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For the case of an atomic Bose-Einstein condensate formed in a symmetrical double-well potential with
well-separated minima, the dynamics of Bose-condensed atoms interacting with a single-mode quantized
traveling-wave laser field are investigated in detail. By considering the system consisting of the Bose-
condensed atoms and laser field with and without dissipation, the eigenstates and eigenvalues of the corre-
sponding Hamiltonian for both cases are obtained. The time development of the Bose-condensed state plays a
major role in the discussion. It is shown that the probability of finding all atoms in the Bose-condensed state
displays an undamped oscillatory behavior in the absence of dissipation and a damped oscillatory behavior in
the presence of dissipation. Moreover, it is found that the tunneling effect can increase the oscillatory fre-
guency among the dressed bosonic states and affect the dynamics of the system. As an application of these
results, a characteristic time that may be used to evaluate the number of condensed atoms is introduced.

PACS numbsgs): 03.75—b, 03.65.Ca, 42.50.Ct

I. INTRODUCTION lem and therefore it is necessary to solve the Gross-
Pitaevskii equation, which takes the nonlinear interatomic
The recent observations of Bose-Einstein condensatiofteractions into account. However, as far as the present sys-
(BEC) in dilute and ultracold gases of neutral alkali-metaltem is concerned, if the atomic BEC is considered to be so
atoms using a combination of laser and evaporative coolingilute that the interatomic collision interactions become very
have attracted intense intere$ﬂ__5]_ The impressive weak Compared with the interaction of the atomic BEC with
progress stimulated a large amount of theoretical and experih€ laser field, then they can be neglected as a crude approxi-
mental work on the properties of the atomic BEC angmation. Hence, throughout this paper, the interatomic colli-

opened the way to a new and rich field of physics. Since th&lon interactions are neglected and all atoms are considered
first experimental realization of atomic BEC in 19p5-3], as two-level quantum systems. The following discussion of

much research on the optical propertig-9], statistical the dynamics of an atomic BEC interacting with a traveling-

: : . wave laser field are based on the pioneering studies per-

ropertied 10], phase propertiej®,11-14, tunneling effect i .
Fl?EZQ Z[nd]inrierfereflcepin a%(’imic BGEC has bgen under-formed by Polize{6], Lewenstein and co-workefs, 8], and
’ Javanainen[9]. In addition, the theory of the Jordan-

taken in order to understand and utilize this fascinating ph_e'SchWinger bosonic realization of the & group [24,25

nomenon. In particular, atomic BEC confined to a symmetri- -+ the biorthonormal theof26] are also used.

cal or asymmetrical double-well potentigDWP) has This article is organized as follows. In Sec. Il, the quan-
become an interesting topjd7—23. This kind of potential  {ym tunneling of atoms in DWPs is reviewed, and then an
is realistic and provides a simple example of the traps used igffective Hamiltonian describing the interaction of a single-
the BEC experiments performed by Daeal.[3] and An-  mode traveling-wave laser field with those condensed atoms
drewset al. [21], where an off-resonant laser is applied t0s derived under the electric dipole and rotating-wave ap-
plug the bottom of the trap to prevent the atomic BEC fromproximations. In Sec. Ill, in the absence of dissipation, the
leaking out. This results in the formation of a DWP. As eigenstates and eigenvalues of the effective Hamiltonian de-
concluded in this worf17-23, the tunneling effect, inter- rived in Sec. Il are obtained by means of the theory of
ference, evolution of the relative phase, and other propertieordan-Schwinger bosonic realization of the ($Ogroup,
of the atomic BEC are closely related to this special potenand the dynamics of this system are further discussed. In Sec.
tial, which can therefore be regarded as a simple model oV, taking a dissipation term into account, the dynamics of
the actual traps used in these experiments. the Bose-condensed atom-field system are studied using the
One of the main goals of the present work is to investigatebiorthonormal theory26].
the dynamics of Bose-condensed atoms interacting with a
single-mode quantized traveling-wave laser field in a sym- Il. TUNNELING IN AN ATOMIC BEC IN A DWP
metrical DWP, where the tunneling effect of atomic BEC
will occur. In essence, it is the dynamics of collective exci- In this section an effective Hamiltonian will be derived to
tation of the Bose-condensed atom-field system that are studeal with the interaction of a single-mode traveling-wave
ied. As is well known, one of the striking features of BEC is laser field with an atomic BEC. In the first place, the tunnel-
a macroscopic population in the ground state of the systening effect of an atom confined in a symmetrical DWP is
The treatment of such a system is a typical many-body probeutlined. Secondly, the standard Jaynes-Cummifid
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model[27] is used to treat the interaction between atoms and
the laser field and an effective Hamiltonian for the case that H=2>, [(Ex+%w,)|ejn)(ejn|+Ey|gjin)(gjn|]
a BEC phase transition occurs is given. )
In this paper we consider that the atoms are trapped in a
symmetrical potential denoted by(x)=iM w?(|x|—d)?, +2 hQ[(leLn)(eRr+|gLn)(gRn)+H.c]
which was initially used by Merzbachg28]. This potential "
has two wells and hereafter they will be called the Igix

