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Analytical accurate Regge-trajectory calculation for singular potentials

D. Vrinceanu,1,2 A. Z. Msezane,1 and D. Bessis1
1Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, Georgia 30314

2School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
~Received 11 November 1999; published 20 July 2000!

An entirely analytical method for computing Regge-pole trajectories for singular potentials~potentials di-
verging faster thanr 22 at the origin! is presented. Explicit results are presented for polarization (1/r 4) and
Lennard-Jones~6,12! potentials. Numerical precision of the calculations is fully controlled and often better
than the state of the art numerical methods. The present method combines two different analytical approaches.
The first one obtains a perturbation expansion of the Regge trajectories in terms of an appropriate parameter.
Then the convergence of the resulting asymptotic series is improved through Pade´ approximations. Highly
accurate results are then possible within a wide range of energies. For typical parameters used in the literature,
the two-term expansion, for which explicit formulas are presented, gives at least five digits of accuracy, while
higher approximations give up to 14 digits of accuracy.

PACS number~s!: 03.65.Nk, 34.50.2s, 34.20.Cf
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I. INTRODUCTION

For scattering involving heavy particles, such as ato
and molecules, the ordinary partial wave expansion utiliz
only non-negative integer values of the angular momen
is often slowly convergent and hardly appropriate for n
merical calculation. The complex angular momentum rep
sentation@1#, which involves Regge-pole calculations, h
proved to be the adequate answer.

In the case of singular potentials, the main difficulty
computing a Regge-pole position in the complex angu
momentum plane, for real positive values of the ener
comes from the fact that this problem is a singular eig
value problem for a non-Hermitean Schro¨dinger operator.
Currently, no general working method is available that c
provide a sufficiently accurate and simple analytic expr
sion for the Regge-pole positions. The most accurate m
ods published, to our knowledge, are purely numerical; s
for the latest work,@2#. They have various degrees of com
plexities as well as accuracy.

The understanding of collisional processes involvi
heavy particles, which are important in laser isotope sep
tion, astrophysics, plasma physics, and molecular proces
requires the calculation of differential and integral cross s
tions ~DCSs, ICSs!. In Regge-pole theory, the evaluation
the DCSs requires a knowledge of such quantities as Re
pole positions and their corresponding residues. Curren
there are several calculational approaches, of varying deg
of accuracy, used to calculate Regge poles. Some of them
the following: direct numerical integration of the Schr
dinger equation@3,4#, semiclassical WKB approximation
@1,5,6#, transformation of the Schrodinger equation into
nonlinear form @7#, dimensional scaling procedure@8,9#,
phase-integral methods@10#, and phase-amplitude method
@11#.

The first two methods have been criticized@7#. The direct
method is slow because it involves the integration of a w
function and it is numerically unstable due to the accumu
tion of errors. The largest drawback of the WKB approxim
tion is the difficulty of understanding the behavior of th
1050-2947/2000/62~2!/022719~10!/$15.00 62 0227
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complex turning points with the attendant problem of t
Stokes lines topology; furthermore, it is cumbersome in
plication. Although it has yielded reasonably accurate res
with accuracy increasing with the Regge-pole indexn, there
is no general scheme to achieve a givena priori accuracy in
this approach. The disadvantages of transforming the Sc¨-
dinger equation into a nonlinear form are that derivatives
the potential appear and the corresponding Hankel funct
must be determined very accurately. Incidentally, the J
function @2# approach for singular potentials, which is esse
tially a variation of the WKB method, suffers problems sim
lar to some of the methods above since it also employs
rivatives of the potential and uses coordinate rotation.

Phase-integral methods@10# and phase-amplitude meth
ods @11# give very accurate results. However, they do n
provide deep insight into the analytic structure of the Reg
pole trajectories and lack wide energy range analytic exp
sions for the Regge-pole positions.

Analytic expressions, like the complex harmonic oscil
tor formula@12#, have been improved by direct\ expansion
@13#. But because no accelerator of convergence has b
applied to those analytic expressions, the range of appl
tion of such formulas is restricted. Equivalent dimension
perturbation methods@8,9# make use of Pade´ approximations
but as a pure numerical tool and not to build analytic cont
ued fractions.

