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Analytical accurate Regge-trajectory calculation for singular potentials
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An entirely analytical method for computing Regge-pole trajectories for singular potefgictkntials di-
verging faster tham 2 at the origin is presented. Explicit results are presented for polarizatiorf' Hnd
Lennard-Jone$6,12 potentials. Numerical precision of the calculations is fully controlled and often better
than the state of the art numerical methods. The present method combines two different analytical approaches.
The first one obtains a perturbation expansion of the Regge trajectories in terms of an appropriate parameter.
Then the convergence of the resulting asymptotic series is improved throughapimations. Highly
accurate results are then possible within a wide range of energies. For typical parameters used in the literature,
the two-term expansion, for which explicit formulas are presented, gives at least five digits of accuracy, while
higher approximations give up to 14 digits of accuracy.

PACS numbgs): 03.65.Nk, 34.50-s, 34.20.Cf

[. INTRODUCTION complex turning points with the attendant problem of the
Stokes lines topology; furthermore, it is cumbersome in ap-
For scattering involving heavy particles, such as atomsplication. Although it has yielded reasonably accurate results
and molecules, the ordinary partial wave expansion utilizingvith accuracy increasing with the Regge-pole ingexhere
only non-negative integer values of the angular momentunis no general scheme to achieve a giwepriori accuracy in
is often slowly convergent and hardly appropriate for nu-this approach. The disadvantages of transforming the Schro
merical calculation. The complex angular momentum repreédinger equation into a nonlinear form are that derivatives of
sentation[1], which involves Regge-pole calculations, hasthe potential appear and the corresponding Hankel functions
proved to be the adequate answer. must be determined very accurately. Incidentally, the Jost
In the case of singular potentials, the main difficulty in function[2] approach for singular potentials, which is essen-
computing a Regge-pole position in the complex angulatially a variation of the WKB method, suffers problems simi-
momentum plane, for real positive values of the energylar to some of the methods above since it also employs de-
comes from the fact that this problem is a singular eigenvivatives of the potential and uses coordinate rotation.
value problem for a non-Hermitean Schiger operator. Phase-integral method40] and phase-amplitude meth-
Currently, no general working method is available that carods[11] give very accurate results. However, they do not
provide a sufficiently accurate and simple analytic expresprovide deep insight into the analytic structure of the Regge-
sion for the Regge-pole positions. The most accurate methpole trajectories and lack wide energy range analytic expres-
ods published, to our knowledge, are purely numerical; seesions for the Regge-pole positions.
for the latest work[2]. They have various degrees of com-  Analytic expressions, like the complex harmonic oscilla-
plexities as well as accuracy. tor formula[12], have been improved by diretitexpansion
The understanding of collisional processes involving[13]. But because no accelerator of convergence has been
heavy patrticles, which are important in laser isotope separapplied to those analytic expressions, the range of applica-
tion, astrophysics, plasma physics, and molecular processd®n of such formulas is restricted. Equivalent dimensional
requires the calculation of differential and integral cross secperturbation methods,9] make use of Padapproximations
tions (DCSs, ICSs In Regge-pole theory, the evaluation of but as a pure numerical tool and not to build analytic contin-
the DCSs requires a knowledge of such quantities as Reggeed fractions.
pole positions and their corresponding residues. Currently, The present paper presents a general method for finding
there are several calculational approaches, of varying degreéi®e Regge poles for any singular potential within a wide
of accuracy, used to calculate Regge poles. Some of them arange of energies. Two important steps are tackled to obtain
the following: direct numerical integration of the Schro- analytic formulas that are able to provide any desired preci-
dinger equation[3,4], semiclassical WKB approximation sion. The first one consists of obtaining a perturbation expan-
[1,5,6), transformation of the Schrodinger equation into asion of the Regge trajectories in terms of an appropriate pa-
nonlinear form[7], dimensional scaling procedure,9], rameter. The convergence of the resulting asymptotic series
phase-integral method4.0], and phase-amplitude methods is improved through Padapproximations, which is the sec-
[11]. ond step in this approach. Highly accurate results are then
The first two methods have been criticiZe]. The direct  possible by increasing the number of terms in the expansion
method is slow because it involves the integration of a waveuntil the desired accuracy level is reached. Two examples are
function and it is numerically unstable due to the accumulaused to demonstrate the application of the general framework
tion of errors. The largest drawback of the WKB approxima-described in this paper: the polarizationr®)/and Lennard-
tion is the difficulty of understanding the behavior of the Jones(6,12 potentials.
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Il. BASIC FORMULATION The boundary conditions for this equation are néw- 0 for
z— =+, and they correspond to a regul@t origin) and
tgoing [for Im(k)>0] wave function in ther variable.

d is problem has a discrete set of eigenval{iRsgge poles
7w(k), n=0,1,2..., which depend continuously on the
wave numbek.