and right(R) well. For a single atom in such a DWP, the +ﬁ9n§m:_ (Whnlejn)(gjmla+H.c)+hwsa'a,
Hamiltonian of the center-of-mags.m,) of an atomH.,, o
has the form (2.6
) where thel sum corresponds tb andR and the terms
— P 1 2 2 .
Hc.m._m+§Mw (|X|—d) , (2.2 an:<n|e—|kx|m> 2.7

_ _ ~are the matrix elements for the transition from théh c.m.

in which p andx are the o_perators of momentum and positiongiate to thenth c.m. state accompanied by the process of

of the c.m. of the atomy is the angular frequencg half the  eycitation of the atom fronfg) to |e) through the atom-field

distance between the two minima of the potentgk), and  jnteraction.

M the atomic mass. It is obvious that tunneling will take  For the case that many atoms are confined to the present

place due to the symmetry of this DWP, and thus the c.mpwp, in the presence of the laser field and ignoring the

Hamiltonian can be rewritten as interatomic collision interactions, the Hamiltonian governing
the evolution of the system has the following second-

quantization form:
Hom= 20 [En(Ln)(Ln|+[Rn)(Rn))

m— + Te +Eala
+HEQL(LAYRA+|RALAD], (22 H nz,j[(E” fia)€jn€n+ EnjnGjn]

where|Ln) and |Rr) stand for thenth c.m. stateln) of the +> Q[ (e ernt 9] grr) +H.C]

atom in theL andR wells, respectivelyE, is the energy of n

the c.m. staten), and(),, is the tunneling frequency of the

atom in statgn). Q,, has the forn{29] +ﬁgn%j (ane;rngjma+ H.c)+hwsa'a, (2.9

Q,=(Epa—Eng/2h (n=0,1,2;-), (23 wheree],, €, g, andgj, are the creation and annihila-

tion operators of atoms in the state®|n) and|g)®|n) of
where E, and E,,, are the energies corresponding to thethej well, respectively. They satisfy the relations
symmetrical and antisymmetrical eigenstates of the c.m. . R
Hamiltonian. [€in -ejm]:[gin -gjm]:[ein vejm]:[gin !gjm]

Because the atom is now considered to be a two-level =[gin.e-1=[e gl ]=0

quantum system, we assume that the stajesnd|g) are two neEm neEima
internal states separated by an energy intefival . When a T4 tq_ _—
single-mode quar?tized tra\)//eling-wa\?g Iaser\?éld is applied, [€in +€jm]=[Gin .Gin] = Sumdyy  (LI=L.R). (2.9
according to the JC modgR7] the Hamiltonian for the

' Furthermore, following the elegant treatment of Lewen-
atom-field system can be expressed as

stein and co-worker§7,8] and Javanainef®] a set of col-
lective operators

H=H_n+thw,le)e|+howa’a+H,. (2.4)