The present paper presents a general method for fin
the Regge poles for any singular potential within a wi
range of energies. Two important steps are tackled to ob
analytic formulas that are able to provide any desired pre
sion. The first one consists of obtaining a perturbation exp
sion of the Regge trajectories in terms of an appropriate
rameter. The convergence of the resulting asymptotic se
is improved through Pade´ approximations, which is the sec
ond step in this approach. Highly accurate results are t
possible by increasing the number of terms in the expans
until the desired accuracy level is reached. Two examples
used to demonstrate the application of the general framew
described in this paper: the polarization (1/r 4) and Lennard-
Jones~6,12! potentials.
©2000 The American Physical Society19-1
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II. BASIC FORMULATION

The Regge pole is defined as a ‘‘generalized’’ bou
state, when both the energy and the angular momentum
have complex values. The position of the Regge pole in
complex angular momentum~CAM! space, when the energ
is a real number, describes the Regge trajectory~RT!. If the
potential is less singular at the origin than the centrifu
barrier potential, the RT’s are closed curves in the CA
space because in the limit of infinite positive, or negati
energy the Regge poles accumulate to a finite complex
gular momentum. When the potential is singular, diverg
at the origin faster thanr 22, the RT goes asymptotically to
infinity along a given direction in CAM space.

The radial Schro¨dinger equation for the system with th
reduced massm, energy E5\2k2/2m, and angular-
momentum quantum numberl , is

2
\2

2m

d2c

dr2
1S V~r !1

\2l ~ l 11!

2mr 2 D c5Ec, ~1!

where the isotropic singular potential is defined by

V~r !5(
s>S

ṽsr
s5

\2

2m (
s>S

vsr
s. ~2!

The lower limit is S,22 for singular potentials. For ex
ample,S5212 for Lennard-Jones andS524 for the polar-
ization potential. Also, in this paper it is assumed that
large r the potentialV(r )→0. The procedure presented b
low can be extended for more general cases.

Equation~1! describes an eigenvalue problem in ener
for a given angular momentum, when the wave functionc is
‘‘regular’’ ~vanishes at the origin! and decays to zero forr
→`. When Imk.0, there are special values of the angul
momentum quantum numberl , in general complex num
bers, which define the Regge poles@14# if the wave function
is an outgoing plane wave for larger (c;eikr). This is a
generalization of the usual bound-state problem.

Both the origin (r 50) and infinity (r 5`) are irregular
singular points~not of the Fuchs type@15#! for the differen-
tial equation~1!. An analytical approach toward solving th
problem is very hard, if not impossible. However, the Lang
transformation

r 5ez, c5ez/2F

maps the two singular points into one singularity (z5`),
and the problem becomes analytically tractable becaus
the solutions are entire functions~with no singularities in the
open complexz plane!. The Schro¨dinger equation~1! is now
an explicit eigenvalue problem for the angular-moment
quantum number, when the energy~or the wave numberk) is
given as

2
d2F

dz2
1F (

s>S
vse

(s12)z2k2e2zGF52~ l 11/2!2F.

~3!
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The boundary conditions for this equation are nowF→0 for
z→6`, and they correspond to a regular~at origin! and
outgoing @for Im(k).0# wave function in ther variable.
This problem has a discrete set of eigenvalues~Regge poles!
l n(k), n50,1,2, . . . , which depend continuously on th
wave numberk.

Equation ~3! is a one-dimensional scattering problem
Whenk is a pure imaginary number (k5 ig, g.0), the new
‘‘potential,’’

U~z!5(
s

vse
(s12)z2k2e2z5r 2

„V~r !2k2
…ur 5ez,

which depends parametrically onk, goes to infinity likee2z

for z→` and like e(S12)z for z→2`, and therefore has a
global minimum for some valuezm . A solution for generalk
~with Im k.0! is then obtained from the solution of thi
restricted problem by analytical continuation. Expanding
potentialU around the minimumzm

U~z!5U~zm!1
1

2
~z2zm!2U9~zm!1UR~z!

and defining the new independent variablez by (z2zm)
5az and the parametera by a4U9(zm)52, Eq. ~3! be-
comes the equation of the perturbed harmonic oscillator

2
1

2

d2F

dz2
1

z2

2
F1

a2

2
UR~zm1az!F

52
a2

2
@~ l 11/2!21U~zm!#F. ~4!

The unperturbed HamiltonianH05(2d2/dz21z2)/2 has
eigenvaluesE(0)5n11/2 for n50,1,2, . . . , and itseigen-
functions are

wn~z!5p21/4e2z2/2Hn~z!,

whereHn are the Hermite polynomials. The perturbation
represented by

VI~z!5
a2

2
UR~zm1az!5

a2

2
U~zm1az!2

a2

2
U~zm!2

z2

2
.

