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Matter waves in time-modulated complex light potentials
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Temporal light modulation methods which are of great practical importance in optical technology, are
emulated with matter waves. This includes generation and tailoring of matter-wave sidebands, using amplitude
and phase modulation of an atomic beam. In the experiments atoms are Bragg diffracted at standing light fields,
which are periodically modulated in intensity or frequency. This gives rise to a generalized Bragg situation
under which the atomic matter waves are both diffracted and coherently shifted in their de Broglie frequency.
In particular, we demonstrate creation of complex and non-Hermitian matter-wave modulations. One interest-
ing case is a potential with a time-dependent complex helicity@V}exp(ivt)#, which produces a purely lopsided
energy transfer between the atoms and the photons, and thus violates the usual symmetry between absorption
and stimulated emission of energy quanta. Possible applications range from atom cooling over advanced
atomic interferometers to a new type of mass spectrometer.

PACS number~s!: 03.75.Be, 03.75.Dg, 32.80.Pj
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I. INTRODUCTION

The interaction of atomic matter waves with standi
light fields has been established as a very useful tool in a
optics. In standing light fields atoms can be trapped, coo
diffracted, manipulated, and arranged in so called optical
tices @1,2#. The simplicity of the systems recently allowe
one to investigate many relevant quantum optical phenom
which are closely related to solid-state physics, like quant
chaotic behavior@3#, Bloch oscillations@4#, Wannier-Stark
ladders and Landau-Zener tunneling@5#, spectroscopy of the
Bloch bands@6,7#, and temporal interference effects@8,9#.
An important subgroup of these interactions consists
Bragg scattering of atomic beams at standing light fie
@10–14#, which can then be viewed in analogy to condens
matter physics as ‘‘crystals of light’’@15#. Atomic Bragg
diffraction has been demonstrated at both refractive and
sorptive light crystals, revealing interesting features wh
are analogous to standard Bragg diffraction in crystallog
phy, like Pendello¨sung-oscillations, anomalous transmissi
~the Borrmann effect! through absorptive crystals, or th
spectral dependence of the scattering phase@12,14,16#. Even
the interaction withcomplexlight potentials has been inves
tigated@17#, resulting in asymmetric Bragg diffraction, i.e
in a lopsided momentum transfer between atoms and p
tons, which violates an empirical rule called Friedel’s law

In practical applications the coherence of the Bragg s
tering process allowed for its use as an efficient cohe
beam-splitting mechanism in atom interferometers@18,19#,
and more recently, as an output coupler for coherent ma
waves from a Bose-Einstein condensate of atoms@20,21#.
Due to the extremely high momentum and energy selecti
of Bragg scattering, it is also used as a very sensitive sp
troscopic tool to investigate such degenerate quantum g
@22#. These methods frequently exploit the possibility
modulate the standing light field in order to get a travelin
or a pulsed light crystal. Thus it becomes important to inv
1050-2947/2000/62~2!/023606~20!/$15.00 62 0236
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tigate in detail the phenomena which arise during the in
action of atomic matter waves with such modulated lig
fields. One more motivation of our investigations is the su
cess of frequency shifters and sideband modulators in tr
tional light optics in both scientific and practical applic
tions. Thus we may expect corresponding breakthrough
matter-wave optics, particularly in combination with the r
cent advances in the generation of atomic Bose-Einstein c
densates which can act as ‘‘atom lasers.’’

In previous publications we have already demonstra
that the effect of atomic scattering at traveling Bragg gr
ings ~which arise in an intensity modulated light crystal! re-
sults in coherently frequency shifted atomic matter wav
This can be interpreted as an atom-optic analog to
acousto-optic frequency shifter in photon optics@23,24#, or
as a process of sideband generation similar to radio
quency techniques. In the next sections we will first theor
cally and then experimentally investigate this basic effec
more detail.

Furthermore, we extend our investigations to general
tential modulations, which can be even complex, and de
onstrate how to realize them experimentally with tw
complementary methods, i.e., either by independently mo
lating real and imaginary parts of the light potential@25#, or
by controlling its amplitude and complex phase@26#. Using
these methods we realize potential modulations of the fo
V}exp(6ivMt), which represent a complex helix in the tim
domain. These modulations lead either to a subtraction o
an addition of a quantized energy amount\vM to the kinetic
energy of the atomic matter waves, depending on the sig
the exponent.

For an explanation of the observed diffraction effects
present an intuitive Ewald-type model which extends
classical Bragg situation to the case where the crysta
modulated. Such a model allows for the derivation of t
new Bragg condition, under which a coupled process
Bragg diffraction and atomic matter-wave frequency shifti
©2000 The American Physical Society06-1
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~‘‘atomic sideband generation’’! is allowed. For calculating
the diffraction efficiencies at the new Bragg angles the
sults of standard Bragg scattering theory are used, as de
independently in dynamical diffraction theory@27#, or in a
coupled wave formalism@28#, though with additional consid
eration of the effects of complex, non-Hermitian potentia

Finally we briefly sketch another viewpoint of our expe
ments, which points out its relation to recently publish
interesting experiments, where the Bloch band structure
magneto-optically trapped atoms in optical lattices has b
investigated@4–7#. We show that atomic Bragg scattering
modulated potentials can be interpreted as a transition wi
the energy-band structure of the light crystal, which is
duced by the temporal modulation process. Thus our exp
ments represent a highly sensitive spectroscopic inves
tion of the energy-band structure~‘‘Bloch bands’’! of the
light crystal. The main result within this viewpoint is tha
special types of complex potential modulations, that are
tually realized in our experiments, lead todirectedtransitions
within the energy bands of the light crystal. This asymme
energy transfer corresponds to a very unusual interaction
tween atoms and light fields, which, in particular, does
lead to thermal equilibrium~like, e.g., in blackbody radia
tion!. Besides its fundamental interest, this might have pr
tical applications in atom cooling.

II. BRAGG DIFFRACTION IN SPACE AND TIME

The interaction of atoms and standing light fields can
described by two complementary pictures. In atomic phys
often an energy-momentum picture is used. There, at
absorb a photon from one mode of the light field, follow
by stimulated reemission to another mode. Thus the a
acquires a momentum change which corresponds to two
ton recoil momenta. The process is allowed if the energy
the atom is conserved, i.e., if the absolute value of the ato
velocity does not change in the laboratory frame~supposed
that the atom does not change its internal state during
interaction!. The efficiency of such an allowed process d
pends on the probability of the coupled absorption/stimula
emission process, and thus on the light frequency detun
from an atomic transition line. The picture can be gene
ized for the description of processes, where the atom cha
its internal state, or where the atom interacts with light fie
of multiple frequencies~‘‘Doppler-sensitive Raman transi
tions’’!. There the atom can change both its momentum
its kinetic energy, if a generalized condition of total ener
and momentum conservation is fulfilled, which depends
the geometry of the interaction process, on the participa
light frequencies, and on the internal state energies. A
tailed overview over atom-light interactions in this picture
given in Ref.@29#.

In other fields of diffraction physics, e.g., in light an
x-ray diffraction, electron, and neutron scattering, often
complementary picture is used which is based on the in
action of an incident wave with a periodic medium. The
the diffraction is described according to the Huygens pr
ciple as an interference process of all partial waves scatt
coherently from the periodic structure. This can be also g
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eralized to a situation where an energy change of the
fracted wave is allowed, if the scattering medium is temp
rally modulated or moving.

Both the energy-momentum picture and the Huygens p
ture lead to equivalent results, i.e. to a dynamic diffracti
theory. Here we chose the description in the wave pictu
resulting in a so-called Ewald construction, which is w
known in standard diffraction physics. One advantage is t
the allowed diffraction geometry can be constructed direc
in the laboratory frame. We generalize this picture to t
situation of scattering at a time modulated periodic mediu
though with reference to the energy-momentum picture
the end of the paper by pointing out the relation of our e
periments to the field of so-called Bloch band spectrosco

In general, a light field represents a frequency-depend
complexrefractive index for the atom@30#. Consequently, an
extended standing light field corresponds to a periodic
fractive index modulation with the ability to diffract a
atomic matter wave—a scattering ‘‘crystal’’ made of ligh
The fact that the scattering of atomic matter waves at s
light crystals can be described as a standard Bragg diff
tion process, like, e.g., x-ray diffraction at solid crystals, h
been well investigated in the literature@10–13#. Analogies
have been found even in very fine details@14–16#.

The main characteristic of standard Bragg diffraction is
quantizedmomentum exchange between the incident wa
and the scattering crystal, which can occur only in multip
of the ‘‘grating momentum’’\GW , where GW is the grating
vector of the crystal with the absolute valueuGW u52p/d
5..G, inversely proportional to the grating periodd. Very
similar, a potential which is periodically modulated in th
time domain with frequencyvM can, under certain circum
stances, exchange energy quanta in multiples of\vM with
the incident particle. Such an energy exchange, which al
the optical frequency of a scattered photon, or the de Bro
frequency of a scattered particle, is technically described
frequency sideband generation. Due to the analogy betw
diffraction and sideband generation, both characterized b
quantized exchange of momentum or energy, respectiv
the process of sideband generation is sometimes denote
‘‘diffraction in time’’ @31#.

The close analogy between spatial and ‘‘temporal’’ d
fraction also results in a similar classification of the diffra
tion regimes. In standard scattering there is a significant
ference between diffraction at thin gratings~the Raman-Nath
regime! and thick crystals~the Bragg regime!. In the Bragg
regime the grating isspatially thick enough to define a
sharply fixed orientation of the grating vector. In a thin gra
ing regime these orientations are undefined in a certain c
tinuous range, allowing for diffraction at a corresponding
continuous range of incidence angles. The borderline is
sically given by Heisenberg’s position-momentum unc
tainty limit.

Similarly, in temporal diffraction the interaction time be
tween the crystal and particle generates two significantly
ferent regimes: a ‘‘short’’~temporal Raman-Nath! and a
‘‘long’’ ~temporal Bragg! diffraction regime. If the interac-
tion time between the incident particle and a periodica
6-2
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MATTER WAVES IN TIME-MODULATED COMPLEX . . . PHYSICAL REVIEW A 62 023606
modulated potential is long enough, energy can only be
changed in sharply defined energy quanta, whereas in a s
~e.g., pulsed light crystal! interaction regime, energy can b
exchanged in a continuous range, which allows the gen
tion of spectrallybroad sidebands. Again the transition be
tween the two regimes is given basically by an uncertai
relation, though now by the time-energy uncertainty.

Linking diffraction in space and time, all combinations
spatial and temporal diffraction regimes can be realized, l
e.g., sharply defined momentum transfer but continuous
ergy exchange~diffraction of atoms at a pulsed thick ligh
grating in Ref.@13#!, corresponding in our terms to a ‘‘spa
tial Bragg and temporal Raman-Nath regime,’’ or continuo
momentum transfer and quantized energy exchange~diffrac-
tion of atoms and neutrons at vibrating mirrors in Refs.@32#
and @33#, respectively!, corresponding to ‘‘spatial Raman
Nath and temporal Bragg scattering.’’ However, all of the
combinations exhibit different scattering effects.

In our experiments we investigate coupled spatial diffr
tion and sideband generation in a spatial and temporal Br
regime. In contrast to all other combinations this gives rise
new discreteBragg angles, under which the atomic mat
waves are simultaneously diffracted and frequency shif
The periodic light potential for the atoms can be tailored
superimposing different light fields, or by modulating th
light frequency across an atomic resonance line. In the
lowing we present an intuitive model for deriving the ne
Bragg condition for scattering at temporally modulated cr
tals.