; . o bjm=2> Wan€jn, bln=2> Whel  (2.10
Herea' anda are the creation and annihilation operators for n n

a photon with energy «; and wave vectok; they fuffill the can be introduced, which are subject to the commutation

standard commutation relatiora,a’]=1. The interaction .
or ] relations[ b, ,ban]z 8ij Onm, WhereWy,  are complex con-

H,, under electric dipole and rotating-wave approximations, . .
talkes the form P g PP Jugate quantities oV, , defined by Eq.(2.7). Thus, under

the approximations of neglecting the contributions of Dop-
pler shift and photon recoil, the following equation can be

H =fg(|e)(glae™*+|g)(ea’e") (2.5 obtained:
in which the quantityg denotes the dipole coupling constant. Ebip. =S Eele. . 21
Furthermore, Eq(2.4) can be rewritten as zn: e En: rnEn (211

023601-2



DYNAMICS OF AN ATOMIC BOSE-EINSTEIN . . . PHYSICAL REVIEW A62 023601

Substituting the operators defined by E2,10 into Eq.(2.8)  sence, describes the same physical content as that of two

yields coupled oscillators. The effective Hamiltonian is just the
starting point to discuss the time development of the Bose-
condensed state.
H"= 2 [(Eq+fiwg)bjobjn+ Enjngyn]

IIl. DYNAMICS OF AN ATOMIC BEC INTERACTING

+ >, AQ[(b] brat 9] gr +H.C] WITH A LASER FIELD IN A DWP
n WITHOUT DISSIPATION

In Sec. I, an effective Hamiltonian was obtained to de-
scribe the interaction of an atomic BEC with a single-mode
traveling-wave laser field. We shall now study the dynamics
(2.12 of the system in the absence of dissipation.

in which the tunneling effect of atoms in all energy levels is  Let us define operatdd as
explicitly involved. This Hamiltonian describes the interac-
tions of all atoms trapped in the DWP with the traveling- N=a'a+c'c. (3.2
wave laser field.
It is of great interest to study the interaction of an atomiclt is easy to find that the relations
BEC interacting with the laser field in the present paper. The
following discussion will therefore focus on the dynamics [N,Hg‘ﬁ]=[de,H2“ﬁ]=0 (3.2
for the case that an atomic BEC phase transition takes place.
In this special case the Hamiltonian given by E12 may  hold true. This means that the physical quantities corre-

be further _5|mpI|f|ed. To this er_1d, it is necessary to s_tress tha§ponding to operatonﬁ andd'd are two integrals of motion
the tunneling effect of atoms in the ground state will play a.

crucial role for the Bose-condensed atoms trapped in th!an this system. Furthermore, the operators
symmetrical DWP mentioned above. The reason is twofold. J,=(a'c+cta)2, J,=(alc—cta)2i
The more important one is that a macroscopic number of the ! b2 '
atoms denoted b). will condense in the ground state of the
two wells as the BEC phase transition occurs, so the tunnel-
ing effect of atoms in the Bose-condensed state is dominant, : . .
On the other hand, we may suppose that the two lowe<ta" pe introduced as a set of new operators, which satisfy the
: o relations
energy levels due to the tunneling splitting of the ground
state are closely spaced and well separated from the other
higher-energy levels. Thus, for the Bose-condensed state oc-

cupied by a large number of atoms, the operagﬁgsan.dgjo where the symbok, ., stands for Levi-Civitacoefficients.
(j=L,R) may be replaced by @anumberyN,/2 according to Clearly, these new operators represent the Jordan-Schwinger

a customary treatment. Keepi_ng this in mind, ignoring they,sonic realization of the 90 group [25]. Through the
noncondensed atoms, and lettiBg=0, Eq.(2.19 becomes  gneratorsy; | J,, andJs, the effective Hamiltonian in Eq.