~5!

By denotingR5ezm, the corresponding position of the min
mum of the potentialU(z) in r space, the potential~5! can be
written as

VI~z!5(
s

a2

2
vsR

s12@ea(s12)z1s/22e2az~11s/2!#2
z2

2
~6!

in terms of the Taylor coefficients of the original potenti
V(r ) and the parametera. The proof of Eq.~6! follows from
the identity

k25(
s

~s/211!vsR
s, ~7!
9-2
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which is a translation inr space of the minimum condition
U8(zm)50. When the energy is given, this equation
solved for R by choosing that solution that gives a Reg
pole obeying the general constraint~see @14# for details!,
Im(l 11/2)2.0.

Using a new set of parameters

us5a4vsR
s12, ~8!

the potential~6! has a simpler form:

VI~z!5(
s

us

2a2
@ea(s12)z1s/22e2az~11s/2!#2

z2

2
.

Also, the relation that definesa, a4U9(zm)/251, becomes

a4(
s

s~11s/2!vsR
s125(

s
s~11s/2!us51. ~9!

The original set of parameters, ($ṽs%,E) or ($vs%,g), defin-
ing the eigenvalue problem Eqs.~1! or ~3! is replaced by a
new set ($us%,a) appropriate for a perturbative solution o
Eq. ~4!. It is worth noting that the new parameters are dime
sionless,a2;\/A2m and a vanishes in the limit of high
energy. These suggest that a perturbative solution~with a as
the perturbation parameter! of Eq. ~4! could be valuable both
in the E→` and\/A2m→0 limit. An \ expansion is thus
utilized for the calculation of Regge poles, since the para
etersus carry no\ dependence. Because of Eq.~9!, not allus
parameters are independent. This is explained by the fact
Eq. ~1! is invariant on the scalingr→xr and vs→xs12vs ,
g→xg. Thus when the energyE and N coefficientsṽs are
specified, the angular-momentum quantum numberl corre-
sponding to the Regge pole depends only onN parameters,
instead ofN11 parameters. For examples presented in S
III, l depends on only one parameter (a) for the polariza-
tion potential and on two parameters (a and b) for the
Lennard-Jones potential.

For smalla or z, the perturbation potential~6! is

VI~z!'
az3

12 (
s

s~s12!~s14!us , ~10!

which proves thatVI represents a singular perturbation a
the perturbed eigenvalue of Eq.~4! can be expanded~at least
formally! in a series of powers of the perturbation parame
a:

E~a!52
a2

2
@~ l 11/2!21U~zm!#5(

i 50

`

Qia
i . ~11!

The nth Regge pole will then be derived from thenth per-
turbed harmonic-oscillator eigenvalueE (n)(a). For example,
the zero-order Regge pole of ordern is

l (n)521/26 iA2n11

a2
1U~zm!. ~12!
02271
-

-
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Equations~11! and~12! can be written explicitly in terms of
a andus because

U~zm!52
1

2a4 (
s

sus .

The coefficientsQi are obtained recursively by using pertu
bation theory. The perturbed eigenfunctionF is expanded in
terms of unperturbed wave functions

F~z!5 (
m50

`

Fm~a!wm~z!,

so thatE is obtained as an eigenvalue of the system of eq
tions

@Ep2E~a!# Fp~a!1 (
m50

`

Fm~a!Vmp~a!50, ~13!

where Ep is the energy corresponding to the unperturb
wave functionwp and the matrix elementsVmp defined by

wm~z!VI~z!5 (
p50

`

Vmp~a!wp~z!

are

Vmp~a!5
1

2a2 (
s

usFWmp„~s12!a…2S 11
s

2DWmp~2a!G
1

1

4a4 (
s

sus2S z2

2 D
mp

.

The elementary matrix elementsWmp defined for anyb by

ebzwm~z!5 (
p50

`

Wmp~b!wp~z!

are potential independent. The detailed calculation of th
matrix elements is presented in Appendix A. However, t
important properties are noted here:~i! the Taylor series of
Wmp starts withb um2pu and~ii ! the Taylor series ofWmp has
only even or odd powers inb, the same parity as the firs
power um2pu in the series. TheWmp matrix elements have
then the power expansion

Wmp~b!5 (
t5um2pu,um2pu12, . . .