A. Generalized Ewald construction for modulated crystals

In static Bragg diffraction, an incident wave is scatter
only under specificdiscreteincidence conditions—the Brag
angles. This is a consequence of both energy conserva
for the incident wave, and quantization of the moment
exchange between crystal and wave in multiples of\GW ,
whereGW is the grating vector (uGW u52p/d). In the case of a
light crystal set up by two counterpropagating light wav
with wavelength l and corresponding wave vecto
kWL (ukWLu52p/l), the grating constantd corresponds tol/2,
and the grating vectors areGW 562kWL.

Energy conservation and quantized momentum excha
are the basis of the well-known Ewald construction, wh
the tips of incident and scattered wave vectors are locate
a common circle around their origin~equal length corre-
sponding to energy conservation!; additionally, they are con-
nected by a grating vector~corresponding to a quantized mo
mentum change of\GW ). A construction for first-order Bragg
diffraction, corresponding to a momentum exchange of
actly \GW is sketched in Fig. 1~a!. Obviously, for a given
length of the incident wave vectorkWA5mvW A /\ ~wherem and

vW A are the atomic mass and velocity, respectively!, for dif-
fraction at thenGth order, the Ewald construction yields on
one possible incidence angle; the Bragg angleuB,nG

, satisfy-
ing
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sin~uB,nG
!5nG

uGW u

2ukWAu
. ~1!

However, since the grating vector is usually not orient
i.e., it exists in both opposite directions, the orientations
incident and scattered wave vectors can be exchanged, w
yields two symmetrically arranged Bragg angles for scat
ing at the two conjugate6nGth Bragg orders.

The situation changes in the case of scattering at a
cused standing light wave~thin grating!, as sketched in Fig
1~b!. Due to focusing in thez direction, thez component of
the grating vector,Gz is no longer defined sharply, but has a
uncertainty in an angular range inversely proportional to
size of the focusDGz'(2Dz)21 @34#. Although the condi-
tion of energy conservation~elastic scattering! still holds, the
direction of the transferred grating momentum can now
chosen in a certain continuous range, and the Ewald c
struction yields a corresponding range of incidence ang
where elastic diffraction is possible. As an example, two
lowed pairs of incident and scattered wave vectors
sketched in Fig. 1~b!. Thus, focusing of a transversely ex
tended~plane! standing light wave results in a continuou
transition from a Bragg regime, where scattering appe
only at discrete incidence conditions, to a thin-grating regi
~the Raman-Nath regime!, where a broad range of incidenc
angles~and momenta! is scattered@35#.

The Ewald construction can be generalized to the sit
tion of a temporally modulated crystal. Such a tempo
modulation provides the possibility to transfer kinetic ener
to the scattered wave. If the interaction timet is short~the
‘‘temporal Raman-Nath regime’’!, e.g., by pulsing the light
crystal, then there results a continuous energy uncerta
DEkin'\/t of the scattered wave, which enables Bragg d
fraction at much less stringent incidence conditions. This
demonstrated in Fig. 1~c! by a modified Ewald construction
where the circle of the original Ewald construction is subs
tuted by a circular band with a thickness of 1/tvA , corre-

FIG. 1. Ewald constructions for different situations of first-ord
scattering at a given direction~‘‘to the right side’’!. The discussed
cases are~A! a thick static grating,~B! a thin static grating,~C! a
thick pulsed grating, and~D! a thick, harmonically modulated grat
ing.
6-3
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sponding to an energy uncertainty ofDEkin'\/t. Similar to
the spatial Raman-Nath situation of Fig. 1~b!, diffraction is
now again allowed for a whole range of incidence angl
However, in contrast there is now afixed momentum transfe
between incident and outgoing wave vectors, accompa
by acontinuous energy transfer. Thus the length of the scat
tered wave vector can change, and scattering becomes in
tic. As mentioned above, such a situation might be cha
terized as a spatial Bragg regime and a temporal Ram
Nath regime.

However, in our experiment we stay in a spatial and te
poral Bragg regime by employing a temporally harmon
modulation with frequencyvM , and allowing for a suffi-
ciently long interaction timet ~several modulation periods!.
Now the energy exchange between the crystal and wav
quantized in multiples of\vM , with an uncertainty in-
versely proportional to the interaction time (DEkin'\/t).
Consequently, both momentum and energy transfer betw
crystal and wave are quantized. The Ewald construct
modified for this situation, is sketched in Fig. 1~d!. Now the
peak of the incident wave vector defines the radius of
middle circle. The lengths of the atomic wave vectors shif
by the quantized energy offsets6\vM are given by new
circles with smaller and larger radii, offset byvM /vA . A
sharply defined grating vectorGW connects incident and out
going wave vectors, which, however, can now lie on t
different circles. Obviously, these conditions are satisfi
only for discrete incidence angles, although there are n
three possibilities for first-order diffraction in one directio
as indicated in the figure. The situation thus corresponds
generalization of Bragg scattering to the time domain. C
sequently, the standard static Bragg condition results a
special case settingvM50. The waves scattered at the ne
incidence angles are expected to be coherently freque
shifted by the modulation frequency of the crystal. Note t
in our situation of scattering at a Bragg crystal, the diffrac
beam contains only one single-frequency component a
time, because only a certain frequency shift, which depe
on the incidence angle, can fulfill the generalized Bragg c
dition derived above. This means that a modulated Br
crystal indicates the frequency shift of a diffracted atom b
unique Bragg angle. Thus, in the spatial and temporal Br
regime, a modulated crystal acts simultaneously as a s
band generator and an analyzer.

B. Calculation of the generalized Bragg condition

In order to calculate the new Bragg angles for diffracti
with quantized energy exchange we analyze the situa
sketched in Fig. 1~d!. Both momentum and energy can on
be changed by quantized amounts, requiring

kWA85kWA1nGGW ,

~2!

\ukWA8 u2

2m
5

\ukWAu2

2m
1nM\vM .
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TherenM andnG are the numbers of frequency modul
tion quanta\vM and grating momenta\GW , exchanged be-
tween wave and crystal, and thus correspond to the temp
and spatial diffraction orders, respectively.kWA andkW A8 denote
the incident and diffracted atomic wave vectors. An ad
tional condition is imposed by the fact that each exchange
a modulation quantum~i.e., each ‘‘diffraction process in
time’’ ! has to be accompanied by an exchange of a gra
momentum~i.e., a spatial diffraction process!, in contrast to
spatial diffraction, which can also happen without ener
exchange~‘‘standard’’ Bragg diffraction!.1 Therefore, the
possible temporal diffraction ordersnM are restricted by the
spatial diffraction ordernG to only three cases:

nM50 or nM56nG . ~3!

This means that there is always the possibility for elas
scattering (nM50) or, that there is the possibility to ex
change a number of energy quanta corresponding to the
tial diffraction order (nM56nG).

For solving Eqs.~2! it can be exploited that due to mo
mentum conservation only the component of the atom
wave vectorkA,uu parallel to the grating vector can chang
but not the perpendicular componentkA,' @this is also
straightforwardly seen from the geometry sketched in F
1~d!#. This means that

kA,'8 5kA,' ,

kA,uu8 5kA,uu1nGG, ~4!

\kA,uu82

2m
5

\kA,uu
2

2m
1nM\vM .

These equations can be solved easily. As an abbrevia
we introduce the matter-wave frequency of an atom,vA

5\ukWAu2/2m, and the two-photon recoil frequencyvRec

5\uGW u2/2m an atom acquires with respect to its original re
frame after addition of one grating vectorGW . ThusvRec is a
geometric constant of the setup. As a result, for the para
components of an allowed pair of incident and diffract
wave vectors we obtain

kA,uu5
1

2
nGGS nMvM

nG
2 vRec

21D ,

~5!

kA,uu8 5
1

2
nGGS nMvM

nG
2 vRec

11D ,

and

1This is a consequence of the Schro¨dinger equation, where spatia
and temporal coordinates are not symmetric.
6-4
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ukWA8 u5ukWAuAnMvM

vA
11. ~6!

Thus an incidence angleu In , where an incoming atom
can be scattered, is

sin~u In!5
kA,uu

ukWAu
5

nGuGW u

2ukWAu S nMvM

nG
2 vRec

21D
5sin~uB,nG

!1
nMvMuGW u

2nGvRecukWAu
. ~7!

Obviously, the relation is a generalization of the static Bra
condition, yielding the static Bragg angle in the case of
unmodulated crystal (nM50).

Similarly, the angle of the scattered atom,uOut , is given
by

sin~uOut!5
kA,uu8

ukW A8 u
5

nGuGW u

2ukWAu

S nMvM

nG
2 vRec

21D
A11nMvM /vA

5
sin~u In!22 sin~uB,nG

!

A11nMvM /vA

. ~8!

In our experimental situation of very small incidence a
scattering angles~below 200mrad!, all the sinus functions
can be replaced by their arguments. Therefore, from Eq.~7!,
in a very good approximation, we obtain the differenceDu
of the new Bragg anglesu In ~with frequency shift! from the
original static Bragg angles,uB,nG

, for the cases where Eq

~3! holds, i.e.,nM56nG :

Du5u In2uB,nG
56uB

vM

vRec
. ~9!

ThereuB5G/2kA is the static Bragg angle for first-orde
diffraction. This shows that the angular offset of a ne
Bragg angle from the static Bragg angle, obtained at a mo
lated crystal, is a direct measure of the frequency shift
quired by the scattered atoms. Therefore, a modulated B
crystal is able to produce sidebands of matter waves,
simultaneously, to identify the frequency offset of the sid
bands by their offset from the static Bragg angle. This re
tion will be used in several parts of our experiment.

Additionally, our experimentally applied modulation fre
quencies are far below the matter-wave frequencyvA of the
incident atoms. Considering this, from Eqs.~7! and ~8! we
obtain the total scattering angle of the atoms asuOut2u In
52uB,nG

, which is identical to the scattering angle of sta
Bragg diffraction. Additionally, according to Eq.~7!, the an-
gular offset of the new allowed incidence angles from
static Bragg angle does not depend on the diffraction or
~assumingnM56nG), i.e., the incidence angles of all atom
frequency shifted bynG\vM are offset by the same amoun
This shows that the total far-field diffraction pattern
02360
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frequency-shifted atoms looks exactly like the diffractio
pattern in ‘‘static’’ Bragg diffraction, though with an angula
offset given by Eq.~9!. The situation thus resembles scatte
ing at a moving crystal, which would result in a scattering
frequency-shifted atoms with a diffraction pattern lookin
like a static diffraction picture, although centered around
new incidence angle. In fact, in a previous publication
interpretation based on atomic scattering at traveling s
crystals within the modulated light crystal was introduc
@23#.

However, for many situations another picture is advan
geous. An alternative Bragg condition can be derived
considering the ondulation or ‘‘wobbling’’ frequency,vWob,
with which an atom incident at one of the new Bragg ang
u In traverses the grating planes of a crystal:

vWob5vA sin~u In!uGW u52
nM

nG
vM1nGvRec. ~10!

If we take into account the additional conditionnM5
6nG @Eq. ~3!# for diffraction with energy exchange, this ca
be rewritten as

nG
2 \vRec5nG\~vWob6vM !. ~11!

