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We investigate the quantum localization of the one-dimensional Rydberg atom subject to a unidirectional
periodic train of impulses. For high frequencies of the train the classical system becomes chaotic and leads to
fast ionization. By contrast, the quantum system is found to be remarkably stable. We identify for this system
the coexistence of different localization mechanisms associated with resonant and nonresonant diffusion. We
find for the suppression of nonresonant diffusion an exponential localization whose localization length can be
related to the classical dynamics in terms of the “scars” of the unstable periodic orbits. We show that the
localization length is determined by the energy excursion along the periodic orbits. The suppression of resonant
diffusion along the sequence of photonic peaks is found to be nonexponential due to the presence of high
harmonics in the driving force.

PACS numbsgps): 32.80.Rm, 42.50.Hz, 05.45.Mt

[. INTRODUCTION Recently, another driven system involving Rydberg elec-
trons has become accessible: the periodically “kicked”
One important motivation for revisiting the issue of Rydberg atom[3,4]. “Kicks” denote electric pulses Fj
classical-quantum correspondence has been the increased #fpose duration , is short compared to the unperturbed pe-
preciation of the apparent contradiction between the ubiquiriod of the classical orbital motiorf,,<T,=27n?, where
tousness of classical chaotic dynamics and the lack thereof iny is the initial level of the atom and atomic units are used
quantum dynamics. Intense investigations of this field ofthroughout this paper. Each pulse transfers a net momentum
“quantum chaos” (more precisely, of quantum theory of [10]
classically chaotic systembave been stimulated by the ex-
perimental realization of simple periodically driven systems Af): _f
that are at the borderline between classical and quantum me-
chanics. Prototypes of such systems are cooled atoms subject
to modulated standing wavés], Rydberg atoms subject to
microwave pulsef2], and Rydberg atoms subject to trains of
equispaced half-cycle pulsg3,4]. .
One of the most interesting discoveries along these lines V(t)= —r-Ap; o(t—kT), (1.2
has been the phenomenon of quantum localization or quan-

tum suppression of classically chaotic diffusion. QuantumyhereT is the period and is the position of the electron.
localization was first predicted theoretically for the kicked The kicked Rydberg atom differs from a harmonically driven
rotor [5]. It was shown that quantum localization can beatom in that the dynamics is dominated by the net momen-
mapped onto the well-known Anderson localization in solidtum transfer of the pulsgEq. (1.1)] or, equivalently, by the
state physic$6,7]. Subsequently, it was found for Rydberg presence of an infinite set of high harmonics. As will be
atoms in microwave fieldg3,9] and could be observed as an discussed below, these features strongly influence the classi-
enhanced quantum stabilization of the atom against ionizacal and quantum dynamics and lend themselves to an intui-
tion. Recently, quantum localization for these systems hatve classical picture of the quantum localization. One of the
been confirmed experimentall{t,2]. Different explanations novel features is that localization involves tkeero-field
have been proposed for localization of driven Rydberg eleceontinuum, i.e., the positive-energy wave packet remains lo-
trons employing the concept of the delocalization bof@r calized near the nucleus. Moreover, this system is character-
and sequential two-level excitatio®]. Mapping of the ized by the simultaneous presence of different localization
driven Rydberg atom onto the Anderson localization modeimechanisms, one of them being the scarring of the wave
is complicated by the fact that, unlike for a kicked rotor, thefunction near unstable periodic orbits in the chaotic sea.
unperturbed spectrum possesses a cluster point at thresholdIn Sec. I, we introduce the model of the one-dimensional
and a continuous spectrum. kicked atom and the methods employed for the solution of
the time-dependent Schiimger equation. Results for the
time-dependent excitation spectrum and its localization are
*Present address: Max Planck Institute for the Physics of Compresented in Sec. Ill. The analysis of the suppression of en-
plex Systems, D-01187 Dresden, Germany. ergy diffusion is given in Sec. IV. In Sec. V we discuss the

) F(t)dt. (1.2

Thus, a sequence of unidirectional periodic kicks can be
approximated by the time-dependent interaction
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connection between dynamical localization and scars in thean be solved by splitting the time evolution into two parts, a

guantum phase space distribution. kick and a Kepler motion
Il. THEORY Qic+1 Gk
I . . . Pes1 | =Mcou® Miick| p, | (2.6
The Hamiltonian for the three-dimension@D) kicked

atom is given by
whereqy, py are the position and momentum of the electron

H3P(t) = H3P+Vv30(1) (2.)  just before thekth kick at the timet,=(k—1)T—¢ (e
i —0). In this map, the effect o1, is
Wi
> 4 K1 Uk Uk
HP=C -2 V()= - AR st—kT), Pt Ap | ~Mue py 2.9
k=0

22 and the Kepler maM ., can be obtained numerically solv-

wherep andr ar the momentum and position of the electroning an implicit analytic equatiofi4]. The classical survival
with respect to the nucleus. The train 6fshaped kicks is probability of the atom can be calculated using the classical
characterized by the total number of kicks the kick trajectory Monte CarldCTMC) method; i.e., letting a large
strengthAp, and the time period between kicRs(i.e., the  but finite ensemble of initial conditions evolve in time fol-
train frequencywrr=1/T). Converged quantum calculations lowing Hamilton’s equatiorEq. (2.5], and evaluating the
in three dimensions for the long-time evolution of systemsProbability for the ensemble to remain in bound stateg; (
with strong coupling to the continuum remain a challenge.<0). Because of the simplicity of the map, trajectories are
We therefore focus in the following on a simplified one- numerically stable for long times. In order to mimic the ini-
dimensional system for which convergence can be achievedal quantum Rydberg state, the ensemble of initial condi-
The latter is crucial for the determination of long-time sta-tions are chosen from a microcanonical ensemble with a
bility and localization. The 1D system is described by thefixed energyEy = —1/(2n}), corresponding to the principal
Hamiltonian quantum numben; .

To simulate the time evolution of the quantum kicked
atom, we solve the time-dependent Sclinger equation
(TDSE)

H(t)=Hg tV(1), (2.3

2 K-1

1
Ha="%— o, V()=-0Ap 2 5(t—KT), (24 J
q o gl 90)=Hly(), 28

whereq>0 andp are the position and momentum of the

electron, respectively. The justification for the approximationwhere|y(t)) is the wave function of the system. Solutions
of the 3D problem by the 1D model Hamiltonian stems incan be expressed in terms of a time evolution operator,
part from the fact that the classical phase-space structure &f(t,0), i.e.,

this simplified model was found to closely mimic that of the

3D system for initial conditions representing elongated [p(1))=U(t,0)]¢(0)). (2.9