Equation (3) is a one-dimensional scattering problem.
henk is a pure imaginary numbek&iy, y>0), the new
potential,”

The Regge pole is defined as a ‘“generalized” bound
state, when both the energy and the angular momentum cacl)[ﬁ
have complex values. The position of the Regge pole in th
complex angular momentuf€AM) space, when the energy
is a real number, describes the Regge trajectB). If the
potential is less singular at the origin than the centrifuga\N
barrier potential, the RT's are closed curves in the CAM,,
space because in the limit of infinite positive, or negative,
energy the Regge poles accumulate to a finite complex an-
gular momentum. When the potential is singular, diverging U(2)=2, 5 27— k2eZ=r2(V(r)—k?)|,_ez
at the origin faster than™ 2, the RT goes asymptotically to s
infinity along a given direction in CAM space.

The radial Schrdinger equation for the system with the
reduced massu, energy E=#2k?2u, and angular-
momentum quantum numbef, is

which depends parametrically dg goes to infinity likee??

for z— and like 5727 for z— — o, and therefore has a
global minimum for some valug,,. A solution for generak
(with Im k>0) is then obtained from the solution of this
5 restricted problem by analytical continuation. Expanding the
he/(/+1) 1) potentialU around the minimunz,,

|

1
U(2)=U(z,) + = (z—2,)°U"(z,) + Ur(z
where the isotropic singular potential is defined by (2)=Ulzm)+ 5 (2 20)"U"(zn) + Ur(2)

52 and defining the new independent varialileby (z—z,,)
V(r)=2 D= >, vds (2) =a{ and the parametew by *U”(z,)=2, Eq. (3) be-
$=S 2 =5 comes the equation of the perturbed harmonic oscillator
The lower limit is S<—2 for singular potentials. For ex- 1d20 2 P
ample,S= —12 for Lennard-Jones arf= — 4 for the polar- 52 + §<D+7UR(zm+ al)®
ization potential. Also, in this paper it is assumed that for d¢
larger the potentialV(r)—0. The procedure presented be- o2
low can be extended for more general cases. =— —[(/+1/2?+U(z,)]P. (4
Equation(1) describes an eigenvalue problem in energy, 2
for a given angular momentum, when the wave funciiois The unperturbed HamiltoniaHy= (— d%d¢2+ ¢2)/2 has

“regular” (vanishes at the origjnand decays to zero far eigenvaluest(0)=n+1/2 for n=0,1,2..., and itseigen-
—. When Imk>0, there are special values of the angular-¢ . tions are

momentum quantum numbef, in general complex num-

X i ) . P
pers, wh|ch.def|ne the Regge poldd] if the i\{(vrave fgncpon on(O)=m"Ye~1’H (),

is an outgoing plane wave for large(¢~¢e'™"). This is a

generalization of the usual bound-state problem. whereH,, are the Hermite polynomials. The perturbation is

Both the origin ¢=0) and infinity =) are irregular represented by
singular pointgnot of the Fuchs typgl5]) for the differen- 5 5 5 2
tial equation(1). An analytical approach toward solving this _@ _@ o 5
problem is very hard, if not impossible. However, the Langerv'(g)_ 2 Ur(Zmt ad)= 2 U(zntad) 2 U(zm) 2
transformation (5)

r=e? y=e?%P By denotingR=e*m, the corresponding position of the mini-
mum of the potential (z) in r space, the potenti@b) can be
maps the two singular points into one singularig=(c),  Written as

