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Matter waves in time-modulated complex light potentials

S. Bernet R. Abfalterer? C. Keller? M. K. Oberthalet J. Schmiedmayerand A. Zeilingef
nstitut fir Medizinische Physik, Universitannsbruck, Milerstrae 44, A-6020 Innsbruck, Austria
2Institut fir Experimentalphysik, Universitannsbruck, Technikerstrae 25, A-6020 Innsbruck, Austria
3Institut fir Experimentalphysik, UniversitaVien, Boltzmanngasse 5, A-1090 Wien, Austria
4Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
(Received 19 January 2000; published 17 July 2000

Temporal light modulation methods which are of great practical importance in optical technology, are
emulated with matter waves. This includes generation and tailoring of matter-wave sidebands, using amplitude
and phase modulation of an atomic beam. In the experiments atoms are Bragg diffracted at standing light fields,
which are periodically modulated in intensity or frequency. This gives rise to a generalized Bragg situation
under which the atomic matter waves are both diffracted and coherently shifted in their de Broglie frequency.

In particular, we demonstrate creation of complex and non-Hermitian matter-wave modulations. One interest-
ing case is a potential with a time-dependent complex heli&ityexp(wt)], which produces a purely lopsided

energy transfer between the atoms and the photons, and thus violates the usual symmetry between absorption
and stimulated emission of energy quanta. Possible applications range from atom cooling over advanced
atomic interferometers to a new type of mass spectrometer.

PACS numbgs): 03.75.Be, 03.75.Dg, 32.80.Pj

[. INTRODUCTION tigate in detail the phenomena which arise during the inter-
action of atomic matter waves with such modulated light
The interaction of atomic matter waves with standingfields. One more motivation of our investigations is the suc-
light fields has been established as a very useful tool in atorness of frequency shifters and sideband modulators in tradi-
optics. In standing light fields atoms can be trapped, cooledjonal light optics in both scientific and practical applica-
diffracted, manipulated, and arranged in so called optical lattions. Thus we may expect corresponding breakthroughs in
tices[1,2]. The simplicity of the systems recently allowed matter-wave optics, particularly in combination with the re-
one to investigate many relevant quantum optical phenomeneent advances in the generation of atomic Bose-Einstein con-
which are closely related to solid-state physics, like quantuntlensates which can act as “atom lasers.”

chaotic behaviof3], Bloch oscillations[4], Wannier-Stark In previous publications we have already demonstrated
ladders and Landau-Zener tunneliitd, spectroscopy of the that the effect of atomic scattering at traveling Bragg grat-
Bloch bandg[6,7], and temporal interference effedi8,9].  ings (which arise in an intensity modulated light crygtes-

An important subgroup of these interactions consists ofults in coherently frequency shifted atomic matter waves.
Bragg scattering of atomic beams at standing light fieldsThis can be interpreted as an atom-optic analog to an
[10—14], which can then be viewed in analogy to condensecdacousto-optic frequency shifter in photon optf@s8,24], or
matter physics as “crystals of lightT15]. Atomic Bragg as a process of sideband generation similar to radio fre-
diffraction has been demonstrated at both refractive and algfuency techniques. In the next sections we will first theoreti-
sorptive light crystals, revealing interesting features whichcally and then experimentally investigate this basic effect in
are analogous to standard Bragg diffraction in crystallogramore detail.
phy, like Pendellsung-oscillations, anomalous transmission  Furthermore, we extend our investigations to general po-
(the Borrmann effegtthrough absorptive crystals, or the tential modulations, which can be even complex, and dem-
spectral dependence of the scattering pthd2e14,16. Even  onstrate how to realize them experimentally with two
the interaction withcomplexlight potentials has been inves- complementary methods, i.e., either by independently modu-
tigated[17], resulting in asymmetric Bragg diffraction, i.e., lating real and imaginary parts of the light potenfiab], or
in a lopsided momentum transfer between atoms and phdy controlling its amplitude and complex phd&$]. Using
tons, which violates an empirical rule called Friedel's law. these methods we realize potential modulations of the form
In practical applications the coherence of the Bragg scatV«exp(*iwyt), which represent a complex helix in the time
tering process allowed for its use as an efficient coheremomain. These modulations lead either to a subtraction or to
beam-splitting mechanism in atom interferometgt8,19, an addition of a quantized energy amotiat), to the kinetic
and more recently, as an output coupler for coherent matteznergy of the atomic matter waves, depending on the sign of
waves from a Bose-Einstein condensate of at¢@®21.  the exponent.
Due to the extremely high momentum and energy selectivity For an explanation of the observed diffraction effects we
of Bragg scattering, it is also used as a very sensitive spe@resent an intuitive Ewald-type model which extends the
troscopic tool to investigate such degenerate quantum gasekssical Bragg situation to the case where the crystal is
[22]. These methods frequently exploit the possibility to modulated. Such a model allows for the derivation of the
modulate the standing light field in order to get a traveling,new Bragg condition, under which a coupled process of
or a pulsed light crystal. Thus it becomes important to invesBragg diffraction and atomic matter-wave frequency shifting
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(“atomic sideband generation”is allowed. For calculating eralized to a situation where an energy change of the dif-
the diffraction efficiencies at the new Bragg angles the refracted wave is allowed, if the scattering medium is tempo-
sults of standard Bragg scattering theory are used, as derivedlly modulated or moving.

independently in dynamical diffraction theof27], or in a Both the energy-momentum picture and the Huygens pic-
coupled wave formalisrf28], though with additional consid- tyre lead to equivalent results, i.e. to a dynamic diffraction
eration of the effects of CompleX, non-Hermitian potentials.theory_ Here we chose the description in the wave picture,

Finally we briefly sketch another viewpoint of our experi- resuiting in a so-called Ewald construction, which is well

ments, which points out its relation to recently publishedynown in standard diffraction physics. One advantage is that
interesting experiments, where the Bloch band structure ofe gjiowed diffraction geometry can be constructed directly
magneto-optically trapped atoms in optical lattices has beep, yhe |aporatory frame. We generalize this picture to the
investigated4—7. We show that atomic Bragg scattering at situation of scattering at a time modulated periodic medium,

modulated potentials can be interpreted as a transition Withiﬂmugh with reference to the energy-momentum picture at

the energy-band structure of the light crystal, which is in—the ond of the paper by pointi t th lati ¢
duced by the temporal modulation process. Thus our experi-__. paper by pointing out the relation ot our ex-
L : é)_erlments to the field of so-called Bloch band spectroscopy.

tion of the energy-band structu@Bloch bands”) of the In general, a Iight field represents a frequency-dependent
light crystal. The main result within this viewpoint is that cOmplexrefractive index for the atorf80]. Consequently, an

special types of complex potential modulations, that are acEXtended standing light field corresponds to a periodic re-
tually realized in our experiments, leaddectedtransitions ~ fractive index modulation with the ability to diffract an
within the energy bands of the light crystal. This asymmetric2lomic matter wave—a scattering “crystal” made of light.
energy transfer corresponds to a very unusual interaction bé’_he fact that the scattering of atomic matter waves at.such
tween atoms and light fields, which, in particular, does notight crystals can be described as a standard Bragg diffrac-
lead to thermal equilibriuntlike, e.g., in blackbody radia- 0N process, like, e.g., x-ray diffraction at solid crystals, has

tion). Besides its fundamental interest, this might have pracP&en well investigated in the literatuf@0-13. Analogies
tical applications in atom cooling. have been found even in very fine detdilgl-14.

The main characteristic of standard Bragg diffraction is a
quantizedmomentum exchange between the incident wave
Il. BRAGG DIFFRACTION IN SPACE AND TIME and the scattering crystal, which can occur only in multiples

The interaction of atoms and standing light fields can beOf the "grating momentumG, whereG is the grating

described by two complementary pictures. In atomic physicsvector of the crystal with the absolute valy€|=2m/d
often an energy-momentum picture is used. There, atoms:G, inversely proportional to the grating periatd Very
absorb a photon from one mode of the light field, followedsimilar, a potential which is periodically modulated in the
by stimulated reemission to another mode. Thus the atortime domain with frequencw),, can, under certain circum-
acquires a momentum change which corresponds to two phstances, exchange energy quanta in multiples ©f, with
ton recoil momenta. The process is allowed if the energy ofhe incident particle. Such an energy exchange, which alters
the atom is conserved, i.e., if the absolute value of the atomithe optical frequency of a scattered photon, or the de Broglie
velocity does not change in the laboratory frafsapposed frequency of a scattered particle, is technically described as
that the atom does not change its internal state during th&equency sideband generation. Due to the analogy between
interactior). The efficiency of such an allowed process de-diffraction and sideband generation, both characterized by a
pends on the probability of the coupled absorption/stimulatedjuantized exchange of momentum or energy, respectively,
emission process, and thus on the light frequency detuninthe process of sideband generation is sometimes denoted as
from an atomic transition line. The picture can be general-‘diffraction in time” [31].
ized for the description of processes, where the atom changes The close analogy between spatial and “temporal” dif-
its internal state, or where the atom interacts with light fieldsfraction also results in a similar classification of the diffrac-
of multiple frequencieqd"“Doppler-sensitive Raman transi- tion regimes. In standard scattering there is a significant dif-
tions”). There the atom can change both its momentum anference between diffraction at thin gratingse Raman-Nath
its kinetic energy, if a generalized condition of total energyregime and thick crystalgthe Bragg regime In the Bragg
and momentum conservation is fulfilled, which depends orregime the grating isspatially thick enough to define a
the geometry of the interaction process, on the participatingharply fixed orientation of the grating vector. In a thin grat-
light frequencies, and on the internal state energies. A deng regime these orientations are undefined in a certain con-
tailed overview over atom-light interactions in this picture istinuous range, allowing for diffraction at a correspondingly
given in Ref.[29]. continuous range of incidence angles. The borderline is ba-
In other fields of diffraction physics, e.g., in light and sically given by Heisenberg's position-momentum uncer-
x-ray diffraction, electron, and neutron scattering, often atainty limit.
complementary picture is used which is based on the inter- Similarly, in temporal diffraction the interaction time be-
action of an incident wave with a periodic medium. Theretween the crystal and particle generates two significantly dif-
the diffraction is described according to the Huygens prinferent regimes: a ‘“short”(temporal Raman-Nathand a
ciple as an interference process of all partial waves scatterétiong” (temporal Bragy diffraction regime. If the interac-
coherently from the periodic structure. This can be also gention time between the incident particle and a periodically
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modulated potential is long enough, energy can only be eX{ a: Bragg . B: Raman-Nath
changed in sharply defined energy quanta, whereas in a sho — %G
(e.g., pulsed light crystainteraction regime, energy can be

exchanged in a continuous range, which allows the genera & 2

tion of spectrallybroad sidebands. Again the transition be-
tween the two regimes is given basically by an uncertainty
relation, though now by the time-energy uncertainty.
Linking diffraction in space and time, all combinations of | C: Raman-Nath in Time & D: Bragg in Space & Time
spatial and temporal diffraction regimes can be realized, like| 599" iy
e.g., sharply defined momentum transfer but continuous en >
ergy exchangéddiffraction of atoms at a pulsed thick light
grating in Ref.[13]), corresponding in our terms to a “spa-
tial Bragg and temporal Raman-Nath regime,” or continuous
momentum transfer and quantized energy exchadiffeac-
tion of atoms and neutrons at vibrating mirrors in R¢&2]
and [33], respectively, corresponding to “spatial Raman-  F|G. 1. Ewald constructions for different situations of first-order
Nath and temporal Bragg scattering.” However, all of thesescattering at a given directiafito the right side”). The discussed
combinations exhibit different scattering effects. cases aréA) a thick static grating(B) a thin static grating(C) a
In our experiments we investigate coupled spatial diffracthick pulsed grating, anD) a thick, harmonically modulated grat-
tion and sideband generation in a spatial and temporal Brag§9-
regime. In contrast to all other combinations this gives rise to
new discreteBragg angles, under which the atomic matter ] |(§|
waves are simultaneously diffracted and frequency shifted. S'”(eB.nG):”Gm- @
The periodic light potential for the atoms can be tailored by A

superimposing different light fields, or by modulating the  However, since the grating vector is usually not oriented,
light frequency across an atomic resonance line. In the foli.e_, it exists in both opposite directions, the orientations of
lowing we present an intuitive model for deriving the new incident and scattered wave vectors can be exchanged, which
Bragg condition for scattering at temporally modulated crys-yields two symmetrically arranged Bragg angles for scatter-
tals. ing at the two conjugate: ngth Bragg orders.
The situation changes in the case of scattering at a fo-
cused standing light wavihin grating, as sketched in Fig.
A. Generalized Ewald construction for modulated crystals 1(b). Due to focusing in the direction, thez component of
In static Bragg diffraction, an incident wave is scatteredthe grating vector(, is no longer defined sharply, but has an
only under specifidiscreteincidence conditions—the Bragg uncertainty in an angular range inversely proportional to the
angles. This is a consequence of both energy conservatigiize of the focusAG,~(2Az) ~* [34]. Although the condi-
for the incident wave, and quantization of the momentumion of energy conservatiofelastic scatteringstill holds, the
exchange between crystal and wave in muItipIeshé, direction of the transferred grating momentum can now be