(Stark orbits[4,18]. This similarity is partly due to the fact Similar to the classical calculation, the time evolution can be

that the kicked atom features a global chaotic sea for arbi= .. . . .
X . , split into two parts, i.e., a Kepler motion and a kick corre-
trarily small Ap. Moreover, for small kick frequenciesy

where large stable islands exist, classical 3D, classical 1 ponding to a fre_e evolution operator é*pHatT], and a
and quantum 1D calculations are in good agreement wit oost operator emAp], respectively. Thus the time evolu-

each othef3]. In the present work, we focus on the quantumtion operator can be expressed in terms of the period-one
dynamics and localization of the 1D model in the high fre-evOIUtlon operatod(T.0),

quency regimevts vy,= 1/(27-rni3), for which the classical U(KT,00=[U(T,0)]¥ (2.10
system is chaotic. We note, however, that the agreement be-

tween the quantum dynamics in 3D and 1D in this regimewhich consists of a product of free evolution and boost op-

remains an open question. erators
Because of the simplé-shaped perturbation, the classical
Hamilton’s equations U(T,0)=exd —iHyTlexdigAp]. (2.1
dq dH(q,p) This equation is formally equivalent to the split-operator
qr T =P, method. In the present case®8haped pulses the split struc-
ture is, however, exact rather than an approximation, as it is
d JH(a,p) 1 K-1 the case for pulses of finite duration.
ae__ma.p) Z+Ap> S(t—KkT), (2.5 The problem is now reduced to the evaluation of matrix
dt Jq 2 k=0 ’ elements of these two operators. However, the strong cou-
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Ap?
(Hapkr1=(Hapkt (P)k Ap+ - (2.14

This equation expresses the fact that the momentum transfer
Ap determines the effective energy transfer and represents
q the quantum analog to the classical relation

Ebarrier [~ 17
2

Ap
Had Ak 1,Pk+ 1) =Had i, Pr) + P Ap+ - (2.19

The frequencyvt which plays a critical role in the descrip-
tion in terms of the harmonic field componefiEg. (2.13]
enters relation2.14) only in terms of the time intervalT
pling between bound states and the continuum complicatet_ 1/;1—) W|t_h|n| Wh'fh thle I’tﬂat]iolrll IS recursw_el:y aplpl_lteg tt?w
the evaluation of these matrix elements and distinguishes thi}e ynamical system. in the foflowing we will expioit bo
these two alternative pictures of the system driven by a

kicked atom from other systems such as the microwave . L i
driven atom. Strong couplings to the continuum can be un%)GId with an infinite set of Fourier componerigq. (2.13]

derstood in terms of the Fourier expansion of the interactior‘i”lnd by a sequence of kch{Eq.'(2.14)] in order to under-
stand the suppression of classical chaos and quantum local-

gAp 2qAp & ization. Naturally, Eq(2.14 will provide the bridge to the
V(t)y=— ——-—— cog2mvyt) (2.12  classical dynamics while Eq2.13 allows us to make con-
T T m= tact with the well-studied system of the Rydberg atom driven
by a microwave field. For the latter, both studies with an
external static field presef®] and without[11] have been

FIG. 1. PotentiaNg,,n= — 1/q+ gF,, of the Stark Hamiltonian
H stark fOr negative Ap<<0) and positive Ap>0) kicks.

which contains all harmonics/{,= mv;) with equal strength

luerﬁiclj('ggl;Zer?ugt:p;?é?gv\fgyepl;?gég trt]ﬁecc;r\'/tg:g;;n'ﬁ'\ég?ver’performed. The case of a dc field present corresponds to Eq.
’ v

—Ap/T, is nonzero. Therefore, the Hamiltonian can be re—(2'13 with all high harmonics ih>1) absent while the

- N . . cases of zero dc field correspondigQ,=0 in Hg, (2.13) in
vyntten as a sum .Of a Stgr'k Hgmlltoman with a stafitr) addition to the disappearance of all higher Fourier compo-
field and a dynamicac) driving field,

nents aboven=1.
H(t) =Hguict V' () =Hat+ qFo+ V' (1) (2.13 _The numerical cal_culations of the guantum e\_/olution re-
quire the representation of the period-one evolution operator
o in a finite Hilbert spacé® of dimensionN~ 1500. We con-
V' (t)=2qF,, >, cog2mvyt). struct an orthonormal basis set from a linear combination of
m=1 Sturmian pseudostate wave functiddg]

In the 1D model, the sign of the static field or, equiva- 2 g
lently, the direction of the kick plays a crucial role. The Sf ) — A —qing 1
spectrum of théd g, and, consequently, the dynamics of the (@) nying nse La-a(20/ng), - (2.16
driven system for different signs dfp is entirely different:
For Ap<0 (F,>0), the quantum spectrum éfg;,iS €n-  where ng is the so-called Sturmian parameter abnds a
tirely discrete. Folp>0 (F,,<0), the spectrum is entirely Laguerre polynomial. The advantage of using a Sturmian
continuous and involves a finite number of resonances whosggasis set is that small sets of Sturmian wave functions prop-
energy levels are below or near the top of the potential barerly describe Coulomb wave functions including bound and
rier Eparnie= —2VAP/T (see Fig. L The strength of the ac continuum statef13].
perturbation and the strength of the dc fieldHg, in Eq. Because of the strong coupling to the continuum, a finite-
(2.13 are obviously not independent. Therefore, increasindasis representation af(T,0) is not unitary. Unitary ap-
the strength of the Fourier components of the driving fieldproximations for the projections of the unperturbed evolution
simultaneously steepens the slope of the potential well fooperator exp{iH4T) and the boost operator exgfép) onto
Ap<0 or lowers the barrier and, hence, reduces the numbehe P space cannot be applied to the present case of strong
of below-barrier resonances fdrp>0. In both cases, all coupling to complemen® of the full Hilbert space. These
Fourier components of the kicked system up to infinite ordeapproximations lead to “reflections” at the boundary Pf
have the same strength. Therefore,(gillas) bound states of causing spurious effects in the numerical calculation of
Hsianc are strongly coupled to the continuum levelstf,  U(T,0). The exact projection should account for the finite
despite the fact that foAp<<0, Hg does not possess a outgoing probability flow fromP into Q. Both exp—iH T ]
continuous spectrum. This, at first glance, counterintuitiveand expigAp] allow transitions to states in the orthogonal
picture suggests the adoption of an alternative description afomplementQ to the subspac® subtended by the basis.
the time-dependent Hamiltonian in terms of impulsive en-Only in the limit that P approximates the whole Hilbert
ergy transfers. Calculating the expectation value of thespace a finite-basis representatiordfT,0) will approach a
Hamiltonian{H )+ 1= {((ti 1) | Had ¥ (Lt 1)), unitary matrix.
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The nonunitary projection of expiH T and expigAp]
onto P can be evaluated using the so-called repetitive projec-
tion method (RPM) [14], which is the equivalent of the
masking method in lattice-based basis expansions for atomic
pseudostates. In the RPM, the wave function, which initially
lives in the P space, is allowed to evolve unitarily into an
extended spacB® SPDP. Afterwards, the wave function is
projected back onto the subsp&aeeand the probability flux
of the wave packet fror® to 6P (6PCQ) is eliminated. By -
repeating this procedure, reflections can be suppressed effec- &
tively. This applies to both the free evolution operator and
the boost operator for small momentum transfers.