This central equation can be used as an alternative for
lation of the Bragg condition@Eq. ~7!# for inelastic scattering
at modulated crystals. An interpretation is straightforward
the atom is regarded in itsincident rest frame. There the
energy of the atom is zero. However, after a static Bra
scattering process, the atom moves. The corresponding
netic energy of the atomwith respect to the original res
framecan only be supplied from a time-dependent modu
tion ‘‘seen’’ by the atom in its frame. In fact, even in stat
scattering the atom experiences a light intensity modula
with frequencyvWob due to the apparently moving ligh
crystal~with respect to the atomic rest frame!, and therefore
can change its kinetic energy in multiples of\vWob. An
alternative interpretation of the static Bragg condition no
results from the requirement that this energy change m
match the atom’s recoil energynG

2 \vRec, linked to the ad-
dition of nG grating momenta~i.e., nGth-order diffraction! to
the resting atom~note that the quadratic dependence of t
recoil energy on the diffraction order is due to the matt
wave dispersion relation in vacuum!. This means that the
static Bragg condition for matter-wave scattering can be
formulated asnG

2 \vRec5nG\vWob.
However, if the crystal is temporally modulated with

frequency ofvM , the atom experiences this frequency co
tribution in addition to the ondulation frequencyvWob.
These two~‘‘spatial’’ and temporal! frequency contributions
result in beating frequencies ofvWob6vM , corresponding
to new modulation quanta which can be exchanged betw
the atom and crystal. Therefore, the meaning of Eq.~11! is
that the recoil frequency fornGth-order diffraction
(nG

2 \vRec) has to match a multiple of the new energy qua
tum \(vWob6vM) which can be exchanged between t
atom and crystal. This alternative formulation of the Bra
6-5
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condition is particularly useful for discussing the angular a
velocity selectivity of the inelastic Bragg diffraction, as w
be shown below.

C. Diffraction efficiency at Bragg incidence

In the next step we investigate the efficiency of sideba
production. In the Ewald picture of Fig. 1, this might be se
as a determination of the weights of the different circl
which then represent the wave-vector magnitudes of ela
cally and inelastically scattered atoms. In this short disc
sion we will limit ourselves to the situation of scattering
first order. For static first-order Bragg scattering, it can
shown that the amplitude of the diffracted wave function,A,
is given by@10,12,16,28#

A5sinS pDz

L D . ~12!

ThereL is the so-called Pendello¨sungs length dependin
on the grating constantd, on the atomic recoil energyERec
5\2G2/2m, and on the coefficientVG of the spatial Fourier
transform of the grating potentialV, which corresponds to
the amplitude of the grating component with periodd:

L5
dERec

VG sin~uB!
. ~13!

Obviously, the diffracted amplitude oscillates betwe
21 and 1 as a function of the crystal length,Dz, or of the
grating amplitude. This is denoted as the so-called ‘‘Pend
lösung.’’ However, if scattering is only limited to low
diffraction efficiencies well below the first Pendello¨sungs
length ~this condition is fulfilled in many of our experi
ments!, it is possible to expand Eq.~12!:

A'
pDz

L
. ~14!

The corresponding diffraction efficiencyP, i.e., the ratio
of diffracted atoms to incident atoms, is then given by t
squared modulus of Eq.~14!:

P'S pDz

L D 2

. ~15!

The situation changes if the potential is additiona
modulated in time. Now a two-dimensional Fourier tran
form has to be performed, dividing the total potential in co
tributions with grating constantsnGG and modulation period
nMvM , i.e.,

V~x,t !5( ( VnG ,nM
exp~ inGGx2 inMvMt !. ~16!

The amplitude of first-order Bragg scattering at a subg
ing with grating vectornGG, modulated with one of the fre
quenciesnMvM within the temporal Fourier spectrum of th
modulation, is now given by inserting the respective Four
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into Eq. ~12!, under the assumption tha

the atomic incidence occurs under the corresponding Br
angles@given by Eq.~7!#.

Specifically, the diffraction efficiencies for first-order sp
tial diffraction at the basic grating with the exchange of ze
~elastic scattering! or one modulation quanta are

PnG51,nM505S pDz sin~uB!

ERecd
D 2

uV1,0u2,

~17!

PnG51,nM5615S pDz sin~uB!

ERecd
D 2

uV1,61u2,

respectively.
There it is assumed that the condition of small diffracti

efficiencies holds, such that the approximation of Eq.~15!
can be applied. The first term of each equation only conta
geometric constants of the setup. Thus it turns out that
diffraction efficiencies depend only on the squared modu
of the coefficients of a two-dimensional~spatial and tempo-
ral! Fourier transform. This dependence will be confirmed
Sec. III.

III. EXPERIMENTS

We start by describing the scheme of our experiment@36#.
Then we will demonstrate the basic features of scatterin
time-modulated crystals, before investigating the effects
complex potential modulations.

A. Setup

Our setup is sketched in Fig. 2. Argon atoms in a me
stable state are diffracted at a standing light wave, follow
by spatially resolved detection.

The argon atoms are first excited to a metastable s
~lifetime .30 s! in a gas discharge. Only these metastab

FIG. 2. Experimental setup~not to scale!. A collimated thermal
beam of metastable argon atoms crosses a standing light wave
diffraction pattern can be registered with spatial resolution by sc
ning a narrow slit in front of the extended channeltron detector. T
laser light intensity is modulated in some parts of the experim
using an acousto-optic modulator~AOM!. The two graphs show the
results for off-Bragg incidence~only one peak of transmitted atoms!
and Bragg incidence~a second peak of Bragg-diffracted atom
arises! in the case of an unmodulated laser beam. Additionally,
scattering efficiency can be registered as a function of the ato
incidence angle at the light crystal by fixing the detection slit at
position of the diffraction peak and tilting the retroreflection mirro
6-6
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can be detected by our ‘‘channeltron’’ detector, by releas
their high excitation energy~12 eV! in a collision with the
detector surface. The beam of metastable argon at
emerges into the high vacuum chamber, with an average
locity of 700 ms21, and a thermal velocity distribution o
60% ~full width at half maximum!. The beam is collimated
by a set of two slits~first slit 10 mm, second slit 5mm,
distance 1.4 m! to a divergence of less than 5mrad, i.e.,
considerably better than the diffraction angle of 2uB

'36 mrad.
After collimation the atoms enter a 5-cm-long interacti

region with a standing light field, set up by retroreflecting t
central part of a collimated, expanded laser beam at a m
~surface flatness,50 nm!, located in the vacuum beamline
The frequency of the diode laser is actively locked at an o
atomic transition of metastable argon~at 801.7 nm! using
saturation spectroscopy. The frequency can be shifted b
well-defined offset using an acousto-optic frequency shif
Both the intensity and frequency of the laser can be mo
lated with rates up to 200 kHz, using an acousto-op
switch, or by directly modulating the diode laser curre
respectively. Details of the light crystal generation vary
the different parts of the experiment, and are explained
low.

The standing light field represents a light crystal with
generally complex index of refraction for the atoms. Th
the atomic beam is diffracted if its incidence angle is a Bra
angle, but not affected at arbitrary incidence. The crys
angle can be controlled by tilting the retroreflection mirr
with a piezo actuator.

In the far field behind the crystal, at a distance of 1.4
the diffraction pattern can be spatially resolved by scannin
third 10-mm slit in front of the large area ‘‘channeltron’
detector. However, in most of the experiments the detec
slit is just located at the position of a Bragg diffraction pea
and the diffraction efficiency is then measured as a func
of the mirror angle~‘‘rocking curves’’!. Note that even in the
case of modulated light crystals, the detection slit posit
remains on the same position, since both the direction of
incident beam and the total diffraction angle are always c
stant.

B. Interaction of metastable argon atoms with light fields

Obviously, the whole experiment depends on the inter
tion between the argon atoms and the light field. The co
sponding theory is well established, and thus we point
only features important for our actual experiments.

A light field represents a positive, a negative, or even
imaginary potential for an atom, depending on the detun
of the light frequency from an atomic transition line. Inte
action of atoms with detuned light gives rise to the we
known dipole potential. The spectral shape of the potentia
a typical dispersion curve, as displayed in Fig. 3. Its spec
dependence is given by@30#

Vreal~v!5
\VRabi

2

4

v2v0

~v2v0!21~g/2!2
. ~18!
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VRabi5DE/\ is the Rabi frequency of the populatio
oscillations between the two levels with a transition dipo
momentD, driven by the electrical strength of the light fiel
E at resonance;v0 is the center frequency of the transitio
line, andg is the effective line width of the transition.

From quantum mechanics it is known that an exter
potential changes the phase velocity of a wave function. D
to the fact that such a spectrally dependent phase change
as a spectral filter on matter waves, it has to satisfy cer
causality requirements defined by the Kramers-Kronig re
tions. They demand that a dispersion shaped spectral de
dence of a real potential has to be accompanied by a Lore
shaped imaginary contribution:

Vimag~v!52 i
\VRabi

2

4

g/2

~v2v0!21~g/2!2
. ~19!

Such an imaginary potential corresponds to an absorp
coefficient with a Lorentzian spectral profile. In fact, such
imaginary contribution is contained in the interaction b
tween atoms and light fields, since resonant excitation of
atom consequently leads to spontaneous emission of a
ton, which kicks the atom out of its path—i.e., the atom
effectively removed from its original state~similarly, absorp-
tion of a light beam in a material can be due to diffu
scattering!. However, since in a two-level atom at optic
frequencies the deflection due to diffuse scattering of a p
ton is smaller than the detector angular resolution, this
flection is typically not resolved in Bragg diffraction exper
ments. The situation changes in our three-level argon at
For realizing detectable ‘‘absorption,’’ the most importa
feature of the metastable 1s5 atoms is theiropen transition
1s5→2p8 (4s@3/2#2→4p@5/2#2) at 801.7 nm~the effective
line width is '9 MHz!. If the atoms are excited at thi

FIG. 3. Complex potential of a light field for an atom near
open atomic transition line. The real part corresponds to the dip
potential, with the spectral shape of a dispersion line centered a
transition frequency. The~negative! imaginary part corresponds t
‘‘absorption’’ of the atoms, realized by pumping to the~undetected!
ground state. Its spectral shape corresponds to a Lorentzian. Be
the complex phase angle is drawn as a function of the light
quency. It has the shape of an arctangent function with an offse
2p/2.
6-7
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wavelength, they decay spontaneously with a branching
tion of 72% to the ground state which is not detected by
channeltron, i.e., the atoms are absorbed with respect to
measurement.

Both real and imaginary parts of the potential can be co
bined in a resulting complex potential:

V~v!5
\VRabi

2 /4

v2v01 ig/2
. ~20!

Figure 3~A! shows the completecomplexpotential of a light
field for an atom near an absorption line, split into t
Lorentzian imaginary part and the dispersion profile of
real part.

The arctangent-shaped complex phase angle of the po
tial is plotted below as a function of the light frequency. Th
spectral shape of the phase angle is important, since it d
mines the phase of the diffracted atoms. This is due to
fact that, in the case of a complex potential, the Pendello¨sung
length becomes complex@Eq. ~13!#, and the complex poten
tial phase then directly determines the phase of the scatt
wave according to Eq.~14!. This behavior was experimen
tally verified earlier@15#, and investigated in detail in Re
@16#. Interesting theoretical investigations of matter-wa
Bragg scattering at complex potentials were presented
Refs. @37,38#. The most important aspect for our actual e
periments is the fact that the phase of the scattered wave
be adjusted in a range from2p to 0 by changing the light
frequency from the far red detuned side to the far blue
tuned side of an atomic transition.

