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Dynamics of an atomic Bose-Einstein condensation interacting with a laser field
in a double-well potential
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For the case of an atomic Bose-Einstein condensate formed in a symmetrical double-well potential with
well-separated minima, the dynamics of Bose-condensed atoms interacting with a single-mode quantized
traveling-wave laser field are investigated in detail. By considering the system consisting of the Bose-
condensed atoms and laser field with and without dissipation, the eigenstates and eigenvalues of the corre-
sponding Hamiltonian for both cases are obtained. The time development of the Bose-condensed state plays a
major role in the discussion. It is shown that the probability of finding all atoms in the Bose-condensed state
displays an undamped oscillatory behavior in the absence of dissipation and a damped oscillatory behavior in
the presence of dissipation. Moreover, it is found that the tunneling effect can increase the oscillatory fre-
quency among the dressed bosonic states and affect the dynamics of the system. As an application of these
results, a characteristic time that may be used to evaluate the number of condensed atoms is introduced.

PACS number~s!: 03.75.2b, 03.65.Ca, 42.50.Ct
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I. INTRODUCTION

The recent observations of Bose-Einstein condensa
~BEC! in dilute and ultracold gases of neutral alkali-me
atoms using a combination of laser and evaporative coo
have attracted intense interest@1–5#. The impressive
progress stimulated a large amount of theoretical and exp
mental work on the properties of the atomic BEC, a
opened the way to a new and rich field of physics. Since
first experimental realization of atomic BEC in 1995@1–3#,
much research on the optical properties@6–9#, statistical
properties@10#, phase properties@9,11–16#, tunneling effect
@17–20#, and interference in atomic BEC has been und
taken in order to understand and utilize this fascinating p
nomenon. In particular, atomic BEC confined to a symme
cal or asymmetrical double-well potential~DWP! has
become an interesting topic@17–23#. This kind of potential
is realistic and provides a simple example of the traps use
the BEC experiments performed by Daviset al. @3# and An-
drewset al. @21#, where an off-resonant laser is applied
plug the bottom of the trap to prevent the atomic BEC fro
leaking out. This results in the formation of a DWP. A
concluded in this work@17–23#, the tunneling effect, inter-
ference, evolution of the relative phase, and other prope
of the atomic BEC are closely related to this special pot
tial, which can therefore be regarded as a simple mode
the actual traps used in these experiments.

One of the main goals of the present work is to investig
the dynamics of Bose-condensed atoms interacting wit
single-mode quantized traveling-wave laser field in a sy
metrical DWP, where the tunneling effect of atomic BE
will occur. In essence, it is the dynamics of collective ex
tation of the Bose-condensed atom-field system that are s
ied. As is well known, one of the striking features of BEC
a macroscopic population in the ground state of the syst
The treatment of such a system is a typical many-body pr
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lem and therefore it is necessary to solve the Gro
Pitaevskii equation, which takes the nonlinear interatom
interactions into account. However, as far as the present
tem is concerned, if the atomic BEC is considered to be
dilute that the interatomic collision interactions become ve
weak compared with the interaction of the atomic BEC w
the laser field, then they can be neglected as a crude app
mation. Hence, throughout this paper, the interatomic co
sion interactions are neglected and all atoms are consid
as two-level quantum systems. The following discussion
the dynamics of an atomic BEC interacting with a travelin
wave laser field are based on the pioneering studies
formed by Polizer@6#, Lewenstein and co-workers@7,8#, and
Javanainen@9#. In addition, the theory of the Jordan
Schwinger bosonic realization of the SO~3! group @24,25#
and the biorthonormal theory@26# are also used.

This article is organized as follows. In Sec. II, the qua
tum tunneling of atoms in DWPs is reviewed, and then
effective Hamiltonian describing the interaction of a sing
mode traveling-wave laser field with those condensed ato
is derived under the electric dipole and rotating-wave
proximations. In Sec. III, in the absence of dissipation,
eigenstates and eigenvalues of the effective Hamiltonian
rived in Sec. II are obtained by means of the theory
Jordan-Schwinger bosonic realization of the SO~3! group,
and the dynamics of this system are further discussed. In
IV, taking a dissipation term into account, the dynamics
the Bose-condensed atom-field system are studied using
biorthonormal theory@26#.