<. . = chosen in a certain continuous range, and the Ewald con-
whereG is the grating vector|G|=2/d). In the case of a d

liaht al set by tw ¢ ting liaht struction yields a corresponding range of incidence angles
Ight crystal set up by two counterpropagating light Waves,, o e e|astic diffraction is possible. As an example, two al-

\ﬁ/'th *Wavelength A and corresponding wave vector lowed pairs of incident and scattered wave vectors are
ke ([k|=2m/)), the grating constartt corresponds ta/2,  sketched in Fig. ). Thus, focusing of a transversely ex-
and the grating vectors a@= = 2k, . tended(plane standing light wave results in a continuous
Energy conservation and quantized momentum exchangeansition from a Bragg regime, where scattering appears
are the basis of the well-known Ewald construction, whereonly at discrete incidence conditions, to a thin-grating regime
the tips of incident and scattered wave vectors are located ojthe Raman-Nath regimewhere a broad range of incidence
a common circle around their origifequal length corre- angles(and momentgis scattered35].
sponding to energy conservatjpadditionally, they are con- The Ewald construction can be generalized to the situa-
nected by a grating vectdcorresponding to a quantized mo- tion of a temporally modulated crystal. Such a temporal

mentum Change dté) . A construction for first-order Bragg modulation provides the possibility to transfer kinetic energy
diffraction, Corresponding to a momentum exchange of exio the scattered wave. If the interaction timeas short(the
actly #G is sketched in Fig. (8). Obviously, for a given temporal Raman-Nath regime; e.g., by pulsing the light

lenath of the incident R q crystal, then there results a continuous energy uncertainty
ength of the incident wave vectéh=mo /A (whereman AE,;,~"%/ 7 of the scattered wave, which enables Bragg dif-

v, are the atomic mass and velocity, respectivelgr dif-  fraction at much less stringent incidence conditions. This is
fraction at thength order, the Ewald construction yields only demonstrated in Fig.(&) by a modified Ewald construction
one possible incidence angle; the Bragg arigg , satisfy-  where the circle of the original Ewald construction is substi-
ing tuted by a circular band with a thickness ofridf, corre-
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sponding to an energy uncertainty ®E,;,~#/7. Similar to Thereny, andng are the numbers of frequency modula-
the Spatial Raman-Nath situation of qub)], diffraction is tion quantaﬁwM and grating momentéé, exchanged be-
now again allowed for a whole range of incidence anglestyween wave and crystal, and thus correspond to the temporal

I;otwever,_m %onttrastéhere; |s_nowf|aed moTentum transfer_ ﬁ']nd spatial diffraction orders, respectivd&. andk A denote
etween incident and outgoing wave vectors, acCompaniegl. ;. ident and diffracted atomic wave vectors. An addi-

by acontinuous energy transfeThus the Ier)gth of the SC‘.% tional condition is imposed by the fact that each exchange of
tered wave vector can change, and scattering becomes 'nelaas'modulation quanturii.e., each “diffraction process in
tic. As mentloned_above, such a situation might be characﬂme,,) has to be accompa’nied by an exchange of a grating
terized as a spatial Bragg regime and a temporal Ramar?’homentum(i.e., a spatial diffraction procelssn contrast to

Nath regime. . . . spatial diffraction, which can also happen without energy
However, in our experiment we stay in a spatial and tem-

B ) b lovi ) v h "exchange(“standard” Bragg diffraction.! Therefore, the
Enoor:uIatriz%gvvri?rgl;?eequgng;nuﬂ Oy;:% legvr\zﬁgr?o?/a Egrf}?_mcpossible temporal diffraction orders, are restricted by the

. . A . . spatial diffraction ordeng to only three cases:
ciently long interaction timer (several modulation periogs

Now the energy exchange between the crystal and wave is
guantized in multiples ofiwy, with an uncertainty in-
versely proportional to the interaction time Eyin~%/7). This means that there is always the possibility for elastic
Consequently, both momentum and energy transfer between

crystal and wave are quantized. The Ewald constructions’Catterlng (i =0) or, that there is the possibility to ex-

modified for this situation, is sketched in FigdL Now the thange a number of energy quanta corresponding to the spa-

L ) ; tial diffraction order Q= £ng).
peak of the incident wave vector defines the radius of the For solving Eqs.(2) it can be exploited that due to mo-

middle cwcle._The lengths of the atomic wave vectors Sh'ﬂedmentum conservation only the component of the atomic
by the quantized energy offsetsfiw,, are given by new

; ) . wave vectork, || parallel to the grating vector can change,
circles with smaller and larger radii, offset layy /va. A but not the perpendicular componeky , [this is also

sharply defined grating vect@ connects incident and out- gyrajghtforwardly seen from the geometry sketched in Fig.
going wave vectors, which, however, can now lie on thel(d)]_ This means that

different circles. Obviously, these conditions are satisfied
only for discrete incidence angles, although there are now

ny=0 or ny==*ng. (3)

. . . . : . . k,IA,L:kA,L,
three possibilities for first-order diffraction in one direction,
as indicated in the figure. The situation thus corresponds to a ,
generalization of Bragg scattering to the time domain. Con- Ka=Ka, |+ NcG, (4)
sequently, the standard static Bragg condition results as a
special case setting,,=0. The waves scattered at the new nkpl ki)
incidence angles are expected to be coherently frequency 2m _ 2m +yh oy .

shifted by the modulation frequency of the crystal. Note that

in our situation of scattering at a Bragg crystal, the diffracted These equations can be solved easily. As an abbreviation
beam contains only one single-frequency component at ge introduce the matter-wave frequency of an atamp,

time, b_eca_luse only a certain fr_equency shift,_ which depend§ﬁ|EA|z/2m' and the two-photon recoil frequenayge.
on the incidence angle, can fulfill the generalized Bragg con- | =1, . . . L
dition derived above. This means that a modulated Bragg "*/G|/2m an atom acquires with respect to its original rest
crystal indicates the frequency shift of a diffracted atom by afame after addition of one grating vectGr. Thuswgecis a

unique Bragg angle. Thus, in the spatial and temporal Braggeometric constant of the setup. As a result, for the parallel
regime, a modulated crystal acts simultaneously as a sidéomponents of an allowed pair of incident and diffracted

band generator and an analyzer. wave vectors we obtain

2

1
B. Calculation of the generalized Bragg condition kA'HZEnGG
NGWRec

Ny @
_MEM 1) ,
In order to calculate the new Bragg angles for diffraction
with quantized energy exchange we analyze the situation (5)
sketched in Fig. (). Both momentum and energy can only
be changed by quantized amounts, requiring Ny +1)

2 ’

NgWRec

, 1
R R R kA'HZEnGG
k)lg\: kA+ nGG,

@) and

2 -2 .
ﬁ| kA| _ hlkA| +nufio IThis is a consequence of the Satlimger equation, where spatial
2m 2m MM - and temporal coordinates are not symmetric.
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frequency-shifted atoms looks exactly like the diffraction
+1. (6) pattern in “static” Bragg diffraction, though with an angular
offset given by Eq(9). The situation thus resembles scatter-
ing at a moving crystal, which would result in a scattering of
frequency-shifted atoms with a diffraction pattern looking
like a static diffraction picture, although centered around a

Ny

KAl =[Kal

Thus an incidence anglé,,, where an incoming atom
can be scattered, is

K 2 new incidence angle. In fact, in a previous publication an
) AvH nG|G| I’]M(uM . . b d . . I b—
SiN(0jy)= == —=—| 55—~ interpretation based on atomic scattering at traveling su
kol 2|kal \ NGoRec crystals within the modulated light crystal was introduced
" [23].
. Ny |G| However, for many situations another picture is advanta-
:S'n(‘gs'”e)jL AR @) eous. An alternative Bragg condition can be derived b
2ngwredKal geous. iv ag iti iv y

considering the ondulation or “wobbling” frequencyyop,
Obviously, the relation is a generalization of the static BraggVith which an atom incident at one of the new Bragg angles
condition, yielding the static Bragg angle in the case of arf|, traverses the grating planes of a crystal:
unmodulated crystalnj, =0).

Similarly, the angle of the scattered atofly;, is given , - Ny
by . wWob:UAS|n(0|n)|G|:_EwM—"nGwRec- (10)
Nuom If we take into account the additional condition,=
A I ne|é| néwRec *ng [Eq. (3)] for diffraction with energy exchange, this can
SiN(Oou) = == —= be rewritten as
[Kal  2[kal Vi+nyon/wa
Sin(6)) — 2 SiN( B ) N&fi wre=NH(Owob™ W) (13)
= : tS)
Vitnyoy/wa This central equation can be used as an alternative formu-

] o o lation of the Bragg conditiohEg. (7)] for inelastic scattering

In our experimental situation of very small incidence andat modulated crystals. An interpretation is straightforward if
scattering anglesbelow 200urad), all the sinus functions  the atom is regarded in itsicident rest frame There the
can be replaced by their arguments. Therefore, from(Bq.  energy of the atom is zero. However, after a static Bragg
in a very good approximation, we obtain the differenc@  scattering process, the atom moves. The corresponding ki-
of the new Bragg angles,, (with frequency shift from the  netic energy of the atorwith respect to the original rest
original static Bragg angledig  , for the cases where Eq. framecan only be supplied from a time-dependent modula-
(3) holds, i.e.,ny=*ng: tion “seen” by the atom in its frame. In fact, even in static

scattering the atom experiences a light intensity modulation
M with frequency wy,, due to the apparently moving light
© crystal (with respect to the atomic rest frajand therefore
can change its kinetic energy in multiples ®tvyo,. An

There 85=G/2k, is the static Bragg angle for first-order alternative interpretation of the static Bragg condition now
diffraction. This shows that the angular offset of a newresults from the requirement that this energy change must
Bragg angle from the static Bragg angle, obtained at a modumatch the atom'’s recoil energyi% wge, linked to the ad-
lated crystal, is a direct measure of the frequency shift acdition of ng grating momentdi.e., ngth-order diffraction to
quired by the scattered atoms. Therefore, a modulated Braghe resting atomnote that the quadratic dependence of the
crystal is able to produce sidebands of matter waves, andecoil energy on the diffraction order is due to the matter-
simultaneously, to identify the frequency offset of the side-wave dispersion relation in vacugmThis means that the
bands by their offset from the static Bragg angle. This relastatic Bragg condition for matter-wave scattering can be re-
tion will be used in several parts of our experiment. formulated as 3% wre= Nah Owob-

Additionally, our experimentally applied modulation fre-  However, if the crystal is temporally modulated with a
quencies are far below the matter-wave frequengyof the  frequency ofw), , the atom experiences this frequency con-
incident atoms. Considering this, from Ed¥) and (8) we  tribution in addition to the ondulation frequenayyop-
obtain the total scattering angle of the atoms#ag:— 6,  These twa(“spatial” and temporal frequency contributions
:208,%1 which is identical to the scattering angle of static result in beating frequencies @fy,,+ wy, corresponding
Bragg diffraction. Additionally, according to E¢7), the an-  to new modulation quanta which can be exchanged between
gular offset of the new allowed incidence angles from thethe atom and crystal. Therefore, the meaning of @4) is
static Bragg angle does not depend on the diffraction ordethat the recoil frequency forngth-order diffraction
(assumingny, = £ng), i.e., the incidence angles of all atoms (n3% wged has to match a multiple of the new energy quan-
frequency shifted byng% ), are offset by the same amount. tum %(ww.p™ wy) Which can be exchanged between the
This shows that the total far-field diffraction pattern of atom and crystal. This alternative formulation of the Bragg

A0= le‘l_ GB’nG: + 05

WRec
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condition is particularly useful for discussing the angular and Mirror . Detector
velocity selectivity of the inelastic Bragg diffraction, as will S | Off Bragg
be shown below.