For large momentum transfers, an alternative approach is
more effective in calculating the projection of ¢iqAp]
onto the P subspace. Namely, the matrix elements of the
boost operator

(€950 | )= f_ldq () €9P pi(q), (2.17)

can _be exp_ressed analytically by a _sum of three hyp_ergeo- FIG. 2. Poincaresurface of sections for the negatively kicked
metric functions,F; [15]. The evaluation of these func_t|ons atom(a) and the positively kicked atorfi) with a scaled frequency
becomes unstable for large quantum numbers and, in thesg—_16.8. The black dashed line represents the initial energy level
cases, it is necessary to evaluate EB.17) using an of the system ¢ 0.5= p2/2— 1/). The thick solid line in(a) is an
asymptotic form[16]. The accuracy of the matrix elements ynstable periodic orbit of the system whose fixed points are denoted
was tested by evaluating thg=, functions for the typical by crosses. Periodic orbits f¢b) is hardly distinguished from
momentum transfers used in the present work by integethe initial manifold because of the small kick strength.
arithmetic.

The point to be noted about our calculations is that the, . ;. general, complextt,=0), which is a direct manifes-
present non-unitary propagation scheme neglects back coyls ' ' '

. . . ation of the nonunitarity of the evolution withiR (the cal-
pling from the Q space to theP space while suppressing culated Floquet states belong B). An imaginary part&!
artificial reflections. Part of the reduction of probability is q 9%. ginary p n

“physical” as it corresponds to the elimination of flux from — O describes the decay rate of the F'quluet saafe due to
P to Q which would represent ionization and would be irre- its coupling withQ. Floquet states witlf,=0 remain en-
trievably lost if it were not for artificial reflections. On the tirely localized inP or, equivalently, are dynamically decou-
other hand, it eliminates also that part of probability flux Pled fromQ. This property plays a crucial role in the iden-
which would return toP after an intermittent excursion into tification and analysis of quantum localization. From Eq.
Q. The latter leads to an underestimate for population prob(2-18, we can easily calculate the long-time evolution of the
abilities within P. While this error can be considerable for Wave function withinP. Only those components of the initial
low frequenciesv, it is of no importance in the parameter State|#/(0)) that overlap with stable Floquet states,) with
range »1> v, where quantum localization occurs. To testvanishing imaginary par,=0 will survive in the limitK
the convergence of our calculations, we apply, in addition to— .
the RPM, the stabilization methdd3].

For the long-time propagation, we utilize Floguet analysis
[17,18 to avoid numerical errors caused by multiplications
of large matrices. Floquet states are defined through the ei- We present in the following a comparative analysis of the

Ill. CLASSICAL AND QUANTUM EVOLUTION

genvalue equation dynamics of thestrongly negatively Ap<0) and weakly
F e F positively (Ap>0) kicked Rydberg atom. Negative kicks
U(T,0) [gn)=€"""[&p) (218 signify kicks in the direction toward the Coulomb center

. . ) ) while positive kicks denote kicks in the direction towards the
for the period-one evolution operatd(T,0) with quasi- — o ter tyming point. The reason we focus for positive kicks
eigenenergies, =&, i€, . After K kicks, the propagated on weak kick amplitudes is that the classical dynamics is

wave function becomes otherwise highly unstable with large Lyapunov exponents
N such that interesting features of the classical phase space
—elkT—ieR tructure are washed out in the quantum wave function.
KT))= E KT Q=& KT| 1F 21 S : N We | .
|(KT)) Z‘l Cn® € |¢n). (219 The classical phase space structure is displayed in Fig. 2

as Poincaresurface of sections from strong negative kicks
where ¢, are the expansion coefficients of the initial state(Ap= —0.3) and weak positive kicks\p=0.01). They cor-
|#(0)) in the basis of Floquet states. The quasieigenenergiegspond to stroboscopic snapshots of the scatgdpe)
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4 Classical n=5 n=50 n=100
] t=0 T
2t ] of i
-1} 1
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.1 Coulomb | 0
orbit v
o f‘ 1 1 1
Q22— . . . . ST .
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FIG. 3. Comparison of a Stark orbit with scaled enefg*™
=n?ES®% — 2 a Coulomb orbit with scaled ener@f'=n?E3=
—0.8, and an unstable period-9eriodic orbit(dashed ling with
its fixed points(crosses The parameters of the calculation are
Apy=—0.3 andy,=16.8.
=(q/ni2,pq) coordinates just before each kick. At a glance, '

these two Poincarsections show a large chaotic sea with a -2 0"" 5 "
completely random pattern. While for negative kicks a few

isolated islands of stability remain, the system for positive 9
kicks undergoes a discontinuous transitjd8] from regular . ) )
motion atAp=0 to global hard chaos for arbitrarily small FIG. 4. Initial and time evolved classical and quantum scaled

Ap. In this chaotic sea, an infinite number of unstable peri_phase space distributions of a 1D hydrogen atom immediately be-
' fore application of 1,2,3 kicks with a scaled momentum transfer

odic orbits lie densely, one of which is displayed in Fig. 2. o " .
Periodic orbits are the combination of segments of KeplerApO_ 0.3 and a scaled repetition frequency:@f=1.09. Classi-

. . cal results are represented by an ensemble of 10 000 points and are
orbits (Ha— C'onst.curve)sand klck§(mqmentum transfer' aP" scaling invariant. Quantum results are plotted for different initial
pear as vertical lings For the Poincarsurface of section, ¢ i0an =550 100,
shapshots of the continuous trajectory are taken after every b
time intervalT. As a consequence, periodic orbits appear as g, employ the Husimi distributiof20] defined by
set of fixed pointgdepicted as crosses in Fig. For stable
orbits, they are located at the center of stable islands while o o W W
for unstable orbits they are immersed in the chaotic sea. PH(q,P)ZJ dQ'f dp'Pqp(a’,p")P,(q",p")

These fixed points play an important role when quantum - o
phase space distributions are analyzed. 1| (e

As discussed in Sec. Il, strong unidirectional kicks mimic =_ f drqsg p(r)¢(r)
the presence of a strong dc figldee Eq.(2.13]. Conse- 2m| ) - '
quently, the periodic orbit will closely resemble a Stark orbit .

(i.e., Hgwr=const). This is illustrated in Fig. 3 where a Stark With
orbit is compared with a zero-fieldH(,= const) Kepler orbit _ —1/4 L la_r)2 ;

and the sequence of unstable fixed points associated with the Pap(1)=(ma) Texl —(q—r)2alexipr), 3.2
impulsively driven Rydberg electron. Note that each smooth '
segment resembles a Kepler orbit while the combinatiorWherepr and p‘Q’ are the Wigner distributions ab, , and

with the kick renders the entire orbit very similar to a Stark , respeétively. The Wigner distribution is defined[26]
orbit. Obviously, the unstable periodic orbit of the kicked

2
: 3.

electron closely mimics the unperturbed Coulomb-Stark or- W 1 (= . 2ipy
bit while the distance to the unperturbed Kepler orbit is Ps(a.p)=—] dyd*(a+y)eo(q-y)e™™. 33
large.