II. TUNNELING IN AN ATOMIC BEC IN A DWP

In this section an effective Hamiltonian will be derived
deal with the interaction of a single-mode traveling-wa
laser field with an atomic BEC. In the first place, the tunn
ing effect of an atom confined in a symmetrical DWP
outlined. Secondly, the standard Jaynes-Cummings~JC!
©2000 The American Physical Society01-1
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model@27# is used to treat the interaction between atoms
the laser field and an effective Hamiltonian for the case t
a BEC phase transition occurs is given.

In this paper we consider that the atoms are trapped
symmetrical potential denoted byV(x)5 1

2 Mv2(uxu2d)2,
which was initially used by Merzbacher@28#. This potential
has two wells and hereafter they will be called the left~L!
and right ~R! well. For a single atom in such a DWP, th
Hamiltonian of the center-of-mass~c.m.! of an atom,Hc.m.,
has the form

Hc.m.5
p2

2M
1 1

2 Mv2~ uxu2d!2, ~2.1!

in whichp andx are the operators of momentum and positi
of the c.m. of the atom,v is the angular frequency,d half the
distance between the two minima of the potentialV(x), and
M the atomic mass. It is obvious that tunneling will ta
place due to the symmetry of this DWP, and thus the c
Hamiltonian can be rewritten as

Hc.m.5(
n

@En~ uLn&^Lnu1uRn&^Rnu!

1\Vn~ uLn&^Rnu1uRn&^Lnu!#, ~2.2!

where uLn& and uRn& stand for thenth c.m. stateun& of the
atom in theL andR wells, respectively,En is the energy of
the c.m. stateun&, andVn is the tunneling frequency of th
atom in stateun&. Vn has the form@29#

Vn5~Ena2Ens!/2\ ~n50,1,2,•••!, ~2.3!

where Ens and Ena are the energies corresponding to t
symmetrical and antisymmetrical eigenstates of the c
Hamiltonian.

Because the atom is now considered to be a two-le
quantum system, we assume that the statesue& andug& are two
internal states separated by an energy interval\va . When a
single-mode quantized traveling-wave laser field is appli
according to the JC model@27# the Hamiltonian for the
atom-field system can be expressed as

H5Hc.m.1\vaue&^eu1\v fa
†a1HI . ~2.4!

Herea† anda are the creation and annihilation operators
a photon with energy\v f and wave vectork; they fulfill the
standard commutation relation@a,a†#51. The interaction
HI , under electric dipole and rotating-wave approximatio
takes the form

HI5\g~ ue&^guae2 ikx1ug&^eua†eikx! ~2.5!

in which the quantityg denotes the dipole coupling constan
Furthermore, Eq.~2.4! can be rewritten as
02360
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H5(
n, j

@~En1\va!ue jn&^e jnu1Enug jn&^g jnu#

1(
n

\Vn@~ ueLn&^eRnu1ugLn&^gRnu!1H.c.#

1\g (
n,m, j

~Wnmue jn&^g jmua1H.c.!1\v fa
†a,

~2.6!

where thej sum corresponds toL andR and the terms

Wnm5^nue2 ikxum& ~2.7!

are the matrix elements for the transition from themth c.m.
state to thenth c.m. state accompanied by the process
excitation of the atom fromug& to ue& through the atom-field
interaction.

For the case that many atoms are confined to the pre
DWP, in the presence of the laser field and ignoring
interatomic collision interactions, the Hamiltonian governi
the evolution of the system has the following secon
quantization form:

Hm5(
n, j

@~En1\va!ejn
† ejn1Engjn

† gjn#

1(
n

\Vn@~eLn
† eRn1gLn

† gRn!1H.c.#

1\g (
n,m, j

~Wnmejn
† gjma1H.c.!1\v fa

†a, ~2.8!

whereejn
† , ejn , gjn

† , andgjn are the creation and annihila
tion operators of atoms in the statesue& ^ un& andug& ^ un& of
the j well, respectively. They satisfy the relations

@ein ,ejm#5@gin ,gjm#5@ein
† ,ejm

† #5@gin
† ,gjm

† #

5@gin ,ejm
† #5@ein ,gjm

† #50,

@ein ,ejm
† #5@gin ,gin

† #5dnmd i j ~ i , j 5L,R!. ~2.9!