Atom source

On Bragg|

C. Diffraction efficiency at Bragg incidence s =
In the next step we investigate the efficiency of sideband - g Slit Position [um]
production. In the Ewald picture of Fig. 1, this might be seen Le“s"\a =
as a determination of the weights of the different circles, &

which then represent the wave-vector magnitudes of elasti- ] )

cally and inelastically scattered atoms. In this short discusb F'G'fz' ExpentTental setufnot to scalg A CO”'(T_atel‘?' trllwermal "
sion we will limit ourselves to the situation of scattering at 2€2M Of metastable argon atoms crosses a standing light wave. The
first order. For static first-order Bragg scattering, it can bedn‘fractlon pattern can be registered with spatial resolution by scan-

Shoun 1 s e ofhe dfaced v fonctan, oS ot 1 xndes et gt
is given by[10,12,16,28 y

using an acousto-optic modulat@OM). The two graphs show the

results for off-Bragg incidencnly one peak of transmitted atojns
(12 and Bragg incidencéa second peak of Bragg-diffracted atoms

arises in the case of an unmodulated laser beam. Additionally, the
. . ) scattering efficiency can be registered as a function of the atom’s

TherelL is the so-called PendeBangs length depending incidence angle at the light crystal by fixing the detection slit at the

on the grating constartt, on the atomic recoil energizrec  position of the diffraction peak and tilting the retroreflection mirror.
=#%2G?/2m, and on the coefficielW 5 of the spatial Fourier

transform of the grating potential, which corresponds to Componems/nG,nM into Eq.(12), under the assumption that

Acsi TAZ
—SII’]T.

the amplitude of the grating component with pertid the atomic incidence occurs under the corresponding Bragg
angles[given by Eq.(7)].
— d EReC _ (13 Specifically, the diffraction efficiencies for first-order spa-
Vg sin(6g) tial diffraction at the basic grating with the exchange of zero

. _ _ _ (elastic scatteringor one modulation quanta are
Obviously, the diffracted amplitude oscillates between

—1 and 1 as a function of the crystal lengthz, or of the wAzsin(g)\? )
grating amplitude. This is denoted as the so-called “Pendel- Png=1ny=0= W) IV1d®,
losung.” However, if scattering is only limited to low- (17)
diffraction efficiencies well below the first Pendellmngs
length (this condition is fulfilled in many of our experi- wAzsin(6g) )2 )
ments, it is possible to expand Eq12): PnG—l,nM—il:(W) IV11]%,
Re
A 7AZ (14 respectively.
L - There it is assumed that the condition of small diffraction

efficiencies holds, such that the approximation of Elp)

The corresponding diffraction efficiend, i.e., the ratio  can be applied. The first term of each equation only contains
of diffracted atoms to incident atoms, is then given by thegeometric constants of the setup. Thus it turns out that the
squared modulus of Eq14): diffraction efficiencies depend only on the squared modulus

of the coefficients of a two-dimension@patial and tempo-

wAz\2? ral) Fourier transform. This dependence will be confirmed in
P~l—/- 15 sec. 1.
The situation changes if the potential is additionally . EXPERIMENTS

modulated in time. Now a two-dimensional Fourier trans-
form has to be performed, dividing the total potential in con-
tributions with grating constantg;G and modulation period
Nyow, i.e.,

We start by describing the scheme of our experind6t.
Then we will demonstrate the basic features of scattering at
time-modulated crystals, before investigating the effects of
complex potential modulations.

Vx,)=2 2 Vo o, eXNingGx—inyoyt). (16) A. Setup

Our setup is sketched in Fig. 2. Argon atoms in a meta-
The amplitude of first-order Bragg scattering at a subgratstable state are diffracted at a standing light wave, followed
ing with grating vectomgG, modulated with one of the fre- by spatially resolved detection.
guencieny wy, within the temporal Fourier spectrum of the  The argon atoms are first excited to a metastable state
modulation, is now given by inserting the respective Fourier(lifetime >30 9 in a gas discharge. Only these metastables
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can be detected by our “channeltron” detector, by releasing
their high excitation energyl2 eV) in a collision with the
detector surface. The beam of metastable argon atom A
emerges into the high vacuum chamber, with an average ve
locity of 700 ms'?, and a thermal velocity distribution of
60% (full width at half maximum. The beam is collimated
by a set of two slits(first slit 10 xm, second slit 5um,
distance 1.4 mto a divergence of less than &rad, i.e.,
considerably better than the diffraction angle o#g2
~36 urad.

Real Potential
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After collimation the atoms enter a 5-cm-long interaction =2 gg‘t’;‘t';d
region with a standing light field, set up by retroreflecting the r
central part of a collimated, expanded laser beam at a mirro| ®,—5Y o, o +5y
(surface flatness<50 nm), located in the vacuum beamline. Frequency

The f_requenc_y of the diode laser is actively locked at 6.m open FIG. 3. Complex potential of a light field for an atom near an
atomlc.transmon of metastable argéat 801.7 nm u.smg open atomic transition line. The real part corresponds to the dipole
saturation spectroscopy. The frequency can be shifted by gyential, with the spectral shape of a dispersion line centered at the
well-defined offset using an acousto-optic frequency shifteryansition frequency. Thénegativé imaginary part corresponds to
Both the intensity and frequency of the laser can be modu«absorption” of the atoms, realized by pumping to thendetectep
lated with rates up to 200 kHz, using an acousto-opticground state. Its spectral shape corresponds to a Lorentzian. Below,
switch, or by directly modulating the diode laser current,the complex phase angle is drawn as a function of the light fre-
respectively. Details of the light crystal generation vary inguency. It has the shape of an arctangent function with an offset of
the different parts of the experiment, and are explained be- 7/2.

low.

The standing light field represents a light crystal with a (rani=DE/# is the Rabi frequency of the population
generally complex index of refraction for the atoms. Thusoscillations b_etween the two I_evels with a transition d|_pole
the atomic beam is diffracted if its incidence angle is a BraggomentD, driven by the electrical strength of the light field
angle, but not affected at arbitrary incidence. The crystal @t résonancew is the center frequency of the transition

angle can be controlled by tilting the retroreflection mirror N€; andy is the effecti\rqe line \_/vic_jthkof the trﬁmsition. |
with a piezo actuator. From quantum mechanics it is known that an externa

In the far field behind the crystal, at a distance of 1.4 m'potential changes the phase velocity of a wave function. Due

the diffraction pattern can be spatially resolved by scanning 1o the fact that .SUCh a spectrally deper.‘de”t phase.change acts
third 10-um slit in front of the large area “channeltron” as a spectral filter on matter waves, it has to satisfy certain

detector. However, in most of the experiments the detectioﬁ"’"“'s"’llity requirements defin_ed by_the Kramers-Kronig rela-
slit is just located at the position of a Bragg diffraction peak,loNS- They demand that a dispersion shaped spectral depen-

and the diffraction efficiency is then measured as a functiofi€nce of areal potential has to. be accompanied by a Lorentz-
of the mirror anglg‘‘rocking curves”). Note that even in the shaped imaginary contribution:

case of modulated light crystals, the detection slit position
remains on the same position, since both the direction of the
incident beam and the total diffraction angle are always con-
stant.

Q2 /2
Vimag(a’) =—i Rabl 4 .
4 (w—w)?+(y/2)?

(19

Such an imaginary potential corresponds to an absorption
B. Interaction of metastable argon atoms with light fields coefficient with a Lorentzian spectral profile. In fact, such an
biously. the whol . d d he | imaginary contribution is contained in the interaction be-

_ Obviously, the whole experiment depends on the interacq een atoms and light fields, since resonant excitation of an

tion bgtween the argon atoms .and the light field. The_correétom consequently leads to spontaneous emission of a pho-
sponding theqry is well established, and thus we point Oufon, which kicks the atom out of its path—i.e., the atom is

only fgaturgs important for our ?“?‘“a' experiments. effectively removed from its original statsimilarly, absorp-

_ Alight field represents a positive, a negative, or even ano, of 5 light beam in a material can be due to diffuse
Imaginary potential for an atom, dePe”d'”g_Q” the detun'ng;cattering. However, since in a two-level atom at optical

of the I'%ht frequen_cr?/ ;rom ag ?tohmm. transition “nﬁ' Intelrl— frequencies the deflection due to diffuse scattering of a pho-

Ectlon 3. a'ﬁoms witt | etrl]me '9 tl ga/es rls%ehto the W_el'_ton is smaller than the detector angular resolution, this de-
nown dipole potential. The spectral shape of the potential igie ion s typically not resolved in Bragg diffraction experi-

a typical dispersion curve, as displayed in Fig. 3. Its spectralyens The situation changes in our three-level argon atom.
dependence is given 40] For realizing detectable “absorption,” the most important

702 _ feature of the metastablesd atoms is theiropentransition
Vion (@)= —REDI @~ % _ 18)  1ss—2pg(4s[3/2]2—4p[5/2]2) at 801.7 nnfthe effective
4 (w—wg)?+(yI2)? line width is ~9 MHz). If the atoms are excited at this
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wavelength, they decay spontaneously with a branching ra. 2000 -
tion of 72% to the ground state which is not detected by our
channeltron, i.e., the atoms are absorbed with respect to oL 8007 Unmodulated
measurement. € 10004
Both real and imaginary parts of the potential can be com-<
bined in a resulting complex potential: E 500 -
<
2 E o F e
V(w)= M_ (20) A 1000
w—wgtiyl2 3
6 800
Figure 3A) shows the completeomplexpotential of a light & oo
field for an atom near an absorption line, split into the ™
Lorentzian imaginary part and the dispersion profile of the — *°°
real part. 200 Parggegerasas®® T
_ The arctangent-shaped complex phage angle of the poter 0 ' 200 ’ 200
tial is plotted below as a function of the light frequency. This Incidence Angle [prad]

spectral shape of the phase angle is important, since it deter-
mines the phase of the diffracted atoms. This is due to the FIG. 4. Generation of new Bragg peaks at a modulated crystal:
fact that, in the case of a Comp'ex potential’ the Pende"g In the upper graph, the efﬁCiency of first-order Bragg diffraction at
length becomes compld¥q. (13)], and the complex poten- an _unmodulatedight grystal is plotted as a function of the atomic
tial phase then directly determines the phase of the scatterd@fidence anglé“rocking curve,” see insef i.e., the angle of the
wave according to Eq(14). This behavior was experimen- retroreflection mlrro_r(the solid line is a Gaussian fit to the data
tally verified earlier[15], and investigated in detail in Ref, Only one peak of diffracted atoms appears at the Bragg angle. In
[16]. Interesting theoretical investigations of matter-wavell'® '0Wer graph the measurement is repeated, using an intensity-
Bragg scattering at complex potentials were presented imodulated light crysta_l, which is switched on and off perlodlcally
Refs.[37,38. The most important aspect for our actual ex- W't.h a frequency ofoy =2 x 60 kHz. Two new_peaks arise atnew