and the problem becomes analytically tractable because all 2 2
the solutions are entire functiolwith no singularities in the v, (£)=> a_vsRS+2[ea(s+2)£+ s/2—e?(1+5/2)]— =
open complex plane. The Schrdinger equatior{l) is now s 2 2
an explicit eigenvalue problem for the angular-momentum (6)
guantum number, when the ener@y the wave numbek) is in terms of the Taylor coefficients of the original potential
given as V(r) and the parameter. The proof of Eq(6) follows from
the identity
d’d
——— 4| D 0TI k222| P = — (/+1/2)2D.
dz* [55 . k2=, (s/2+1)v RS, @
S
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which is a translation im space of the minimum condition Equations(11) and(12) can be written explicitly in terms of
U’(z,)=0. When the energy is given, this equation is @ andug because
solved forR by choosing that solution that gives a Regge
pole obeying the general constraifstee[14] for details, 1
Im(/ + 1/2)>>0. U(zm=="3 ES SUs.

Using a new set of parameters
The coefficientQ; are obtained recursively by using pertur-
bation theory. The perturbed eigenfunctidnis expanded in
terms of unperturbed wave functions

us=a*vRS*?, (8)

the potential(6) has a simpler form:

’ O()= 2 Fu(@)en(l),
Vi)=2 2‘;[e“(s+2>4+s/2—e2a5(1+s/2)]—%_ (0= &, Fr(@en(?)

so that€ is obtained as an eigenvalue of the system of equa-
Also, the relation that defines, a*U"(z,)/2=1, becomes tions

[

a423 s(1+s/2)uSRS+2=ES s(1+sl2ug=1. (9 [Ep—&(@)] Fyla)+ 20 Fm(a@)Ving(@)=0, (13

The original set of parametersiu(s},E) or ({v4},7), defin- where E,, ig the energy corre_sponding to the _unperturbed
ing the eigenva|ue prob|em Eq@_) or (3) is rep|aced by a Wwave fUnCtloncpp and the matrix elemeanp defined by
new set {ug},«) appropriate for a perturbative solution of w0

Eq. (4). It is worth noting that the new parameters are dimen- _

sionless,a®~#/\2u and a vanishes in the limit of high @m(g)V.(g)—’;O V(@) @p(£)

energy. These suggest that a perturbative solytdth « as

the perturbation paramejesf Eq. (4) could be valuable both are

in the E—o and#/\2u—0 limit. An % expansion is thus
utilized for the calculation of Regge poles, since the param-,, (a)= i 2 u
etersug carry nos dependence. Because of E8), not allug mp 2025
parameters are independent. This is explained by the fact that

Eq. (1) is invariant on the scaling— xr andv— x"%vg, 1 2

y— x7y. Thus when the energ§ and N coefficientsv are + 4t 23“ SUS_(E) '
specified, the angular-momentum guantum numbeorre- mp

sponding to the Regge pole depends onlyNoparameters, The elementary matrix elemenifs,,, defined for anyB by
instead ofN+1 parameters. For examples presented in Sec.

Winp((s+2) @) —

S
1+ 5| Wing(2)

lll, ~ depends on only one parametet)(for the polariza- s ”

tion potential and on two parameters (and B) for the € <Pm(§)=g40 Winp(B) ¢p({)

Lennard-Jones potential.

For smalla or £, the perturbation potentib) is are potential independent. The detailed calculation of these
I matrix elements is presented in Appendix A. However, two
a . . iy .
V() ~ — S(s+2)(s+4)u., 10 important prc_:pemes are ngted hete: the Taylor series of
(D~73 z (s+2)(s+4)us (10 Wy, starts withgI™ Pl and i) the Taylor series oiV,,, has

only even or odd powers i, the same parity as the first
which proves thaV, represents a singular perturbation andpower|m—p| in the series. Thé&V,,,, matrix elements have
the perturbed eigenvalue of E@) can be expande@t least then the power expansion
formally) in a series of powers of the perturbation parameter