Furthermore, following the elegant treatment of Lewe
stein and co-workers@7,8# and Javanainen@9# a set of col-
lective operators

bjm5(
n

Wnmejn , bjm
† 5(

n
Wnm* ejn

† ~2.10!

can be introduced, which are subject to the commutat
relations@bim ,bjn

† #5d i j dnm , whereWmn* are complex con-
jugate quantities ofWnm defined by Eq.~2.7!. Thus, under
the approximations of neglecting the contributions of Do
pler shift and photon recoil, the following equation can
obtained:

(
n

Enbjn
† bjn5(

n
Enejn

† ejn . ~2.11!
1-2
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Substituting the operators defined by Eq.~2.10! into Eq.~2.8!
yields

Hm5(
n, j

@~En1\va!bjn
† bjn1Engjn

† gjn#

1(
n

\Vn@~bLn
† bRn1gLn

† gRn!1H.c.#

1\g(
m, j

~bjm
† gjma1H.c.!1\v fa

†a ~ j 5L,R!,

~2.12!

in which the tunneling effect of atoms in all energy levels
explicitly involved. This Hamiltonian describes the intera
tions of all atoms trapped in the DWP with the travelin
wave laser field.

It is of great interest to study the interaction of an atom
BEC interacting with the laser field in the present paper. T
following discussion will therefore focus on the dynami
for the case that an atomic BEC phase transition takes pl
In this special case the Hamiltonian given by Eq.~2.12! may
be further simplified. To this end, it is necessary to stress
the tunneling effect of atoms in the ground state will play
crucial role for the Bose-condensed atoms trapped in
symmetrical DWP mentioned above. The reason is twofo
The more important one is that a macroscopic number of
atoms denoted byNc will condense in the ground state of th
two wells as the BEC phase transition occurs, so the tun
ing effect of atoms in the Bose-condensed state is domin
On the other hand, we may suppose that the two low
energy levels due to the tunneling splitting of the grou
state are closely spaced and well separated from the o
higher-energy levels. Thus, for the Bose-condensed state
cupied by a large number of atoms, the operatorsgj 0

† andgj 0

( j 5L,R) may be replaced by ac numberANc/2 according to
a customary treatment. Keeping this in mind, ignoring
noncondensed atoms, and lettingE050, Eq.~2.12! becomes
the following desired form:

Heff
m 5\@~va1V0!c†c1~va2V0!d†d

1v fa
†a1gANc~c†a1a†c!#, ~2.13!

wherec† andd† are the Hermitian adjoint operators ofc and
d defined by

c5&21~bL01bR0!, d5&21~bL02bR0!, ~2.14!

and V0 is the tunneling frequency of the ground state w
the form @28#

V05S 2V0v

\p D 1/2

expS 2
2V0

\v D ~2.15!

in which V0 @V05V(0)5Mv2d2/2# is the height of the po-
tential at the origin.

The Hamiltonian given by Eq.~2.13! is the effective
Hamiltonian that determines the dynamics and time evo
tion of the Bose-condensed atom-field system and, in
02360
e

e.

at

e
.
e

l-
nt.
st

er
c-

e

-
s-

sence, describes the same physical content as that of
coupled oscillators. The effective Hamiltonian is just t
starting point to discuss the time development of the Bo
condensed state.

III. DYNAMICS OF AN ATOMIC BEC INTERACTING
WITH A LASER FIELD IN A DWP

WITHOUT DISSIPATION

In Sec. II, an effective Hamiltonian was obtained to d
scribe the interaction of an atomic BEC with a single-mo
traveling-wave laser field. We shall now study the dynam
of the system in the absence of dissipation.

Let us define operatorN̂ as

N̂5a†a1c†c. ~3.1!

It is easy to find that the relations

@N̂,Heff
m #5@d†d,Heff

m #50 ~3.2!

hold true. This means that the physical quantities cor
sponding to operatorsN̂ andd†d are two integrals of motion
in this system. Furthermore, the operators

J15~a†c1c†a!/2, J25~a†c2c†a!/2i ,

J35~a†a2c†c!/2 ~3.3!

can be introduced as a set of new operators, which satisfy
relations

@Ja ,Jb#5 i eabgJg , ~3.4!

where the symboleabg stands for Levi-Civita` coefficients.
Clearly, these new operators represent the Jordan-Schwi
bosonic realization of the SO~3! group @25#. Through the
operatorsJ1 , J2 , andJ3 , the effective Hamiltonian in Eq
~2.13! can be transformed into

Heff
m 5\@DN̂12Ag2Nc1d2eiJ2uJ3e2 iJ2u1~va2V0!d†d#,

~3.5!

where the quantitiesD, d, and tanu are defined as

D5~v f1va1V0!/2, d5~v f2va2V0!/2,

tanu5~gANc/d!. ~3.6!