. . incidence angles. They are arranged symmetrically around the static
penm?nts IS .the fact ihat the phase of the scqttered wave ¢ agg peak at the center. Note the slight difference in the widths of
be adjusted in a range from 7 to 0 by changing the light . o peaks.
frequency from the far red detuned side to the far blue de-
tuned side of an atomic transition. and a periodically intensity modulated light crystéwer
graph. The light frequency was detuned far enoughlQ
linewidthg from the open transition at 801.7 nm such that
) ) o ) the potential could be assumed to be purely real. The experi-
. The basis of our investigations is the fact that a modulate_qinent was performed by locating the detection slit at the po-
light crystal produces new Bragg peaks, and that the atoms igijon of the first diffraction order, and then detecting the
these new peaks are coherently shifted by the modulatioq,mper of diffracted atoms as a function of the retroreflec-
frequencywy to higher or lower matter-wave frequencies. tjon mirror angle. In the case of an unmodulated crystal we
The coherence of the frequency shifting process was alreadyiained only one peak of diffracted atoms at the static
demonstrated in a previous publicatif®4]. Here we dem- Bragg angle. This is a typical result demonstrating that our
onstrate quantitative investigations about the angular depepreasurements were performed in the Bragg diffraction re-
dence, pe_ak width, and_ velocity selectivity (_)f the_diffraction gime (note that the result of such a measurement in the case
process, in order to verify our Ewald-type diffraction model. o¢ giffraction at athin grating would consist in an almost
We also investigate a special case where Bragg diffraction atynstant efficiency, i.e., without any angular dependgence
a modulated crystal occurs at a perpendicular incidence of | the next experimerflower graph, the light crystal was
the atoms, a situation which can be never achieved in stansyitched on and off periodically with a modulation fre-
dard static Bragg scattering. This special situation mighbuency ofwy =27x 60 kHz. As a result we found two new
have practical applications as a sensitive method for MaSSeaks of Bragg scattered atoms, arranged symmetrically
spectroscopy. around the static Bragg peak. In a previous publication it was
shown that these peaks consist of atoms whose matter-wave
frequency iscoherentlyshifted by the modulation frequency

In the first experiment combining spatial and temporal[24]. This was demonstrated by interferometric superposition
Bragg diffraction, an atomic beam was scattered at a lighof the diffracted frequency shifted matter wave with the
crystal which was periodically switched on and off. Al- transmitted unshifted wave, resulting in traveling interfer-
though this situation was already investigated in Refsence fringes, which were detected. The sign of the frequency
[23,24], here we briefly present the basic effects. Typicalshift depends on the side on which the new peaks arise with
results of such an experiment are shown in Fig. 4. respect to the central Bragg peak. Frequency-upshifted atoms

In that figure we compare the efficiencies of first-orderappear at positions closer to perpendicular incidence, and
Bragg diffraction as a function of the atomic incidence anglevice versa. According to Eq9) the angular separatiofi 6
for two cases of an unmodulated light crystapper graph ~ from the static Bragg angle is proportional to the modulation

C. Diffraction at modulated real light potentials

1. Intensity-modulated light crystal
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150 - - 27A|v |
| O Frequency upshifted sidepeak _ Al o
O Frequency downshifted sidepeak Awwop d sin(9). (21)

8

This relation shows that the width of the wobbling fre-
quency, and correspondingly the size of the angular inci-
dence range, around which the alternative Bragg condition
[Eqg. (11)] can be fulfilled, depends on both the correspond-
ing incidence angl®, where the new Bragg peaks are cen-
tered, and on the broad velocity distributiod|v 4
(=~350-ms'! full width at half maximum of the atomic
beam. With increasing incidence angle, and thus with in-
creasing modulation frequency, the dependence from the ve-
locity distribution becomes larger, increasing the width of

. the new Bragg peaks in the “rocking curves.” The same
Moduiation frsquency (k2] relation also reveals that the two peaks of frequency-shifted

FIG. 5. Offset of the two new Bragg peaksee Fig. 4, lower ~atoms appearing in each rocking cuilige in Fig. 4) should
graph from the static Bragg angle as a function of the intensityhave different widths. Note that this asymmetry between the
modulation frequency. The linear behavior expected from(8gjs ~ Widths of the left and right peaks is already visible in the
clearly demonstrated. data of Fig. 4. The reason for this is that the two new Bragg
peaks arise at different absolute incidence anfges Eq.

- (9)] 0+1=60g(1*= wy/wreyd. Therefore, the width of the
frequency Q6/6g=*wy/wrec, Where wrec=h[G|/2M  \yohpiing frequency distribution, and accordingly the angular

=2mx30 kH2). This relation is verified in a sequence of r5ngeA g in which Eq.(11) is fulfilled, becomes different for
experiments where the modulation frequency was changed ifhe eft and right peaks, respectively:

a range from 25 to 200 kHz, and ‘“rocking curves” were
recorded in the same way as before. In Fig. 5 the position of

2]

Angular offset [urad]

the new Bragg peaks is plotted as a function of the modula- _ d _A|UA|
tion frequency. Aber= 5y TAOwor= T, 7 s(1E on/0red.-
The graph clearly demonstrates the linear behavior of the (22

angular offset of the new Bragg peaks from the static Bragg
angle. The absolute values of the corresponding slopes ob-
tained from the data s=0.61+0.01 uradkHz ') agree
with the expected value [Eq. (9): s=0g/wgec
=0.60 wrad kHz ] within the experimental resolutiofin-
serting the experimentally measured Bragg angle of iz,
Whiclh corresponds to an average atomic velocity of 69
ms -).

In fact, the widths of the peaks are not symmetric. A

special case with the most pronounced asymmetry is ob-
tained if the modulation frequency corresponds to the recoil
frequency. In this case the angular width of one of the two

daeaks should not be influenced by the velocity distribution at
all (1- wpy/wrec=0), whereas the other peak should show

a doubled velocity dependence{lvy / wrec=2) with re-

As an additional test of our model, we examined the . : . A
widths of the new Bragg peaks at different modulation fre—E%e(ég)) the static peak width obtained by seting=0 in

guencies. From our previous theoretical considerations, it is In Fig. 6 the width of the peaks in the rocking curves is

expected that the peak width increases with increasin lotted as a function of the incidence angle at which the new

modulation frequency, due to the broad longitudinal velocity ; . i
distribution of the atoms in the beam. The reason for this i&eaks are centered. The graph agrees with the behavior ex

most easily seen from the alternative Bragg condition for ected from our moddEq. (22)]. The individual data points
modulated crystals, formulated in Ed.1). This condition is for the left(negative anglesand right peakspositive anglep

imposed on the two new Bra eaks. frequency shifted bare taken at different modulation frequencigse same data
. P for first-order spatial dif?rgcpt)ionr( T 1? andyre ures ¥et as used for Fig.)5however, the width is not plotted as a
— M P . A €AUTES ¢ nction of the modulation frequency but as a function of the
Owob= WRect Wy, respectively. Since both the intensity

: . corresponding incidence angles. First, the data show that the
modulation frequencyvy, and the recoil frequencyge. are

. . € eak width increases with increasing incidence afigiedu-
constants, th.e only dlsperS|\{e parameter dependlng on trf)gtion frequency, in accordance with Eq21). Second, the
atomic velocity and on the incidence angle is the “wob- ' :

bling” f ith which the at " graph shows that a minimum of the width is obtained at
INg"™ Irequency wwop WiIth which the atoms rattle across perpendicular incidence of the atoms, and not at Bragg inci-

the grating planes, given hyop= 27T|UA_|)Sin(¢9)/<i whereé  dence(the two linear lines are drawn to indicate the center of
is the incidence angle of the atoms, dng| is the modulus symmetry. Thus the width of the peaks does not depend
of the atomic velocity. A first-order Taylor expansion then directly on their angular distance to the static Bragg peak,
shows, that the wobbling frequency has a certain widthbut rather on the absolute incidence angle. In the next sec-
Awwep, depending on the width of the velocity distribution tion, we pay some special attention to the extreme case
Alval: where Bragg diffraction occurs at perpendicular incidence.
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40 T Froquency Unetited sieneak ggsted_by Eq_(2.2) sgtting - wy /wge=0]. Thus, diﬁgrent
ol m| O Frequency downshifted sidepeak / @ffrapnon ef_ﬂmenugs can only be due to different interac-
tion times with the light crystal.
\ Q/O Experimental investigations of Bragg diffraction at per-
5 30- pendicular incidence are plotted in Fig. 7. In the experiment
% Static Bragg angle / we recorded far-field diffraction patterns for various atomic
£ 25 . velocities by scanning the detection slit. The velocities were
o Perpendicular . . . .
S L\incidence /Q/ selected using a time-of-flight method, where the gas dis-
Z!f 20 charge of the atomic source was pulgpdise width 0.5 ms
E\Q / and the atomic intensities were recorded as a function of
15 o their arrival time at the detector, at a distance~02.9 m
from the source. In the first experimdifig. 7, graph(a)] the
10 — crystal was adjusted for perpendicular incidence of the

40 120 100 80 60 40 20 0 20 40 60 80 100 120 atomic beam, and the light crystal was unmodulated. As ex-
Angular offset [prad] pected for static Bragg diffractiorfalmos) no scattered at-
) i oms were registered. Some remaining scattering is due to the
FIG. 6. Angular width of the new Bragg peaks as a function of inisaq angular collimation of our beam, and to the limited
the incidence angles belonging to different modulation frequenue:‘Bragg selectivity of our crystal. Both restrictions become
(same data set as in Fig).9Negative and positive angles corre- . ' .
ore important for faster atoms, and therefore some higher

spond to the left and right peaks of frequency-downshifted and, o X
_upshifted atoms, respectively. With increasing modulation fre- Packground” is measured there. In Fig(tj the same ex-