C. Diffraction at modulated real light potentials

The basis of our investigations is the fact that a modula
light crystal produces new Bragg peaks, and that the atom
these new peaks are coherently shifted by the modula
frequencyvM to higher or lower matter-wave frequencie
The coherence of the frequency shifting process was alre
demonstrated in a previous publication@24#. Here we dem-
onstrate quantitative investigations about the angular de
dence, peak width, and velocity selectivity of the diffracti
process, in order to verify our Ewald-type diffraction mod
We also investigate a special case where Bragg diffractio
a modulated crystal occurs at a perpendicular incidence
the atoms, a situation which can be never achieved in s
dard static Bragg scattering. This special situation mi
have practical applications as a sensitive method for m
spectroscopy.

1. Intensity-modulated light crystal

In the first experiment combining spatial and tempo
Bragg diffraction, an atomic beam was scattered at a li
crystal which was periodically switched on and off. A
though this situation was already investigated in Re
@23,24#, here we briefly present the basic effects. Typi
results of such an experiment are shown in Fig. 4.

In that figure we compare the efficiencies of first-ord
Bragg diffraction as a function of the atomic incidence an
for two cases of an unmodulated light crystal~upper graph!,
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and a periodically intensity modulated light crystal~lower
graph!. The light frequency was detuned far enough ('10
linewidths! from the open transition at 801.7 nm such th
the potential could be assumed to be purely real. The exp
ment was performed by locating the detection slit at the
sition of the first diffraction order, and then detecting t
number of diffracted atoms as a function of the retrorefl
tion mirror angle. In the case of an unmodulated crystal
obtained only one peak of diffracted atoms at the sta
Bragg angle. This is a typical result demonstrating that
measurements were performed in the Bragg diffraction
gime ~note that the result of such a measurement in the c
of diffraction at a thin grating would consist in an almos
constant efficiency, i.e., without any angular dependence!.

In the next experiment~lower graph!, the light crystal was
switched on and off periodically with a modulation fre
quency ofvM52p360 kHz. As a result we found two new
peaks of Bragg scattered atoms, arranged symmetric
around the static Bragg peak. In a previous publication it w
shown that these peaks consist of atoms whose matter-w
frequency iscoherentlyshifted by the modulation frequenc
@24#. This was demonstrated by interferometric superposit
of the diffracted frequency shifted matter wave with t
transmitted unshifted wave, resulting in traveling interfe
ence fringes, which were detected. The sign of the freque
shift depends on the side on which the new peaks arise
respect to the central Bragg peak. Frequency-upshifted at
appear at positions closer to perpendicular incidence,
vice versa. According to Eq.~9! the angular separationDu
from the static Bragg angle is proportional to the modulat

FIG. 4. Generation of new Bragg peaks at a modulated crys
In the upper graph, the efficiency of first-order Bragg diffraction
an unmodulatedlight crystal is plotted as a function of the atom
incidence angle~‘‘rocking curve,’’ see inset!, i.e., the angle of the
retroreflection mirror~the solid line is a Gaussian fit to the data!.
Only one peak of diffracted atoms appears at the Bragg angle
the lower graph the measurement is repeated, using an inten
modulated light crystal, which is switched on and off periodica
with a frequency ofvM52p360 kHz. Two new peaks arise at ne
incidence angles. They are arranged symmetrically around the s
Bragg peak at the center. Note the slight difference in the width
the new peaks.
6-8
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frequency (Du/uB56vM /vRec, where vRec5\uGW u2/2m
52p330 kHz!. This relation is verified in a sequence
experiments where the modulation frequency was change
a range from 25 to 200 kHz, and ‘‘rocking curves’’ we
recorded in the same way as before. In Fig. 5 the position
the new Bragg peaks is plotted as a function of the mod
tion frequency.

The graph clearly demonstrates the linear behavior of
angular offset of the new Bragg peaks from the static Bra
angle. The absolute values of the corresponding slopes
tained from the data (s50.6160.01 mrad kHz21) agree
with the expected value @Eq. ~9!: s5uB /vRec
50.60 mrad kHz21] within the experimental resolution~in-
serting the experimentally measured Bragg angle of 18mrad,
which corresponds to an average atomic velocity of 6
ms21).

As an additional test of our model, we examined t
widths of the new Bragg peaks at different modulation f
quencies. From our previous theoretical considerations,
expected that the peak width increases with increas
modulation frequency, due to the broad longitudinal veloc
distribution of the atoms in the beam. The reason for this
most easily seen from the alternative Bragg condition
modulated crystals, formulated in Eq.~11!. This condition is
imposed on the two new Bragg peaks, frequency shifted
6vM for first-order spatial diffraction (nG51), and requres
vWob5vRec6vM , respectively. Since both the intensi
modulation frequencyvM and the recoil frequencyvRec are
constants, the only dispersive parameter depending on
atomic velocity and on the incidence angle is the ‘‘wo
bling’’ frequency vWob with which the atoms rattle acros
the grating planes, given byvWob52puvA

W usin(u)/d, whereu

is the incidence angle of the atoms, anduvA
W u is the modulus

of the atomic velocity. A first-order Taylor expansion the
shows, that the wobbling frequency has a certain wi
DvWob, depending on the width of the velocity distributio
DuvAu:

FIG. 5. Offset of the two new Bragg peaks~see Fig. 4, lower
graph! from the static Bragg angle as a function of the intens
modulation frequency. The linear behavior expected from Eq.~9! is
clearly demonstrated.
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DvWob5
2pDuvAu

d
sin~u!. ~21!

This relation shows that the width of the wobbling fr
quency, and correspondingly the size of the angular in
dence range, around which the alternative Bragg condi
@Eq. ~11!# can be fulfilled, depends on both the correspon
ing incidence angleu, where the new Bragg peaks are ce
tered, and on the broad velocity distributionDuvAu
('350-ms21 full width at half maximum! of the atomic
beam. With increasing incidence angle, and thus with
creasing modulation frequency, the dependence from the
locity distribution becomes larger, increasing the width
the new Bragg peaks in the ‘‘rocking curves.’’ The sam
relation also reveals that the two peaks of frequency-shi
atoms appearing in each rocking curve~like in Fig. 4! should
have different widths. Note that this asymmetry between
widths of the left and right peaks is already visible in t
data of Fig. 4. The reason for this is that the two new Bra
peaks arise at different absolute incidence angles@see Eq.
~9!# u615uB(16vM /vRec). Therefore, the width of the
wobbling frequency distribution, and accordingly the angu
rangeDu in which Eq.~11! is fulfilled, becomes different for
the left and right peaks, respectively:

Du61'
d

2puvAu
DvWob5

DuvAu
uvAu

uB~16vM /vRec!.

~22!

In fact, the widths of the peaks are not symmetric.
special case with the most pronounced asymmetry is
tained if the modulation frequency corresponds to the re
frequency. In this case the angular width of one of the t
peaks should not be influenced by the velocity distribution
all (12vM /vRec50), whereas the other peak should sho
a doubled velocity dependence (11vM /vRec52) with re-
spect to the static peak width obtained by settingvM50 in
Eq. ~22!.

In Fig. 6 the width of the peaks in the rocking curves
plotted as a function of the incidence angle at which the n
peaks are centered. The graph agrees with the behavio
pected from our model@Eq. ~22!#. The individual data points
for the left~negative angles! and right peaks~positive angles!
are taken at different modulation frequencies~the same data
set as used for Fig. 5!; however, the width is not plotted as
function of the modulation frequency but as a function of t
corresponding incidence angles. First, the data show tha
peak width increases with increasing incidence angle~modu-
lation frequency!, in accordance with Eq.~21!. Second, the
graph shows that a minimum of the width is obtained
perpendicular incidence of the atoms, and not at Bragg in
dence~the two linear lines are drawn to indicate the center
symmetry!. Thus the width of the peaks does not depe
directly on their angular distance to the static Bragg pe
but rather on the absolute incidence angle. In the next s
tion, we pay some special attention to the extreme c
where Bragg diffraction occurs at perpendicular incidenc
6-9
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2. Bragg diffraction at perpendicular incidence

In ‘‘normal’’ static experiments the Bragg condition ca
never be fulfilled at perpendicular incidence of a wave a
crystal. The situation changes, however, in the case o
time-modulated potential. In order to be diffracted the ato
have to ‘‘feel’’ a potential modulation in their rest frame
which is equal to the two-photon recoil frequency@Eq. ~11!#.
This modulation can be produced either by the atomic
tling across the grating planes (vWob), or by an externally
applied intensity modulation (vM), or by a beating of both
(vWob6vM). This viewpoint suggests that at perpendicu
incidence, where the incident atoms move parallel to
grating planes and therefore the ‘‘rattling’’ frequencyvWob
vanishes, the necessary modulation must be delivered by
externally applied intensity modulation, i.e.,vM5vRec.
Due to symmetry considerations, no diffraction direction c
then be preferred and scattering is expected to occur
equal intensities at the two conjugate first diffraction orde
Thus the diffraction pattern resembles one obtained at a
grating, since the typical asymmetry of the Bragg diffracti
patterns is repealed~typically only one peak of diffracted
atoms is expected, as, e.g., shown in Fig. 2!.

Since the recoil frequency is equal for all atoms, indep
dent of their velocity, and since additionally the wobblin
frequency vanishes for all atoms, there should be no velo
selectivity of the Bragg diffraction process@this is also sug-

FIG. 6. Angular width of the new Bragg peaks as a function
the incidence angles belonging to different modulation frequen
~same data set as in Fig. 5!. Negative and positive angles corre
spond to the left and right peaks of frequency-downshifted
-upshifted atoms, respectively. With increasing modulation f
quency, and correspondingly growing incidence angle, the p
width enlarges, due to the increased dependence on the broad
gitudinal velocity distribution of the atomic beam. The plot al
shows that the broadening of upshifted and downshifted diffrac
peaks is almost symmetric with respect to theperpendicular inci-
dence direction~indicated in the plot!, and not with respect to
Bragg incidence~zero angular offset!. In particular, the minimal
peak width is not obtained for static diffraction~i.e., for atoms
which are incident at the static Bragg angle!, but for atoms which
are frequency upshifted by 30 kHz, corresponding to exactly p
pendicular incidence.
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gested by Eq.~22! setting 12vM /vRec50#. Thus, different
diffraction efficiencies can only be due to different intera
tion times with the light crystal.

Experimental investigations of Bragg diffraction at pe
pendicular incidence are plotted in Fig. 7. In the experim
we recorded far-field diffraction patterns for various atom
velocities by scanning the detection slit. The velocities w
selected using a time-of-flight method, where the gas d
charge of the atomic source was pulsed~pulse width 0.5 ms!
and the atomic intensities were recorded as a function
their arrival time at the detector, at a distance of'2.9 m
from the source. In the first experiment@Fig. 7, graph~a!# the
crystal was adjusted for perpendicular incidence of
atomic beam, and the light crystal was unmodulated. As
pected for static Bragg diffraction,~almost! no scattered at-
oms were registered. Some remaining scattering is due to
limited angular collimation of our beam, and to the limite
Bragg selectivity of our crystal. Both restrictions becom
more important for faster atoms, and therefore some hig
‘‘background’’ is measured there. In Fig. 7~b! the same ex-
periment was performed, though now we modulated the
tensity of our light crystal with the recoil frequencyvRec

52p330 kHz. As expected from our model, the data sh
a symmetric diffraction of atoms at the two conjugated fi
diffraction orders. The matter-wave frequency of the ato
in both new Bragg peaks is shifted by the modulation f
quency in the same direction, that is to higher absolute v
ues. The diffraction efficiency shows only a small depe
dence on the atomic velocity. This becomes especi
evident when compared to a more general situation of Br
scattering at modulated crystals, as presented in Fig. 7~c!.
There we chose an ‘‘arbitrary’’ modulation frequency of 7
kHz, and adjusted the corresponding new incidence angle
frequency-downshifted atoms, that is'60 mrad. The corre-
sponding diffraction patterns show the typical feature
Bragg diffraction, i.e., there appears only one peak of d
fracted atoms. Additionally, the diffraction efficiency de
pends strongly on the atomic velocity. A comparison of t
diffraction efficiencies as a function of the atomic velociti
for perpendicular incidence, for Bragg incidence, and for
cidence at'60 mrad is presented in Fig. 8.