`

Wmptb
t.

The matrix elements for the perturbation potential ha
the power expansionVmp5( tVmpta

t where

Vmpt5Wmp,t122t11(
s

usS 11
s

2D F S 11
s

2D t11

21G ,
and the summation indext starts withum2pu22 when um
2pu.2, with 2 when um2pu52 or 0, and with 1 when
um2pu51. Also, this expansion has only even or odd po
9-3
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ers providedum2pu is even or odd. This is in agreeme
with expansion~10!, such that, for anym and p, Vmp050.
Furthermore, the matrix elementsVmpt can be written as a
product of a potential independent factor (Wmnt) and a po-
tential dependent factor (Vt):

Vmpt52t11Wmp,t12Vt ,

where the setVt with t51,2,3, . . . is defined by

Vt5(
s

usS 11
s

2D F S 11
s

2D t11

21G . ~14!

ExpandingFm in powers ofa as Fm5( t50
` Fmta

t and
using it in Eq.~13! together with expansion~11!, one gets
~for any positivep)

EpFpt2(
i 50

t

QiFp,t2 i1(
i 50

t

(
m50

`

Fm,t2 iVmpi50 ~15!

after equating the coefficients of like powers ofa. Because
of the above-mentioned properties of the matrix eleme
Vmpt , them summation in the last term of Eq.~15! is in fact
restricted to a finite range around the~given! value of the
index p. This essential feature allows a recursive solution
the Eqs.~15! to find the Taylor coefficientsQi . For t50, the
infinite system of equations~15! reduces to (Ep2Q0)Fp0
50, which shows that whenQ05n11/2 thenFp05dpn .
02271
ts

f

For t51, Eq. ~15! gives Q150 when p5n, Fn61,15
7Vn,n61,1 whenp5n61, andFp150 for any other value of
p. For anyt.2 andp5n a new coefficientQt can be gen-
erated if all otherQ coefficients of smaller index are know
by using the following recurrence relations:

Qt5Vnnt1(
i 51

t21

(
m5n2 i 22

n1 i 12

VmniFm,t2 i ~16!

and

Fpt5S Vnpt2(
i 51

t21

QiFp,t2 i1(
i 51

t21

(
m5p2 i 22

p1 i 12

3VmpiFm,t2 i D Y ~n2p!. ~17!

Also, because of the special properties of the matrix eleme
Vmpt , it can be shown that all odd index coefficientsQi are
zero, leading to ana2, rather than ana, expansion. This
means that the result is obtained in the form of an\ expan-
sion.

In this way, any desired number of terms in the series~11!
can be calculated. For example, the exact expressions fo
first six coefficients for arbitrary ordern and for any poten-
tial, are
Q0
(n)5n11/2,

Q1
(n)50,

Q2
(n)52

1

18
@11130n~11n!#V 1

21
1

4
@112n~11n!#V2 ,

Q3
(n)50,

Q4
(n)5

~112n!

216
$220@31147n~11n!#V 1

4136@19125n~11n!#V 1
2V223@21117n~11n!#V 2

2

212@13114n~11n!#V1V316@312n~11n!#V4%,

Q5
(n)50,

Q6
(n)52

1

1458
$39709115n~11n!@1082717717n~11n!#%V 1

61
1

324
$15169115n~11n!@395912585n~11n!#%V 1

4V2

2
1

648
$1182713n~11n!@1449318315n~11n!#%V 1

2V 2
21

1

144
$1111n~11n!@3471125n~11n!#%V 2

3

2
1

405
$4517115n~11n!@11211651n~11n!#%V 1

3V31
1

90
$47415n~11n!@3251161n~11n!#%V1V2V3

2
1

1800
$449170n~11n!@2019n~11n!#%V 3

21
1

162
$32313n~11n!@3751181n~11n!#%V 1

2V4
9-4
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2
1

36
$121n~11n!@35111n~11n!#%V2V42

1

18
$512n~11n!@813n~11n!#%V1V5

1
1

144
$312n~11n!@41n1n2!#V6%.

