
PHYSICAL REVIEW A, VOLUME 62, 023408
Exponential and nonexponential localization of the one-dimensional periodically kicked
Rydberg atom
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We investigate the quantum localization of the one-dimensional Rydberg atom subject to a unidirectional
periodic train of impulses. For high frequencies of the train the classical system becomes chaotic and leads to
fast ionization. By contrast, the quantum system is found to be remarkably stable. We identify for this system
the coexistence of different localization mechanisms associated with resonant and nonresonant diffusion. We
find for the suppression of nonresonant diffusion an exponential localization whose localization length can be
related to the classical dynamics in terms of the ‘‘scars’’ of the unstable periodic orbits. We show that the
localization length is determined by the energy excursion along the periodic orbits. The suppression of resonant
diffusion along the sequence of photonic peaks is found to be nonexponential due to the presence of high
harmonics in the driving force.

PACS number~s!: 32.80.Rm, 42.50.Hz, 05.45.Mt
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I. INTRODUCTION

One important motivation for revisiting the issue
classical-quantum correspondence has been the increase
preciation of the apparent contradiction between the ubiq
tousness of classical chaotic dynamics and the lack there
quantum dynamics. Intense investigations of this field
‘‘quantum chaos’’ ~more precisely, of quantum theory o
classically chaotic systems! have been stimulated by the e
perimental realization of simple periodically driven syste
that are at the borderline between classical and quantum
chanics. Prototypes of such systems are cooled atoms su
to modulated standing waves@1#, Rydberg atoms subject t
microwave pulses@2#, and Rydberg atoms subject to trains
equispaced half-cycle pulses@3,4#.

One of the most interesting discoveries along these li
has been the phenomenon of quantum localization or qu
tum suppression of classically chaotic diffusion. Quant
localization was first predicted theoretically for the kick
rotor @5#. It was shown that quantum localization can
mapped onto the well-known Anderson localization in so
state physics@6,7#. Subsequently, it was found for Rydbe
atoms in microwave fields@8,9# and could be observed as a
enhanced quantum stabilization of the atom against ion
tion. Recently, quantum localization for these systems
been confirmed experimentally@1,2#. Different explanations
have been proposed for localization of driven Rydberg e
trons employing the concept of the delocalization border@8#
and sequential two-level excitations@9#. Mapping of the
driven Rydberg atom onto the Anderson localization mo
is complicated by the fact that, unlike for a kicked rotor, t
unperturbed spectrum possesses a cluster point at thre
and a continuous spectrum.

*Present address: Max Planck Institute for the Physics of C
plex Systems, D-01187 Dresden, Germany.
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Recently, another driven system involving Rydberg ele
trons has become accessible: the periodically ‘‘kicke
Rydberg atom@3,4#. ‘‘Kicks’’ denote electric pulses F(t)
whose durationTp is short compared to the unperturbed p
riod of the classical orbital motion,Tp!Torb52pni

3 , where
ni is the initial level of the atom and atomic units are us
throughout this paper. Each pulse transfers a net momen
@10#

DpW 52E
2`

`

FW ~ t !dt. ~1.1!

Thus, a sequence of unidirectional periodic kicks can
approximated by the time-dependent interaction

V~ t !52rW•DpW (
k

d~ t2kT!, ~1.2!

whereT is the period andrW is the position of the electron
The kicked Rydberg atom differs from a harmonically driv
atom in that the dynamics is dominated by the net mom
tum transfer of the pulse@Eq. ~1.1!# or, equivalently, by the
presence of an infinite set of high harmonics. As will
discussed below, these features strongly influence the cla
cal and quantum dynamics and lend themselves to an in
tive classical picture of the quantum localization. One of t
novel features is that localization involves the~zero-field!
continuum, i.e., the positive-energy wave packet remains
calized near the nucleus. Moreover, this system is charac
ized by the simultaneous presence of different localizat
mechanisms, one of them being the scarring of the w
function near unstable periodic orbits in the chaotic sea.

In Sec. II, we introduce the model of the one-dimensio
kicked atom and the methods employed for the solution
the time-dependent Schro¨dinger equation. Results for th
time-dependent excitation spectrum and its localization
presented in Sec. III. The analysis of the suppression of
ergy diffusion is given in Sec. IV. In Sec. V we discuss t
-
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connection between dynamical localization and scars in
quantum phase space distribution.

II. THEORY

The Hamiltonian for the three-dimensional~3D! kicked
atom is given by

H3D~ t !5Hat
3D1V3D~ t ! ~2.1!

with

Hat
3D5

p2

2
2

1

r
, V3D~ t !52rW•DpW (

k50

K21

d~ t2kT!,

~2.2!

wherepW andrW ar the momentum and position of the electr
with respect to the nucleus. The train ofd-shaped kicks is
characterized by the total number of kicksK, the kick
strengthDp, and the time period between kicksT ~i.e., the
train frequencynT51/T). Converged quantum calculation
in three dimensions for the long-time evolution of syste
with strong coupling to the continuum remain a challen
We therefore focus in the following on a simplified on
dimensional system for which convergence can be achie
The latter is crucial for the determination of long-time s
bility and localization. The 1D system is described by t
Hamiltonian

H~ t !5Hat1V~ t !, ~2.3!

Hat5
p2

2
2

1

q
, V~ t !52qDp (

k50

K21

d~ t2kT!, ~2.4!

where q.0 and p are the position and momentum of th
electron, respectively. The justification for the approximat
of the 3D problem by the 1D model Hamiltonian stems
part from the fact that the classical phase-space structur
this simplified model was found to closely mimic that of th
3D system for initial conditions representing elongat
~Stark! orbits @4,18#. This similarity is partly due to the fac
that the kicked atom features a global chaotic sea for a
trarily small Dp. Moreover, for small kick frequenciesnT
where large stable islands exist, classical 3D, classical
and quantum 1D calculations are in good agreement w
each other@3#. In the present work, we focus on the quantu
dynamics and localization of the 1D model in the high fr
quency regimenT@norb51/(2pni

3), for which the classical
system is chaotic. We note, however, that the agreemen
tween the quantum dynamics in 3D and 1D in this regi
remains an open question.

Because of the simpled-shaped perturbation, the classic
Hamilton’s equations

dq

dt
5

]H~q,p!

]p
5p,

dp

dt
52

]H~q,p!