It can be seen from Eq.~3.5! that the dynamical symmetry
of this Hamiltonian is the direct product of the SO~3! and
SU~1! groups by writing SO~3!^SU~1!. For the convenience
of discussion, it is supposed that the integral of motion c
responding to the operatorN̂ is N, andu0&a , u0&c , andu0&d
stand for three ‘‘vacuum’’ states defined byau0&a50,
cu0&c50, anddu0&d50, respectively. Based on SO~3! group
theory, themth eigenstate together with the eigenvalue
this effective Hamiltonian can be given by
1-3
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uEm~u!&5eiJ2uuJ,m&q^ u l &d

5(
m8

dm8,m
J

~u!uJ,m8&q^ u l &d ~J5N/2!, ~3.7!

Em~u!5\@2JD12mAd21g2Nc1~va2V0!l #, ~3.8!

where the matrix elementsdm8,m
J (u) are defined as

dm8,m
J (u)[q^J,m8uexp(iJ2u)uJ,m&q ~sometimes called Wigne

functions@25#!, u l &d5@(d†) l /Al ! #u0&d , and

uJ,m&q5uJ1m&a^ uJ2m&c5
~a†!J1m~c†!J2m

A~J1m!! ~J2m!!
u0&a^ u0&c

~3.9!

is the simultaneous eigenstate of operatorsJ2 (J25J1
2

1J2
21J3

2) and J3 satisfying the relations J2uJ,m&q

5J(J11)uJ,m&q , J3uJ,m&q5muJ,m&q , and N̂uJ,m&q
52JuJ,m&q . In analogy with the theory of angular mome
tum, these states are considered to be the eigenstates o
‘‘quasi-angular-momentum’’ operators. In obtaining Eq
~3.7!–~3.9!, the relationJ5N/2 has been used.

In what follows the time development of this system w
be investigated using the results given by Eqs.~3.7!–~3.9!.
For example, for an initial state possessingN2n photons
and another two kinds of excitation with the excitation nu
bersn and l, respectively, i.e.,

uc~ t50!&5uN2n&a^ un&c^ u l &d5uJ,J2n&q^ u l &d

5(
m8

dm8,J2n
J

~u!uEm8~u!&, ~3.10!

at time t, this state will evolve into a superposition of stat
with different photon numbers, that is,

uc~ t !&5(
m8

(
n8

dm8,J2n
J

~u!dm8,J2n8
J

~u!

3expS 2
iEm8~u!t

\ D uN2n8&a^ un8&c^ u l &d .

~3.11!

For a final stateuf& possessingN2nf photons, if we write
uf&5uN2nf&a^ unf&c^ u l &d , through a straightforward cal
culation, the probability of findinguc(t)& evolving into the
final state is found to be

z^fuc~ t !& z25U(
m8

dm8,J2n
J

~u!dm8J2nf

J
~u!

3expS 2
iEm8~u!t

\ DU2

. ~3.12!

This expression is just the probability that the system or
nally in the stateuJ,J2n&q^ u l &d makes a transition to the
stateuJ,J2nf&q^ u l &d after a time intervalt.
02360
the
.

-

i-

In particular, it is of great interest to study the time ev
lution of the atomic Bose-condensed state. This means
the atomic Bose-condensed state should be chosen a
initial and final states to discuss the problem of evolution
can be seen from the notation in Eq.~3.10! that the state of
atomic BEC can be written asuJ,J&q , in which all atoms are
condensed and there areN photons in the cavity. Note that
for the case thatN52J, the functiondm,m8

J (u) is the stan-
dardd function in angular momentum theory@25#. The prob-
ability that the initial stateuJ,J&q^ u l &d returns to itself at
time t can therefore be expressed as

z(d^ l u ^ q^J,Ju!uc~ t !& z25U (
m852J

J

dm8,J
J

~u!dm8,J
J

~u!