In this figure the difference in the velocity dispersion
~elastic and inelastic! diffraction processes at increasing a
solute incidence angles becomes obvious. In particular,
minimal velocity selectivity of Bragg diffraction at a modu
lation frequency of 30 kHz, and the increased velocity d
pendence of elastic scattering and of scattering at m
higher modulation rates~0 kHz and 75 kHz in the figure! is
in agreement with Eq.~22!.

The independence of the diffraction condition at perpe
dicular incidence,vM5vRec52h/ml2, from parameters
like atomic velocity, light intensity, and interaction potentia
also suggests an interesting application. In fact, the mod
tion frequencyvM at which the new Bragg peaks appe
depends only on the atomic mass, and on the light wa
length which can be measured very accurately, and wh
can be chosen arbitrarily in a broad range in the vicinity o
transition line~real potential!, as long as a small interactio
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FIG. 7. Bragg diffraction at perpendicular incidence: The graphs show far-field diffraction patterns~recorded by scanning the detectio
slit! for atoms with different velocities~time of flight through our beam line!. ~A! is taken for an unmodulated light crystal at perpendicu
incidence of the atoms. Only the peak of transmitted atoms in the center of each scan is obtained, with almost no diffracted atoms
Bragg condition can never be fulfilled at perpendicular incidence. In~B!, the light crystal was modulated with the atomic recoil frequen
of 30 kHz, again at perpendicular incidence. Now atoms are diffracted symmetrically to both sides of the central peak of transmitte
Although the experiment was performed in the Bragg regime, the results are similar to diffraction patterns of a thin grating,
diffraction efficiency shows only a small dependence on the atomic velocity. In~C! a more ‘‘general’’ situation of scattering at modulate
crystals is investigated for comparison. There, a modulation frequency of 75 kHz was applied, and the atomic incidence angle wa
to one of the two new corresponding Bragg angles at'60 mrad. Now, as expected for the Bragg case, the diffraction patterns show
one peak of scattered atoms, and the diffraction efficiency depends strongly on the atomic velocity.
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potential between the atoms and the light exists. This m
imply a practical application as a highly sensitive method
mass spectroscopy, e.g., in the case of a molecular beam
measuring the intensity modulation frequency at which d
fraction of a collimated, perpendicularly incoming beam
observed. The accuracy of the method can be significa
improved by increasing the interaction time between the p
ticles and the light crystal, using a slower beam or a thic
crystal. For larger molecules, where the modulation f
quency would be very low, the resolution of the method c
be improved by observing diffraction into higher spat
Bragg ordersnG.1 ~i.e., larger deflection angles!, which
requires a correspondingly higher modulation frequen
nGvRec.

The basic experiments demonstrated so far are the fo
dation for the advanced investigations, which will be p
sented in the next section. Mainly, they confirm our mod
and the usefulness of the alternative formulation of the Br
condition in Eq.~11! for the diffraction of frequency-shifted
atoms. This frequency shifting can be interpreted as a s
band generation of the matter waves. However, in contras
typical situations of sideband generation~e.g., in the radio-
frequency technique! in our case the diffracted beams gene
ally contain only one frequency component at a time. T
means that a modulated Bragg crystal cannot only be use
shift the frequency of diffracted atoms, but also to indica
their frequency shift by the corresponding new Bra
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angles.2 This feature will now be applied for investigatin
the sideband structure generated by unconventional~even
non-Hermitian! potential modulations.

D. Diffraction at complex modulated light potentials

In the preceding section we demonstrated the basic ef
of atomic matter-wave frequency shifting by diffraction at
intensity-modulated light crystal. We now extend our inve
tigations to complex temporal modulation schemes wh
both real and imaginary parts of the potential, or its amp
tude and complex phase, are manipulated independe
There we use the fact that by adjusting the laser freque
we can change our potential within a range of positive a
negative real values, to imaginary values. This will be us
to Fourier synthesize specific temporal modulation functio
of the potential. According to our model@Eq. ~17!#, the Fou-

2In contrast, in a thin grating regime the effect of frequency sh
ing ~or sideband generation! would also be possible; however, the
all sidebands would appear simultaneously in the diffracted bea
Such an experiment in the Raman-Nath regime would lose the
ture to indicate the sideband generation, e.g., a spatially reso
far-field diffraction picture would not reveal the sideband structu
However, in our case of a combined spatial and temporal Br
regime our modulated crystal acts simultaneously as both a s
band generator and an analyzer.
6-11
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rier coefficients should directly determine the ability of o
modulated crystal to create sidebands of the correspon
frequencies. For the sideband detection we use the fact
according to Eq.~9!, the appearance of a new Bragg ang
automatically indicates the corresponding frequency offse
the diffracted atoms.

1. Complex light potential with temporal helicity

In this experiment we exploit the fact that it is possible
tailor potentials by superimposing light from different lase
We start from the same setup as in the previous experim
~Fig. 2!; though now we use two diode lasers to create
light crystal @25#. The light of the two lasers is first col
linearly superposed at a beam-splitter cube. Then the
combined beams enter the same collimation optics as be
This results in two exactly coinciding light crystals genera
in front of the retroreflection mirror.3 However, the intensi-
ties of the two lasers can now be modulated independe

3The light crystals can be regarded as exactly coinciding at
position where the atomic beam passes. The reason is that the m
mal experimentally used frequency difference is on the order of
MHz, resulting in a spatial beating period of 1.5 m, whereas
distance of the atomic beam to the mirror surface is only 2 mm

FIG. 8. Velocity selectivity of Bragg diffraction at intensit
modulated light crystals. The efficiencies of first-order Bragg d
fraction are plotted as a function of the atomic velocity for thr
different modulation frequencies~0, 30 kHz, and 75 kHz!. In one
case the modulation frequency was equal to the recoil frequency~30
kHz!, and the corresponding incidence angle of the atoms was
pendicular to the light crystal. In the other case an ‘‘arbitrar
modulation frequency of 75 kHz was chosen, and the correspon
new Bragg angle of scattering of frequency-downshifted atoms
60 mrad was adjusted. The middle curve shows the diffraction
ficiency of elastically scattered atoms, incident at the static Br
angle. Obviously, the data taken at a modulation frequency o
kHz shows the smallest dependence on the atomic velocity.
residual velocity dependence is due to the increasing interac
time, but not to a velocity selectivity of the diffraction process.
contrast, the data taken at 0- and 75-kHz modulation frequen
show a larger dependence on the velocity, due to the growing
fluence of the longitudinal velocity distribution at higher absolu
incidence angles.
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using for each laser a separate acousto-optic modul
~AOM! for periodically switching their intensity. In the ex
periments we used the same modulation frequencies for
lasers, though with an adjustable temporal phase relat
This could be achieved by using two function generat
with one common time basis to drive the two AOM’s.

Using different frequency detunings of the two light cry
tals from resonance, and additionally, using different relat
modulation phases, we can generate a potential of the fo

V~x,t !5„11cos~Gx!…@VL1„11cos~vMt !…

1VL2„11cos~vMt1f t!…#. ~23!

The first term of the equation describes a fully modula
spatial grating, which is formed in front of the mirror su
face, whereas the second term describes the applied tem
modulation. There it is assumed that the temporal inten
modulation of the two lasers is harmonical and fully mod
lated. The independent variables which can be controlled
our experiment are the individual crystal potentialsVL1 and
VL2, and the relative temporal phasef t between the two
harmonic potential modulations, which can be adjusted
rectly at the frequency generators driving the AOM’s. T
crystal potentials can be chosen real~positive and negative!
or imaginary~only negative! by adjusting the light frequen
cies. The absolute values of the potentials can be contro
by changing the corresponding light intensities.

In the experiment the absolute values of the two potent
where always equalized by adjusting the light intensity of
two individual crystals independently for equal relative d
fraction efficiencies, i.e.,uVL1u5uVL2u. Therefore, we can se

VL1ªV0 ,

~24!

VL2ªV0 exp~ ifc!.

V0 is the potential of the first laser, andfc is the complex
potential phase difference depending on the difference of
two laser detunings from resonance~see Fig. 3!. In order to
calculate the Bragg diffraction efficiencies for first-ord
elastic Bragg scattering, and sideband production of posi
or negative order~corresponding to positive or negative fre
quency shift!, a two-dimensional~temporal and spatial! Fou-
rier analysis of the total potential has to be performed,
cording to Eq.~16!. The Fourier coefficientsVnG51,nM50 and

VnG51,nM561, then determine the first-order diffracted wav
amplitudesfor elastic and inelastic scattering, respective
The corresponding diffraction efficiencies are then prop
tional to the squares of these Fourier coefficients, accord
to Eq. ~17! ~valid for small efficiencies!. Fortunately, such a
two-dimensional Fourier transform is easily performed in t
case of harmonic potential modulations. Since spatially a
temporally dependent functions are just multiplied in E
~17!, the time-dependent and spatial Fourier transforms
be separated. The two-dimensional transform is then just
product of the two individual ones. The spatial part of E
~17! describes a normal potential grating with well-know
Bragg diffraction properties, i.e., it enables diffraction at t
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MATTER WAVES IN TIME-MODULATED COMPLEX . . . PHYSICAL REVIEW A 62 023606
positive or negative first diffraction orders. In our case
are only interested in the sideband generation efficiencie
the first spatial diffraction order~as detected in our ‘‘rocking
curves’’!, such that it is sufficient to analyze only the tem
poral part of the modulation. This can be done easily
substituting all cosine functions according to cosa)
5„exp(ia)1exp(2ia)…/2. Evaluation of the products an
sorting the terms then yields

V~x,t !5V0„11cos~G•x!…$„11exp~ ifc!…

1 1
2 @11exp„i ~fc1f t!…exp~ ivMt !#

1 1
2 @11exp„i ~fc2f t!…exp~2 ivMt !#%. ~25!

This indicates that we have a ‘‘normal’’ static Bragg gra
ing ~first term! of modulusuV0„11exp(ifc)…u, and two time-
modulated components with absolute values ofuV0@1
1exp„i (fc1f t)…#u/2, anduV0@11exp„i (fc2f t)…#u/2, pro-
ducing frequency-downshifted and -upshifted sidebands,
spectively. In a typical ‘‘rocking curve’’ as in Fig. 4, th
squared modulus of these three components determine
intensities of the center peak, and the negative and pos
sideband peaks, respectively:

P1,0}uV0@11exp~ ifc!#u2,
~26!

P1,61}uV0@11exp„i ~fc6f t!…#/2u2.

Here it should be mentioned that for technical reasons
modulations actually applied were not harmonic, but rect
gular functions~the lasers were switched on and off!. This
results in additional Fourier components of higher ord
However, the first of these components is already the th
harmonic of the modulation frequency, leading to new pe
in the rocking curves which are far separated from the inv
tigated peaks of first-order sidebands, and thus do not dis
the measurements.