In order to present a comparison between the classical anfhe Husimi distribution is a convolution of the Wigner
quantum evolution in phase space, we study in Fig. 4 theynase-space distribution with a minimum uncertainty Gauss-
deformation of the initial torus corresponding to the initial j5 \wave packet that contains the “squeezing” parameter
conditions[H.(t=0)=E7] under the influence of the first \hich can be adjusted to improve the resolution in either
few kicks. As a quantum analog to the classical phase spaqe In the present case of Coulomb systems, we use as an
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- c:ass!ca: E 9 Number of kicks, K

—-— classical (E,_ =

—— quantum \\ FIG. 6. Survival probability as a function of the number of kicks

“ A K for three different initial statesn(=5, 50, and 100). Thickthin)
10‘21 - ! 3 L ; L A 0 lines are quanturtclassical results. The parameters for the train of
0 0 0 0 kicks areApy=—0.3,=16.8.

Scaled frequency

FIG._5. Survival probability of the kicked 1D hydrogen atom as quenciesy,~ 1, pronounced peaks are observed in both the
a function of scaled frequency, for a fixed scaled momentum ¢|assjcal and quantum calculations. The enhanced stability
transferApy=—0.3 afterK =200 k_|cks. The initial quantum Ieve_l against ionization near,~1 is due to the presence of a
git;rfnoi'a?nsagzgl::nm:rgocasl‘:gatt"e?:sfo'ﬁ\;; t:jee?;igigo(;imediz&ng I%rge classical island of stability near the initial torus. This
the figure. s max island is also evident in quantum Floquet states with zero

imaginary part of the quasieigeneneigg]. Stable Floquet
optimal choice am;-dependenta exploiting the classical states€' =0 that are in direct correspondence to classically
scaling invariance. We chose such that the width of the regular motion on intact tori are referred as stabilization in
state in scaled coordinates is symmetric in bothahandp, ~ guet states witlf” =0 do not have a classically stable coun-
direction (Ago~Ap,) and converges toward the classical terpart but are associated with classically chaotic motion.

torus as 1{n,. We therefore set Nearvy=1 and below, the quantum survival probability
underestimates the classical probability. This is due to the
a=ni3. (3.9 nonunitary time evolution associated with the RPM. Quan-

tum trajectories that intermittently leave tRespace and en-

Accordingly, the quantum uncertainty in scaled coordi-ter Q space are eliminated by the projection before returning
nates isApoAgy=1/n;. Figure 4 displays the evolution of to P space. The effect of the elimination by projection due to
the classical torus and of the Husimi distribution for differenta limited basis size can be simulated in classical simulations
n; as a function of the number of kicks. As the initial torus discarding trajectories that leave a certain region of phase
overlaps with both a stable island and the chaotic sea, thgpace. As an example, we show in Fig. 5 such a classical
classical evolution displays bending and foliation of the ini-projection in which we have eliminated all trajectories that
tial torus part of which will be trapped in the center island intermittently reach a scaled ener@,— E®h?>1. This
while the remainder gets scattered in the phase space plarg@mulation agrees, indeed, much better with the quantum sur-
With increasingn;, the quantum phase space distribution isvival for »o=<3 and confirms that the discrepancy between
increasingly capable of following the classical torus motion.classical and quantum survival is not an indication of the
Both the trapping of probability near the stable island as welbreakdown of classical-quantum correspondence but an ef-
as the spreading of parts of the wavepacket into the chaotiect of the limited basis size, i.e., of the nonconvergence of
regime can be recognized. the quantum calculations. For higher frequencigs>3,

A suitable quantitative measure for the long-term fate ofhowever, the quantum survival probability is as high or ex-
the wavepacket is its survival probability, i.e., the fraction of ceeds the classical one and is found to be converged as de-
the classical as well as quantum phase space probabilitpiled tests using the stabilization methdd] confirm. This
which remains boundi.e., with energieEE®<0). The sur- is the regime of quantum localization whose analysis is at the
vival probability serves as a hallmark for the absence or supeenter of the remainder of this paper.
pression of chaotic motion since the latter leads inevitably to Examples of localization for,=16.8 are shown in Fig. 6
ionization asKk —« due to the strong coupling to the con- for Apy=—0.3 and Fig. 7 foApy,=0.01. In both cases, the
tinuum. Fig. 5 displays the survival probability of the kicked initial torus lies in the completely chaotic region of phase
atom afterK=200 impulses as a function of scaled fre- spacdFigs. 2a) and 2b)] far from any stable island. Figure
quencyvy= vt/ vy Of the train of pulses. The initial state is 6 shows the time evolution of the survival probability
n;=50 and the scaled momentum transfep,=—0.3 is Pg,(Hx<0) whereas Fig. 7 displays the recurrence prob-
chosen such that the classical phase space for this systemhility P,{(n;)=|{n;|(t)}|? as a function of time. The clas-
contains sizeable stable islan@sg., Fig. 2. For scaled fre- sical analog tdP, is defined as

023408-6



EXPONENTIAL AND NONEXPONENTIAL LOCALIZATION . .. PHYSICAL REVIEW A 62 023408

n=5 n=20 n=50
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FIG. 7. Recurrence probability of the positively kicked atom
with Apy=0.01 and v,=16.8 for different initial levelsn;
=5,20,50. Thick(thin) lines are quantuniclassical results.

P?éw:f dqdp dE {q,p,t),

at at
En— A <Ha<Eq+An 1
(3.5

wheref(q,p,t) is the classical probability density in phase
space,Eq'=—1/2n7, and A, =1/4(n;—1)*~1/4n] . Note
that the classical recurrence probability is not exactly classi- 10"°_0_001 0 0001 O 0,001
cally scaling invariant because the quantum energy level Stark

spacing is taken into account in E®.5). For positive kicks, ark energy (a.u.)

the survival probability is a structureless function since elec- Fig. g Time evolution of the Stark energy distribution
trons are irretrievably lost once ionized since subsequenj (gsarly for 5, =16.8 and different strengths of the kicksp,
kicks in outbound directions lead only to further acceleration=0.01 (left column; Apy=—0.3 (right column. The initial state

and energy gain and precludes any recapture. Therefore, nogfthe atom is prepared in a Stark state which has the largest overlap
monotonic structures appear only in the recurrence probabilyith the hydrogenin; =50 level.

ity which are due to redistribution among bound states. Both

the quantum survival probability for negative kicksig. 6) pr(E)=]dy(KT)|2, (4.1)

and the quantum recurrence probability for positive kicks

(Fig. 7) display pronounced oscillations which initially whered, is the expansion coefficient of the time-evolved

closely follow the classical predictions before completely de-wave function in the basis of time-independent eigenstates
parting from each other after abokit=30 kicks. Obviously, |y of eitherH; or Hgy With eigenenergieg? (S

the oscillation frequency is classical in origin, even though

the classical phase space distribution can follow the oscilla- N

tory pattern only for a limited time before the probability |¢(KT)>:2 dn(KT) | xn)- (4.2
quickly decays. The correspondence between the classical n

and quantum evolution is maintained for longer time periods

(or number of kickK) asn; increases, i.e., as we approach Figure 8 displays th? shgrt—time e_volution of Fh_e sp_ectral
the semiclassical limit. density ofH g4 for the first five negative and positive kicks.