quency, and correspondingly growing incidence angle, the peaR€riment was performed, though now we modulated the in-
width enlarges, due to the increased dependence on the broad loignsity of our light crystal with the recoil frequeneygre.
gitudinal velocity distribution of the atomic beam. The plot also =27 X 30 kHz. As expected from our model, the data show
shows that the broadening of upshifted and downshifted diffractiora symmetric diffraction of atoms at the two conjugated first
peaks is almost symmetric with respect to fierpendicular inci-  diffraction orders. The matter-wave frequency of the atoms
dence _dirt_action(indicated in the plat and not with respect 10 in poth new Bragg peaks is shifted by the modulation fre-
Bragg incidence(zero angular offset In particular, the minimal  q,,ancy in the same direction, that is to higher absolute val-
peak width is not obtained for static diffractioine., for atoms oo “Tha diffraction efficiency shows only a small depen-
which are incident at the static Bragg anglbut for atoms which dence on the atomic velocity. This becomes especially
are frequency upshifted by 30 kHz, corresponding to exactly per-_~. ’ . .
pendicular incidence. ewden@ when compared to a more general S|tuat|pn o_f Bragg
scattering at modulated crystals, as presented in Fig). 7
There we chose an “arbitrary” modulation frequency of 75
kHz, and adjusted the corresponding new incidence angle for
In “normal” static experiments the Bragg condition can frequency-downshifted atoms, that#s60 urad. The corre-
never be fulfilled at perpendicular incidence of a wave at asponding diffraction patterns show the typical feature of
crystal. The situation changes, however, in the case of 8ragg diffraction, i.e., there appears only one peak of dif-
time-modulated potential. In order to be diffracted the atomdracted atoms. Additionally, the diffraction efficiency de-
have to “feel” a potential modulation in their rest frame, pends strongly on the atomic velocity. A comparison of the
which is equal to the two-photon recoil frequeri&g. (11)]. diffraction efficiencies as a function of the atomic velocities
This modulation can be produced either by the atomic ratfor perpendicular incidence, for Bragg incidence, and for in-
tling across the grating planesy,), or by an externally cidence at~60 urad is presented in Fig. 8.
applied intensity modulationafy,), or by a beating of both In this figure the difference in the velocity dispersion of
(wwobE wp). This viewpoint suggests that at perpendicular(elastic and inelastjcdiffraction processes at increasing ab-
incidence, where the incident atoms move parallel to thesolute incidence angles becomes obvious. In particular, the
grating planes and therefore the “rattling” frequeneyy,,,  minimal velocity selectivity of Bragg diffraction at a modu-
vanishes, the necessary modulation must be delivered by thation frequency of 30 kHz, and the increased velocity de-
externally applied intensity modulation, i.eqy= wgrec- pendence of elastic scattering and of scattering at much
Due to symmetry considerations, no diffraction direction canhigher modulation rate® kHz and 75 kHz in the figuyds
then be preferred and scattering is expected to occur withn agreement with Eq22).
equal intensities at the two conjugate first diffraction orders. The independence of the diffraction condition at perpen-
Thus the diffraction pattern resembles one obtained at a thidicular incidence, wy = wgec=2h/m\?, from parameters
grating, since the typical asymmetry of the Bragg diffractionlike atomic velocity, light intensity, and interaction potential,
patterns is repealettypically only one peak of diffracted also suggests an interesting application. In fact, the modula-
atoms is expected, as, e.g., shown in Fig. 2 tion frequencyw,, at which the new Bragg peaks appear
Since the recoil frequency is equal for all atoms, independepends only on the atomic mass, and on the light wave-
dent of their velocity, and since additionally the wobbling length which can be measured very accurately, and which
frequency vanishes for all atoms, there should be no velocitgan be chosen arbitrarily in a broad range in the vicinity of a
selectivity of the Bragg diffraction procesthis is also sug- transition line(real potentigl, as long as a small interaction

2. Bragg diffraction at perpendicular incidence
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FIG. 7. Bragg diffraction at perpendicular incidence: The graphs show far-field diffraction paitecosded by scanning the detection
slit) for atoms with different velocitie@time of flight through our beam line(A) is taken for an unmodulated light crystal at perpendicular
incidence of the atoms. Only the peak of transmitted atoms in the center of each scan is obtained, with almost no diffracted atoms, since the
Bragg condition can never be fulfilled at perpendicular incidencéB)nthe light crystal was modulated with the atomic recoil frequency
of 30 kHz, again at perpendicular incidence. Now atoms are diffracted symmetrically to both sides of the central peak of transmitted atoms.
Although the experiment was performed in the Bragg regime, the results are similar to diffraction patterns of a thin grating, and the
diffraction efficiency shows only a small dependence on the atomic velocifC)la more “general” situation of scattering at modulated
crystals is investigated for comparison. There, a modulation frequency of 75 kHz was applied, and the atomic incidence angle was adjusted
to one of the two new corresponding Bragg angles-&0 wrad. Now, as expected for the Bragg case, the diffraction patterns show only
one peak of scattered atoms, and the diffraction efficiency depends strongly on the atomic velocity.

potential between the atoms and the light exists. This mighangles? This feature will now be applied for investigating
imply a practical application as a highly sensitive method ofthe sideband structure generated by unconventi¢eatn
mass spectroscopy, e.g., in the case of a molecular beam, bpn-Hermitian potential modulations.

measuring the intensity modulation frequency at which dif-

fraction of a collimated, perpendicularly incoming beam is D. Diffraction at complex modulated light potentials
observed. The accuracy of the method can be significantly

. dbyi ing the int tion time betw h In the preceding section we demonstrated the basic effect
Improved by increasing the interaction ime between e palag o6 mic matter-wave frequency shifting by diffraction at an
ticles and the light crystal, using a slower beam or a thicke

; fntensity—modulated light crystal. We now extend our inves-
crystal. For larger molecules, where the modulation fre+jgations to complex temporal modulation schemes where
quency would be very low, the resolution of the method canyoth real and imaginary parts of the potential, or its ampli-
be improved by observing diffraction into higher spatial tyde and complex phase, are manipulated independently.
Bragg ordersng>1 (i.e., larger deflection anglgswhich  There we use the fact that by adjusting the laser frequency
requires a correspondingly higher modulation frequencyye can change our potential within a range of positive and
NGgWRec- negative real values, to imaginary values. This will be used
The basic experiments demonstrated so far are the foune Fourier synthesize specific temporal modulation functions
dation for the advanced investigations, which will be pre-of the potential. According to our modgtq. (17)], the Fou-
sented in the next section. Mainly, they confirm our model,
and the usefulness of the alternative formulation of the Bragg—
condition n Eq.(12) for thg (.:ilffractlon Of frequency-shlfteq 2In contrast, in a thin grating regime the effect of frequency shift-
atoms. This frequency shifting can be interpreted as a sid§qg (or sideband generatipmould also be possible; however, then
band generation of the matter waves. However, in contrast tg sigebands would appear simultaneously in the diffracted beams.
typical situations of sideband generati@g., in the radio-  sych an experiment in the Raman-Nath regime would lose the fea-
frequency techniqyen our case the diffracted beams gener-tyre to indicate the sideband generation, e.g., a spatially resolved
ally contain only one frequency component at a time. Thisar-field diffraction picture would not reveal the sideband structure.
means that a modulated Bragg crystal cannot only be used tgowever, in our case of a combined spatial and temporal Bragg
shift the frequency of diffracted atoms, but also to indicateregime our modulated crystal acts simultaneously as both a side-
their frequency shift by the corresponding new Braggband generator and an analyzer.
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using for each laser a separate acousto-optic modulator

= modulation phases, we can generate a potential of the form

® [« 75KkHzmodulation

g1.o-f.f30kHz,mdﬂ|at:0n E (AOM) for periodically switching their intensity. In the ex-

S ——staticBraggpeak _ ¢ /E\E\ / N\ periments we used the same modulation frequencies for both

s E\E/l /L+ E lasers, though with an adjustable temporal phase relation.

= E/ // T K& This could be achieved by using two function generators

2 = K R with one common time basis to drive the two AOM’s.

205+ L Using different frequency detunings of the two light crys-

% -+ tals from resonance, and additionally, using different relative

& 7

‘§ = V(X,t)= (1+cog GX))[V 1 (1+cog wyt))

& 0.0 —a—n

= 3 3 2 E 5 3 8 +V5(1+cog wyt+ ). (23)
Time of flight [ms] The first term of the equation describes a fully modulated

spatial grating, which is formed in front of the mirror sur-
face, whereas the second term describes the applied temporal
modulation. There it is assumed that the temporal intensity

FIG. 8. Velocity selectivity of Bragg diffraction at intensity
modulated light crystals. The efficiencies of first-order Bragg dif-

fraction are plotted as a function of the atomic velocity for three . . .
different modulation frequencie®, 30 kHz, and 75 kHz In one modulation of the two lasers is harmonical and fully modu-

case the modulation frequency was equal to the recoil frequ@ecy lated. The independent variables which can be controlled in

kHz), and the corresponding incidence angle of the atoms was peRUr €xperiment are the individual crystal potentiss, and
pendicular to the light crystal. In the other case an “arbitrary” Vi2, and the relative temporal phask between the two
modulation frequency of 75 kHz was chosen, and the correspondingarmonic potential modulations, which can be adjusted di-
new Bragg angle of scattering of frequency-downshifted atoms ofectly at the frequency generators driving the AOM’s. The
60 urad was adjusted. The middle curve shows the diffraction ef-Ccrystal potentials can be chosen réadsitive and negatiye
ficiency of elastically scattered atoms, incident at the static Brag@r imaginary(only negativé by adjusting the light frequen-
angle. Obviously, the data taken at a modulation frequency of 3@ies. The absolute values of the potentials can be controlled
kHz shows the smallest dependence on the atomic velocity. Thby changing the corresponding light intensities.

residual velocity dependence is due to the increasing interaction |n the experiment the absolute values of the two potentials
time, but not to a velocity selectivity of the diffraction process. In where always equalized by adjusting the light intensity of the
contrast, the data taken at 0- and 75-kHz modulation frequenciegyo individual crystals independently for equal relative dif-

show a larger dependence on the velocity, due to the growing infraction efficiencies, i.e]V, ;|=|V,|. Therefore, we can set
fluence of the longitudinal velocity distribution at higher absolute

incidence angles. V1:=Vy,

rier coefficients should directly determine the ability of our (24)
modulated crystal to create sidebands of the corresponding Vi 2:=Voexpi¢e).
frequencies. For the sideband detection we use the fact that,

according to Eq(9), the appearance of a new Bragg angle V, is the potential of the first laser, arf. is the complex
automatically indicates the corresponding frequency offset opotential phase difference depending on the difference of the

the diffracted atoms. two laser detunings from resonan@ee Fig. 3. In order to
. o . calculate the Bragg diffraction efficiencies for first-order
1. Complex light potential with temporal helicity elastic Bragg scattering, and sideband production of positive

In this experiment we exploit the fact that it is possible to©" hegative ordetcorresponding to positive or negative fre-
tailor potentials by superimposing light from different lasers.duency shift, a two-dimensionajtemporal and spatiaFou-
We start from the same setup as in the previous experimenfir analysis of the total potential has to be performed, ac-
(Fig. 2; though now we use two diode lasers to create theording to Eq(16). The Fourier coefficient¥, _,, o and
light crystal [25]. The light of the two lasers is first col- V,__1,,-+1, then determine the first-order diffracted wave
linearly superposed at a beam-splitter cube. Then the twamplitudesfor elastic and inelastic scattering, respectively.
combined beams enter the same collimation optics as beforghe corresponding diffraction efficiencies are then propor-
This results in two exactly coinciding light crystals generatedsional to the squares of these Fourier coefficients, according
in front of the retroreflection mirrot.However, the intensi- to Eq.(17) (valid for small efficiencies Fortunately, such a
ties of the two lasers can now be modulated independentlyyo-dimensional Fourier transform is easily performed in the
case of harmonic potential modulations. Since spatially and
temporally dependent functions are just multiplied in Eq.
*The light crystals can be regarded as exactly coinciding at thé17), the time-dependent and spatial Fourier transforms can
position where the atomic beam passes. The reason is that the maR€ separated. The two-dimensional transform is then just the
mal experimentally used frequency difference is on the order of 10@roduct of the two individual ones. The spatial part of Eq.
MHz, resulting in a spatial beating period of 1.5 m, whereas the(17) describes a normal potential grating with well-known
distance of the atomic beam to the mirror surface is only 2 mm. Bragg diffraction properties, i.e., it enables diffraction at the
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positive or negative first diffraction orders. In our case we

. . . . .. ] 1.L - red I 1. Laser: red . .
are only interested in the sideband generation efficiencies o | 5’ LZ:: F:d O L 2 (aser red | T LT
i ial di i i “ i Phase: 0 Phase: I
e 1 st atcion s g ey | e | fy P e
’ A by Time B Time

poral part of the modulation. This can be done easily by
substituting all cosine functions according to @&s(
=(exp(a)+exp(—ia))/2. Evaluation of the products and
sorting the terms then yields

1. Laser:red| o0 1T T 1T 1. Laser: red N1

2. Laser: blus 2. Laser: blue

Phase: 0 ol LI-LI"1] Phase: n ol LI T

C Time D Time

V(x,t)=Vo(1+cog G- x){(1+expide))
+3[1+expi(pet dp))expiwyt)]
+3[1+expli( b~ dp))exp —iwyt)]}. (25

This indicates that we have a “normal” static Bragg grat-
ing (first term) of modulus|Vy(1+exp(¢.))|, and two time-

diffracted atoms [arb.units]

modulated components with absolute values |§f[1 1.Laser:onres. | [1.laseronres |
Fexpli(bo+ d)l12, and|Vo[1+expli (¢e— g2, pro- 5 |FLaserred § LT L2 vaserred | LT L
ducing frequency-downshifted and -upshifted sidebands, res gy
spectively. In a typical “rocking curve” as in Fig. 4, the © Time F
squared modulus of these three components determines tr°
intensities of the center peak, and the negative and positives e
sideband peaks, respectively: ” ey
Pro[Vol L explido]I% 2 Laser rea § O[T 5 Caser oeaF O[T

(26) Phase: -n/2 Phase: /2

P 15[ Vol 1+ expli (e ¢))1/2)%.