]q
52

1

q2
1Dp (

k50

K21

d~ t2kT!, ~2.5!
02340
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can be solved by splitting the time evolution into two parts
kick and a Kepler motion

S qk11

pk11D 5MCoul + M kickS qk

pkD , ~2.6!

whereqk ,pk are the position and momentum of the electr
just before thekth kick at the time tk5(k21)T2« («
→0). In this map, the effect ofM kick is

S qk

pk1DpD 5M kickS qk

pkD ~2.7!

and the Kepler mapMCoul can be obtained numerically solv
ing an implicit analytic equation@4#. The classical survival
probability of the atom can be calculated using the class
trajectory Monte Carlo~CTMC! method; i.e., letting a large
but finite ensemble of initial conditions evolve in time fo
lowing Hamilton’s equation@Eq. ~2.5!#, and evaluating the
probability for the ensemble to remain in bound states (Hat
,0). Because of the simplicity of the map, trajectories a
numerically stable for long times. In order to mimic the in
tial quantum Rydberg state, the ensemble of initial con
tions are chosen from a microcanonical ensemble wit
fixed energyEni

at521/(2ni
2), corresponding to the principa

quantum numberni .
To simulate the time evolution of the quantum kicke

atom, we solve the time-dependent Schro¨dinger equation
~TDSE!

i
]

]t
uc~ t !&5Huc~ t !&, ~2.8!

where uc(t)& is the wave function of the system. Solution
can be expressed in terms of a time evolution opera
U(t,0), i.e.,

uc~ t !&5U~ t,0!uc~0!&. ~2.9!

Similar to the classical calculation, the time evolution can
split into two parts, i.e., a Kepler motion and a kick corr
sponding to a free evolution operator exp@2iHatT#, and a
boost operator exp@iqDp#, respectively. Thus the time evolu
tion operator can be expressed in terms of the period-
evolution operatorU(T,0),

U~KT,0!5@U~T,0!#K ~2.10!

which consists of a product of free evolution and boost o
erators

U~T,0!5exp@2 iH atT#exp@ iqDp#. ~2.11!

This equation is formally equivalent to the split-operat
method. In the present case ofd shaped pulses the split struc
ture is, however, exact rather than an approximation, as
the case for pulses of finite duration.

The problem is now reduced to the evaluation of mat
elements of these two operators. However, the strong c
8-2
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EXPONENTIAL AND NONEXPONENTIAL LOCALIZATION . . . PHYSICAL REVIEW A 62 023408
pling between bound states and the continuum complic
the evaluation of these matrix elements and distinguishes
kicked atom from other systems such as the microw
driven atom. Strong couplings to the continuum can be
derstood in terms of the Fourier expansion of the interac

V~ t !52
qDp

T
2

2qDp

T (
m51

`

cos~2pnmt ! ~2.12!

which contains all harmonics (nm5mnT) with equal strength
leading to multiphoton coupling to the continuum. Moreov
unlike laser or microwave fields, the average field,Fav5
2Dp/T, is nonzero. Therefore, the Hamiltonian can be
written as a sum of a Stark Hamiltonian with a static~dc!
field and a dynamic~ac! driving field,

H~ t !5HStark1V8~ t !5Hat1qFav1V8~ t ! ~2.13!

V8~ t !52qFav(
m51

`

cos~2pnmt !.

In the 1D model, the sign of the static field or, equiv
lently, the direction of the kick plays a crucial role. Th
spectrum of theHStarkand, consequently, the dynamics of t
driven system for different signs ofDp is entirely different:
For Dp,0 (Fav.0), the quantum spectrum ofHStark is en-
tirely discrete. ForDp.0 (Fav,0), the spectrum is entirely
continuous and involves a finite number of resonances wh
energy levels are below or near the top of the potential b
rier Ebarrier522ADp/T ~see Fig. 1!. The strength of the ac
perturbation and the strength of the dc field inHStark in Eq.
~2.13! are obviously not independent. Therefore, increas
the strength of the Fourier components of the driving fi
simultaneously steepens the slope of the potential well
Dp,0 or lowers the barrier and, hence, reduces the num
of below-barrier resonances forDp.0. In both cases, al
Fourier components of the kicked system up to infinite or
have the same strength. Therefore, all~quasi! bound states of
HStark are strongly coupled to the continuum levels ofHat
despite the fact that forDp,0, HStark does not possess
continuous spectrum. This, at first glance, counterintuit
picture suggests the adoption of an alternative descriptio
the time-dependent Hamiltonian in terms of impulsive e
ergy transfers. Calculating the expectation value of
Hamiltonian^Hat&k115^c(tk11)uHatuc(tk11)&,

FIG. 1. PotentialVStark521/q1qFav of the Stark Hamiltonian
HStark for negative (Dp,0) and positive (Dp.0) kicks.
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^Hat&k115^Hat&k1^p&k Dp1
Dp2

2
. ~2.14!

This equation expresses the fact that the momentum tran
Dp determines the effective energy transfer and repres
the quantum analog to the classical relation

Hat~qk11 ,pk11!5Hat~qk ,pk!1pk Dp1
Dp2

2
. ~2.15!

The frequencynT which plays a critical role in the descrip
tion in terms of the harmonic field components@Eq. ~2.13!#
enters relation~2.14! only in terms of the time interval (T
51/nT) within which the relation is recursively applied t
the dynamical system. In the following we will exploit bot
of these two alternative pictures of the system driven b
field with an infinite set of Fourier components@Eq. ~2.13!#
and by a sequence of kicks@Eq. ~2.14!# in order to under-
stand the suppression of classical chaos and quantum lo
ization. Naturally, Eq.~2.14! will provide the bridge to the
classical dynamics while Eq.~2.13! allows us to make con-
tact with the well-studied system of the Rydberg atom driv
by a microwave field. For the latter, both studies with
external static field present@2# and without@11# have been
performed. The case of a dc field present corresponds to
~2.13! with all high harmonics (m.1) absent while the
cases of zero dc field correspond toFav50 in HStark ~2.13! in
addition to the disappearance of all higher Fourier com
nents abovem51.

The numerical calculations of the quantum evolution
quire the representation of the period-one evolution oper
in a finite Hilbert spaceP of dimensionN;1500. We con-
struct an orthonormal basis set from a linear combination
Sturmian pseudostate wave functions@12#

fn
S~q!5

2

nAunSu

q

nS
e2q/nSLn21

1 ~2q/nS!, ~2.16!

where nS is the so-called Sturmian parameter andL is a
Laguerre polynomial. The advantage of using a Sturm
basis set is that small sets of Sturmian wave functions pr
erly describe Coulomb wave functions including bound a
continuum states@13#.

Because of the strong coupling to the continuum, a fin
basis representation ofU(T,0) is not unitary. Unitary ap-
proximations for the projections of the unperturbed evolut
operator exp(2iHatT) and the boost operator exp(iqDp) onto
the P space cannot be applied to the present case of st
coupling to complementQ of the full Hilbert space. These
approximations lead to ‘‘reflections’’ at the boundary ofP
causing spurious effects in the numerical calculation
U(T,0). The exact projection should account for the fin
outgoing probability flow fromP into Q. Both exp@2iHatT#
and exp@iqDp# allow transitions to states in the orthogon
complementQ to the subspaceP subtended by the basis
Only in the limit that P approximates the whole Hilber
space a finite-basis representation ofU(T,0) will approach a
unitary matrix.
8-3
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YOSHIDA, REINHOLD, KRISTÖFEL, AND BURGDÖRFER PHYSICAL REVIEW A62 023408
The nonunitary projection of exp@2iHatT# and exp@iqDp#
ontoP can be evaluated using the so-called repetitive pro
tion method ~RPM! @14#, which is the equivalent of the
masking method in lattice-based basis expansions for ato
pseudostates. In the RPM, the wave function, which initia
lives in theP space, is allowed to evolve unitarily into a
extended spaceP% dP.P. Afterwards, the wave function is
projected back onto the subspaceP, and the probability flux
of the wave packet fromP to dP (dP,Q) is eliminated. By
repeating this procedure, reflections can be suppressed e
tively. This applies to both the free evolution operator a
the boost operator for small momentum transfers.