After one kick, the spectral distribution mimics the transition
strength due to the kick, i.e., the inelastic form factor. It is
IV. SUPPRESSION OF DIFFUSION strongly peaked near the initial state and falls off with an

. : : . dnverse power-law dependence for largeStrk— g1
In the previous section, an increased quantum surviva Stk - e i
En " is the initial Stark energy. The sharp dip for

probability relative to the classical survival probability for Where
initial conditions in a region of the classically chaotic phasepositive kicks is due to the fact that some of the near-
space was found. This can be understood as a hallmark @freshold resonances are localized in the outer well rather
guantum localization. One of its characteristic features is théhan in the inner wel(see Fig. 1, having therefore an expo-
suppression of diffusion in energy space for time-dependententially small overlap with the initial state. With increasing
systems. We therefore study now the spectral distributiomumber of kicks, the spectral distribution builds up oscillat-
pk(E) after K kicks whereE=E?® or E=ES@ represents ing components. It is the build-up @flestructive interfer-

the expectation value dfl 5, or Hg,p, respectively. Within a  ences that ultimately suppresses further spread and diffusion
discrete basis, the spectral density is given by in energy space and “freezes” out the energy distribution of
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¥ by mathematically reducing it to the “tight-binding” Ander-
son model. Note that this Hamiltonian is scaled in the units

" of the inertia of rotoll and the time interval between kicKs

= The key point is that in this model, all the Floquet stdﬁe?s)

4§ with quasienergie§ become exponentially localized around

@ some momentunp, with the same localization length, ,

. (4.9

AP
F\__ . &
<I|(P£> GX% AL
1 ' 10

-0.0005 0 -0.0005 0

Stark energy (a.u.) Hydrogenic energy (a.u.) where% =#%T/I is a scaled Planck constant, apglis quan-
tized and takes values,=1%, (1=0,+1,%2, ...).Floquet
states with nearly identical quasienergies are generally local-
The atom is initially prepared in the Stark St)S™ with the ized around centers Wh_ich are far apart. On the other hand,
. . i two Floquet states localized at centers close comparéq to
largest overlap with the; =50 hydrogenic level. The crosses are have a quasienergy separated by the spacing proportional to
the time-averaged integrated probabilities of the resonant peaki_l [7]
The solid lines with circles are the average excitation probabilities™ L o . . .
given by P such that the adjacent energy difference between If, for simplicity, we start with a well-localized state,
circles is equal ta. The dashed line is the dipole coupling strength (I (= 0))= 5”ini' only Floquet states whose centégsare
(xS gl x5™|2 in arbitrary units.(b) Same aga) but for a hy-  within a momentum rangd of the initial levell;,; contrib-
drogenic initial state im;=50 and as a function of hydrogenic Ute to the time evolution. Hence, the expectation value of
energy. (py—lini)? cannot become much larger thArﬁ. The effec-
tive number of Flogquet states contributing to the time evolu-
tion is A_ . Since quasienergieS (more precisely£T) are
distributed over the intervg]0,27r} (note thatT=1 in the

FIG. 9. Energy distributions of the final state of the atom after
application of 600 positive kicks withy=16.8 andA py=0.01.(a)

the wave packet. Figures 9 and 10 show “frozen” quasista

tionary energy distributions after 600 kicks for different kick X .

strengths. Obviously, the localized energy distribution pospresent units the typical energy space become%
sesses a variety of intricate features which can reveal differ-NZW/(A,LT) .*Momentum(gnd energy d'ﬁUS'On continues
ent underlying localization mechanisms. In the following weUP 10 a timet whe_re the time-energy uncertainty allows the
analyze these features in detail and we distinguish betwegifSolution of the discrete Floguet spectrum

suppression of resonant and nonresonant diffusion. th~ 2] SE=A, . 4.5

t* is usually referred to as the break time. In the classical
limit, i.e., 2—0, the time evolution involves an infinite num-

In general, the suppression of classically chaotic nonber of Floquet states and the recurrence of the system never
resonant diffusion is associated with the discreteness diappens, i.et* —.
quasi-eigenenergy levels in quantum mechanics. Fishman Some of these properties previously observed for the
et al.[7,21] have provided an explanation of this suppressiorkicked rotor can be identified in the present case of the pe-

A. Suppression of nonresonant diffusion

for the kicked rotor riodically kicked Rydberg atom. Specifically, the dominant
Floquet stateg!) overlapping with the initial statéi.e.,
H o= 2P2+ K 0 COSOY, S(t—K) 4.3 large[c,| values in Eq(2.19] and governing the time evo-
k lution are found to be exponentially localized state num-

ber spacesee Fig. 1L The latter specification is crucial in
identifying the value of the localization length in the present
case since the relation between state nunifgr (ordered
with increasing energye,) and energy is complicated. If
E,=E are taken to be the eigenvaluestbf;, the spectrum

« 10 is characterized by the presence of a spectral cluster point at
'é the ionization threshold dfl ;; and a(discretized continuum
g above. IfE,=E>®*correspond to the eigenvaluestdf .,
z 10° the relation between state number afgl is clear forAp

<0 since the spectrum is discrete. However, &pp>0 the
spectrum is continuous and a discrete representation is ob-
tained only when using a finite basis set. We will, therefore,
in the following inquire about the localization in energy
space including the continuum energy spectrum. The state

FIG. 10. Same as Fig.(8 but with momentum transferAp, ~ number in Fig. 11 corresponds to the spectruntgf and
=—0.3(left) and — 0.1 (right). involves only bound states.

0 0.001 0 0.0005
Stark energy (a.u.)
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FIG. 12. Comparison of calculated scaled nearest neighbor en-
ergy spacing statisticgbarg with Poisson distributiongdashed
lines) and best fit Brody distributions witb=0.527 (solid lines.

The two figures considefa) 465 localized states withe 7|
>0.99 and(b) 919 nonlocalized states.

Occupation probability
)

107 |
107 L P 107 lineation of the spectral statistics in this system is compli-
50 100 150 cated by the fact that quasieigenenergi€E)(are defined by
Hydrogenic state number only modulo 27. Therefore, Floquet states living in different

regions of phase space can have, coincidentally, close-lying
quasieigenvalues. At the same time, the value of the imagi-
nary part allows to identify the localized and delocalized
character of the Floquet states. As criteria for selecting the
subset of Floquet states involved in the quantum localization
with localization lengthA| we use the proximity to the unit

FIG. 11. Probability distribution of three dominant Floquet
states in state number spacehf; for different kick strengths, left
column: Apy,=0.01, right: Ap,=—0.3. The dashed lines corre-
spond to exp—|n—n;|/A ] with A, estimated from the state entropy.