the following desired form: (2.13 can be transformed into

HI=A[(wat Qo)cTe+ (w,— Q)d'd

+492>, (blgima+H.c)+hwa’a (j=L,R),
m,]

J;=(a'a—c'c)/2 (3.3

[Jav‘]ﬁ]zieaﬁy‘-]'yv (34)

Hok=A[ AN+ 292N+ %7200 720+ (w,— Qp)dd],
+wsata+gyNy(cta+ale)], (2.13 (3.9

wherec’ andd" are the Hermitian adjoint operatorsoand  where the guantitied, 6, and tary are defined as
d defined by
A=(wit+w,+Q0)/2, 5=(wi—wa—0)/2,
c=v2 Y b o+tbry), d=v27(bo—bry), (2.14 e P

and Q, is the tunneling frequency of the ground state with tang=(gVNd/9). (3.6

the form[28
(28] It can be seen from E@3.5) that the dynamical symmetry

2Vow ) 12 2V, of this Hamiltonian is the direct product of the &p and
_< ) e F{ ) (219  SU(1) groups by writing S@)®SU(1). For the convenience
of discussion, it is supposed that the integral of motion cor-
in whichV, [Vo=V(0)=Mw?d?/2] is the height of the po- responding to the operatt is N, and|0),, |0)., and|0)4
tential at the origin. stand for three ‘“vacuum” states defined bg|0),=0,
The Hamiltonian given by Eq(2.13 is the effective c|0).=0, andd|0)4=0, respectively. Based on $& group
Hamiltonian that determines the dynamics and time evolutheory, themth eigenstate together with the eigenvalue of
tion of the Bose-condensed atom-field system and, in eghis effective Hamiltonian can be given by

X0)
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|Em( 9)>:eiJzﬁ|J,m>q®||>d In particular, it is of great interest to study the time evo-
lution of the atomic Bose-condensed state. This means that
3.7 the atomic Bose-condensed state should be chosen as the
' initial and final states to discuss the problem of evolution. It
can be seen from the notation in .10 that the state of
En(0)=A[2JA+2myV52+g°N+ (w,—Qo)l], (3.8  atomic BEC can be written ad,J), in which all atoms are

condensed and there axephotons in the cavity. Note that,

where the matrix e|ement$‘r]nrym(0) are defined as for the case thaN=2J, the functiondfn,m,(ﬂ) is the stan-

dfn,,m(ﬁ)Eq(J,m’|eXpGle9)|J,m>q (sometimes called Wigner dardd function in angular momentum theof#5]. The prob-

i — (a0 ability that the initial statgJ,J),®|l)4 returns to itself at
functions[25)), [1)g=[(d")"/\I1]0)a., and time t can therefore be expressed as

=2 dpy (DM )@ lhe (I=N/2),

(a‘r)\Hm(CT)me

0).®|0),
Tarmra—mr 210 e aan )P
(3.9

J

> do(0)dy, (0)

|3,m)q=[I+m),®[I—m) =

m=-J
. 2

is the simultaneous eigenstate of operatdfs (J2=J2 < ex _IEqn ()t
+J5+J3) and J; satisfying the relations J?13,m), h
=J(+1)[I,myq,  JalI,myg=m|I,m),, and N|J,m), o
=2J|J,m),. In analogy with the theory of angular momen- =(1—sir? gsin’y6°+g°Nt)™
tum, these states are considered to be the eigenstates of the
“quasi-angular-momentum” operators. In obtaining Egs. (J=N/2). (3.13

(3.7—(3.9), the relationJ=N/2 has been used.