For large momentum transfers, an alternative approac
more effective in calculating the projection of exp@iqDp#
onto theP subspace. Namely, the matrix elements of
boost operator

^f i
Su eiqDp uf j

S&5E
2`

`

dq f i
S~q! eiqDp f j

S~q!, ~2.17!

can be expressed analytically by a sum of three hyperg
metric functions2F1 @15#. The evaluation of these function
becomes unstable for large quantum numbers and, in t
cases, it is necessary to evaluate Eq.~2.17! using an
asymptotic form@16#. The accuracy of the matrix elemen
was tested by evaluating the2F1 functions for the typical
momentum transfers used in the present work by inte
arithmetic.

The point to be noted about our calculations is that
present non-unitary propagation scheme neglects back
pling from the Q space to theP space while suppressin
artificial reflections. Part of the reduction of probability
‘‘physical’’ as it corresponds to the elimination of flux from
P to Q which would represent ionization and would be irr
trievably lost if it were not for artificial reflections. On th
other hand, it eliminates also that part of probability fl
which would return toP after an intermittent excursion int
Q. The latter leads to an underestimate for population pr
abilities within P. While this error can be considerable fo
low frequenciesnT , it is of no importance in the paramete
rangenT@norb where quantum localization occurs. To te
the convergence of our calculations, we apply, in addition
the RPM, the stabilization method@13#.

For the long-time propagation, we utilize Floquet analy
@17,18# to avoid numerical errors caused by multiplicatio
of large matrices. Floquet states are defined through the
genvalue equation

U~T,0! ufn
F&5e2 iEnT ufn

F& ~2.18!

for the period-one evolution operatorU(T,0) with quasi-
eigenenergiesEn5E n

R2 iE n
I . After K kicks, the propagated

wave function becomes

uc~KT!&5 (
n51

N

cne2E n
I KTe2 iE n

RKTufn
F&, ~2.19!

where cn are the expansion coefficients of the initial sta
uc(0)& in the basis of Floquet states. The quasieigenener
02340
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are, in general, complex (E n
I >0), which is a direct manifes-

tation of the nonunitarity of the evolution withinP ~the cal-
culated Floquet states belong toP). An imaginary partE n

I

.0 describes the decay rate of the Floquet stateufn
F& due to

its coupling withQ. Floquet states withE n
I 50 remain en-

tirely localized inP or, equivalently, are dynamically decou
pled fromQ. This property plays a crucial role in the iden
tification and analysis of quantum localization. From E
~2.18!, we can easily calculate the long-time evolution of t
wave function withinP. Only those components of the initia
stateuc(0)& that overlap with stable Floquet statesufn

F& with
vanishing imaginary partE n

I 50 will survive in the limit K
→`.

III. CLASSICAL AND QUANTUM EVOLUTION

We present in the following a comparative analysis of t
dynamics of the~strongly! negatively (Dp,0) and weakly
positively (Dp.0) kicked Rydberg atom. Negative kick
signify kicks in the direction toward the Coulomb cent
while positive kicks denote kicks in the direction towards t
outer turning point. The reason we focus for positive kic
on weak kick amplitudes is that the classical dynamics
otherwise highly unstable with large Lyapunov expone
such that interesting features of the classical phase s
structure are washed out in the quantum wave function.

The classical phase space structure is displayed in Fi
as Poincare´ surface of sections from strong negative kic
(Dp520.3) and weak positive kicks (Dp50.01). They cor-
respond to stroboscopic snapshots of the scaled (q0 ,p0)

FIG. 2. Poincare´ surface of sections for the negatively kicke
atom~a! and the positively kicked atom~b! with a scaled frequency
n0516.8. The black dashed line represents the initial energy le
of the system (20.55p0

2/221/q0). The thick solid line in~a! is an
unstable periodic orbit of the system whose fixed points are den
by crosses. Periodic orbits for~b! is hardly distinguished from
the initial manifold because of the small kick strength.
8-4
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EXPONENTIAL AND NONEXPONENTIAL LOCALIZATION . . . PHYSICAL REVIEW A 62 023408
5(q/ni
2 ,pni) coordinates just before each kick. At a glanc

these two Poincare´ sections show a large chaotic sea with
completely random pattern. While for negative kicks a fe
isolated islands of stability remain, the system for posit
kicks undergoes a discontinuous transition@19# from regular
motion atDp50 to global hard chaos for arbitrarily sma
Dp. In this chaotic sea, an infinite number of unstable pe
odic orbits lie densely, one of which is displayed in Fig.

Periodic orbits are the combination of segments of Kep
orbits (Hat5const curves! and kicks~momentum transfer ap
pear as vertical lines!. For the Poincare´ surface of section,
snapshots of the continuous trajectory are taken after e
time intervalT. As a consequence, periodic orbits appear a
set of fixed points~depicted as crosses in Fig. 2!. For stable
orbits, they are located at the center of stable islands w
for unstable orbits they are immersed in the chaotic s
These fixed points play an important role when quant
phase space distributions are analyzed.

As discussed in Sec. II, strong unidirectional kicks mim
the presence of a strong dc field@see Eq.~2.13!#. Conse-
quently, the periodic orbit will closely resemble a Stark or
~i.e.,HStark5const). This is illustrated in Fig. 3 where a Sta
orbit is compared with a zero-field (Hat5const) Kepler orbit
and the sequence of unstable fixed points associated with
impulsively driven Rydberg electron. Note that each smo
segment resembles a Kepler orbit while the combinat
with the kick renders the entire orbit very similar to a Sta
orbit. Obviously, the unstable periodic orbit of the kicke
electron closely mimics the unperturbed Coulomb-Stark
bit while the distance to the unperturbed Kepler orbit
large.

In order to present a comparison between the classical
quantum evolution in phase space, we study in Fig. 4
deformation of the initial torus corresponding to the init
conditions@Hat(t50)5Eni

at# under the influence of the firs

few kicks. As a quantum analog to the classical phase sp

FIG. 3. Comparison of a Stark orbit with scaled energyE0
Stark

5ni
2EStark522, a Coulomb orbit with scaled energyE0

at5ni
2Eat5

20.8, and an unstable period-9T periodic orbit~dashed line! with
its fixed points ~crosses!. The parameters of the calculation a
Dp0520.3 andn0516.8.
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we employ the Husimi distribution@20# defined by

PH~q,p!5E
2`

`

dq8E
2`

`

dp8Pq,p
W ~q8,p8!Pc

W~q8,p8!