. Oc
Wing(B)= 2 WinpiB'.
o2 © t=|m—p|,[m—p|+2,...
fa)=-—[(7+ 1/2)2+U(Zm)]:i=20 Qia'. (11) The matrix elements for the perturbation potential have
the power expansioN',,= ztvmptat where
The nth Regge pole will then be derived from timh per- s g\t
turbed harmonic-oscillator eigenval§é"(«a). For example, Vo= Wi 00200 ugd 14+ 2| [ 1+2] -1
) ; pt= Tmp. R R 2 ’
the zero-order Regge pole of ordeis
o+l and the summation indeixstarts with|m—p|—2 when|m
/M= _ 1240/ = +U(zm). (12 —pl>2, with 2 when|m—p|=2 or 0, and with 1 when
@ |m—p|=1. Also, this expansion has only even or odd pow-
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ers providedm—p| is even or odd. This is in agreement For t=1, Eq. (15 gives Q;=0 when p=n, F.;=

with expansion(10), such that, for anyn andp, Vy,0=0.
Furthermore, the matrix element4,,; can be written as a
product of a potential independent facty,) and a po-
tential dependent factoif):

—_ot+1
Vmpt_ 2 me,t+2Vt )

where the seV,; with t=1,2,3... isdefined by
s s t+1
V=2 ud 1+ =1+ 1. (14)
S 2 2

ExpandingF, in powers ofa asF,=2;_ F«' and
using it in Eq.(13) together with expansiofill), one gets
(for any positivep)

t t 0
Eprt—go Qin,t7i+i=Eo mE:o Fit-iVmpi=0 (15

after equating the coefficients of like powers @f Because

of the above-mentioned properties of the matrix elementgero, leading to anx?,

Vinpt, them summation in the last term of E(LY) is in fact
restricted to a finite range around tkgiven) value of the

index p. This essential feature allows a recursive solution of

the Eqs(15) to find the Taylor coefficient®; . Fort=0, the
infinite system of equationsl5) reduces to E,—Qo)F o
=0, which shows that whe®Q,=n+1/2 thenF = d,,.

+Vyn-1,1whenp=n=1, andF ;=0 for any other value of
p. For anyt>2 andp=n a new coefficienQ; can be gen-
erated if all otheiQ coefficients of smaller index are known
by using the following recurrence relations:

t=1 n+i+2
Vnnt+2 E aniFm,tfi (16)
i=1 m=n—i—-2
and
t=1 p+i+2
Pt_ npt E QFpt |+E E
vapiFm,t—i)/(n_p)- (17)

Also, because of the special properties of the matrix elements
Vimnpt, it can be shown that all odd index coefficiel@s are
rather than am, expansion. This
means that the result is obtained in the form offiaaxpan-
sion.

In this way, any desired number of terms in the sefids

can be calculated. For example, the exact expressions for the
first six coefficients for arbitrary ordar and for any poten-

tial, are

M=n+1/2,

Q”=o,

Q(Zn) - _

QY=

m_ 1+
4 216

1 1
1—8[11+30n(1+n)]v§+z[1+2n(1+n)]v2,

01

n
) {—20[31+47n(1+n) ]V + 36 19+ 25n(1+n) V3V, — 3[ 21+ 17n(1+n)]V2

=113+ 214n(1+n) ]V, V3+6[3+2n(1+n) | V,},

0-0

(n_
Qs 145

648
405

2
1800{449+ 70n(1+n)[20+9n(1+n) ]} V3+

1
455139709+ 150(1+n)[ 10827+ 7717(1+ nJVS+
{11827+ 3n(1+n)[14493+ 8315(1+n) [} V3V3+

{4517+ 15n(1+n)[ 1121+ 65In(1+n) V3V +

162

’

324{15169+ 15n(1+n)[3959+ 2585 (1+n) ]} V1V,

144{111+ n(1+n)[347+ 125 (1+n)]}V3

o{474+ 5n(1+n)[325+16In(1+n) ]}V V,V;

{323+ 3n(1+n)[375+18In(1+n) V3V,
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— %{124— N(1+n)[35+1In(1+n)}VoVs— 11—8{5+ 2n(1+n)[8+3n(1+n)|}V Vs
(18)
1

EVY

{3+2n(1+n)[4+n+n?) V).