In order to verify the predictions of Eq.~26! for the dif-
fraction efficiencies, we chose different frequency detunin
(fc) and modulation phases (f t) of the two superimposed
light crystals, both intensity modulated with a frequency
vM52p3100 kHz. Results of these experiments are plot
in Fig. 9.

This figure shows ‘‘rocking curves,’’ i.e., the efficiencie
of first-order Bragg diffraction, as a function of the inciden
angle~angle of the retroreflection mirror!, the same kind of
measurement as performed in the previous experiment~see
Fig. 4!. The center of each plot corresponds to the sta
Bragg angle, i.e., the center peak always consists of el
cally scattered atoms. As discussed above, side peaks a
left or right side of the center are due to atoms which
creased or decreased their kinetic energy by one modula
quantum\vM in the course of the diffraction process, r
spectively. The inset of each plot indicates the applied
tential modulations of the two superimposed light crysta
As mentioned above, the absolute values of the two co
sponding light potentials were equalized by adjusting the
superimposed crystals individually for equal relative diffra
tion efficiencies of about 20%.
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In Fig. 9~a!, the two lasers were both far detuned~ten
linewidths! on the red side of the resonance line (V0 is nega-
tive real, andfc50), and they were switched on and o
simultaneously (f t50). The situation thus corresponds
effect to one single laser which is modulated. Therefore
obtain a result which is identical to the result of our ‘‘basic
sideband modulation experiment, sketched in the low
graph of Fig. 4, i.e., one central peak of elastically scatte
atoms, and two side peaks of frequency-upshifted a
-downshifted sidebands, respectively. The relative intensi
of the four peaks should be 1:4:1, according to Eq.~26!.
However, it has to be mentioned that these quantitative e
mates are only valid for small~relative! diffraction efficien-
cies. In the case of higher efficiencies, the sideband peaks
expected to gain efficiency with respect to the peak of e
tically scattered atoms.

In Fig. 9~b!, we performed a second control experime

FIG. 9. Generation of atomic matter-wave sidebands with d
ferent potential modulation schemes. The figure shows the fi
order diffraction efficiencies as a function of the crystal ang
~‘‘rocking curves’’!, for different temporal modulation functions
The time dependence of the two overlapping light crystal potent
are indicated in the insets. In~G! and~H!, temporal potential modu-
lations with a ‘‘helicity in complex space’’ result in completel
asymmetric sideband generation.
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by keeping the two lasers far red detuned (V0 is negative
real, andfc50, as before!, but by switching them on and of
alternately (f t5p), i.e., one laser was switched off whe
the other was switched on. In effect, this yields a consta
red detuned light field. Therefore, such an experiment co
sponds to Bragg diffraction at an unmodulated static crys
which yields only one peak of elastically scattered atoms
the Bragg angle, similar to the upper graph in Fig. 4. T
suppression off the two side peaks is in agreement, with
predictions of Eq.~26!.

In Fig. 9~c!, the two lasers were detuned on different sid
of the resonance line, i.e., the corresponding two light cry
potentials were positive real and negative real (V0 is nega-
tive real, andfc5p), respectively. The two lasers wer
modulated with equal phase (f t50). As a result, scattering
is completely suppressed. The reason for this is that
negative potential due to the red detuned laser and the p
tive potential due to the blue detuned laser cancel each o
at any time. Therefore, no resulting crystal potential exis
and no scattering can be observed.

An interesting situation is sketched in Fig. 9~d!, where the
different detunings of the two lasers were the same as in
last experiment (V0 is negative real, andfc5p), but now
the lasers were switched again alternately (f t5p). Obvi-
ously, this results in a suppression of the static Bragg pe
whereas the sideband efficiencies are equal to the efficien
in Fig. 9~a!. The reason for the suppression of the sta
Bragg peak is that, during its passage through the cry
each atom ‘‘sees’’ the crystal potential switch periodica
between positive and negative values~each atom experience
about six switching periods inside the crystal!. Therefore, on
the time average, no crystal results, and no atoms can
elastically scattered. On the other hand, there exists a cr
potential which is modulated between positive and nega
values, and which is thus able to generate sidebands. Q
titatively, Eq.~26! predicts the same sideband efficiencies
in Fig. 9~a!, in agreement with our experimental result.

In the next parts of the experiment, we created a gen
complex potential modulation. This was achieved by co
bining a negativeimaginary crystal potential~generated by
tuning one of the lasers exactly on resonance! with a nega-
tive real potential~obtained by tuning the other laser on th
far red side of the resonance frequency, i.e.,V0 is negative
real, andfc5p/2). The data of these experiments appe
more noisy, since the total diffraction efficiency is drastica
reduced with respect to the previous situations. The rea
for this is that only about 10% of the incident atoms can p
the absorptive crystal. From these transmitted atoms, a
25% are diffracted at the first order~static diffraction!, re-
sulting in an absolute diffraction efficiency of only 2.5%
Furthermore, some of the metastable atoms ('28%), which
should be absorbed after excitation by decaying to
ground state, rather decay spontaneously to their orig
metastable state, which contributes to some additional b
ground. Nevertheless, the expected diffraction effects
clearly visible.

In Figs. 9~e! and in 9~f!, the two lasers were switched o
and off simultaneously@in Fig. 9~e!, f t50#, and alternately
@in Fig. 9~f!, f t5p#, respectively. The results of the tw
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experiments are approximately the same: They show
symmetric side peaks in addition to the central Bragg pe
The symmetric sideband generation in Figs. 9~e! and 9~f! is
predicted by our model@Eq. ~26!#, as well as the symmetry
between the two situations. The reason for this is that
sum and the difference of the relative temporal modulat
phasesf t , and the complex phasesfc , in both situations
yields only the values2p/2 or 1p/2, which leads to no
difference in the absolute values of theP1,61 terms in Eq.
~26!. However, these are the only situations where a comp
potential modulation leads to a symmetric sideband gen
tion.

The sideband symmetry is maximally broken in the la
two experiments@Figs. 9~g! and 9~h!#, where the laser fre-
quencies were the same as before, but the temporal inte
modulation phases were chosen to be2p/2 and1p/2, re-
spectively. Obviously, this results in a suppression of o
sideband and an enhancement of the other. The suppre
and enhanced sidebands are exchanged in the two ex
ments. This is due to the fact that both the temporal phasef t
and the complex phasefc take the magnitudep/2. However,
whereas the temporal phase enters into Eq.~26! with differ-
ent signs for frequency-upshifted and -downshifted si
bands, the sign of the complex phase stays constant. Thu
two phases add top or cancel each other to 0 for th
frequency-upshifted and -downshifted sidebands, resp
tively, resulting in a suppression or an enhancement of
respective peaks. According to Eq.~26! the efficiencies of
the enhanced sideband should be approximately dou
with respect to the results of Figs. 9~e! and 9~f!.

A more detailed investigation of the sideband efficienc
as a function of the relative temporal intensity modulati
phasef t between the red detuned and the resonant lase
presented in Fig. 10. The data indicate that the sideb
efficiency depends sinusoidally on the relative modulat
phase. Frequency-upshifted and -downshifted sidebands
created alternately, i.e., a suppression of one sideband is

FIG. 10. Sideband generation efficiency as a function of
relative phase between the intensity modulations of two supe
posed real and imaginary light crystal potentials.
6-14
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companied by a maximal efficiency of the other. All the
observations confirm our model of sideband generation,
are in agreement with Eq.~26!.

The extreme situations occur at relative modulat
phases of6p/2, as already shown in Figs. 9~G! and 9~H!.
Investigating these situations in more detail, one finds tha
these situations the temporal part of the potential modula
is of the form V(t)}exp(6ivMt). Such an extremely non
Hermitian potential modulation represents a kind of helix
complex space, i.e., the modulus of the potential rema
constant, whereas the complex phase rotates linearly
function of time. The orientation of the helix is given by th
sign of the exponent. Thus our experimental result sugg
that such a temporally helical potential is only able to tra
fer energy in one direction, which depends on the orienta
of the helix. Detailed analysis shows that a modulation of
form exp(2ivMt) is able to emit energy in quanta of\vM ,
whereas an opposite orientation of the helix enables the
tential to absorb energy quanta. Thus the normal symm
between absorption and stimulated emission probabilities
duced by time-varying fields is broken. The symmetry b
tween absorption and stimulated emission is normally du
the fact that any real potential is Hermitian, which mea
that conjugate Fourier coefficients are pairs of complex c
jugates, i.e., any contribution with negative helicity is a
companied by another contribution with positive helicity
the same intensity. This symmetry can only be broken
open systems, interacting with an environment which act
a reservoir, since only in these cases the considered
system can be described by a non-Hermitian Hamiltonia

Interestingly, an analogous effect was recently obser
in the spatial domain@17#. In a similar setup a light crysta
potential with a complex helicity in space was tailored, i.
V(x)}exp(iGx). Although periodic, such a potential is ver
different from a real crystal potential@e.g.,V(x)}cos(Gx)#,
since the amplitude of the potential is constant at any poin
space, though the complex phase changes. It has been
served that such a potential with complex helicity in spa
transfers a grating momentum\G only in one direction, i.e.,
the spatial diffraction pattern becomes asymmetric, simila
our actual experiment where a complex potential helicity
time transfers a modulation quantum\vM only in one direc-
tion. Note that this analogy is not trivial, since the Sch¨-
dinger equation is not symmetric with respect to space
time coordinates.4 Together, the two results clearly point o
the role of non-Hermitian potential modulations, both

4One consequence of this is that it is always possible to cha
the direction of the atomic momentum without changing the ene
~elastic scattering!, but it is impossible to change the energy witho
adjusting the momentum. Therefore, in order to produce a
quency sideband by a temporal potential modulation, there alw
has to be an additional mechanism that provides the related mo
tum transfer. In our experiment we obtained this by combin
temporal and spatial potential modulations, where the temporal
created the energy shift, and the spatial part supplied the re
momentum change through its grating vector.
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space and time, which give rise to asymmetric transfers
momentum or energy, respectively.

The asymmetric energy transfer in our actual experim
suggests an interesting practical application: Using suc
modulation scheme it might be possible to cool a subsys
at the cost of its environment, which in our case would me
a cooling of the atoms in the metastable state at the cos
the atomic population in the ground state. However, here
have to mention that up to now this cannot be achieved
our system, since our potential modulation does not o
consist of the desired complex helix, but also of a consta
negative imaginary term causing continuous absorption
the atoms. A working scheme for cooling thus will need
repumping transition, i.e., a resonance line which cau
‘‘negative absorption’’~that is gain! at resonant excitation
In such a system, it is formally possible to generate a p
complex helical potential acting on one of the levels. Atom
in this level can then be cooled at the cost of the atoms in
other level, which acts as a reservoir.

2. Frequency-modulated complex light potential

In the following, we demonstrate a different approach
control the energy transfer to the diffracted atoms. In
preceding section, we showed how to control the time dep
dence of the complex potential by independently manipu
ing real and imaginary parts of the potential using super
posed on-resonant and off-resonant light fields. Now
show that a complementary method to manipulate a comp
function, i.e., by directly controlling its magnitude and com
plex phase, can also be realized, and yields results that a
agreement with our model. In the following, we direct
modulate the phase of the diffracted wave using the
quency dependence of the scattering phase, rather than
rier synthesizing the frequency spectrum with different
sers, as before.