~18!
t
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Because the unperturbed wave functionswp do not have
the right asymptotic behavior~they do not decay fas
enough!, the formal expansions~11! have a zero radius o
convergence. Still, it is useful in the asymptotic regime o
a convergence accelerator, like Pade´ approximations, is used
Finally, by analytical continuation, thenth Regge pole is
calculated for anyk ~Im k.0), not only fork5 ig (g.0),
as

l (n)52
1

2
6 i S 2

a2 ( 8
i

Qi
(n)~$us%!a i2

1

2a4 (
s

susD 1/2

,

~19!

where the symbol(8 can be any approximation of the form
Taylor expansion of the perturbed eigenvalueE, which can
give a meaningful numerical sense for it. The sections t
follow will prove that even a simple truncation of the abo
formal series can give accurate results in certain regimes
high energy or semiclassical.

To summarize, the following steps lead to a fully analy
solution for the Regge trajectory for any singular potentia

~i! A particle with massm and energyE moves in a sin-
gular potential defined by the set of coefficients$ṽs% given
by Eq. ~2!.

~ii ! The positionzm ~or R) of the minimum of the poten-
tial U(z) is determined by solving Eq.~7!.

~iii ! The parametera results from Eq.~9! and the setus
from Eq.~8!. With them,Vt and the matrix elementsVmpt are
constructed by using Eq.~14!.

~iv! Using the recursion relations~16! and~17!, any num-
ber of coefficientsQi can be calculated.

~v! The Regge trajectory is then defined by Eq.~19!
where a convergence accelerator is eventually used to ca
late theE series from Eq.~11!. The result can be analyticall
continued in the upper half of the complexk plane.

III. SPECIFIC POTENTIAL RESULTS

A. Polarization potential

The polarization potentialV(r )5a2/r 4 is important in the
electron-atom scattering. For this potential, then,

v245
2m

\2
a2 and vs50 for sÞ24.

Solving Eq.~7!, one gets
02271
f

at

e

u-

R5S 2m

\2

a2

2k2D 1/4

.

From Eq.~9! we have

a5S 1

4xD 1/4

, wherex5aA22mk2

\2
,

and from Eq.~8! u2451/4. With Vt5@12(21)t11#/4, the
first Q coefficients are

Q0
(n)5n1

1

2
,

Q2
(n)5

1

8
~112n12n2!,

Q4
(n)52

2n11

32
~11n1n2!,

Q6
(n)5

1

128
~3111n116n2110n315n4!.

The nth Regge pole is then

l (n)52
1

2
6 i F2x14AxS Q0

(n)1
Q2

(n)

2Ax
1

Q4
(n)

4x
1 . . . D G 1/2

.

This result is in agreement with@16# and @17#, which give a
limited number of terms in theE expansion. In the presen
approach, a large number of terms can be calculated. T
Regge trajectories are presented in Fig. 1. For these traje
ries, 40 analytic terms are calculated in theE series. The
convergence is improved by using the Jacobi continued f
tion @18# associated with the Taylor series,

E5n1
1

2
1

C1a2

D11a22
C2a2

D21a22•••

,

where coefficientsCi and Di are derived recursively from
the Taylor coefficientsQi .
9-5
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In the high-energy limit, the Regge trajectories approa
some parallel asymptotic lines~dotted lines in figure!. At
low, but still positive energy, the Regge trajectories conve
to the 20.5 angular momentum. For negative energy,l
11/2)2 is a negative number and all Regge trajectories m
into the vertical line Re(l )521/2.

B. Lennard-Jones potential

The Lennard-Jones~12,6! potential is considered in thi
section:

V~r !54eF S s

r D 12

2S s

r D 6G ,
for which

s: 212 26,

ṽs : 4es12 24es6,

vs :
4A2

K
s10 2

4A2

K
s4,

us : b/12 (125b)/12,

where the parametersA252ms2E/\2 andK5E/e are com-
mon in the literature. Parameterb is defined below. The
value ofR is obtained from Eq.~7!:

R5sS 10

21d D 1/6

,

where d56A425K, and the sign is chosen to select t
branch of the Regge trajectory of interest. For instan
choosing the negative sign, one obtains Regge poles
Re(l 11/2).0 and Im(l 11/2).0.

The identity given by Eq.~9! yields, for the specific po-
tential considered here,

FIG. 1. The first three Regge trajectories in the CAM plane
the 1/r 4 potential.
02271
h

e

lt

,
ith

a4
48A2

K F5S s

RD 10

2S s

RD 4G51,

which defines the expansion parametera as

a5F ~22d!~21d!1/3

123101/3A2d
G 1/4

.