Figure 11 shows that the localization length of Floquet

. _1é . .
states in state number space can be determined from circle e '©>0.99. Figure 1@ displays the nearest-
neighbor spacing distribution of 465 localized Floquet states
1 for an initial state withn;=100, v,=16.8 and strong nega-
AE=EGS". (4.6 tive kicks. For comparison, Fig. 18 shows the nearest-

neighbor spacings for quasienergy eigenvalues for nonlocal-
whereS. is the state entropt2?] of the Eloguet statédF ized st'ates. Obviously, thg transition from Iocallzed_t'o
and issgr}ven by Pi22] q #én) delocalized Floquet states is accompanied by a transition
from a Brody distribution to a Poisson distribution. The fact
N that the Brody parameter reaches for localized states only
S,=— E p'Inp! 4.7 abo_ut_tw0.53 rather than unity_ appears to in_dicat_e th_at the
=1 statistical ensemble may contain states localized in different

. ) ~areas in phase space which show some accidental near de-
and p/'=|({xi|¢)|?. Different Floquet states contributing generacies.

significantly to the time evolution have very similar values
for Al indicating the approximate “universality” of the lo-
calization length similar to that for the kicked rotor.

One consequence of the localization description in terms The complex structure of the localized energy spectrum in
of Floquet states with centers close to each other on a scafggs. 9 and 10 indicates that other localization mechanisms
of A, is that their quasieigenenergies should display “levelare simultaneously present. One of them is the suppression
repulsion.” That is, if the quasieigenenergies are depicted agf resonant diffusion.

a function of any of the parameters of the perturbatiither When a frequency of the perturbation matches the energy
vy or Ap), they exhibit pronounced avoided crossings,difference between two levels, the transition probability be-
pointing to “strong couplings” among them. As a result, comes resonantly enhanced. Sequences of resonant transi-
spectral statistics for the nearest-neighbor spacing of the reliPns can lead the diffusion in energy space. However, the
part of £F, should display a Wigner-like behavior or, more honlinear behavior of energy levels.g.,E~n~?) leads to

B. Suppression of resonant diffusion

generally, a Brody distributiof23] of the form dephasing and suppresses resonant diffusion. A simple pic-
ture along these lines based on a two-state model was intro-
Pgroay(D)=AD"Pexp( —BD*?), (4.8)  duced by Jensest al.[9] to explain quantum localization for

the Rydberg atom driven by a weak microwave field. The
where A=(1+b)B,B=[T'((2+b)/(1+b))]**®, D=Ae/ basic idea is that excitation occurs predominantly between
(A€) is the scaled nearest-neighbor spacing anis the resonant energy levels separated by the one-photon energy
Brody parameter. o, Wherew=27v is the angular frequency of the perturba-
A Wigner distribution corresponds to the limbi—1  tion. However, since quantum energy levels of the atom are
while a random Poisson distribution results friim>0. De-  discrete and their level spacing is not equidistant, the atom is
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excited to energy levels which are nearby the resonant erpected(Fig. 8. The arguments leading up to the localization
ergy levels. This quantum “detuning” suppresses the resolength[Eq. (4.11)] no longer apply to this case and, conse-
nant excitation process and causes the quantum localizatioguently, we observe a nonexponential localization in energy
Assuming that the quantum detuning is randomly distrib-spaceFig. 9). Moreover, the variation of the peak heights of
uted around the resonant energy and in an interval given bthe multiphoton peaksw closely mimic the behavior of the
the adjacent level spacing around the excited séaig the  dipole coupling strength, also displayed in Fig. 9. In fact, the
average quasiresonant excitation induced by a single hatime-averaged integrated peaks agree quite well with the di-
monic with frequencyw from a state|0) to a state]1), is  rect excitation probabilitie®{ ., [Eq. (4.12)].
given by[9] This nonexponential energy localization is well separated
and clearly distinguishable from the nonresonant diffusion
po :|Faw<0|(1|1>|+ _1[ o, } 4.9 which determines the width of each of the photonic peaks for
0-1 SE; 2|F.£0[q|1)| | ' small kick amplitudes £p,=0.01). The spectral density
) ) ) ) . [Eq. (4.1)] is clearly dependent on the choice of the basis.
For Rydberg atoms in a microwave field, this probability gecayse of the alternate choice of a time-dependent Hamil-
defines the localization length since it approximately acygnjan, the expansion of the time-dependent wave function
quires the same numerical value for different energy levelg.an pe performed in terms of eigenstates within the zero-field
(e.9., Pg_1~P”;1). Thus, the final energy distribution Hamiltonian or the Stark Hamiltonian. The spectral distribu-
p(E) for that problem becomes exponentially localized intion [Eq. (4.1)] displays the photonic peak structure which is
energy space, I.e., more pronounced in the Stark bagisg. 9).
Since for small kick strengths two processes of diffusion
E- Eil), (4.10 are observed in the kicked atom, two localization lengths are
wloc defined, one for each diffusion; the localization length within
the dominant peaknonresonant diffusionand the one in-
volving all resonant peak&esonant diffusion Since non-
resonant diffusion is the result of the transition to the neigh-
L= —2/InPY_,. (417 boring energy levels, the dipole couplings*"{al x5
controls the localization length within a pedkhown in
For the microwave problem both the suppression of resonanfashed lines Fig.)9 As discussed above, the shape of the
as well as nonresonant diffusion has been interpreted agipole coupling controls the height of subsequent photonic
strong(or Anderson-typglocalization since they both result peaks. Therefore, in the case of small positive kicks, the
in an exponential distribution, however, not necessarily ordipole coupling strength governs both the exponential local-
the same scaléenergy or state numberFor the kicked ization length for nonresonant diffusion as well as the non-
atom, these mechanisms are vastly different and can be easxponential localization for photonic peaks in the positive-
ily distinguished from each other. The origin lies in the fre- energy continuum.
quency distribution of the periodic perturbation. In the case of strong kicksA(pg=—0.1,—0.3, Fig. 10
The kicked atom is equivalent to the system of an atom irthe width of each photonic peak is broadened such that ad-
a dc field perturbed by a superposition of all higher harmonjacent photonic peaks begin to overlap. Therefore, the reso-
ics (Eq. 2.13. Each harmonic term cosf2wt) induces reso- nant peaks merge and well defined structures are destroyed.
nant excitation from0) to [m) (m=1,2,...). Whenthis  Moreover, an additional quasiregular pattern with an energy
direct excitation becomes significant compared to the succespacing that is smaller than the resonant spacing appears.
sive resonant excitatio0)—|1)—---—|my), the energy This feature will be analyzed in more detail below. Never-
distribution is not exponentially localized. This “multipho- theless, the presence of two competing localization mecha-
ton” transition corresponds to large energy changes comnisms is still evident. The localization length as defined
pared to the nearest-neighbor spacing. Therefore, exponetihrough the state entropy characterizes the width of the sharp
tial localization in state number space and energy space arpeak near the initial state. Similarly, the decay of the more
in general, different. Moreover, localization includes here thedistant peaks follows the nonexponential decay pattern of the
positive-energy spectrum. Direct excitation by a multiphotonphotonic peaks. However, due to the presence of an infinite
transition with frequencymw, averaged over the detuning set of harmonics the peak heights do not become stationary

p(E)~exr{—2

where E; is the initial energy and.,, is the localization
length defined by

SE,, the excitation probability is given by but oscillate. It is therefore necessary to introduce some form
of time averaging to measure the localization length of the
me _|':av<m|Q|0>|+ —1 SEm (4.12 system. We therefore take the time average over a period of
o-m™  SE, 2|F ,,(m[q|0)] ' the oscillation.