5
1

2p U E
2`

`

drfq,p* ~r !c~r !U2

, ~3.1!

with

fq,p~r !5~pa!21/4exp@2~q2r !2/2a#exp~ ipr !,
~3.2!

wherePq,p
W andPc

W are the Wigner distributions offq,p and
c, respectively. The Wigner distribution is defined as@20#

Pf
W~q,p!5

1

pE2`

`

dyf* ~q1y!f~q2y!e2ipy. ~3.3!

The Husimi distribution is a convolution of the Wigne
phase-space distribution with a minimum uncertainty Gau
ian wave packet that contains the ‘‘squeezing’’ parametea
which can be adjusted to improve the resolution in eitherq or
p. In the present case of Coulomb systems, we use a

FIG. 4. Initial and time evolved classical and quantum sca
phase space distributions of a 1D hydrogen atom immediately
fore application of 1,2,3 kicks with a scaled momentum trans
Dp0520.3 and a scaled repetition frequency ofn051.09. Classi-
cal results are represented by an ensemble of 10 000 points an
scaling invariant. Quantum results are plotted for different init
statesni55,50,100.
8-5
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optimal choice anni-dependenta exploiting the classica
scaling invariance. We chosea such that the width of the
initial quantum phase space distribution for a given init
state in scaled coordinates is symmetric in both theq0 andp0
direction (Dq0;Dp0) and converges toward the classic
torus as 1/Ani . We therefore set

a5ni
3 . ~3.4!

Accordingly, the quantum uncertainty in scaled coor
nates isDp0Dq051/ni . Figure 4 displays the evolution o
the classical torus and of the Husimi distribution for differe
ni as a function of the number of kicks. As the initial toru
overlaps with both a stable island and the chaotic sea,
classical evolution displays bending and foliation of the i
tial torus part of which will be trapped in the center isla
while the remainder gets scattered in the phase space p
With increasingni , the quantum phase space distribution
increasingly capable of following the classical torus motio
Both the trapping of probability near the stable island as w
as the spreading of parts of the wavepacket into the cha
regime can be recognized.

A suitable quantitative measure for the long-term fate
the wavepacket is its survival probability, i.e., the fraction
the classical as well as quantum phase space probab
which remains bound~i.e., with energiesEat,0). The sur-
vival probability serves as a hallmark for the absence or s
pression of chaotic motion since the latter leads inevitably
ionization asK→` due to the strong coupling to the con
tinuum. Fig. 5 displays the survival probability of the kicke
atom afterK5200 impulses as a function of scaled fr
quencyn05nT /norb of the train of pulses. The initial state i
ni550 and the scaled momentum transferDp0520.3 is
chosen such that the classical phase space for this sy
contains sizeable stable islands~e.g., Fig. 2!. For scaled fre-

FIG. 5. Survival probability of the kicked 1D hydrogen atom
a function of scaled frequencyn0 for a fixed scaled momentum
transferDp0520.3 afterK5200 kicks. The initial quantum leve
ni550, and the quantum calculations have been performed usi
Sturmian parameternS560. See text for the definition ofEmax in
the figure.
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quencies,n0;1, pronounced peaks are observed in both
classical and quantum calculations. The enhanced stab
against ionization nearn0;1 is due to the presence of
large classical island of stability near the initial torus. Th
island is also evident in quantum Floquet states with z
imaginary part of the quasieigenenergy@18#. Stable Floquet
statesE I50 that are in direct correspondence to classica
regular motion on intact tori are referred as stabilization
contradiction to quantum localization for which stable Fl
quet states withE I50 do not have a classically stable cou
terpart but are associated with classically chaotic motion

Nearn051 and below, the quantum survival probabili
underestimates the classical probability. This is due to
nonunitary time evolution associated with the RPM. Qua
tum trajectories that intermittently leave theP space and en-
ter Q space are eliminated by the projection before return
to P space. The effect of the elimination by projection due
a limited basis size can be simulated in classical simulati
discarding trajectories that leave a certain region of ph
space. As an example, we show in Fig. 5 such a class
projection in which we have eliminated all trajectories th
intermittently reach a scaled energyEmax5Eatni

2.1. This
simulation agrees, indeed, much better with the quantum
vival for n0&3 and confirms that the discrepancy betwe
classical and quantum survival is not an indication of t
breakdown of classical-quantum correspondence but an
fect of the limited basis size, i.e., of the nonconvergence
the quantum calculations. For higher frequenciesn0.3,
however, the quantum survival probability is as high or e
ceeds the classical one and is found to be converged as
tailed tests using the stabilization method@13# confirm. This
is the regime of quantum localization whose analysis is at
center of the remainder of this paper.

Examples of localization forn0516.8 are shown in Fig. 6
for Dp0520.3 and Fig. 7 forDp050.01. In both cases, the
initial torus lies in the completely chaotic region of pha
space@Figs. 2~a! and 2~b!# far from any stable island. Figure
6 shows the time evolution of the survival probabili
Psur(Hat,0) whereas Fig. 7 displays the recurrence pro
ability Prec(ni)5u^ni uc(t)&u2 as a function of time. The clas
sical analog toPrec is defined as

a

FIG. 6. Survival probability as a function of the number of kic
K for three different initial states (ni55, 50, and 100). Thick~thin!
lines are quantum~classical! results. The parameters for the train
kicks areDp0520.3,n0516.8.
8-6
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Prec
cl ~ t !5E

Eni

at
2Dni

,Hat,Eni

at
1Dni11

dq dp dE f~q,p,t !,

~3.5!

where f (q,p,t) is the classical probability density in phas
space,Eni

at521/2ni
2 , and Dni

51/4(ni21)221/4ni
2 . Note

that the classical recurrence probability is not exactly cla
cally scaling invariant because the quantum energy le
spacing is taken into account in Eq.~3.5!. For positive kicks,
the survival probability is a structureless function since el
trons are irretrievably lost once ionized since subsequ
kicks in outbound directions lead only to further accelerat
and energy gain and precludes any recapture. Therefore,
monotonic structures appear only in the recurrence proba
ity which are due to redistribution among bound states. B
the quantum survival probability for negative kicks~Fig. 6!
and the quantum recurrence probability for positive kic
~Fig. 7! display pronounced oscillations which initiall
closely follow the classical predictions before completely d
parting from each other after aboutK.30 kicks. Obviously,
the oscillation frequency is classical in origin, even thou
the classical phase space distribution can follow the osc
tory pattern only for a limited time before the probabili
quickly decays. The correspondence between the clas
and quantum evolution is maintained for longer time perio
~or number of kicksK) asni increases, i.e., as we approa
the semiclassical limit.