In what follows the time development of this system will This result indicates that the probability of finding all atoms
be investigated using the results given by E@7)—(3.9. in the Bose-condensed state displays an undamped oscilla-
For example, for an initial state possessiNg-n photons tory behavior with the oscillatory frequenays®+ g2N; in
and another two kinds of excitation with the excitation num-other words, the traveling-wave laser field can periodically
bersn andl, respectively, i.e., excite the atomic BEC. In addition, from the expressiorsof

in Eq. (3.6), it should be emphasized that the oscillatory
[p(t=0))=[N—1)a®[n)c®|1)g=[3,I—n)q@|1)g frequency+/6%+g°N, is now relevant not only to the num-
ber of condensed atonid. and the coupling constamt but
:E div J_n(g)|Em,(9)>, (3.10 also to the tunneling frequencf2y. In particular, for the
m’ ' resonant case thad, is equal tows, it is evident that the
oscillatory frequency\/Qozl4+ 9°N, is explicitly related to
the tunneling frequency. Thus the tunneling effect in an
atomic BEC in a DWP results in an obvious increment in the
oscillatory frequency, which shows that the influence of the
|¢(t)>22 > dfn’ J_n(g)dfw 3o (8) tunneling effect on the dynamics of the condensed-atom—
m n’ ’ ’ field system in a DWP is important.

at timet, this state will evolve into a superposition of states
with different photon numbers, that is,

iE ()t
><exp( - mT) IN—N"),®[n")e®|l)g. IV. DYNAMICS OF THE SYSTEM WITH DISSIPATION

(3.11) In Sec. Ill, the dynamics of the system of Bose-condensed
' atom and field was studied in the absence of dissipation,

For a final statd¢) possessind—n; photons, if we write V\{hich, in fact, is an ideal case. However, as an atom is ex-
|y =|N—n;).®|n;)c®|1)4, through a straightforward cal- Cited from the ground statg) to the excited statfe) by the
culation, the probability of findingy(t)) evolving into the laser field, in quantum electrodynamics it always decays to
final state is found to be the ground statég) even if the laser field is empty. This is
just the process of stimulated and spontaneous emission.
5 5 Hence a dissipation mechanism such as spontaneous emis-
KBl w()P=| 2 dm/,J,n(ﬁ)dm,J,nf(G) sion and other factors should be taken into account for a
m’ more real situation. In this section, the major aim is to study
iE, . (0)t)]2 the dynamics of the system in the presence of the dissipation
X ex;{ — T) (3.12  represented by

H' =—iAaTl|e) e, 4.7
This expression is just the probability that the system origi-
nally in the stategJ,J—n),®|l)y makes a transition to the where the quantity” denotes a strength parameter. Now let
state|J,J—n)®|l)4 after a time intervat. us turn our attention to discussing the dynamics governed by
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the new HamiltoniarH, which is constructed by adding the where the quantitie®,, A, 8, andd are defined by
dissipation term to the Hamiltonian in E.4), i.e.,
- D= wa—il, A=(wi+0,+00)/2,
H=H™+H". (4.2

Note that this Hamiltonian is no longer a Hermitian operator 3= (== 0o)/2, tanh=(g\Nc/3). (4.5

because of the presence of the dissipation telrm
Repeating the same procedure as in Secs. Il and lll, the

new HamiltonianH therefore becomes

Likewise, themth eigenstate and eigenvalue of the Hamil-
tonianH are given by

H=%A[(@,+ Qg)cTc+(D,— Qo)d'd |Em("é)>=ei325|a,m>q®||>d=2 Ao m(D)]3.m )@
t t t m
+wsa’a+gyNy(cta+ale)]. 4.3
I=N/2), 4.6
Here the operators, c', d, andd' have the same defini- ( ) (4.6
tions as before. By means of the operatdrs J,, andJs in - o~ ~ _
Eq. (3.4), this equation can be rewritten as Em(0)=A[2JA+2mV %+ N+ (D,— Qo)1 ], (4.7)
A =A[AN+2Vg?N + 327203620+ (5, — Qg)d'd], where the functiordy, (9) with complex argumend is