Here it should be mentioned that for technical reasons the
modulations actually applied were not harmonic, but rectan-
gular functions(the lasers were switched on and)offhis
results in additional Fourier components of higher order. -300 -150 o 150 300 -150 O 150 300
However, the first of these components is already the third loeidance Amgle [prad]

harmonic (.Jf the modulat?on frequency, leading to new peaks FIG. 9. Generation of atomic matter-wave sidebands with dif-
'_n the rocking cur_ves which ‘T’Ire far separated from the II'?Vesferent potential modulation schemes. The figure shows the first-
tigated peaks of first-order sidebands, and thus do not distuifyye; giffraction efficiencies as a function of the crystal angle
the measurements. . _ (“rocking curves”), for different temporal modulation functions.

In order to verify the predictions of Eq26) for the dif-  The time dependence of the two overlapping light crystal potentials
fraction efficiencies, we chose different frequency detuningsyre indicated in the insets. (®) and(H), temporal potential modu-
(¢c) and modulation phasesp() of the two superimposed |ations with a “helicity in complex space” result in completely
light crystals, both intensity modulated with a frequency ofasymmetric sideband generation.
wy=2mX100 kHz. Results of these experiments are plotted
in Fig. 9. In Fig. Ya), the two lasers were both far detuné&en

This figure shows ‘“rocking curves,” i.e., the efficiencies linewidthg on the red side of the resonance ling(is nega-
of first-order Bragg diffraction, as a function of the incidencetive real, and¢.=0), and they were switched on and off
angle(angle of the retroreflection mirrgrthe same kind of simultaneously ¢;=0). The situation thus corresponds in
measurement as performed in the previous experirtee  effect to one single laser which is modulated. Therefore we
Fig. 4). The center of each plot corresponds to the statimbtain a result which is identical to the result of our “basic”
Bragg angle, i.e., the center peak always consists of elastsideband modulation experiment, sketched in the lower
cally scattered atoms. As discussed above, side peaks at theaph of Fig. 4, i.e., one central peak of elastically scattered
left or right side of the center are due to atoms which in-atoms, and two side peaks of frequency-upshifted and
creased or decreased their kinetic energy by one modulatiomlownshifted sidebands, respectively. The relative intensities
quantumfiwy, in the course of the diffraction process, re- of the four peaks should be 1:4:1, according to EZf).
spectively. The inset of each plot indicates the applied poHowever, it has to be mentioned that these quantitative esti-
tential modulations of the two superimposed light crystalsmates are only valid for smaftelative diffraction efficien-

As mentioned above, the absolute values of the two correecies. In the case of higher efficiencies, the sideband peaks are
sponding light potentials were equalized by adjusting the twaexpected to gain efficiency with respect to the peak of elas-
superimposed crystals individually for equal relative diffrac-tically scattered atoms.

tion efficiencies of about 20%. In Fig. 9b), we performed a second control experiment,
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by keeping the two lasers far red detuned, (is negative O  Frequency up-shifted sideband
real, andp.=0, as beforg but by switching them onand off 5 O Frequency down-shifted sideband
alternately @,=), i.e., one laser was switched off when
the other was switched on. In effect, this yields a constant,§
red detuned light field. Therefore, such an experiment corre-@ 041
sponds to Bragg diffraction at an unmodulated static crystalg
which yields only one peak of elastically scattered atoms at“c’ 0.3
the Bragg angle, similar to the upper graph in Fig. 4. The 8
suppression off the two side peaks is in agreement, with the®
predictions of Eq(26).
In Fig. 9c), the two lasers were detuned on different sides o
of the resonance line, i.e., the corresponding two light crystalks
potentials were positive real and negative red) (s nega-
tive real, and¢.= ), respectively. The two lasers were
modulated with equal phase)(=0). As a result, scattering 0.0 : . : ,
is completely suppressed. The reason for this is that the 0 w2 T 3n/2 2n
negative potential due to the red detuned laser and the pos Temporal phase offset [rad]
tive potential due to the blue detuned laser cancel each other
at any time. Therefore, no resulting crystal potential exists, FIG. 10. Sideband generation efficiency as a function of the
and no scattering can be observed. relative phase petwegn thg intensity modulgtions of two superim-
An interesting situation is sketched in Figd® where the ~ Posed real and imaginary light crystal potentials.
different detunings of the two lasers were the same as in the
last experimentV, is negative real, and.= ), but now experiments are approximately the same: They show two
the lasers were switched again alternatedy= 7). Obvi-  symmetric side peaks in addition to the central Bragg peak.
ously, this results in a suppression of the static Bragg peaklhe symmetric sideband generation in Fig&e)&nd 9f) is
whereas the sideband efficiencies are equal to the efficiencigsedicted by our moddlEq. (26)], as well as the symmetry
in Fig. 9a). The reason for the suppression of the staticbetween the two situations. The reason for this is that the
Bragg peak is that, during its passage through the crystafum and the difference of the relative temporal modulation
each atom “sees” the crystal potential switch periodically phases®;, and the complex phases,, in both situations
between positive and negative valieach atom experiences yields only the values-#/2 or + 7/2, which leads to no
about six switching periods inside the crystdlherefore, on  difference in the absolute values of tRg . ; terms in Eq.
the time average, no crystal results, and no atoms can b@6). However, these are the only situations where a complex
elastically scattered. On the other hand, there exists a crystpbtential modulation leads to a symmetric sideband genera-
potential which is modulated between positive and negativéion.
values, and which is thus able to generate sidebands. Quan- The sideband symmetry is maximally broken in the last
titatively, Eq.(26) predicts the same sideband efficiencies agwo experimentgFigs. 9g) and 9h)], where the laser fre-
in Fig. Ya), in agreement with our experimental result. quencies were the same as before, but the temporal intensity
In the next parts of the experiment, we created a generahodulation phases were chosen to-ber/2 and + 7/2, re-
complex potential modulation. This was achieved by com-spectively. Obviously, this results in a suppression of one
bining a negativémaginary crystal potentialgenerated by sideband and an enhancement of the other. The suppressed
tuning one of the lasers exactly on resonaneih a nega- and enhanced sidebands are exchanged in the two experi-
tive real potential(obtained by tuning the other laser on the ments. This is due to the fact that both the temporal plfase
far red side of the resonance frequency, Mg ,is negative  and the complex phasg, take the magnitude/2. However,
real, and¢.=m/2). Thedata of these experiments appearwhereas the temporal phase enters into (26) with differ-
more noisy, since the total diffraction efficiency is drastically ent signs for frequency-upshifted and -downshifted side-
reduced with respect to the previous situations. The reasdands, the sign of the complex phase stays constant. Thus the
for this is that only about 10% of the incident atoms can passwo phases add tar or cancel each other to 0 for the
the absorptive crystal. From these transmitted atoms, abotitequency-upshifted and -downshifted sidebands, respec-
25% are diffracted at the first ordé¢static diffraction, re-  tively, resulting in a suppression or an enhancement of the
sulting in an absolute diffraction efficiency of only 2.5%. respective peaks. According to E@®6) the efficiencies of
Furthermore, some of the metastable atom2§%), which  the enhanced sideband should be approximately doubled
should be absorbed after excitation by decaying to thevith respect to the results of Figs(ed and gf).
ground state, rather decay spontaneously to their original A more detailed investigation of the sideband efficiencies
metastable state, which contributes to some additional baclas a function of the relative temporal intensity modulation
ground. Nevertheless, the expected diffraction effects arphased, between the red detuned and the resonant lasers is
clearly visible. presented in Fig. 10. The data indicate that the sideband
In Figs. 9e) and in 4f), the two lasers were switched on efficiency depends sinusoidally on the relative modulation
and off simultaneouslyin Fig. 9e), ¢;=0], and alternately phase. Frequency-upshifted and -downshifted sidebands are
[in Fig. 9f), ¢y=m], respectively. The results of the two created alternately, i.e., a suppression of one sideband is ac-

T
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companied by a maximal efficiency of the other. All thesespace and time, which give rise to asymmetric transfers of
observations confirm our model of sideband generation, anthomentum or energy, respectively.
are in agreement with E¢26). The asymmetric energy transfer in our actual experiment
The extreme situations occur at relative modulationsuggests an interesting practical application: Using such a
phases oft 7/2, as already shown in Figs(®) and gH). modulation scheme it might be possible to cool a subsystem
Investigating these situations in more detail, one finds that it the cost of its environment, which in our case would mean
these situations the temporal part of the potential modulatio €00ling of the atoms in the metastable state at the cost of
is of the form V(t)<exp(timyt). Such an extremely non- the atomic population in the ground state. However, here we

Hermitian potential modulation represents a kind of helix jnhave to mention that up to now this cannot be achieved in

complex space, i.e., the modulus of the potential remain§Y’ system, since our potential modulation does not only

. consist of the desired complex helix, but also of a constant,
constant, whereas the complex phase rotates linearly as a

. . . X ST negative imaginary term causing continuous absorption of
fl_mct|on of time. The orientation of thg helix is given by the the atoms. A working scheme for cooling thus will need a
sign of the exponent. Thus our experimental result sugges

h h v helical ol N abl pumping transition, i.e., a resonance line which causes
that such a temporally helical potential is only able o trans-.,eqative absorption”(that is gain at resonant excitation.