IV. SUPPRESSION OF DIFFUSION

In the previous section, an increased quantum surv
probability relative to the classical survival probability fo
initial conditions in a region of the classically chaotic pha
space was found. This can be understood as a hallmar
quantum localization. One of its characteristic features is
suppression of diffusion in energy space for time-depend
systems. We therefore study now the spectral distribu
rK(E) after K kicks whereE5Eat or E5EStark represents
the expectation value ofHat or HStark, respectively. Within a
discrete basis, the spectral density is given by

FIG. 7. Recurrence probability of the positively kicked ato
with Dp050.01 and n0516.8 for different initial levels ni

55,20,50. Thick~thin! lines are quantum~classical! results.
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rK~E!5udn~KT!u2, ~4.1!

where dn is the expansion coefficient of the time-evolve
wave function in the basis of time-independent eigensta
uxn& of eitherHat or HStark with eigenenergiesEn

at (Stark),

uc~KT!&5(
n

N

dn~KT!uxn&. ~4.2!

Figure 8 displays the short-time evolution of the spect
density ofHStark for the first five negative and positive kicks
After one kick, the spectral distribution mimics the transitio
strength due to the kick, i.e., the inelastic form factor. It
strongly peaked near the initial state and falls off with
inverse power-law dependence for largeuEStark2Eni

Starku
where Eni

Stark is the initial Stark energy. The sharp dip fo

positive kicks is due to the fact that some of the ne
threshold resonances are localized in the outer well ra
than in the inner well~see Fig. 1!, having therefore an expo
nentially small overlap with the initial state. With increasin
number of kicks, the spectral distribution builds up oscilla
ing components. It is the build-up of~destructive! interfer-
ences that ultimately suppresses further spread and diffu
in energy space and ‘‘freezes’’ out the energy distribution

FIG. 8. Time evolution of the Stark energy distributio
rK(EStark) for n0516.8 and different strengths of the kicks,Dp0

50.01 ~left column!; Dp0520.3 ~right column!. The initial state
of the atom is prepared in a Stark state which has the largest ove
with the hydrogenicni550 level.
8-7
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YOSHIDA, REINHOLD, KRISTÖFEL, AND BURGDÖRFER PHYSICAL REVIEW A62 023408
the wave packet. Figures 9 and 10 show ‘‘frozen’’ quasis
tionary energy distributions after 600 kicks for different kic
strengths. Obviously, the localized energy distribution p
sesses a variety of intricate features which can reveal dif
ent underlying localization mechanisms. In the following w
analyze these features in detail and we distinguish betw
suppression of resonant and nonresonant diffusion.

A. Suppression of nonresonant diffusion

In general, the suppression of classically chaotic n
resonant diffusion is associated with the discreteness
quasi-eigenenergy levels in quantum mechanics. Fish
et al. @7,21# have provided an explanation of this suppress
for the kicked rotor

H rot52pu
21K rot cosu(

k
d~ t2k! ~4.3!

FIG. 9. Energy distributions of the final state of the atom af
application of 600 positive kicks withn0516.8 andDp050.01.~a!
The atom is initially prepared in the Stark stateuxni

Stark& with the
largest overlap with theni550 hydrogenic level. The crosses a
the time-averaged integrated probabilities of the resonant pe
The solid lines with circles are the average excitation probabili
given by P0→m

mv such that the adjacent energy difference betwe
circles is equal tov. The dashed line is the dipole coupling streng
u^xn

Starkuquxni

Stark&u2 in arbitrary units.~b! Same as~a! but for a hy-
drogenic initial state inni550 and as a function of hydrogeni
energy.

FIG. 10. Same as Fig. 9~a! but with momentum transfersDp0

520.3 ~left! and20.1 ~right!.
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by mathematically reducing it to the ‘‘tight-binding’’ Ander
son model. Note that this Hamiltonian is scaled in the un
of the inertia of rotorI and the time interval between kicksT.
The key point is that in this model, all the Floquet statesuwE

F&
with quasienergiesE become exponentially localized aroun
some momentumpu with the same localization lengthDL ,

^ l uwE
F&;expS 2

\̃u l 2 l Eu
DL

D . ~4.4!

where\̃5\T/I is a scaled Planck constant, andpu is quan-
tized and takes valuespu5 l \̃, (l 50,61,62, . . . ). Floquet
states with nearly identical quasienergies are generally lo
ized around centers which are far apart. On the other ha
two Floquet states localized at centers close compared toDL
have a quasienergy separated by the spacing proportion
DL

21 @7#.
If, for simplicity, we start with a well-localized state

^ l uc(t50)&5d l l ini
, only Floquet states whose centersl E are

within a momentum rangeDL of the initial level l ini contrib-
ute to the time evolution. Hence, the expectation value
(pu2 l ini)

2 cannot become much larger thanDL
2 . The effec-

tive number of Floquet states contributing to the time evo
tion is DL . Since quasienergiesE ~more precisely,ET) are
distributed over the interval$0,2p% ~note thatT51 in the
present units!, the typical energy space becomesdE
;2p/(DLT). Momentum~and energy! diffusion continues
up to a timet* where the time-energy uncertainty allows th
resolution of the discrete Floquet spectrum

t* '2p/dE.DL . ~4.5!

t* is usually referred to as the break time. In the classi
limit, i.e., \→0, the time evolution involves an infinite num
ber of Floquet states and the recurrence of the system n
happens, i.e.,t* →`.

Some of these properties previously observed for
kicked rotor can be identified in the present case of the
riodically kicked Rydberg atom. Specifically, the domina
Floquet statesufn

F& overlapping with the initial state@i.e.,
large ucnu values in Eq.~2.19!# and governing the time evo
lution are found to be exponentially localized instate num-
ber space~see Fig. 11!. The latter specification is crucial in
identifying the value of the localization length in the prese
case since the relation between state numberuxn& ~ordered
with increasing energyEn) and energy is complicated. I
En5En

at are taken to be the eigenvalues ofHat, the spectrum
is characterized by the presence of a spectral cluster poi
the ionization threshold ofHat and a~discretized! continuum
above. IfEn5En

Stark correspond to the eigenvalues ofHStark,
the relation between state number andEn is clear for Dp
,0 since the spectrum is discrete. However, forDp.0 the
spectrum is continuous and a discrete representation is
tained only when using a finite basis set. We will, therefo
in the following inquire about the localization in energ
space including the continuum energy spectrum. The s
number in Fig. 11 corresponds to the spectrum ofHat and
involves only bound states.

r

ks.
s
n
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EXPONENTIAL AND NONEXPONENTIAL LOCALIZATION . . . PHYSICAL REVIEW A 62 023408
Figure 11 shows that the localization length of Floqu
states in state number space can be determined from

DL
n5

1

2
eSn, ~4.6!

whereSn is the state entropy@22# of the Floquet stateufn
F&

and is given by

Sn52(
l 51

N

pl
n ln pl

n ~4.7!

and pl
n5u^x l ufn

F&u2. Different Floquet states contributin
significantly to the time evolution have very similar valu
for DL

n indicating the approximate ‘‘universality’’ of the lo
calization length similar to that for the kicked rotor.