The coefficientsu212 and u26 presented in the table abov
follow from Eq. ~8!. The new parameterb is introduced for
convenience:

b5
1

5 S 11
2

d D ,

allowing for a direct comparison with previously publishe
results@19#. Figure 2 shows the absolute values ofa andb
as functions of the reduced energyK.4/5. Three values are
taken forA51,10,100. WhenA andK are large, the pertur-
bation parameter is small. For very large values ofA the
corrections due to the perturbation are expected to be s
even for moderate values ofK.

After using Eqs.~14! and~19!, the analytic expression fo
the Regge-pole positions is

l (n)52
1

2
6 i S 123b

4a4
1

2

a2 ( 8
i

Qi
(n)~$us%!a i D 1/2

,

where the meaning ofS8 can be a simple truncation of th
summation(0

N up to some orderN or some other conver
gence accelerator.

TheQ2p
(n) are polynomials of degree 2p in b, and the first

six of them are obtained directly from Eq.~18! as

r

FIG. 2. Absolute values of parametersb anda ~for A 5 1, 10,
and 100! as functions ofK.
9-6
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Q0
(n)5n11/2,

Q2
(n)5

1

9
~213n13n2!1

10

3
~213n13n2!b2

25

8
~11130n130n2!b2, ~20!

Q4
(n)5~112n!F 5

54
~211n1n2!1

10

9
~2215n15n2!b2

25

4
~134185n185n2!b21

125

4
~1791220n1220n2!b3

2
9375

32
~31147n147n2!b4G , ~21!

Q6
(n)5

1

1458
~1612135n21680n223090n321545n4!1

5

81
~5391513n1588n21150n3175n4!b

2
1

216
~1 778 51314 019 625n14 600 560n211 161 870n31580 935n4!b21

625

27
~8683125 785n133 684n2

115 798n317899n4!b32
125

96
~1 203 33114 201 335n16 299 880n214 197 090n312 098 545n4!b4

1
3125

16
~24 203193 015n1151 320n21116 610n3158 305n4!b52

15625
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~39 7091162 405n

1278 160n21231 510n31115 755n4!b6. ~22!
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Next, the theory presented above is compared with s
of the art numerical calculation of the Regge pole@11#. A
common benchmark for Lennard-Jones calculations is
potential with parametersA5141.425 andK55. Zero-order
approximation, where onlyQ0 is retained in theE series,
already gives about three digits of precision.

Another approximation uses the first four terms in t
formal series~11! to give a@1/1# Padéapproximation forE,
in the variablea2:

S l n
(1)1

1

2D 2

5
3b21

4~a2!2
2

2

a2 Fn1
1

2
1

@Q2
(n)#2a2

Q2
(n)2Q4

(n)a2G .

~23!

With this simple formula,which uses only elementary fun
tions, three to four more digits of precision are gained
both real and imaginary parts of the Regge pole@19#.

Even more precise results can be obtained if more te
are considered in theE expansion. Using a truncated seri
with 12 terms as the next approximation significantly im
proves the precision of the results. Because the series~11! is
Borel summable, its convergence is accelerated by const
ing a Borel-Pade´ approximation@20# from the first 12 terms.
This method gives the best results, up to 14 digits of pre
sion for the Regge pole. The formulas for this approximat
are still analytic, but they involve transcenden
G-incomplete functions. A detailed presentation of th
method is given in Appendix B.

Table I presents a summary of these results for the be
mark Lennard-Jones potential considered. The relative er
for the various methods to improve the convergence are
02271
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culated with respect to the highly accurate quantum result
@11#. Even a low-order approximation, with a modest nu
bers of terms, gives excellent results, which can be obtai
by using only a pocket calculator. Higher poles, with high
indexn, have less precision due to the perturbative nature
the method presented. However, more and more terms ca
easily calculated by using reccurence relations~16! and~17!
until the desired accuracy is obtained.

Another common Lennard-Jones potential is defined
the set of parametersA515 andK51.8. A comparison be-
tween semiclassical and quantal results for this potentia
discussed in@1#. Because bothA andK have smaller values
the accuracy of the present method is low~three to four
significant digits! for a reduced number of terms inE expan-
sion ~12 in the example presented!. Still, this is comparable
with the accuracy of@1#. Of course, more terms added to th
series ofE contribute to an increased precision in the resu
Figure 3 shows some ‘‘snapshots’’ of the first six Reg
trajectories taken forK51.0,1.5,2.0,2.5, and 3.0 in the CAM
space.