As already mentioned, the phase of the complex poten
determines the phase of the scattered matter waves. This
be seen directly using the potential dependence of the
fracted waveamplitudegiven by Eq.~14! ~valid for small
diffraction efficiencies!, allowing for a complex Pendello¨-
sung length given by Eq.~13!. The spectral shape of th
complex phase of a light potential near an atomic resona
line is plotted in Fig. 3. It corresponds to an arctangent fu
tion, with an offset of2p/2. Thus a phase shift of the sca
tered matter wave in a range of2p to 0 can be achieved by
just changing the light frequency in an interval ranging fro
the far red to the far blue detuned side of the absorption l
Thus we can achieve a phase modulation of the matter w
by modulating the light frequency, which can technically
achieved easily by modulating the current of a diode las
Nevertheless, it has to be considered that, just by modula
the laser frequency without adjusting the light intensity, t
amplitude of the light potential is also modulated. The co
plete spectral dependence of the amplitude and phase o
light potential is best expressed by reformulating Eq.~20!:

V~v!5
2 i\VRabi

2 /4

A~v2v0!21~g/2!2
expF iarctanS v2v0

g/2 D G .
~27!
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Here the first factor denotes the real amplitude, and
second factor the complex phase of the potential. The eq
tion shows that a general modulation of the laser frequen
v(t), yields a rather complicated modulation of the comp
potential. Nevertheless, a controlled phase modulation ca
achieved by simultaneously controlling the frequency a
intensity of the laser light. One interesting kind of modu
tion is suggested by the arctangent dependence of the c
plex potential phase from the light frequency. If a period
frequency modulation of the form

v~ t !5v01
g

2
tan~vMt ! ~28!

is applied, then this compensates for the arctangent spe
shape of the potential phase, and results in a linear ph
shift as a function of time. Such a linearly changing pha
shift just corresponds to a frequency offset ofvM , which is
added to the matter-wave frequency. Such frequency gen
tion, obtained by adding a linear phase shift, acts similarly
a Doppler frequency shift, obtained by reflecting a wa
from a continuously moving object which also produces
linearly changing phase offset. The difference in our sit
tion is that the phase shift cannot remain linear forever, si
the tangent function is periodic. Therefore, the actual sh
of the potential phase obtained by the frequency modula
of Eq. ~28! becomes a sawtooth function of time, i.e., t
phase changes linearly in an interval between2p and 0, and
then jumpsback to its starting point. This corresponds e
actly to the jump which the laser frequency has to perform
the poles of the tangent function in order to jump from o
end of the resonance line to the other. The complete effec
this kind of frequency modulation can be seen if the mo
lation function@Eq. ~28!# is inserted into the complex poten
tial @Eq. ~27!#. After some trigonometric manipulations w
then obtain, for the time dependence of the modulated c
plex potential,

V~ t !5
2 i\VRabi

2

4g
cos~vMt !exp~ ivMt !

5
2 i\VRabi

2

4g
„11exp~ i2vMt !…. ~29!

This representation corresponds directly to a Fou
transform of the temporal potential modulation, i.e., the
exist a static Fourier component and a component with
quency 2vM , with equal intensities. Therefore, this modul
tion is supposed to create both elastically scattered atoms
a single frequency sideband offset by22vM . Note that the
sideband frequency offset deviates from the modulation
quencyvM . This is due to the phase jump after each ph
change ofp in the tangent function~which performs two
oscillations in an interval of 2p). Therefore, the actual fre
quency of the modulation is in fact 2vM , although the argu-
ment of the tangent function is onlyvMt.

In order to experimentally investigate the effects of las
frequency modulations, we used the same setup as sket
in Fig. 2, with one single diode laser~without any acousto-
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optic modulator!. The laser frequency could be modulated
driving the diode laser current with a programmable sig
generator. The frequency offset obtained by changing
laser current was measured with a Fabry-Perot spectrum
lyzer.

In the experiment we demonstrate that a tangent-sha
frequency modulation function according to Eq.~28! pro-
duces only one single sideband of either frequency-upshi
or frequency-downshifted atoms. This is done in a seque
of experiments where we successively increased the slop
the tangent function by increasing the amplitude of the t
gent shaped frequency modulation~Fig. 11!. The results are
compared with numerical calculations, where the squared
solute values of the respective Fourier coefficients of
potential modulation~convoluted with a phenomenologica
line-shape function! were computed. Note that the precedin
analytic calculation holds only for a modulation functio
which is exactly the inverse function of the argument in E
~27!. Since we were now using different slopes of the tang
function, the calculation of the Fourier composition beca
more complicated and is done numerically.

In the experiment the laser frequency was modulated w
a frequencyvM550 kHz across the 801.7-nm open atom
transition line. Nevertheless, as mentioned above, the ac
frequency of the laser sweep across the resonance line
100 kHz, since the tangent function is already periodic in
interval of p. The laser frequency was centered at the re
nance line and then periodically modulated in the shape
smooth tangent function from the red to the blue side of
resonance, followed by a sudden jump back. The freque
interval in which the laser was swept was about65 line-
widths across the resonance frequency. The first-order
fraction efficiency was measured again as a function of
crystal angle~‘‘rocking curves’’!. The upper graph@Fig.

FIG. 11. Experimental realization of a lopsided frequen
shifter using a frequency-modulated light crystal. In the differe
plots, a tangent-shaped frequency modulation function (vM

52p350 kHz! according to Eq.~28! was applied, with different
slopes of 0, 3.5 MHz, 7 MHz, and 10 MHz, respectively. The slop
correspond to the prefactorg/2 in Eq. ~28!. The experimental re-
sults are reproduced by the numerical calculations of the Fou
composition~squared absolute values! of the potential modulations
~right side of the graph!.
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11~a!# shows a rocking curve obtained at an unmodula
light crystal. The peak of elastically scattered atoms deno
the position of the Bragg angle. In Figs. 11~b!, 11~c!, and
11~d!, the light frequency was modulated symmetrica
across the atomic resonance frequency according to Eq.~28!
with increasing amplitude of the tangent function.

In any case, new Bragg peaks are found only on one
of the static Bragg peak, indicating that the potential mo
lation can produce only lop-sided energy shifts. In Fig. 11~c!
the peaks of elastically scattered atoms and frequency sh
atoms have approximately equal intensities, as predicted
Eq. ~29! for a slope of the tangent function ofg/2'4.5 MHz
~the theoretical linewidth of the 801.7-nm transition isg
'9 MHz!, which should result in a sawtooth phase shift
the complex potential phase as a function of time. As
pected from the Fourier representation of the potential in
~29!, we obtain only one side peak of atoms shifted by tw
the modulation frequency (2350 kHz!. However, our actu-
ally applied slope in this experiment was 7 MHz. The diffe
ence might be due to a change in theeffectivelinewidth by
saturation effects when scanning the laser frequency ac
resonance, or to an increased linewidth of the laser gener
by its fast modulation.

In the other parts of the experiment it is shown th
smaller slopes of the modulation result in smaller sideb
efficiencies@Fig. 11~b!#, whereas larger slopes@Fig. 11~d!#
create increased sidebands, while simultaneously popula
higher sideband orders~a small additional side peak!. The
experimental results are in agreement with the numerical
culations plotted on the right side, which represent
squared value of the Fourier composition of the poten
modulation functions@there an effective linewidthg514
MHz is assumed, as suggested by the symmetric resu
Fig. 11~c!#.

We also checked the effect of flipping the sign of t
tangent function, which resulted, as expected, in a sideb
peak with a different sign of the frequency offset, i.e., a pe
at the other side of the central Bragg peak. This means
scanning across an atomic transition line from the red sid
the blue side yields different results as compared to the
verse direction. This symmetry violation is due to the sp
tral shape of the complex interaction potential determined
the Kramers-Kronig dispersion relations, and thus fundam
tally based on causality.

Note that although the resulting asymmetric sideba
look similar to those in the previous experiment where
used independent modulations of real and imaginary part
the potential, the principle is different. Actually, the pha
relation between the generated single sideband and the s
Bragg peak also differs in the two situations, which might
demonstrated in an interferometric experiment.

The demonstrated method to produce an asymmetric s
band has an analogy in the spatial domain@26#. The method
resembles the principle of a blazed grating in space. Su
blazed grating has a sawtooth spatial profile. This profile
embossed on an incident plane wave front, i.e. the wave f
acquires a sawtooth phase shift. In the ideal case, the sp
phase changes in a range of 2p, and then jumps back to 0. I
this case the blazed grating has the property to diffract
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incoming wave exclusively at one spatial diffraction orde
but not at the conjugate order. This is in contrast to a norm
phase grating, consisting of a harmonic periodic ph
modulation, which diffracts symmetrically at conjugate o
ders. Very similarly, in our experiment we imprinted a tim
dependent phase shift at an incoming matter wave, resu
in frequency sideband production. By applying a tim
dependent periodic phase shift with the shape of a sawto
function, which we obtain as a result of our tangent mod
lation, we observe only one sideband of the atomic ma
wave. Thus our experiment transfers in a certain sense
principle of a spatially blazed grating to the time domain
atomic matter waves. Although the analogy is not complet
perfect,5 this viewpoint helps to understand the principle
operation, and suggests building time analogs to other
ments of standard diffractive optics, like a ‘‘Fresnel lens
time.’’

3. Bloch band spectroscopy

Here we briefly sketch an alternative model for the d
fraction behavior of the argon atoms in the modulated sta
ing light field, which opens up a different viewpoint an
points out the relation of our experiments to recently p
formed investigations of atoms in optical traps. In addition
the extended Ewald model, our experiments can be in
preted as a kind of spectroscopy of the Bloch bands wh
describe the dynamic behavior of a particle in a perio
potential. Recently, this viewpoint was used advantageou
to model test systems for demonstrating some quantum
fects predicted in solid-state physics for electronic transp
in periodic crystals, which were hard to demonstrate
condensed-matter systems@5,4,7#. In our case, the mode
shows that our complex potential modulations can indu
directed transitions between energy levels—an effect tha
‘‘normally’’ forbidden with ‘‘ordinary’’ ~Hermitian! poten-
tials, due to basic concepts of quantum mechanics.