fer energy in one.direction, yvhich depends on the o.rientatiorpn such a system, it is formally possible to generate a pure
of the helix. Detailed analysis shows that a modulation of the;omplex helical potential acting on one of the levels. Atoms
form exp(-iwyt) is able to emit energy in quanta iy, in this level can then be cooled at the cost of the atoms in the
whereas an opposite orientation of the helix enables the pgyther level, which acts as a reservoir.
tential to absorb energy quanta. Thus the normal symmetry
between absorption and stimulated emission probabilities in- 2. Frequency-modulated complex light potential
duced by time-varying fields is broken. The symmetry be- In the following, we demonstrate a different approach to
tween absorption and stimulated emission is normally due t@ontrol the energy transfer to the diffracted atoms. In the
the fact that any real potential is Hermitian, which meanspreceding section, we showed how to control the time depen-
that conjugate Fourier coefficients are pairs of complex condence of the complex potential by independently manipulat-
jugates, i.e., any contribution with negative helicity is ac-ing real and imaginary parts of the potential using superim-
companied by another contribution with positive helicity of posed on-resonant and off-resonant light fields. Now we
the same intensity. This symmetry can only be broken irshow that a complementary method to manipulate a complex
open systems, interacting with an environment which acts af#inction, i.e., by directly controlling its magnitude and com-
a reservoir, since only in these cases the considered suBlex phase, can also be realized, and yields results that are in
system can be described by a non-Hermitian Hamiltonian. @greement with our model. In the following, we directly
Interestingly, an analogous effect was recently observedodulate the phase of the diffracted wave using the fre-
in the spatial domaifi17]. In a similar setup a light crystal duency dependence of the scattering phase, rather than Fou-
potential with a complex helicity in space was tailored, i.e.,ler synthesizing the frequency spectrum with different la-
V(x)cexp(GX). Although periodic, such a potential is very Sers, as before. .
different from a real crystal potentif.g., V(x) = cosGx)], As ajready mentioned, the phase of the complex pote.ntlal
since the amplitude of the potential is constant at any point ifletermines the phase of the scattered matter waves. This can
space, though the complex phase changes. It has been dif seen directly using the potential dependence of the dif-
served that such a potential with complex helicity in spacdtacted waveamplitudegiven by Eq.(14) (valid for small
transfers a grating momentu#iG only in one direction, i.e., diffraction efflglen0|e$ allowing for a complex Pendelo
the spatial diffraction pattern becomes asymmetric, similar téUng length given by Eq(13). The spectral shape of the
our actual experiment where a complex potential helicity inf_IOm_D|eX phas_e of_ a light potential near an atomic resonance
time transfers a modulation quantdr,, only in one direc- I!ne is plotted in Fig. 3. It corresponds to an arctangent func-
tion. Note that this analogy is not trivial, since the Sehro tion, with an offset of— /2. Thus a phase shift of the scat-
dinger equation is not symmetric with respect to space anéered matter wave in a range ofr to 0 can be achieved by

time coordinateé. Together, the two results clearly point out Just changing the light frequency in an interval ranging from
the role of non-Hermitian potential modulations, both inthe far red to the far blue detuned side of the absorption line.

Thus we can achieve a phase modulation of the matter wave
by modulating the light frequency, which can technically be
4 o o _ achieved easily by modulating the current of a diode laser.
One consequence of this is that it is always possible to changRieyertheless, it has to be considered that, just by modulating
the direction of the atomic momentum without changing the energyne |aser frequency without adjusting the light intensity, the
(elastic scattering but it is impossible to change the energy without amplitude of the light potential is also modulated. The com-
adjusting the momentum. Therefore, in order to produce a fre- lete spectral dependence of the amplitude and phase of the

quency sideband by a temporal potential modulation, there alway S . }
has to be an additional mechanism that provides the related momehght potential is best expressed by reformulating £2f):

tum transfer. In our experiment we obtained this by combining —ihO2. . /4 _

: : : i1 QRab! : =
temporal and spatial potential modulations, where the temporal part  \/( )= exp iarcta
created the energy shift, and the spatial part supplied the related V(w—wg)?+(v/2)? yI2
momentum change through its grating vector. (27)
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Here the first factor denotes the real amplitude, and the - Experiment Theory
second factor the complex phase of the potential. The equa®» 2ok
0 j
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c 00

tion shows that a general modulation of the laser frequencyg
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Diffraction effici

andl

w(t), yields a rather complicated modulation of the complex ® i
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potential. Nevertheless, a controlled phase modulation can bg
achieved by simultaneously controlling the frequency andg
intensity of the laser light. One interesting kind of modula-
tion is suggested by the arctangent dependence of the con:
plex potential phase from the light frequency. If a periodic
frequency modulation of the form

01 '

00

4511 7 3 1 5 9 13 17 7 - 5 9 13

is applied, then this compensates for the arctangent spectr: Atomic incidence angle [multiples of 6 ]
shape of the potential phase, and results in a linear phase
shift as a function of time. Such a linearly changing phase FIG. 11. Experimental realization of a lopsided frequency
shift just corresponds to a frequency offsetuq)f;, which is shifter using a frequency-modulated light crystal. In the different
added to the matter-wave frequency. Such frequency generalots, a tangent-shaped frequency modulation functiany (
tion, obtained by adding a linear phase shift, acts similarly to= 2750 kH2) according to Eq(28) was applied, with different
a Doppler frequency shift, obtained by reflecting a waveslopes of 0, 3.5 MHz, 7 MHz, a_nd 10 MHz, respectlve!y. The slopes
from a continuously moving object which also produces acorrespond to the prefactor/2 in Eq. (28). The experimental re-

linearly changing phase offset. The difference in our situa—s““s are reproduced by the numerical calculations of the Fourier

tion is that the phase shift cannot remain linear forever, Sinc%c_nmpo§ition(squared absolute valyesf the potential modulations
the tangent function is periodic. Therefore, the actual shap ight side of the graph

of the potential phase obtained by the frequency modulatiogptic modulatoy. The laser frequency could be modulated by
of Eq. (28) becomes a sawtooth function of time, i.e., thegriving the diode laser current with a programmable signal
phase changes linearly in an interval between and 0, and  generator. The frequency offset obtained by changing the
then jumpsback to its starting point. This corresponds ex-|aser current was measured with a Fabry-Perot spectrum ana-
actly to the jump which the laser frequency has to perform afyzer,

the poles of the tangent function in order to jump from one " |y the experiment we demonstrate that a tangent-shaped
end of the resonance line to the other. The complete effect Cff‘equency modulation function according to E@8) pro-

this kind of frequency modulation can be seen if the moduyces only one single sideband of either frequency-upshifted
lation function[Eq. (28)] is inserted into the complex poten- o frequency-downshifted atoms. This is done in a sequence
tial [Eq. (27)]. After some trigonometric manipulations we of experiments where we successively increased the slope of
then obtain, for the time dependence of the modulated come tangent function by increasing the amplitude of the tan-

41
HidE

Number of diffra
3

o(t) = wo+ ;—y tan( wyt) 28)

plex potential, gent shaped frequency modulatitfig. 11). The results are
L compared with numerical calculations, where the squared ab-
V(t)= — 11O R i cog wyt) expli oy t) solute values of the respective Fourier coefficients of the
- M M

4y potential modulationconvoluted with a phenomenological
o line-shape functionwere computed. Note that the preceding
_ _IﬁQRabi(lJrexp(iZ 1) (29) analytic calculation holds only for a modulation function
B 4y Omb)): which is exactly the inverse function of the argument in Eq.
(27). Since we were now using different slopes of the tangent
This representation corresponds directly to a Fouriefunction, the calculation of the Fourier composition became
transform of the temporal potential modulation, i.e., theremore complicated and is done numerically.
exist a static Fourier component and a component with fre- In the experiment the laser frequency was modulated with
guency vy, , with equal intensities. Therefore, this modula- a frequencyw,,=50 kHz across the 801.7-nm open atomic
tion is supposed to create both elastically scattered atoms amensition line. Nevertheless, as mentioned above, the actual
a single frequency sideband offset By2w), . Note that the frequency of the laser sweep across the resonance line was
sideband frequency offset deviates from the modulation fre100 kHz, since the tangent function is already periodic in an
guencywy, . This is due to the phase jump after each phasénterval of . The laser frequency was centered at the reso-
change ofr in the tangent functioriwhich performs two nance line and then periodically modulated in the shape of a
oscillations in an interval of 2). Therefore, the actual fre- smooth tangent function from the red to the blue side of the
quency of the modulation is in fact, , although the argu- resonance, followed by a sudden jump back. The frequency
ment of the tangent function is onbyt. interval in which the laser was swept was abaub line-
In order to experimentally investigate the effects of laser-widths across the resonance frequency. The first-order dif-
frequency modulations, we used the same setup as sketchfrection efficiency was measured again as a function of the
in Fig. 2, with one single diode laséwithout any acousto- crystal angle(“rocking curves”). The upper grapHFig.
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11(a)] shows a rocking curve obtained at an unmodulatedncoming wave exclusively at one spatial diffraction order,
light crystal. The peak of elastically scattered atoms denoteBut not at the conjugate order. This is in contrast to a normal
the position of the Bragg angle. In Figs. (b}, 11(c), and phase grating, consisting of a harmonic periodic phase
11(d), the light frequency was modulated symmetrically modulation, which diffracts symmetrically at conjugate or-
across the atomic resonance frequency according t¢28y. ders. Very similarly, in our experiment we imprinted a time-
with increasing amplitude of the tangent function. dependent phase shift at an incoming matter wave, resulting
In any case, new Bragg peaks are found only on one sid# frequency sideband production. By applying a time-
of the static Bragg peak, indicating that the potential modudependent periodic phase shift with the shape of a sawtooth
lation can produce only lop-sided energy shifts. In Figicl1 function, which we obtain as a result of our tangent modu-
the peaks of elastically scattered atoms and frequency shiftddtion, we observe only one sideband of the atomic matter
atoms have approximately equal intensities, as predicted byave. Thus our experiment transfers in a certain sense the
Eq. (29) for a slope of the tangent function ¢f2~4.5 MHz  principle of a spatially blazed grating to the time domain of
(the theoretical linewidth of the 801.7-nm transition ys  atomic matter waves. Although the analogy is not completely
~9 MHz), which should result in a sawtooth phase shift of perfect’ this viewpoint helps to understand the principle of
the complex potential phase as a function of time. As exoperation, and suggests building time analogs to other ele-
pected from the Fourier representation of the potential in Eqments of standard diffractive optics, like a “Fresnel lens in
(29), we obtain only one side peak of atoms shifted by twicetime.”
the modulation frequency (250 kHz). However, our actu-
ally applied slope in this experiment was 7 MHz. The differ- 3. Bloch band spectroscopy
ence might be due to a change in #féectivelinewidth by
saturation effects when scanning the laser frequency across

resonance, or to an increased linewidth of the laser generat . : s , : X
by its fast modulation. ing light field, which opens up a different viewpoint and

In the other parts of the experiment it is shown thatPoints out the relation of our experiments to recently per-

smaller slopes of the modulation result in smaller sidebandormed investigations of atoms in optical traps. In addition to
efficiencies[Fig. 11(b)], whereas larger slopd&ig. 11(d)] the extended_EwaId model, our experiments can be inter-
create increased sidebands, while simultaneously populatifg©t€d @s a kind of spectroscopy of the Bloch bands which

higher sideband order@ small additional side peakThe  describe the dynamic behavior of a particle in a periodic
experimental results are in agreement with the numerical calPOtential. Recently, this viewpoint was used advantageously

culations plotted on the right side, which represent thd® Model test systems for demonstrating some quantum ef-
squared value of the Fourier composition of the potentiafe‘:ts predicted in solid-state physics for electronic transport

modulation functions[there an effective linewidthy=14 " periodic crystals, which were hard to demonstrate in

MHz is assumed, as suggested by the symmetric result jfndensed-matter syster,4,7. In our case, the model
Fig. 11(c)]. shows that our complex potential modulations can induce

We also checked the effect of flipping the sign of thedirected transitions between energy levels—an effect that is

tangent function, which resulted, as expected, in a sideban‘aqorma”y” forbu_alden with “ordinary” (Hermltlan)_ poten-
peak with a different sign of the frequency offset, i.e., a peaQ'alS’ due to basu_: concepts of quantum me<_:hz_in|cs.