IV. CONCLUSION AND DISCUSSIONS

A general framework for obtaining analytic results for th
Regge poles has been developed within the class of sing
potentials. A perturbation expansion, equivalent to an\ ex-
pansion, has been employed. Even though the resulting
mal series is divergent, the results are still useful whe
convergence accelerator~such as a Pade´ approximation! is
used. The formulas obtained are simple and give phys
insight into the nature and behavior of the Regge poles. C
9-7
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TABLE I. The relative error of Regge poles is given as 102s. Values fors are calculated in various
approximations used in this work; separately for the real and imaginary parts. The reference Regge p
given in the second column.

4 termsa 12 termsb 12 termsc

n l (n) d Re Im Re Im Re Im

0 180.011 948 024 391i 21.218 915 128 43 8.65 7.39 13.4 12.1 13.5 13.
1 179.238 987 840 841i 24.034 748 840 56 8.05 7.19 10.9 10.7 13.0 12.
2 178.522 893 751 201i 26.890 095 347 76 6.63 6.98 9.55 8.75 12.1 11.
3 177.866 576 996 321i 29.780 188 101 64 5.96 6.75 8.58 7.64 11.7 10.
4 177.272 390 601 191i 32.700 076 842 78 5.50 6.03 7.84 6.83 12.2 9.3
5 176.742 125 996 151i 35.644 692 524 87 5.14 5.29 7.24 6.18 11.2 8.6

aPadéEq. ~23!.
bTruncated sum.
cBorel-Pade´.
dFrom Ref.@11#.
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links between the parameters of the problem~e.g., energy or
potential! and the Regge poles are transparent.

The numerical precision achieved is higher or compara
to the published examples. Better results can be obtained
a wide range of energies because the formal series ca
easily extended by using powerful recurrence relations.
Regge poles for an even larger class of potentials can
calculated using the procedure presented in this paper.
singular potential problem Eq.~1! is transformed into a regu
lar problem byr→1/r 8 andC→F/r 8 transformations. Also,
singular potentials that depend on fractional powers ofr can
be treated directly using the formalism described.

To study or calculate the behavior of the scattering a
plitude, not only the precise location of the Regge poles
the complex plane is required but also the values of th
residues. Let us first briefly outline how the residues a
computed. Letl0 and k0 be, respectively, the complex an
gular momentum and the complex energy of the Regge p
The corresponding residue is given by@22#

R5
eipl0k0

l0

1

m22
, ~24!

FIG. 3. The first six Regge poles forK51.0, 1.5, 2.0, 2.5, 3.0 in
the CAM space for a Lennard-Jones potential withA515 andK
51.8.
02271
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for
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where

m225E
0

1`

r 22f 2
2 ~l0 ,k0 ,r !dr. ~25!

Here f 2(l0 ,k0 ,r ) is the solution of the Schro¨dinger
equation that behaves at large physical distances as

f 2~l0 ,k0 ,r !→eik0r , r→1`. ~26!

Although Eq.~24! has been demonstrated in@21# only for
regular potentials, it can be readily extended to singular
tentials. It is clear from Eqs.~24!, ~25!, and ~26!, that an
accurate residue calculation requires, in order:

~i! A precise knowledge of the position, in the comple
plane, of the Regge pole. This has been the major objec
of our paper on singular potentials.

~ii ! A correctnormalizationto eik0r of the wave function
at large distances.

With the method described in this paper, thenormaliza-
tion factor cannot be determined for the following reason
From examination of Eq.~4!, it is seen that the calculation o
the Regge trajectories has been transformed into a more
sical ‘‘perturbed harmonic oscillator’’ eigenvalue comput
tion. Therefore the basis onto which the eigenfunctions
expanded is that of the harmonic oscillator. Consequen
we cannot normalize correctly the wave function at infini.
The reason is that the harmonic-oscillator basis involves
squareof the distance in the exponential, while the norm
ization condition Eq.~26! requires alinear term in the expo-
nential. As far as the computation of the generalized eig
values~Regge poles! is concerned, this difference plays n
role and our results are among the most precise in the lit
ture. However, this basis isnot suitablefor correctlynormal-
izing the wave function at large distances as is required
the residue computation.

The limitation of a method to only the calculation of th
Regge poles is not specific and limited to our approach. I
also manifest in the method of Germann and Kais@8#, which
is suitedonly for the calculation of the Regge poles and n
the associated residues. However, since the calculation o
9-8
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residues requires thepreliminary knowledge of the precise
location of the Regge poles, any suitable method like tha
Sukumar and Bardsley@4# or Connoret al. @21# can be used.