Because the unperturbed wave functignsdo not have 2u a2 14
the right asymptotic behaviofthey do not decay fast R=|=5—| -
enough, the formal expansionéll) have a zero radius of he —k
convergence. Still, it is useful in the asymptotic regime or if
a convergence accelerator, like Pag@roximations, is used. From Eq.(9) we have
Finally, by analytical continuation, thath Regge pole is
calculated for ank (Im k>0), not only fork=ivy (y>0), m >
as ( 1 —2uk
a=|-—| , wherex=a ,
4x %2
1/2
1 12 & o1 and from Eq.(8) u_,=1/4. With V,;=[1—(—1)'*1]/4, the
sN)— _ = (n) [ 4 t ’
A== o2 2 Q™ ({ush 50 ES: st | first Q coefficients are
(19
1
' imati QV=n+ 3,
where the symbat’ can be any approximation of the formal 2

Taylor expansion of the perturbed eigenvalfjevhich can

give a meaningful numerical sense for it. The sections that 1

follow will prove that even a simple truncation of the above (2”):—(1+ 2n+2n?),

formal series can give accurate results in certain regimes like 8

high energy or semiclassical.
To summarize, the following steps lead to a fully analytic 2n+1

solution for the Regge trajectory for any singular potential: an): - T(lJr n+n?),
(i) A particle with massu and energyE moves in a sin-

gular potential defined by the set of coefficiel{ig} given

by Eq.(2) (n) 1 2 3 4
—- 1<) n n QgV=755(3+11n+16n“+10n°+5n%).
(i) The positionz,, (or R) of the minimum of the poten- 128

tial U(z) is determined by solving Ed7).
(iii) The parameter results from Eq(9) and the setis  Thenth Regge pole is then

from Eq.(8). With them,); and the matrix elementg,,,; are

constructed by using Eq14). ") ") 112
(iv) Using the recursion relationd6) and(17), any num- P2 - Eii 2x+44x| Q)+ _2+Q_4+ o _
ber of coefficients; can be calculated. 2 20x  4x

(v) The Regge trajectory is then defined by H&9)
where a convergence accelerator is eventually used to calc
late thef series from Eq(11). The result can be analytically
continued in the upper half of the compl&plane.

%his result is in agreement wifli6] and[17], which give a
limited number of terms in thé€ expansion. In the present
approach, a large number of terms can be calculated. Three
Regge trajectories are presented in Fig. 1. For these trajecto-
ries, 40 analytic terms are calculated in theseries. The

lll. SPECIFIC POTENTIAL RESULTS convergence is improved by using the Jacobi continued frac-
o , tion [18] associated with the Taylor series,

A. Polarization potential

The polarization potentidl(r)=a?/r* is important in the

2
electron-atom scattering. For this potential, then, E=n+ %Jr Cia . ,
Cra
2 Dytat — 2
v_4=?a2 and vs=0 fors#—4. Dota®—---

where coefficientsC; and D; are derived recursively from
Solving Eq.(7), one gets the Taylor coefficient®); .
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lad, 8]
k= i 6 Im(1) k=10 0.6 §
' lar(A=1,K)]
0.5 :
0.4l i
03 |
i IBA)I
0.2 l‘.__|_Q'£/_X.:10,K)|
R
010 ' a(A=100,K)|
2 4 6 8 10
K=E/e
FIG. 2. Absolute values of parametggsand « (for A = 1, 10,
and 100 as functions oK.

48A2
FIG. 1. The first three Regge trajectories in the CAM plane for ot
the 1+* potential. K

:1,

M

which defines the expansion parameieas

In the high-energy limit, the Regge trajectories approach
some parallel asymptotic line@otted lines in figure At
low, but still positive energy, the Regge trajectories converge
to the —0.5 angular momentum. For negative energy, (
+1/2)? is a negative number and all Regge trajectories melt
into the vertical line Ref) = —1/2.

[2-sa@+8¥ ™

12x 10Y3A28

B. Lennard-Jones potential The coefficientau_ 1, andu_g presented in the table above

The Lennard-Jonegl2,6 potential is considered in this follow from Eg. (8). The new parametes is introduced for

section: convenience:
o 12 o 6
V(r)=4e (?) _(T) ) gl 1+E
5 5"

for which
s -12 -6, allowing for a direct comparison with previously published
Do degl? —4e0b, results[l_g]. Figure 2 shows the absolute valuescofind 8

4p2 4A2 as functions of the reduced energy>4/5. Three values are
Vs: ?010 - 704, taken forA=1,10,100. WherA andK are large, the pertur-

bation parameter is small. For very large valuesAothe
corrections due to the perturbation are expected to be small
even for moderate values &.

