) )et, (B4)
0 o (k) laol?| 225~ U [ el
dlag2 ° S PREERS 0 170L =0 \where we introduced the response functions
3, 2 alﬂg " ’ 1 g T+ ’
x| d ] (A2) Xt = o ([ImED), )]0 (t—t),
o
’ (B5)
To evaluate this further, we use E@.4) and its derivative " 1 - St ,
h? o with
(_ ﬁV2+V_M0+3Uo|ao|2¢S)w
&t=U, f d*xox (DX (OX(). (B6)
o 2
=|——3 "Yo¥o | ¥o- (A3) _ o _
9] gl Here®(t—t’) is the Heaviside step function. We shall de-

fine ®(0)=0 without loss of generality. The fluctuation-

Multiplying Eq. (A3) with 4 and integrating over space, jssipation theorentin the classical frequency domaiiw
using the Gross-Pitaevskii equati¢R.4) after partial inte-  <_T) ensures the relations

gration, we derive the identity
i0(t—-t") o

o g Xop(tt) = = — —=— —Syi(t.t"),
Uo|ao|2f d3X</’S(9| |2=(9| |2—U0j Yad3x, (A4) I 2kgT gt
7)) (4 %0) (B?)
which is used in EQ(A2) to yield dHg/d| a2 = pmo— (1), ()= 1O(t-t )isj;ﬁ(t,t'),
and upon integration results in E@.13. ¢ 2kgT 4t
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with the correlation functior$ which can be rewritten as
Syr(t,t)=(IME()EL)) .,
. ’ g Tt e (BS) dd)( )
Syp+ (4,1 ) =(IM(E(1)ET (")) 4. 5<Im(§(t)))¢— k T f dt’Sy,(t,t") e
We can use EqB7) in Eq. (B4), and apply a partial inte-
ian int’ ; 2(N
gration int’, to obtain _ k<BT0> Syn(tit), (B10)
- N t o
&Im(&(1))) 4= < _?>fwdt’(837§(t,t’)e'¢(t)
with Sy;(t,t") defined by Eqs(4.9 and(4.11 and
sy
— Sy (t,t))el ) ——= oy )
NGy Sr(tt) = Zr{(Ebe PO - (1)e M)t )e )

— k—_l?(SJ%(t’t)e—llf’(t)_{_ S\]%Jr(t,t)ei ¢(t)),
B

F(t7)el )
®9) +E () ), (B11)

The constant term witl$;g(t,t) amounts to a small shift of

Mim(&(t)) according to Eq.4.9) contains an explicit external the equilibrium value ofu in the final result, which we shall
time dependence vig(t), in addition to the internal time depen- neglect like other terms contributing to such shifts. Then,
dence ofy(t),x'(t) via their Heisenberg equations of motion. This Using Eq.(4.2), we setid¢(t')/dt’ = —dH(t")/d|ag|® in
explicit time dependence has to be taken into account when apphEQ. (B10) which establishes EqB1) and hence Eq4.14).
ing the fluctuation-dissipation theorem. We avoid this additional
step by applying the time derivative in the fluctuation-dissipation
relation(B7) directly to thesecondime argument’, with of course
the appropriate extra minus sign.
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