In conclusion, the motivation of this paper has been
need to provide an accurate and efficientanalytical method
to augment the relatively few existing methods, which a
mostly numerical, for calculating Regge-pole positions. B
sides the traditional rainbow scattering problem that invol
Regge-pole calculations for the singular Lennard-Jones
tential, there are other important physical problems that
be treated. Such an example is the Bose-Einstein conde
tion and superfluidity of4He at extremely low temperature
The possibility of forming dimer resonances in the He-
collision problem has been investigated@2# using the two
versions of the Aziz potential@23,24#. The problem has bee
solved within the framework of the singular potential meth
because of the inadequacy of the regular potentials meth
for this case.

ACKNOWLEDGMENTS

This work has been supported by The National Scie
Foundation, NASA, and the U.S. DOE, Division of Chem
cal Sciences, Office of Basic Energy Sciences, Office of
ergy Research~A.Z.M.!. We thank Professor J. N. L. Conno
for bringing this problem to our attention and for his enco
agement while visiting Clark Atlanta University.

APPENDIX A: MATRIX ELEMENTS FOR ebx

The eigenfunctions for the harmonic oscillator are

un~x!5p21/4e2x2/2Hn~x!,

whereHn are Hermite polynomial with the generating fun
tion

e2zx2z2
5 (

n50

`
zn

n!
Hnx.

The goal of this section is to give the expansion in powers
b for the matrix elementWnm(b) of ebx:

ebxun~x!5 (
m50

`

Wnm~b!um~x!.

The generating function forebxHn(x),

exp~bx12zx2z2!5 (
n50

`
zn

n!
ebxHnx, ~A1!

can also be written as

exp~b2/41bz!exp„2~z1b/2!x2~z1b/2!2
…

5eb2/4(
m50

`
1

m!
ebz~z1b/2!mHm~x!. ~A2!

Equating the coefficients of thez powers from Eqs.~A1! and
~A2!, one gets the following expansion:
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ebxHn~x!5 (
m50

`

Wnm~b!Hm~x!,

where

Wnm~b!5eb2/4
n!

2m
bn1m (

k50

min(m,n) S 2

b2D k
1

k! ~n2k!! ~m2k!!
.

It is easy to see that the functionWnm(b) is a polynomial in
b times the even factoreb2/4. The lowest power ofb in the
polynomial is un2mu becausem1n22min(m,n)5um2nu.
Also, the polynomial has only even or odd powers ofb
depending on whether the starting powerun2mu is even or
odd, respectively. These properties are inherited by the T
lor expansion ofWnm(b) since the factoreb2/4 is an entire
even function inb.

APPENDIX B: PADÉ -BOREL APPROXIMATION

If a functionF(z) is defined by its Taylor series and on
a finite number of coefficientsf n are known, various ap-
proximations are employed to calculate the function. Go
results are obtained when the value ofz is inside the conver-
gence disk of the associated Taylor series. When little
known about the radius of convergence or this is zero, orz is
outside the convergence disk, in general, the simple trun
tion of the Taylor series does not work very well, and mo
of the times does not work at all. A way to obtain a bet
approximation is to use the rational or Pade´ approximation
for the given function. This is done in two steps. In the fi
step, a continued fraction~of the Stiltjes or more powerfu
Jacobi type, depending around what point the expansio
known! is constructed from the set of Taylor coefficients.
the second step, a truncation of the infinite continued fract
defines the rational approximtion, as a ratio of two polyn
mials or using the residue-pole representation

F~z!'(
k51

N
rk

12akz
. ~B1!

A more refined approximation can be developed by us
the Borel Transform@20#. Writing the function as

F~z!5 (
n50

` S f n

n! Dn!zn

and the factorial as

n! 5E
0

`

tne2tdt,

the following result is obtained:

F~z!5E
0

`

e2tF̂~ tz!dt,
9-9
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where the Borel transformedF̂ of the original functionF has
the Taylor coefficients defined byf̂ n5 f n /n!. Writing the
rational approximation of theF̂ in the residue-pole form
~B1!, one gets

F~z!'(
k51

N

rkE~akz!,

where the functionE is
y

ar

u

tt

02271
E~z!5
e1/z

z
GS 0,

1

zD ,

and the incompleteG function has the definition

G~a,z!5E
z

`

ta21e2tdt.
l
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