One consequence of the localization description in te
of Floquet states with centers close to each other on a s
of DL is that their quasieigenenergies should display ‘‘le
repulsion.’’ That is, if the quasieigenenergies are depicted
a function of any of the parameters of the perturbation~either
nT or Dp), they exhibit pronounced avoided crossing
pointing to ‘‘strong couplings’’ among them. As a resu
spectral statistics for the nearest-neighbor spacing of the
part of E F, should display a Wigner-like behavior or, mo
generally, a Brody distribution@23# of the form

PBrody~D !5AD11b exp~2BD11b!, ~4.8!

where A5(11b)B,B5@G„(21b)/(11b)…#11b, D5De/
^De& is the scaled nearest-neighbor spacing andb is the
Brody parameter.

A Wigner distribution corresponds to the limitb→1
while a random Poisson distribution results fromb→0. De-

FIG. 11. Probability distribution of three dominant Floqu
states in state number space ofHat for different kick strengths, left
column: Dp050.01, right: Dp0520.3. The dashed lines corre
spond to exp@2un2niu/DL# with DL estimated from the state entrop
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lineation of the spectral statistics in this system is comp
cated by the fact that quasieigenenergies (ET) are defined by
only modulo 2p. Therefore, Floquet states living in differen
regions of phase space can have, coincidentally, close-l
quasieigenvalues. At the same time, the value of the im
nary part allows to identify the localized and delocaliz
character of the Floquet states. As criteria for selecting
subset of Floquet states involved in the quantum localiza
with localization lengthDL we use the proximity to the uni
circle e2TEI

>0.99. Figure 12~a! displays the nearest
neighbor spacing distribution of 465 localized Floquet sta
for an initial state withni5100, n0516.8 and strong nega
tive kicks. For comparison, Fig. 12~b! shows the nearest
neighbor spacings for quasienergy eigenvalues for nonlo
ized states. Obviously, the transition from localized
delocalized Floquet states is accompanied by a transi
from a Brody distribution to a Poisson distribution. The fa
that the Brody parameter reaches for localized states o
aboutb'0.53 rather than unity appears to indicate that
statistical ensemble may contain states localized in differ
areas in phase space which show some accidental nea
generacies.

B. Suppression of resonant diffusion

The complex structure of the localized energy spectrum
Figs. 9 and 10 indicates that other localization mechanis
are simultaneously present. One of them is the suppres
of resonant diffusion.

When a frequency of the perturbation matches the ene
difference between two levels, the transition probability b
comes resonantly enhanced. Sequences of resonant tr
tions can lead the diffusion in energy space. However,
nonlinear behavior of energy levels~e.g.,E;n22) leads to
dephasing and suppresses resonant diffusion. A simple
ture along these lines based on a two-state model was in
duced by Jensenet al. @9# to explain quantum localization fo
the Rydberg atom driven by a weak microwave field. T
basic idea is that excitation occurs predominantly betw
resonant energy levels separated by the one-photon en
v, wherev52pn is the angular frequency of the perturb
tion. However, since quantum energy levels of the atom
discrete and their level spacing is not equidistant, the atom

FIG. 12. Comparison of calculated scaled nearest neighbor
ergy spacing statistics~bars! with Poisson distributions~dashed
lines! and best fit Brody distributions withb50.527 ~solid lines!.

The two figures consider~a! 465 localized states withue2E ITu
.0.99 and~b! 919 nonlocalized states.
8-9
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YOSHIDA, REINHOLD, KRISTÖFEL, AND BURGDÖRFER PHYSICAL REVIEW A62 023408
excited to energy levels which are nearby the resonant
ergy levels. This quantum ‘‘detuning’’ suppresses the re
nant excitation process and causes the quantum localiza

Assuming that the quantum detuning is randomly distr
uted around the resonant energy and in an interval given
the adjacent level spacing around the excited statedE1, the
average quasiresonant excitation induced by a single
monic with frequencyv from a stateu0& to a stateu1&, is
given by @9#

P0→1
v 5

uFav^0uqu1&u
dE1

tan21F dE1

2uFav̂ 0uqu1&uG . ~4.9!

For Rydberg atoms in a microwave field, this probabil
defines the localization length since it approximately
quires the same numerical value for different energy lev
~e.g., P0→1

v ;Pi→ i 11
v ). Thus, the final energy distributio

r(E) for that problem becomes exponentially localized
energy space, i.e.,

r~E!;expS 22
uE2Ei u
vL loc

D , ~4.10!

where Ei is the initial energy andL loc is the localization
length defined by

L loc522/ln P0→1
v . ~4.11!

For the microwave problem both the suppression of reson
as well as nonresonant diffusion has been interpreted
strong~or Anderson-type! localization since they both resu
in an exponential distribution, however, not necessarily
the same scale~energy or state number!. For the kicked
atom, these mechanisms are vastly different and can be
ily distinguished from each other. The origin lies in the fr
quency distribution of the periodic perturbation.

The kicked atom is equivalent to the system of an atom
a dc field perturbed by a superposition of all higher harm
ics ~Eq. 2.13!. Each harmonic term cos(2pmnt) induces reso-
nant excitation fromu0& to um& (m51,2, . . . ). Whenthis
direct excitation becomes significant compared to the suc
sive resonant excitation,u0&→u1&→•••→um&, the energy
distribution is not exponentially localized. This ‘‘multipho
ton’’ transition corresponds to large energy changes co
pared to the nearest-neighbor spacing. Therefore, expo
tial localization in state number space and energy space
in general, different. Moreover, localization includes here
positive-energy spectrum. Direct excitation by a multiphot
transition with frequencymv, averaged over the detunin
dEn , the excitation probability is given by

P0→m
mv 5

uFav^muqu0&u
dEm

tan21F dEm

2uFav^muqu0&uG ~4.12!

where^muqu0& is the dipole coupling fromu0& to um&. In the
present problem, direct excitation dominates over seque
excitation,P0→m

mv .P i 50
m21Pi→ i 11

v . This is confirmed by the
fact that the resonant peak structure appears even after
kicks, which is much shorter than the time for which signi
cant successive transitions fromu0& to um& levels are ex-
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pected~Fig. 8!. The arguments leading up to the localizatio
length @Eq. ~4.11!# no longer apply to this case and, cons
quently, we observe a nonexponential localization in ene
space~Fig. 9!. Moreover, the variation of the peak heights
the multiphoton peaksmv closely mimic the behavior of the
dipole coupling strength, also displayed in Fig. 9. In fact, t
time-averaged integrated peaks agree quite well with the
rect excitation probabilitiesP0→m

mv @Eq. ~4.12!#.
This nonexponential energy localization is well separa

and clearly distinguishable from the nonresonant diffus
which determines the width of each of the photonic peaks
small kick amplitudes (Dp050.01). The spectral densit
@Eq. ~4.1!# is clearly dependent on the choice of the bas
Because of the alternate choice of a time-dependent Ha
tonian, the expansion of the time-dependent wave func
can be performed in terms of eigenstates within the zero-fi
Hamiltonian or the Stark Hamiltonian. The spectral distrib
tion @Eq. ~4.1!# displays the photonic peak structure which
more pronounced in the Stark basis~Fig. 9!.