3expS 2
iEm8~u!t

\ DU2

5~12sin2 u sin2Ad21g2Nct !
N

~J5N/2!. ~3.13!

This result indicates that the probability of finding all atom
in the Bose-condensed state displays an undamped os
tory behavior with the oscillatory frequencyAd21g2Nc; in
other words, the traveling-wave laser field can periodica
excite the atomic BEC. In addition, from the expression od
in Eq. ~3.6!, it should be emphasized that the oscillato
frequencyAd21g2Nc is now relevant not only to the num
ber of condensed atomsNc and the coupling constantg, but
also to the tunneling frequencyV0 . In particular, for the
resonant case thatva is equal tov f , it is evident that the
oscillatory frequencyAV0

2/41g2Nc is explicitly related to
the tunneling frequency. Thus the tunneling effect in
atomic BEC in a DWP results in an obvious increment in t
oscillatory frequency, which shows that the influence of t
tunneling effect on the dynamics of the condensed-ato
field system in a DWP is important.

IV. DYNAMICS OF THE SYSTEM WITH DISSIPATION

In Sec. III, the dynamics of the system of Bose-conden
atom and field was studied in the absence of dissipat
which, in fact, is an ideal case. However, as an atom is
cited from the ground stateug& to the excited stateue& by the
laser field, in quantum electrodynamics it always decays
the ground stateug& even if the laser field is empty. This i
just the process of stimulated and spontaneous emiss
Hence a dissipation mechanism such as spontaneous e
sion and other factors should be taken into account fo
more real situation. In this section, the major aim is to stu
the dynamics of the system in the presence of the dissipa
represented by

H852 i\Gue&^eu, ~4.1!

where the quantityG denotes a strength parameter. Now
us turn our attention to discussing the dynamics governed
1-4
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the new HamiltonianH̃, which is constructed by adding th
dissipation term to the Hamiltonian in Eq.~2.4!, i.e.,

H̃5Hm1H8. ~4.2!

Note that this Hamiltonian is no longer a Hermitian opera
because of the presence of the dissipation termH8.

Repeating the same procedure as in Secs. II and III,
new HamiltonianH̃ therefore becomes

H̃5\@~ṽa1V0!c†c1~ṽa2V0!d†d

1v fa
†a1gANc~c†a1a†c!#. ~4.3!

Here the operatorsc, c†, d, andd† have the same defini
tions as before. By means of the operatorsJ1 , J2 , andJ3 in
Eq. ~3.4!, this equation can be rewritten as

H̃5\@D̃N̂12Ag2Nc1 d̃2eiJ2ũJ3e2 iJ2ũ1~ṽa2V0!d†d#,
~4.4!
-
tin

d

02360
r

e

where the quantitiesṽa , D̃, d̃, and ũ are defined by

ṽa5va2 iG, D̃5~v f1ṽa1V0!/2,

d̃5~v f2ṽa2V0!/2, tanũ5~gANc/ d̃ !. ~4.5!

Likewise, themth eigenstate and eigenvalue of the Ham
tonianH̃ are given by

uẼm~ ũ !&5eiJ2ũuJ,m&q^ u l &d5(
m8

dm8,m
J

~ ũ !uJ,m8&q^ u l &d

~J5N/2!, ~4.6!

Ẽm~ ũ !5\@2JD̃12mAd̃21g2Nc1~ṽa2V0!l #, ~4.7!

where the functiondm8,m
J ( ũ) with complex argumentũ is

defined as
dm8,m
J

~ ũ !5(
k

~21!k1m82mA~J2m!! ~J1m!! ~J2m8!! ~J1m8!!

k! ~J2m82k!! ~J1m2k!! ~k1m82m!!
S cos

ũ

2
D 2~J2k!1m2m8S sin

ũ

2
D 2k1m82m

. ~4.8!
e
on-
left-
Although the HamiltonianH̃ is non-Hermitian, the bior-
thonormal theory@26# still provides a useful method for dis
cussion of the dynamics of the system. As an interes
application of the biorthonormal theory@26#, the complete-
ness relation and biorthonormal relations can be obtaine
follows:

(
m

uĒm~ ũ !&^Ẽm~ ũ !u5(
m

uẼm~ ũ !&^Ēm~ ũ !u5I , ~4.9!