where(m|q|0) is the dipole coupling fromj0) to |m}). In the
present problem, direct excitation dominates over sequential
excitation, P§ . >TI"'P ., . This is confirmed by the We analyze now in more detail the additional rapidly
fact that the resonant peak structure appears even after twarying structures in the spectral distribution seen in Fig. 10.
kicks, which is much shorter than the time for which signifi- They provide a key to a classical interpretation of the local-
cant successive transitions frof)) to |m) levels are ex- ization that suppresses nonresonant diffusion and its localiza-

V. LOCALIZATION AND SCARS
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FIG. 13. Poincarsurface of section and Husimi distributions of -1 5*,5’&——-—— ;@ﬁ“f—
three dominant Floquet states for the kicked=50 atom with _5 i ' _ ;
Apgy=—0.3 andvy=16.8. The figures are ordered according to the X ~ e T 10T }?‘X i
importance of the Floquet states in the time evolution. The dashed TP 5T TR —- 7 R
line in the surface of section represents the initial energy level of 0 §xx % XN xR
the system. The thick solid lines are unstable periodic orbits of the aF "
system whose fixed points are denoted by crosses. ol
0

tion length. To this end, we determine the Husimi distribu- q
tion of the dominant Floquet states that carry the strongest o
weight of the localized wave packet. These are Floguet states FIG. 14. Time evolution of the Husimi distribution of a hydro-
with vanishing imaginary part. Figure 13 displays the quan-genicn,=50 state subject to a train of kicks withp,=—0.3 and
tum phase space distribution of the leading Floquet states far,=16.8. The crosses represent fixed points of periodic orbits with
strong negative kicks. Remarkably, they are strongly localperiod 8T, 9T, and 10 (on the right column, those with periodré
ized around unstable periodic orbits. and 7T are addell The dashed line represents the ionization thresh-
In analogy to scars of wave functions for time- old.

independent statd®4] these structures can be identified as level and b . bound hvd ic stat
scars in the quantum phase space in time-dependent systerﬁg.ergy evel and becoming a bound nydrogenic state once

The important point to be noted is that unstable periodica.gain'RSince _several Floqugt states W.ith different .quasiener-
orbits have measure zero in the classical phase space a HES‘.‘: con;rlbu.te to the time evolut|qn, the ‘(?ntm_a wavs
therefore do not leave a trace in the classical phase spa nction, which is a coherent_ superposition c.’f stationary
portrait, the Poincarsurface of sectiofiFig. 2). Only quan- oquet states, has a relative time evolution phase, exp
tum dynamicgor the finite value ofi) adds some “flesh”to [ ~1(€n—Em)T], and resulting in the motion of the wave-
the skeleton of classical dynamics such that unstable periodRaCket as seen in Fig. 14. For example, the periddrition
orbits become the carrier of a significant fraction of the lo-f the q_uantFij wave packet is generated by the relative
calized probability density. phase with £, — &) ~2mk/9T, wherek is an integer. After
While a Floquet state itself is stationary, its corresponthe period @, the relative phase becomes Bxi(ER
dence to a classical periodic orbit allows for an intuitive—5§)9T]~exp(—i27-rk) and comes back to the original
time-dependent interpretation given by the motion of thephase. Thus, this pair of Floquet states contribute to the
electron along the periodic orbit. Each kick transports thequantum time evolution with a periodr9 In the case of Fig.
electron to a different energy hypersurface. After a certairll4, the level spacing distribution among the dominant Flo-
number of kicks(i.e., the period of the unstable periodic quet states shows the peaks arourk®T. This is the rea-
orbit) the electron returns to its initial location. For example son why the time evolution of the survival probabilityig.
in Fig. 14 the electron is initially near the outer turning point 6) is dominated by the period@oscillation. Note that three
of the orbit atpy~0,q,~2 and acquires a negative averageout of nine fixed points lie at positive energids {>0). The
momentum. Each kick on the inbound motion speeds up thenotion along a classical unstable periodic orbit immediately
electron and excites it to a higher energy level including theaxplains the oscillation in the classical survival probability in
hydrogenic continuum. Eventually, the electron scatters aFig. 6.
the nucleus, turns around, and acquires a positive momen- The paradoxical fact is, at first glance, that the motion of
tum. Subsequently, each kick during the outbound part of théhe quantum wave packet is obviously stable while the un-
trajectory slows down the electron deexciting it to a lowerderlying classical trajectories are not. The stabilization is ob-
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radius = 1/,/n;
A

FIG. 15. Schematic picture of the build-up of scars of a classi-
cally unstable orbit in the quantum phase space distribution due tc
the finite quantum resolutioshaded areaThe arrows illustrate a
trajectory staring in A and ending in B at a distance from A which
cannot be resolved.

viously the consequence of the finiteness oT he following
simple picture(Fig. 15 explains the essence of this mecha-

nism. Consider a wave packet that is localized in both scaleua %
g or p coordinates to within FIG. 16. Poincarsurface of section and Husimi distributions of
am am_ 102 12 three dominant Floquet states for the kicked=50 atom with
Apg =Aqg =7 =n; (5.1 Ap,=0.01 andv,=16.8. The figures are ordered according to the

importance of the Floquet states in the time evolution. The dashed
given by the quantum uncertainty in scaled coordinatesjine in the surface of section represents the initial energy level of
Close to unstable periodic orbits, classical trajectories sepahe system. Crosses are fixed points belonging to unstable periodic
rate from each other during one period by orbits with a period 15, 17T, or 19T.

r§(Teo) =r§(0) exeo, (5.2 stable periodic orbits of similar period have fixed points in
close proximity to each other such that

wherer§(t) = (Aqd(t))?+ (Apg(t))?, and xpo=ApoTpo iS

the stability index of the orbit, and o and Tpg are the 1

Lyapunov exponent and period of the periodic orbit, respec- \/——2 V(do—ab)?+ (po—ph)2, (5.9

tively. If now the trajectory after one period returns to the N

initial condition to within a distance of the order of the quan- L o
the Husimi distribution can no longer resolve scars of indi-

tum uncertainty - 1/yn;), the classical spread of the trajec- " . . O . .
tory does notys(;ffic\(/a_lt)o effectively disF:)erse the quaJntumV'dual periodic orbits. Several periodic orbits are then carri-

wave packet. As a result, the quantum wave packet can r&rs of the localized quantum phase space distribution of an

trace its trajectory and a build-up of density due to the Con_mdividual Floguet state. An example is shown in Fig. 16 for

structive interference along the path becomes posgfite the kicked Rydberg atom with weak positive kicks. For this