where the parameteS?=2u0?E/#? andK=E/ e are com- After using Eqs(14) and(19), the analytic expression for
mon in the literature. Parametgd is defined below. The the Regge-pole positions is

value ofR is obtained from Eq(7):

U BI12 (1-5p)/12,

1 1— 3B 12

Z0) (n)
: /== aZQ({u})a :

10
2+96

R=o

where 6=+ /4—5K, and the sign is chosen to select the
branch of the Regge trajectory of interest. For instancewhere the meanlng ak’ can be a simple truncation of the
choosing the negative sign, one obtains Regge poles witAummation=g' up to some ordeN or some other conver-

Re(/+1/2)>0 and Im¢’+1/2)>0. gence accelerator.
The identity given by Eq(9) yields, for the specific po- The Q(zr;,) are polynomials of degreep?in B, and the first
tential considered here, six of them are obtained directly from E(L8) as
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M=n+1/2,

1 10 25
QY= (2+3n+3n%)+ - (2+3n+3n%) B~ (11+30n+30n%) g2, (20)

5 , . 10 , 25 , . 125 -
QY =(1+2n)| g5 (— 1+n+n?)+ 5(22+5n+5n?) B— - (134+85n+850°) B+ —~(179+ 220+ 22°) B

9375
~ 55 (3L+4m+4m?) B¢, (22)

1 5
( =15 161135 168?— 3093 — 154m%) +57(539+ 51N+ 5882+ 1503+ 75n*) B

1 625
—2—16(1 7785134 019 625+ 4 600 56+ 1 161 87>+ 580 935*) B2+ﬁ(8683+ 25 785+ 33 68h>

125
+ 157983+ 7899n%) B3—%(1 2033314 201 335+ 6 299 88M%+ 4 197 09®+ 2 098 54H%) B*

3125 15625
+W(24 203+ 930151+ 151 3202+ 116 6103+ 58 3051%) ﬁS—W(sg 709+ 162 40%

+278 1602+ 231 5103+ 115 75H:*) B°. (22)

Next, the theory presented above is compared with stateulated with respect to the highly accurate quantum results of
of the art numerical calculation of the Regge pfld]. A [11]. Even a low-order approximation, with a modest num-
common benchmark for Lennard-Jones calculations is thbeers of terms, gives excellent results, which can be obtained
potential with parameterd=141.425 andK=5. Zero-order by using only a pocket calculator. Higher poles, with higher
approximation, where only, is retained in thef series, indexn, have less precision due to the perturbative nature of
already gives about three digits of precision. the method presented. However, more and more terms can be

Another approximation uses the first four terms in theeasily calculated by using reccurence relatigh® and(17)
formal serieg11) to give a[1/1] Padeapproximation for,  until the desired accuracy is obtained.
in the variablea?: Another common Lennard-Jones potential is defined by

the set of paramete’s=15 andK=1.8. A comparison be-

1\2 38—-1 2 1 [QIM]242 tween semiclassical and quantal results for this potential is
(1) B 2 a . .
I+ 5] = 55 Nt §+W . discussed infl]. Because botlh andK have smaller values,
4(a®)® a Q2'—Qi’a the accuracy of the present method is I¢three to four

(23 significant digit$ for a reduced number of terms &expan-

. o . sion (12 in the example presentedstill, this is comparable
With this simple formula,which uses only elementary func-yith the accuracy of1]. Of course, more terms added to the
tions, three to four more digits of precision are gained 0rgeries ofe contribute to an increased precision in the results.
both real and imaginary parts of the Regge Hd!8]. Figure 3 shows some “snapshots” of the first six Regge

Even more precise results can be obtained if more termﬁajectories taken foK=1.0.1.5.2.0.2.5. and 3.0 in the CAM
are considered in thé expansion. Using a truncated series g, o e

with 12 terms as the next approximation significantly im-
proves the precision of the results. Because the s€tiBss
Borel summable, its convergence is accelerated by construct-
ing a Borel-Pad@pproximatior(20] from the first 12 terms.
This method gives the best results, up to 14 digits of preci- A general framework for obtaining analytic results for the
sion for the Regge pole. The formulas for this approximationRegge poles has been developed within the class of singular
are still analytic, but they involve transcendental potentials. A perturbation expansion, equivalent tohaex-
I'-incomplete functions. A detailed presentation of thispansion, has been employed. Even though the resulting for-
method is given in Appendix B. mal series is divergent, the results are still useful when a
Table | presents a summary of these results for the bencteonvergence acceleratsuch as a Padapproximation is
mark Lennard-Jones potential considered. The relative erronssed. The formulas obtained are simple and give physical
for the various methods to improve the convergence are calnsight into the nature and behavior of the Regge poles. Clear