Since for small kick strengths two processes of diffusi
are observed in the kicked atom, two localization lengths
defined, one for each diffusion; the localization length with
the dominant peak~nonresonant diffusion! and the one in-
volving all resonant peaks~resonant diffusion!. Since non-
resonant diffusion is the result of the transition to the neig
boring energy levels, the dipole couplinĝxn

Starkuquxni

Stark&
controls the localization length within a peak~shown in
dashed lines Fig. 9!. As discussed above, the shape of t
dipole coupling controls the height of subsequent photo
peaks. Therefore, in the case of small positive kicks,
dipole coupling strength governs both the exponential loc
ization length for nonresonant diffusion as well as the no
exponential localization for photonic peaks in the positiv
energy continuum.

In the case of strong kicks (Dp0520.1,20.3, Fig. 10!
the width of each photonic peak is broadened such that
jacent photonic peaks begin to overlap. Therefore, the re
nant peaks merge and well defined structures are destro
Moreover, an additional quasiregular pattern with an ene
spacing that is smaller than the resonant spacing appe
This feature will be analyzed in more detail below. Neve
theless, the presence of two competing localization mec
nisms is still evident. The localization length as defin
through the state entropy characterizes the width of the sh
peak near the initial state. Similarly, the decay of the m
distant peaks follows the nonexponential decay pattern of
photonic peaks. However, due to the presence of an infi
set of harmonics the peak heights do not become statio
but oscillate. It is therefore necessary to introduce some fo
of time averaging to measure the localization length of
system. We therefore take the time average over a perio
the oscillation.

V. LOCALIZATION AND SCARS

We analyze now in more detail the additional rapid
varying structures in the spectral distribution seen in Fig.
They provide a key to a classical interpretation of the loc
ization that suppresses nonresonant diffusion and its loca
8-10
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EXPONENTIAL AND NONEXPONENTIAL LOCALIZATION . . . PHYSICAL REVIEW A 62 023408
tion length. To this end, we determine the Husimi distrib
tion of the dominant Floquet states that carry the strong
weight of the localized wave packet. These are Floquet st
with vanishing imaginary part. Figure 13 displays the qua
tum phase space distribution of the leading Floquet states
strong negative kicks. Remarkably, they are strongly loc
ized around unstable periodic orbits.

In analogy to scars of wave functions for tim
independent states@24# these structures can be identified
scars in the quantum phase space in time-dependent sys
The important point to be noted is that unstable perio
orbits have measure zero in the classical phase space
therefore do not leave a trace in the classical phase s
portrait, the Poincare´ surface of section~Fig. 2!. Only quan-
tum dynamics~or the finite value of\) adds some ‘‘flesh’’ to
the skeleton of classical dynamics such that unstable peri
orbits become the carrier of a significant fraction of the
calized probability density.

While a Floquet state itself is stationary, its correspo
dence to a classical periodic orbit allows for an intuiti
time-dependent interpretation given by the motion of
electron along the periodic orbit. Each kick transports
electron to a different energy hypersurface. After a cert
number of kicks~i.e., the period of the unstable period
orbit! the electron returns to its initial location. For examp
in Fig. 14 the electron is initially near the outer turning po
of the orbit atp0;0,q0;2 and acquires a negative avera
momentum. Each kick on the inbound motion speeds up
electron and excites it to a higher energy level including
hydrogenic continuum. Eventually, the electron scatters
the nucleus, turns around, and acquires a positive mom
tum. Subsequently, each kick during the outbound part of
trajectory slows down the electron deexciting it to a low

FIG. 13. Poincare´ surface of section and Husimi distributions
three dominant Floquet states for the kickedni550 atom with
Dp0520.3 andn0516.8. The figures are ordered according to t
importance of the Floquet states in the time evolution. The das
line in the surface of section represents the initial energy leve
the system. The thick solid lines are unstable periodic orbits of
system whose fixed points are denoted by crosses.
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energy level and becoming a bound hydrogenic state o
again. Since several Floquet states with different quasie
gies E R contribute to the time evolution, the entire wav
function, which is a coherent superposition of ‘‘stationary
Floquet states, has a relative time evolution phase,
@2i(E n

R2E m
R)T#, and resulting in the motion of the wave

packet as seen in Fig. 14. For example, the period-9T motion
of the quantum wave packet is generated by the rela
phase with (E n

R2E m
R);2pk/9T, wherek is an integer. After

the period 9T, the relative phase becomes exp@2i(E n
R

2E m
R)9T#;exp(2i2pk) and comes back to the origina

phase. Thus, this pair of Floquet states contribute to
quantum time evolution with a period 9T. In the case of Fig.
14, the level spacing distribution among the dominant F
quet states shows the peaks around 2pk/9T. This is the rea-
son why the time evolution of the survival probability~Fig.
6! is dominated by the period 9T oscillation. Note that three
out of nine fixed points lie at positive energies (Hat.0). The
motion along a classical unstable periodic orbit immediat
explains the oscillation in the classical survival probability
Fig. 6.

The paradoxical fact is, at first glance, that the motion
the quantum wave packet is obviously stable while the
derlying classical trajectories are not. The stabilization is

d
f
e

FIG. 14. Time evolution of the Husimi distribution of a hydro
genicni550 state subject to a train of kicks withDp0520.3 and
n0516.8. The crosses represent fixed points of periodic orbits w
period 8T, 9T, and 10T ~on the right column, those with period 6T
and 7T are added!. The dashed line represents the ionization thre
old.
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YOSHIDA, REINHOLD, KRISTÖFEL, AND BURGDÖRFER PHYSICAL REVIEW A62 023408
viously the consequence of the finiteness of\. The following
simple picture~Fig. 15! explains the essence of this mech
nism. Consider a wave packet that is localized in both sca
q or p coordinates to within

Dp0
qm5Dq0

qm5\1/2.ni
21/2 ~5.1!

given by the quantum uncertainty in scaled coordina
Close to unstable periodic orbits, classical trajectories se
rate from each other during one period by

r 0
cl~TPO!5r 0

cl~0! exPO, ~5.2!

wherer 0
cl(t)5A„Dq0

cl(t)…21„Dp0
cl(t))2, andxPO5lPOTPO is

the stability index of the orbit, andlPO and TPO are the
Lyapunov exponent and period of the periodic orbit, resp
tively. If now the trajectory after one period returns to t
initial condition to within a distance of the order of the qua
tum uncertainty (;1/Ani), the classical spread of the traje
tory does not suffice to effectively disperse the quant
wave packet. As a result, the quantum wave packet can
trace its trajectory and a build-up of density due to the c
structive interference along the path becomes possible~Fig.
15!. Combining Eqs.~5.1! and~5.2! leads to the estimate fo
quantum localization to occur

r 0
cl~0! exPO&

1

Ani

, ~5.3!