^Ēm~ ũ !uẼn~ ũ !&5^Ẽn~ ũ !uĒ~ ũ !&5dmn , ~4.10!

where the stateuEm( ũ)& with the eigenvalue Ēm( ũ)
5@Ẽm( ũ)#* is defined as

uĒm~ ũ !&5uĒm~ ũ* !&5(
m

dm,m8
J

~ ũ* !uJ,m8&q^ u l &d ,

~4.11!

which is an eigenstate ofH̃†. HereH̃† is the adjoint operator
of H̃, namely,

H̃†5\@D̃* N̂12Ag2Nc1 d̃* 2eiJ2ũ* J3eiJ2ũ*

1~ṽa* 2V0!d†d#. ~4.12!

Now, if the initial state of the system is chosen as
g

as

uc̃~ t50!&5uN2n&a^ un&c^ u l &d5uJ,J2n&q^ u l &d

5(
m8

dm8,J2n
J

~ ũ !uẼm8~ ũ !& ~4.13!

at time t, it evolves into the state

uc̃~ t !&5(
m8

(
n8

dm8,J2n
J

~ ũ !dm8,J2n8
J

~ ũ !

3expS 2
iẼm8~ ũ !t

\
D uN2n8&a^ un8&c^ u l &d .

~4.14!

Thus, for a final stateuf̃& possessingN2nf photons, i.e.,
uf̃&5uN2nf&a^ unf&c^ u l &d , the probability of finding
uc̃(t)& in such a state can be expressed as

z^f̃uc̃~ t !& z25U(
m8

dm8,J2n
J

~ ũ !dm8,J2nf

J
~ ũ !

3expS 2
iẼm8~ ũ !t

\
DU2

. ~4.15!

Similarly, it is of interest to discuss the dynamics of th
atomic Bose-condensed state in which all atoms are c
densed. Substituting the Bose-condensed state into the
hand side of Eq.~4.15! yields
1-5
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z(d^ l u ^ q^J,Ju!uc~ t !& z25U (
m852J

J

dm8,J
J

~ ũ !dm8,J
J

~ ũ !

3expS 2
iẼm8~ ũ !t

\
DU2

5u12sin2 ũ sin2Ad̃21g2NctuN

3exp@22~N1 l !Gt#. ~4.16!

This result means that, when the initial state of the sys
is the atomic Bose-condensed state, after a time intervalt the
probability that all atoms are condensed displays a damp
oscillatory pattern. That is, the state of the atomic BEC ha
tendency to be broken due to the presence of dissipatio
the system. Again, it can be seen from Eq.~4.16! that the
tunneling effect in the present case can increase the osc
tory frequency and affects the dynamics of this system.

If a characteristic time defined as

tc5@2~ l 1N!G#21 ~4.17!

is introduced, determined by both the number of excitatio
and the strength parameterG, then from Eq.~4.16!, the ex-
citations induced by the interaction of the atomic BEC w
the laser field will disappear rapidly after the characteris
time tc . Note that, in general, the strength parameterG in
the dissipation termH8 may be regarded as the coefficient
spontaneous emission and can be explicitly given@30#. Thus,
by measurement of the characteristic timetc , the approxi-
mate number of total excitations and hence the numbe
Bose-condensed atoms can be calculated.
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V. SUMMARY

In conclusion, for the case of an atomic BEC trapped i
symmetrical DWP, the dynamics of the atomic BEC inte
acting with a single-mode quantized traveling-wave la
field have been investigated in detail by considering ca
with and without dissipation. The eigenstates and eigen
ues of the corresponding Hamiltonian are obtained for b
cases. In particular, the time evolution of the atomic Bo
condensed state is discussed. It is shown that the probab
of finding all atoms in a state of BEC displays an undamp
oscillatory behavior in the absence of dissipation and
damped oscillatory behavior in the presence of dissipat
For both cases, tunneling can increase the oscillatory
quency among the dressed bosonic states and affects th
namics of the system. Moreover, in the presence of diss
tion, a characteristic time depending on the number
excitations and the parameterG is introduced. The character
istic time may be used to evaluate the number of conden
atoms. The present discussion on the dynamics of
condensed-atom–field system are expected to be helpfu
further investigations in this field.
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