(4.4 defined as

(= 1)k =M T m) 1 (3T m) (I—m) I (I+m’)! (C S’é)"’“"””‘”"( 79)2"”“"“

(8= 2 T =T MoK (K =] 0S5 sing 4.8
|
Although the Hamilt_oniarﬁ_ is non-Hermitian, the bio_r- |~¢(t:o)>:|N_n>a®|n>c®||>d:|J,J_n>q®||>d
thonormal theony26] still provides a useful method for dis-
cussion of the dynamics of the system. As an interesting _ J N
application of the biorthonormal theof6], the complete- % A 3-n(O)[ Enm (6)) 4.13
ness relation and biorthonormal relations can be obtained as
follows: at timet, it evolves into the state
— ~ ~ o~ ~ o~ — ~ ~ J N Y ~
2 [En(0)En(0)|=2 [En(O)NEnBO=1, (4.9 [F0)=2 2 dyy 5 D)y, 5 (6)
m m m n
— e e~ e |E (9
(En(B)[En(8)=(EA(BIED)=0mn, (410 xexp ——7— |IN=n")a8[n")co|l)q.
~ ) ) — - (4.149
where the state|E(#)) with the eigenvalue E(6)
=[En(6)]* is defined as T~hus, for a final staté¢) possessind—n; photons, i.e.,
|d)=IN—n¢)®|ns)c®|1)g, the probability of finding
|Em(~0)>:|gm(79*)>:2 d‘r]n m/(79*)|31m'>q®||>d, |i4(t)) in such a state can be expressed as
=~ “m,
(4.11 — - -
KBl0)P=| 2 diy - n(B)hny 5, (B)
which is an eigenstate #f'. HereH is the adjoint operator " ,
of H, namely, iE ()t
y ><exp< - —mﬁ( ) ) (4.19

At =A[A* N+ 22N+ 5* 2620 3 ,e1920"

Similarly, it is of interest to discuss the dynamics of the

+(@} —Qo)d'd]. (412 atomic Bose-condensed state in which all atoms are con-
densed. Substituting the Bose-condensed state into the left-
Now, if the initial state of the system is chosen as hand side of Eq(4.19 yields
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J V. SUMMARY
> d Sy (B)dy, (0 _ _ _
m'=-J In conclusion, for the case of an atomic BEC trapped in a
2T 2 symmetrical DWP, the dynamics of the atomic BEC inter-
><exp< _ﬂ acting with a single-mode quantized traveling-wave laser
fi field have been investigated in detail by considering cases
~ with and without dissipation. The eigenstates and eigenval-
=|1—sir? 6 si?\/62+ g?Nt|N ues of the corresponding Hamiltonian are obtained for both
cases. In particular, the time evolution of the atomic Bose-
xex —2(N+DI't]. (4.16 condensed state is discussed. It is shown that the probability

This result means that, when the initial state of the systen®f finding all atoms in a state of BEC displays an undamped
is the atomic Bose-condensed state, after a time intéthal  OScCillatory behavior in the absence of dissipation and a
probability that all atoms are condensed displays a dampin§amped oscillatory behavior in the presence of dissipation.
oscillatory pattern. That is, the state of the atomic BEC has &Or both cases, tunneling can increase the oscillatory fre-
tendency to be broken due to the presence of dissipation iguency among the dressed bosonic states and affects the dy-
the system. Again, it can be seen from E4.16 that the namics of the system. Moreover, in the presence of dissipa-
tunneling effect in the present case can increase the oscilléion, a characteristic time depending on the number of
tory frequency and affects the dynamics of this system.  excitations and the parameféiis introduced. The character-

If a characteristic time defined as istic time may be used to evaluate the number of condensed
atoms. The present discussion on the dynamics of the
condensed-atom—field system are expected to be helpful for

is introduced, determined by both the number of excitationdurther investigations in this field.

and the strength parametEr then from Eq.(4.16), the ex-

citations induced by the interaction of the atomic BEC with

the laser field will disappear rapidly after the characteristic ACKNOWLEDGMENT

time 7.. Note that, in general, the strength paramétdan

the dissipation ternil’ may be regarded as the coefficient of

spontaneous emission and can be explicitly gi\&8. Thus, One of the authors, Wang Hai-jun, is very grateful to
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re=[2(1+N)I']"* (4.17
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