at the other side of the central Bragg peak. This means that A pne-d|men3|9nal band—stfuctL.Jre description of the_ at-
scanning across an atomic transition line from the red side t§MS in @ crystal is sketched in Fig. 12. Bloch bands in a

the blue side yields different results as compared to the reVe@kly modulated spatially periodic system are formed by

verse direction. This symmetry violation is due to the spec'€Peating the free-particle dispersion parafipidicated by a

tral shape of the complex interaction potential determined b)gaShed line in the figurewhich is normally centereid gt Z€ro
the Kramers-Kronig dispersion relations, and thus fundamenhomentum, at distances given by the grating ve€psince
tally based on causality. in periodic systems all momenta are only defined up to mul-
Note that although the resulting asymmetric sidebandsiples of the fundamental grating momentu&. The influ-
look similar to those in the previous experiment where weence of quantum mechanics is, then, to split and reconnect
used independent modulations of real and imaginary parts of
the potential, the principle is different. Actually, the phase
relation between the generated single sideband and the statigO . o
. . - . . . ur lopsided frequency shifter is not a perfect analog to a spa-
Bragg peak aIsp dlff?rs in the tWO. S|tuat|o!'1$, which might betiaIIy blazed grating, since it still produces a residual peak of elas-
demonstrated in an interferometric experiment. .. tically scattered atoms. This would correspond to a blazed grating
The demonstrated method to produce an asymmetric Sidg; syace. which diffracts only 50% of the incoming wave. However,
band has an analogy in the spatial don{&6]. The method  yhe geviation from the ideal behavior can be attributed to the fact
resembles the principle of a blazed grating in space. Such @at we can change the temporal matter-wave phase by our fre-
blazed grating has a sawtooth spatial profile. This profile igjuency modulation only in an interval of instead of the ideally
embossed on an incident plane wave front, i.e. the wave frontequired interval of . Similarly, a spatial sawtooth phase grating
acquires a sawtooth phase shift. In the ideal case, the spatighich changes the phase of a wave front only in an intervak of
phase changes in a range af 2and then jumps back to 0. In  would have the property to diffract only 50% of the wave at one
this case the blazed grating has the property to diffract anrder.

Here we briefly sketch an alternative model for the dif-
ction behavior of the argon atoms in the modulated stand-
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; ¥ ! ! So far the preceding illustrations were a qualitative pic-
— 60 ,/ / \\ | ture of the predictions of dynamical diffraction theory, as
T originally developed for diffraction of x rays, electrons, and
= neutrons at solid crystal27]. Applied to our situation of
= | scattering at a modulated crystal, this model suggests an al-
ai',’ ternative explanation for the appearance of the new Bragg
& peaks in the “rocking curves.” There the potential modula-
tion is assumed to be a resonant perturbati@@ven atoms,

which enter the crystal far from a Bragg angle, and thus
k Al [G] Free particle occupy only one crystal bandf can be excited by_ Fhis time-
dispersion parabola dependent resonant perturbation into a superposition of two
bands(e.g., arrowsb or ¢ in Fig. 12), and successively scat-
FIG. 12. Band structure of atomic matter waves in a one-tered. This results in a Bragg diffraction of coherently fre-
dimensional light prystal. Transitions within the bapd struciiare _quency shifted matter waves. From the band symmetries it is
rowsb andc) are induced by a resonant perturbation, and result inyh\ious that resonant transitions to highexg., arrow band
new Bragg peaks of frequency-shifted atoms. lower bands(e.g., arrow ¢ are arranged symmetrically
around the static Bragg anglés.g., position § which ex-
the individual parabolas at their crossing points, such thaplains the symmetric distribution of the new Bragg peaks in
bands are formed. However, for weak modulation the underthe rocking curves of Fig. 4. Calculating the vertical dis-
lying structure of periodically repeated free-particle paraboiances between two bands in a region far from a band gap
las is still clearly expressed, and, actually only broken in arfan be done by just determining the energy difference be-
area closely surrounding the crossing points. In Fig. 12 théween the corresponding two horizontally displaced free-
corresponding atomic eigenenergies are plotted as a functidd@rticle parabolaésince these parabolas are only disturbed in
of the atomic wave-vector compondqy parallel to the grat- ~ the region very close to a static Bragg angle, i.e., at a band
ing vector G. Therefore, in our case of small incidence gap. This straightforward calculation delivers the same re-

angles(paraxial geometry thex axis is directly proportional sult for the modulation frequencies belonging to the new

. L Bragg angles, as our generalized Ewald model.
to the atomic |nC|denc_e ang_lek,(H~|kA| 6). The dashgd pa- The above viewpoint also indicates that our experiments
rabola indicates the dispersion of a frgg atom outside of thgre a direct spectroscopic method to measure the Bloch band
crystal. At the crystal boundary the originally free atoms are

. . : o " structure of the light crystal. In contrast to previously de-
cou_pled Into th_e particular crystal ban_ds Wh'.Ch coincide Withgcine 4 methods of Bloch band spectroscopy in atomic traps
their free(k|_n_et|c) energy parabola. Since this free parabola 6], the well-collimated beam of incoming atoms is generally
at most positions directly overlaps with the crystal bands, the. -’

i lati f the bands is obvious: he | oupled only into one single bar{dith the exception of the
resulting population of the bands Is obvious: e.g., the loweski i gragq anglesand even this band is populated only at

Bloch band_ is populgted for atomic incidence angles betweeg specific momentum position, which can be controlled di-
g(perpendlculjtr mmden&)e&nd O, th_e ngxt band ml a rar&geh rectly by adjusting the incidence angle. Starting from this

etwfeenaB an hZHB’ and so c;n. At incidence angles Which | e ‘defined position the temporal modulation induces a di-
are far enough separated from ttiprevented crossing fect resonant transition to an upper or lower band, which is

points, the corresponding eigenfunctions simply consist oficated by the appearance of a new Bragg peak at the re-
(almos}) free plane waves that correspond to the incident5

wave. Only in cases where the free atomic parabola crosses g
band gap is it possible to populate two Bloch bands simulta-———

neously, for example at positicmin Fig. 12. The two cor- =~ o o
responding eigenfunctions at these positions consist of two It might be striking that a fully modulated crystal potential is
sinusoidally modulated wave functions. Their correspondingreated here as a perturbation. However, as explained above, the
intensity distributions form two copies of the crystal grating, Main structure of the crystal bands is just given by repeating free-
with a relative phase shift ofr with respect to each other partlcle parabola a_t distances of_a grating veG(_)rThu's the most
[16], i.e., one of the atomic intensity gratings directly coin- important property is only determined by the periodicity of the crys-

cides with the crystal potential, whereas the other is exactl tal’.bUt not .by the abs’o'uu? potential str_en@s long as an adi_a-
out of phase. In these special ;:ases the energy gap betw %z%]tlc evolution of the atomic wave function in a band is possible

) " . . e only property influenced by the potential strength is the split-
the two populated bands Ieads' to a dlfferen.t time eVOIUt'O.Qing (and the eigenfunctionsn the region very close to the band-
of the two corresponding atomic wave functions. Recombi-

8 ) ap positiongin the case of small enough potentials, which is au-
nation of these two wave functions at the rear boundary o omatically fulfilled if the crystal shows Bragg diffraction peaks

the crystal then results itwo outgoing propagation direc- \ith a high angular selectivily However, in our modulation ex-
tions, i.e. a transmitted and a Bragg-diffracted beam. Thugeriments we are mainly interested in atoms far from the band gaps,
the (prevented crossing points of adjacent parabola corre-je., at positions where the originally free atomic wave function is
spond to the Bragg angles. These crossing points appear @ost uninfluenced by the crystal in any case. There, in fact, the
the positiongsee Fig. 12 ky=nG/2, resulting in the stan- crystal intensity modulation acts only as a small perturbation, even
dard Bragg conditiorfg~nG/2k, . if the crystal potential is modulated with an amplitude of 100%.

ective side of the static peak. Thus scanning the modula-
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tion frequency or the incidence angle measures the distandslled modulation, or frequency shift of matter waves can be
between Bloch bands with high accuraopte that the typi- used in atomic interferometry, in order to build active Mach-
cal transition energyiw,, is in our case about ten orders of Zehnder-type atom interferometg¢s3,19, where the coher-
magnitude lower than the kinetic energy of the athms ent wave splitters and recombiners consist of modulated light

This viewpoint also implies that the asymmetric sidebandgratings. These are promising tools for high-precision rota-
generation demonstrated in Sec. Il is in fact a lopsided trantion or gravitation sensorg39]. For example, using the de-
sition between two crystal bands. The creation of only onescribed modulation techniques, it is possible to impress a
sideband in such an energy-level scheme means that onpyecisely controlled de Broglie frequency difference at the
one of the indicated transitiorte.g., arrow hcan be induced atoms in the two paths of an atom interferometer. This al-
by the potential modulation, whereas the same modulatiolows highly increased sensitivity by lock-in detection of the
cannot drive the corresponding symmetric transitiarrow  oscillating interference fringes, or by actively tracking the
c), although the modulation frequency is resonant with bothinterference phase with a changing frequency difference. In
transitions. The reason for this behavior is the temporal hemore advanced experiments this might also enable the inter-
licity of the complex potential modulation. As mentioned ferometric detection of mass- or velocity-dependent disper-
above, such an absorption without stimulated emisg@n sion phenomena, which are expected in certain atomic scat-
vice versa within the band structure of an optical lattice tering and collision processes, in magnetic fields, or in
suggests applications like a cooling of the atoms to thegravitation physics.
ground state. Another application in sophisticated measurement tech-

nology is the use of modulated standing light fields for pre-
IV. OUTLOOK cise mass spectroscopy of atomic or molecular beams. There
i . a particle beam crosses a thick modulated standing light

We have demonstrated that sidebands of atomic mattggaye at exactly perpendicular incidence. By scanning the
waves can be produced by diffraction at intensity- Orjntensity modulation frequency of the light crystal, diffrac-
frequency-modulated light crystals, either by directly modu-tion peaks will appear only at specific modulation frequen-
lating rgal qnd imaginary parts of the light potential or by cjes (the two-photon recoil frequengywhich depend only
modulating its amplitude and complex phase. The effect cagn the particle mass and the precisely measurable light fre-
be characterized as a coupled spatial and temporal Braggl,ency, but not at hardly controllable parameters like the
diffraction process. Specific non-Hermitian potential modu-particle velocities. Using an intense laser the optical fre-
lations can have the shape of a time-dependent complex hguency can be selected over a wide range around atomic or
lix. These modulations transfer energy only in one directionmojecular transition lines, since the refractive potential of the
i.e., either to lower or higher values, and thus violate thqight field falls off only slowly with increasing frequency
usual symmetry between absorption and stimulated emissigfifference from resonance.
of energy quanta. This is an interesting analog to a recently | fundamental research, the control over the sideband
demonstrated asymmetrinomentuntransfer which occurs  strycture of atoms can be used to investigate the quantum
when atoms are diffracted at complex potentials veatial  mechanics of atomic wave packets, an exciting field of quan-
helicity [17]. tum optics. Advanced technologies in laser optics, like chirp-

The investigated temporal diffraction effects imply many ing and compression of laser pulses, which are important
interesting applications. For example, the asymmetric energjschniques for achieving ultrashort pulses, might also be
transfer produced by non-Hermitian potential modulationsemylated advantageously with modulated matter waves.
might be used for cooling atoms to the ground state of arhese experiments have now become feasible, since degen-
optical lattice, or to gain complete control over the atomicgrate quantum gases of atoms are readily obtainable as co-
population of the energy bands. In this case it is necessary {Qerent sources of atomic matter waves.
chose an atomic system which allows for a repumping of the
ground-state atoms to the metastable state.

Furthermore, the sideband modulation techniques now en-
able many applications, which have been advantageously This work was supported by the Austrian Science Foun-
used in light optics and in radio-frequency technology, to bedation (FWF), Project No. S6504, and by European Union
transferred into an analogous matter-wave technology. ConFMR Grant No. ERB FMRX-CT96-0002.
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