A one-dimensional band-structure description of the
oms in a crystal is sketched in Fig. 12. Bloch bands in
weakly modulated spatially periodic system are formed
repeating the free-particle dispersion parabola~indicated by a
dashed line in the figure!, which is normally centered at zer
momentum, at distances given by the grating vectorGW , since
in periodic systems all momenta are only defined up to m
tiples of the fundamental grating momentum\GW . The influ-
ence of quantum mechanics is, then, to split and recon

5Our lopsided frequency shifter is not a perfect analog to a s
tially blazed grating, since it still produces a residual peak of el
tically scattered atoms. This would correspond to a blazed gra
in space, which diffracts only 50% of the incoming wave. Howev
the deviation from the ideal behavior can be attributed to the
that we can change the temporal matter-wave phase by our
quency modulation only in an interval ofp instead of the ideally
required interval of 2p. Similarly, a spatial sawtooth phase gratin
which changes the phase of a wave front only in an interval op
would have the property to diffract only 50% of the wave at o
order.
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the individual parabolas at their crossing points, such t
bands are formed. However, for weak modulation the und
lying structure of periodically repeated free-particle para
las is still clearly expressed, and, actually only broken in
area closely surrounding the crossing points. In Fig. 12
corresponding atomic eigenenergies are plotted as a func
of the atomic wave-vector componentkAi parallel to the grat-
ing vector GW . Therefore, in our case of small incidenc
angles~paraxial geometry!, thex axis is directly proportional
to the atomic incidence angle (kAi'ukWAuu). The dashed pa
rabola indicates the dispersion of a free atom outside of
crystal. At the crystal boundary the originally free atoms a
coupled into the particular crystal bands which coincide w
their free~kinetic! energy parabola. Since this free parabo
at most positions directly overlaps with the crystal bands,
resulting population of the bands is obvious: e.g., the low
Bloch band is populated for atomic incidence angles betw
0 ~perpendicular incidence! anduB , the next band in a rang
betweenuB and 2uB , and so on. At incidence angles whic
are far enough separated from the~prevented! crossing
points, the corresponding eigenfunctions simply consist
~almost! free plane waves that correspond to the incid
wave. Only in cases where the free atomic parabola cross
band gap is it possible to populate two Bloch bands simu
neously, for example at positiona in Fig. 12. The two cor-
responding eigenfunctions at these positions consist of
sinusoidally modulated wave functions. Their correspond
intensity distributions form two copies of the crystal gratin
with a relative phase shift ofp with respect to each othe
@16#, i.e., one of the atomic intensity gratings directly coi
cides with the crystal potential, whereas the other is exa
out of phase. In these special cases, the energy gap bet
the two populated bands leads to a different time evolut
of the two corresponding atomic wave functions. Recom
nation of these two wave functions at the rear boundary
the crystal then results intwo outgoing propagation direc
tions, i.e. a transmitted and a Bragg-diffracted beam. T
the ~prevented! crossing points of adjacent parabola cor
spond to the Bragg angles. These crossing points appe
the positions~see Fig. 12!: kAi5nG/2, resulting in the stan-
dard Bragg conditionuB'nG/2kA .

FIG. 12. Band structure of atomic matter waves in a o
dimensional light crystal. Transitions within the band structure~ar-
rows b andc) are induced by a resonant perturbation, and resu
new Bragg peaks of frequency-shifted atoms.
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So far the preceding illustrations were a qualitative p
ture of the predictions of dynamical diffraction theory,
originally developed for diffraction of x rays, electrons, an
neutrons at solid crystals@27#. Applied to our situation of
scattering at a modulated crystal, this model suggests an
ternative explanation for the appearance of the new Br
peaks in the ‘‘rocking curves.’’ There the potential modul
tion is assumed to be a resonant perturbation.6 Even atoms,
which enter the crystal far from a Bragg angle, and th
occupy only one crystal band, can be excited by this tim
dependent resonant perturbation into a superposition of
bands~e.g., arrowsb or c in Fig. 12!, and successively scat
tered. This results in a Bragg diffraction of coherently fr
quency shifted matter waves. From the band symmetries
obvious that resonant transitions to higher~e.g., arrow b! and
lower bands ~e.g., arrow c! are arranged symmetricall
around the static Bragg angles~e.g., position a!, which ex-
plains the symmetric distribution of the new Bragg peaks
the rocking curves of Fig. 4. Calculating the vertical d
tances between two bands in a region far from a band
can be done by just determining the energy difference
tween the corresponding two horizontally displaced fre
particle parabolas~since these parabolas are only disturbed
the region very close to a static Bragg angle, i.e., at a b
gap!. This straightforward calculation delivers the same
sult for the modulation frequencies belonging to the n
Bragg angles, as our generalized Ewald model.

The above viewpoint also indicates that our experime
are a direct spectroscopic method to measure the Bloch b
structure of the light crystal. In contrast to previously d
scribed methods of Bloch band spectroscopy in atomic tr
@6#, the well-collimated beam of incoming atoms is genera
coupled only into one single band~with the exception of the
static Bragg angles!, and even this band is populated only
a specific momentum position, which can be controlled
rectly by adjusting the incidence angle. Starting from th
well-defined position the temporal modulation induces a
rect resonant transition to an upper or lower band, which
indicated by the appearance of a new Bragg peak at the
spective side of the static peak. Thus scanning the mod

6It might be striking that a fully modulated crystal potential
treated here as a perturbation. However, as explained above
main structure of the crystal bands is just given by repeating fr
particle parabola at distances of a grating vectorG. Thus the most
important property is only determined by the periodicity of the cry
tal, but not by the absolute potential strength~as long as an adia
batic evolution of the atomic wave function in a band is possib!.
The only property influenced by the potential strength is the sp
ting ~and the eigenfunctions! in the region very close to the band
gap positions~in the case of small enough potentials, which is a
tomatically fulfilled if the crystal shows Bragg diffraction peak
with a high angular selectivity!. However, in our modulation ex-
periments we are mainly interested in atoms far from the band g
i.e., at positions where the originally free atomic wave function
almost uninfluenced by the crystal in any case. There, in fact,
crystal intensity modulation acts only as a small perturbation, e
if the crystal potential is modulated with an amplitude of 100%.
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tion frequency or the incidence angle measures the dista
between Bloch bands with high accuracy~note that the typi-
cal transition energy\vM is in our case about ten orders
magnitude lower than the kinetic energy of the atoms!.

This viewpoint also implies that the asymmetric sideba
generation demonstrated in Sec. II is in fact a lopsided tr
sition between two crystal bands. The creation of only o
sideband in such an energy-level scheme means that
one of the indicated transitions~e.g., arrow b! can be induced
by the potential modulation, whereas the same modula
cannot drive the corresponding symmetric transition~arrow
c!, although the modulation frequency is resonant with b
transitions. The reason for this behavior is the temporal
licity of the complex potential modulation. As mentione
above, such an absorption without stimulated emission~or
vice versa! within the band structure of an optical lattic
suggests applications like a cooling of the atoms to
ground state.

IV. OUTLOOK

We have demonstrated that sidebands of atomic ma
waves can be produced by diffraction at intensity-
frequency-modulated light crystals, either by directly mod
lating real and imaginary parts of the light potential or
modulating its amplitude and complex phase. The effect
be characterized as a coupled spatial and temporal B
diffraction process. Specific non-Hermitian potential mod
lations can have the shape of a time-dependent complex
lix. These modulations transfer energy only in one directi
i.e., either to lower or higher values, and thus violate
usual symmetry between absorption and stimulated emis
of energy quanta. This is an interesting analog to a rece
demonstrated asymmetricmomentumtransfer which occurs
when atoms are diffracted at complex potentials withspatial
helicity @17#.

The investigated temporal diffraction effects imply ma
interesting applications. For example, the asymmetric ene
transfer produced by non-Hermitian potential modulatio
might be used for cooling atoms to the ground state of
optical lattice, or to gain complete control over the atom
population of the energy bands. In this case it is necessa
chose an atomic system which allows for a repumping of
ground-state atoms to the metastable state.

Furthermore, the sideband modulation techniques now
able many applications, which have been advantageo
used in light optics and in radio-frequency technology, to
transferred into an analogous matter-wave technology. C
-Y
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trolled modulation, or frequency shift of matter waves can
used in atomic interferometry, in order to build active Mac
Zehnder-type atom interferometers@18,19#, where the coher-
ent wave splitters and recombiners consist of modulated l
gratings. These are promising tools for high-precision ro
tion or gravitation sensors@39#. For example, using the de
scribed modulation techniques, it is possible to impres
precisely controlled de Broglie frequency difference at t
atoms in the two paths of an atom interferometer. This
lows highly increased sensitivity by lock-in detection of th
oscillating interference fringes, or by actively tracking th
interference phase with a changing frequency difference
more advanced experiments this might also enable the in
ferometric detection of mass- or velocity-dependent disp
sion phenomena, which are expected in certain atomic s
tering and collision processes, in magnetic fields, or
gravitation physics.

Another application in sophisticated measurement te
nology is the use of modulated standing light fields for p
cise mass spectroscopy of atomic or molecular beams. T
a particle beam crosses a thick modulated standing l
wave at exactly perpendicular incidence. By scanning
intensity modulation frequency of the light crystal, diffra
tion peaks will appear only at specific modulation freque
cies ~the two-photon recoil frequency!, which depend only
on the particle mass and the precisely measurable light
quency, but not at hardly controllable parameters like
particle velocities. Using an intense laser the optical f
quency can be selected over a wide range around atom
molecular transition lines, since the refractive potential of
light field falls off only slowly with increasing frequency
difference from resonance.

In fundamental research, the control over the sideb
structure of atoms can be used to investigate the quan
mechanics of atomic wave packets, an exciting field of qu
tum optics. Advanced technologies in laser optics, like chi
ing and compression of laser pulses, which are import
techniques for achieving ultrashort pulses, might also
emulated advantageously with modulated matter wav
These experiments have now become feasible, since de
erate quantum gases of atoms are readily obtainable as
herent sources of atomic matter waves.
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ich, Phys. Rev. A58, 4647~1998!; M. Weidemüller, A. Hem-
merich, A. Görlitz, T. Esslinger, and T. W. Ha¨nsch, Phys. Rev.
Lett. 75, 4583 ~1995!; A. Hemmerich, M. Weidemu¨ller, T.
Esslinger, C. Zimmermann, and T. W. Ha¨nsch, Phys. Rev.
Lett. 75, 37 ~1995!.

@2# C. Mennerat-Robilliard, D. Lucas, S. Guibal, J. Tabosa, J.
Courtois, and G. Grynberg, Phys. Rev. Lett.82, 851~1999!; S.
.

Guibal, C. Mennerat-Robilliard, D. Larousserie, C. Trich
J.-Y. Courtois, and G. Grynberg,ibid. 78, 4709~1997!.

@3# F. L. Moore, J. C. Robinson, C. F. Bharucha, Bala Sundar
and M. G. Raizen, Phys. Rev. Lett.75, 4598~1995!.

@4# M. B. Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salom
Phys. Rev. Lett.76, 4508 ~1996!; E. Peik, M. B. Dahan, I.
Bouchoule, Y. Castin, and Ch. Salomon, Phys. Rev. A55,
2989 ~1997!.
6-19



u,

n

d

A

R

A

tt.

d,

A

p

er

J.

J.

v.

e

.
tt

rn

and

er,

A.

A.

d

ys.

A
r,

rd,

aan

er,

S. BERNETet al. PHYSICAL REVIEW A 62 023606
@5# S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Quian Ni
and M. G. Raizen, Phys. Rev. Lett.76, 4512 ~1996!; Quian
Niu, Xian-Geng Zhao, G. A. Georgakis, and M. G. Raize
Phys. Rev. Lett.76, 4504~1996!.

@6# K. W. Madison, M. C. Fischer, R. B. Diener, Quian Niu, an
M. G. Raizen, Phys. Rev. Lett.81, 5093~1998!; M. C. Fischer,
K. W. Madison, Quian Niu, and M. G. Raizen, Phys. Rev.
58, R2648~1998!.

@7# T. Müller-Seydlitzet al., Phys. Rev. Lett.78, 1038~1997!.
@8# S. B. Cahn, A. Kumarakrishnan, U. Shim, T. Sleator, P.

Berman, and B. Dubetsky, Phys. Rev. Lett.79, 784 ~1997!.
@9# S. N. Chormaic, S. Franke, F. Schmiedmayer, and

Zeilinger, Acta Phys. Slov.46, 463 ~1996!.
@10# P. L. Gould, G. A. Ruff, and D. E. Pritchard, Phys. Rev. Le

56, 827 ~1986!.
@11# P. J. Martin, B. G. Oldaker, A. H. Miklich, and D. E. Pritchar

Phys. Rev. Lett.60, 515 ~1988!.
@12# D. M. Giltner, R. W. McGowan, and S. A. Lee, Phys. Rev.

52, 3966~1988!.
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