15). Combining Egs(5.1) and(5.2) leads to the estimate for system, rITI]aIr']Ii/ ;lae?oglc orb]tts(;/\:!th ci‘omptar?r?lg pte_:nlotds wh||ch
quantum localization to occur are equally likely to be excited lie close to the initial torus. In

this case, fixed points are so densely distributed that several
1 of them exist in the area corresponding to the quantum un-

rg(0) exros—, (5.3  certaintyAgoApe=1/n; and contribute to the Husimi distri-

n; bution of the dominant localized Floquet states. #sin-
creases, the Husimi distribution can increasingly resolve

where the widthrg'(O) is given by the size of the region different periodic orbits(Fig. 17). However, even a,
within which the linearization including the calculation of =100, the Husimi distribution still contains more than one
the monodromy matrix and the stability index remains valid.periodic orbit. This picture of théguas) periodic motion of
As a rough estimate one can take a distance small comparélde quantum wave packet finds its direct verification in the
to the distance between adjacent fixed points along the periime dependence of the survival probability. As shown in
odic orbit. This quantity is given by classical dynamics in-Fig. 6, the survival probability for the negatively kicked
dependent of the quantum numbier 7). One consequence Rydberg atom displays oscillations with a period @hich
of Eq. (5.3 is that any weakly unstable orbit withp=0 is precisely the period for upward and downward motion in
will be efficient in carrying probability density for quantum energy along the periodic orbit. The fact that the orbit is
localization. Asn;—« (or #—0), the scars along unstable classically unstable is borne out by the fact that the oscilla-
periodic orbits will disappear, the larggio the smallem; tion of the classical survival probability decays after about
for which scars will no longer become visible in the Husimi two periods §po~0.5). Conversely, the quantum oscilla-
distribution. Another consequence of E§.J) is that if un-  tions in probability remain stable over hundreds of periods.
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pseudostate energies within the peak. The fact that not all
peaks are accounted for by the energetic positions of the
fixed points is due to the fact that one Floquet state may
- contain scars from more than one periodic orbit.

The relation to the localization length follows from the
width of the peaked structure. The peaks that are connected
by a single periodic orbit have comparable height which is
an obvious consequence of the fact that the probability for
finding the wave packet at different fixed points along a
given orbit varies only slightly. The width of the plateaulike

substructure is therefore given by the maximum energy ex-

o . . : - Stark 4 = Stark
FIG. 17. Husimi distribution of a dominant Floquet state with cursion along the orbit fronf 0™ to Ep S,

different initial states{a) n;=5, (b) n;=20, and(c) n;=100. The
parameters of the perturbation are the same as in Fig. 13.

%

AEy=EJark_gStark (5.5
In Fig. 14, we can observe that the wave packet evolves back
and forth across the ionization threshold for the first fEWBeyond this width, the spectral distribution is rapidly decay-
kicks. When it goes through the area which has densely disng. ComparingA E,, with the localization lengti\, in Fig.
tributed fixed points belonging to the different periodic orbits 10, we find
(t~5T in Fig. 14), the quantum wave packet “forgets” the
original periodic orbit and becomes redistributed among dif-
ferent periodic orbits. Due to this redistribution, different (AEg)=A_, (5.6)
parts of the wave packet start evolving with different periods
of the motion. This dephasing creates an additional slow os-

cillation in the survival probability and the partial revival of .e., the size of the quantum Iocahzaﬂqn can b.e gstlmqted
the oscillation amplitudéFig. 6). from the energy excursion along classical periodic orbits.

The scars of unstable periodic orbits also leave a mark 0;"he average is taken over the ensemble of the periodic orbits

the spectral distribution of quantum localization. This aIIowsWhICh contribute to the scarring of the dominant Floguet

one to make a direct connection between scars, quantum | tates. We find E((5.6) to hold for both negative and posi-

calization, and the additional structures observed in the spe |_ve|!<|clt<_s oyertk::l \;wde range of lei( strengthsi TTE |mportfmt
tral distribution. Figure 18 is a magnification of the energy:rnp :_ca ;_on "T’ atha genebrlc ql{[z_;m utmdpfroper Y, Ie qluan _uml
distribution for negative kickgFig. 10. The vertical lines ocalization fength, can be estimated Irom purely classica

denote the energetic positions of the classical unstable perjir—]formatlon about scars.

odic orbits with period T [Fig. 18a)], and 9T [Fig. 18b)].

Obviously, the additional rapid variation of the energy dis- VI. CONCLUSIONS AND OUTLOOK

tributed near the maximum represents the jumping from one

fixed point to the next fixed point along the orbit. Note that We have demonstrated the existence of different mecha-
the structures are not an artifact of the energy resolution ofisms of quantum localization of the kicked Rydberg atom

the discrete pseudostate basis. There are, typically, severdithin a fully chaotic region in phase space. We have shown
that the suppression of nonresonant diffusion results in a

localization phenomenon resembling strong Anderson local-
— 107 ization. We note, however, that a direct mapping of the
| Hamiltonian onto a tight-binding Anderson Hamiltonian has
not been achieved. While the analytic steps taken for the
mapping from the kicked rotor can be applied here as well,
the intrinsic randomness of the “site energies” in the result-
ing tight-binding model has not been proven. Instead, in the
N present case we find that the quantum localization length is

(3) n=50 (b) =100
T T

L1
1

10 R
[0
1, ()

Id,®

-2

10

I
|
|
|
|
|
|
intimately related to the localization around classical un-
stable periodic orbits. Scars of unstable orbits are imprinted
Il . on the quantum phase space distributions of the dominant

W\
0.0004 0.0001 0.00012 stable Floquet states. Remarkably, the quantum localization

|
|
|
10 '

length can be estimated from the classical energy excursion
along unstable periodic orbits. In addition, a different local-
FIG. 18. Energy distributions of the Floquet stateslid line  ization mechanism is operative suppressing resonant energy
and energy levels of the unstable fixed poittertical dashed diffusion due to sequential “photon” absorption. This local-
lines). The strength of the kicks i§p,=— 0.3 and the frequency is ization is nonexponential in energy space due to the fact that
vo=16.8. Forn;=50. The unstable fixed points for =50 andn; the high harmonics of the perturbation play asignificant role
=100 belong periodic orbits with periodT7and 9T, respectively.  in the excitation dynamics. The latter is responsible for the

Stark energy (a.u.)
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difference to the photonic localization for the microwave tion can be observed for the 3D Rydberg atom. We hope that

ionization probleni2,9]. the present work will stimulate high-frequency experiments
While for this one-dimensional system a fairly complete for this problem.

understanding of the origin and properties of quantum local-

ization has been achieved, the central open question is that of ACKNOWLEDGMENTS
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