where the widthr 0
cl(0) is given by the size of the regio

within which the linearization including the calculation o
the monodromy matrix and the stability index remains va
As a rough estimate one can take a distance small comp
to the distance between adjacent fixed points along the p
odic orbit. This quantity is given by classical dynamics i
dependent of the quantum number~or \). One consequenc
of Eq. ~5.3! is that any weakly unstable orbit withxPO*0
will be efficient in carrying probability density for quantum
localization. Asni→` ~or \→0), the scars along unstab
periodic orbits will disappear, the largerxPO the smallerni
for which scars will no longer become visible in the Husim
distribution. Another consequence of Eq.~5.3! is that if un-

FIG. 15. Schematic picture of the build-up of scars of a clas
cally unstable orbit in the quantum phase space distribution du
the finite quantum resolution~shaded area!. The arrows illustrate a
trajectory staring in A and ending in B at a distance from A whi
cannot be resolved.
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stable periodic orbits of similar period have fixed points
close proximity to each other such that

1

Ani

*A~q0
i 2q0

j !21~p0
i 2p0

j !2, ~5.4!

the Husimi distribution can no longer resolve scars of in
vidual periodic orbits. Several periodic orbits are then ca
ers of the localized quantum phase space distribution o
individual Floquet state. An example is shown in Fig. 16 f
the kicked Rydberg atom with weak positive kicks. For th
system, many periodic orbits with comparable periods wh
are equally likely to be excited lie close to the initial torus.
this case, fixed points are so densely distributed that sev
of them exist in the area corresponding to the quantum
certaintyDq0Dp0.1/ni and contribute to the Husimi distri
bution of the dominant localized Floquet states. Asni in-
creases, the Husimi distribution can increasingly reso
different periodic orbits~Fig. 17!. However, even atni
5100, the Husimi distribution still contains more than o
periodic orbit. This picture of the~quasi! periodic motion of
the quantum wave packet finds its direct verification in t
time dependence of the survival probability. As shown
Fig. 6, the survival probability for the negatively kicke
Rydberg atom displays oscillations with a period 9T which
is precisely the period for upward and downward motion
energy along the periodic orbit. The fact that the orbit
classically unstable is borne out by the fact that the osci
tion of the classical survival probability decays after abo
two periods (xPO'0.5). Conversely, the quantum oscilla
tions in probability remain stable over hundreds of perio

i-
to

FIG. 16. Poincare´ surface of section and Husimi distributions o
three dominant Floquet states for the kickedni550 atom with
Dp050.01 andn0516.8. The figures are ordered according to t
importance of the Floquet states in the time evolution. The das
line in the surface of section represents the initial energy leve
the system. Crosses are fixed points belonging to unstable per
orbits with a period 15T, 17T, or 19T.
8-12
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In Fig. 14, we can observe that the wave packet evolves b
and forth across the ionization threshold for the first f
kicks. When it goes through the area which has densely
tributed fixed points belonging to the different periodic orb
(t;5T in Fig. 14!, the quantum wave packet ‘‘forgets’’ th
original periodic orbit and becomes redistributed among
ferent periodic orbits. Due to this redistribution, differe
parts of the wave packet start evolving with different perio
of the motion. This dephasing creates an additional slow
cillation in the survival probability and the partial revival o
the oscillation amplitude~Fig. 6!.

The scars of unstable periodic orbits also leave a mark
the spectral distribution of quantum localization. This allo
one to make a direct connection between scars, quantum
calization, and the additional structures observed in the s
tral distribution. Figure 18 is a magnification of the ener
distribution for negative kicks~Fig. 10!. The vertical lines
denote the energetic positions of the classical unstable p
odic orbits with period 7T @Fig. 18~a!#, and 9T @Fig. 18~b!#.
Obviously, the additional rapid variation of the energy d
tributed near the maximum represents the jumping from
fixed point to the next fixed point along the orbit. Note th
the structures are not an artifact of the energy resolution
the discrete pseudostate basis. There are, typically, se

FIG. 17. Husimi distribution of a dominant Floquet state w
different initial states:~a! ni55, ~b! ni520, and~c! ni5100. The
parameters of the perturbation are the same as in Fig. 13.

FIG. 18. Energy distributions of the Floquet states~solid line!
and energy levels of the unstable fixed points~vertical dashed
lines!. The strength of the kicks isDp0520.3 and the frequency is
n0516.8. Forni550. The unstable fixed points forni550 andni

5100 belong periodic orbits with period 7T and 9T, respectively.
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pseudostate energies within the peak. The fact that no
peaks are accounted for by the energetic positions of
fixed points is due to the fact that one Floquet state m
contain scars from more than one periodic orbit.

The relation to the localization length follows from th
width of the peaked structure. The peaks that are conne
by a single periodic orbit have comparable height which
an obvious consequence of the fact that the probability
finding the wave packet at different fixed points along
given orbit varies only slightly. The width of the plateaulik
substructure is therefore given by the maximum energy
cursion along the orbit fromEmin

Stark to Emax
Stark,

DEcl5Emax
Stark2Emin

Stark. ~5.5!

Beyond this width, the spectral distribution is rapidly deca
ing. ComparingDEcl with the localization lengthDL in Fig.
10, we find

^DEcl&.DL , ~5.6!

i.e., the size of the quantum localization can be estima
from the energy excursion along classical periodic orb
The average is taken over the ensemble of the periodic o
which contribute to the scarring of the dominant Floqu
states. We find Eq.~5.6! to hold for both negative and pos
tive kicks over a wide range of kick strengths. The importa
implication is that a generic quantum property, the quant
localization length, can be estimated from purely classi
information about scars.

VI. CONCLUSIONS AND OUTLOOK

We have demonstrated the existence of different mec
nisms of quantum localization of the kicked Rydberg ato
within a fully chaotic region in phase space. We have sho
that the suppression of nonresonant diffusion results i
localization phenomenon resembling strong Anderson lo
ization. We note, however, that a direct mapping of t
Hamiltonian onto a tight-binding Anderson Hamiltonian h
not been achieved. While the analytic steps taken for
mapping from the kicked rotor can be applied here as w
the intrinsic randomness of the ‘‘site energies’’ in the resu
ing tight-binding model has not been proven. Instead, in
present case we find that the quantum localization lengt
intimately related to the localization around classical u
stable periodic orbits. Scars of unstable orbits are imprin
on the quantum phase space distributions of the domin
stable Floquet states. Remarkably, the quantum localiza
length can be estimated from the classical energy excur
along unstable periodic orbits. In addition, a different loc
ization mechanism is operative suppressing resonant en
diffusion due to sequential ‘‘photon’’ absorption. This loca
ization is nonexponential in energy space due to the fact
the high harmonics of the perturbation play asignificant r
in the excitation dynamics. The latter is responsible for
8-13
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difference to the photonic localization for the microwa
ionization problem@2,9#.

While for this one-dimensional system a fairly comple
understanding of the origin and properties of quantum loc
ization has been achieved, the central open question is th
dimensionality. Anderson localization is known to b
strongly dependent on the dimension of the system. It
mains to be analyzed if and to what extent quantum local
m

,

J

t.

e

r-

e

ys

02340
l-
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-
-

tion can be observed for the 3D Rydberg atom. We hope
the present work will stimulate high-frequency experime
for this problem.
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