IV. CONCLUSION AND DISCUSSIONS
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TABLE I. The relative error of Regge poles is given as Z0Values fors are calculated in various
approximations used in this work; separately for the real and imaginary parts. The reference Regge poles are
given in the second column.

4 terms? 12 terms” 12 terms®

n ,md Re Im Re Im Re Im

0 180.011 948 024 39i 21.218915128 43 8.65 7.39 13.4 12.1 13.5 13.4
1 179.238 987 840 84i 24.034 748 840 56 8.05 7.19 10.9 10.7 13.0 12.4
2 178.522 893 751 20i 26.890 095 347 76 6.63 6.98 9.55 8.75 12.1 11.3
3 177.866 576 996 32i 29.780 188 101 64 5.96 6.75 8.58 7.64 11.7 10.5
4 177.272 390601 10i 32.700076 842 78 5.50 6.03 7.84 6.83 12.2 9.36
5 176.742 125 996 1bi 35.644 692 524 87 5.14 5.29 7.24 6.18 11.2 8.64

%PadeEq. (23).
bTruncated sum.
‘Borel-Pade
9From Ref.[11].

links between the parameters of the probleny., energy or where
potentia) and the Regge poles are transparent.

The numerical precision achieved is higher or comparable
to the published examples. Better results can be obtained for
a wide range of energies because the formal series can be
easily extended by using powerful recurrence relations. The Here f_(\g,kq,r) is the solution of the Schdinger
Regge poles for an even larger class of potentials can bequation that behaves at large physical distances as
calculated using the procedure presented in this paper. The

+ oo
M,zzf r=2f2 (\g,ko,r)dr. (25)
0

singular potential problem E@l) is transformed into a regu- f_(Ng,kog,r)—e€*o", r—+oo, (26)

lar problem byr — 1/r" and¥ —®/r’ transformations. Also,

singular potentials that depend on fractional powers cdin Although Eq.(24) has been demonstrated[&il] only for

be treated directly using the formalism described. regular potentials, it can be readily extended to singular po-

To study or calculate the behavior of the scattering amtentials. It is clear from Eqs(24), (25), and (26), that an
plitude, not only the precise location of the Regge poles iraccurate residue calculation requires, in order:
the complex plane is required but also the values of their (i) A precise knowledge of the position, in the complex
residues Let us first briefly outline how the residues are plane, of the Regge pole. This has been the major objective
computed. Let\, andk, be, respectively, the complex an- Of our paper on singular potentials.
gular momentum and the complex energy of the Regge pole. (ii) A correctnormalizationto e'ko" of the wave function

The corresponding residue is given [32] at large distances.
With the method described in this paper, thermaliza-

tion factor cannot be determined for the following reasons.
R= - (24) ~ From examination of Eq(4), it is seen that the calculation of
No -2 the Regge trajectories has been transformed into a more clas-
sical “perturbed harmonic oscillator” eigenvalue computa-
Im(l) K=3.0 tion. Therefore the basis onto which the eigenfunctions are
K=2.5 expanded is that of the harmonic oscillator. Consequently,
K=15 ’ . we cannot normalize correctly the wave function at infinity
15 K=1.0 . : . The reason is that the harmonic-oscillator basis involves the
5. . squareof the distance in the exponential, while the normal-
4, . ization condition Eq(26) requires dinear term in the expo-
10 3. . . nential. As far as the computation of the generalized eigen-
. values(Regge polesis concerned, this difference plays no
2 . : role and our results are among the most precise in the litera-
. ture. However, this basis i#ot suitablefor correctlynormal-
. izing the wave function at large distances as is required for
n=0 - the residue computation.
0 15 20 25 30 Re(l) The limitation of a method to only the calculation of the
Regge poles is not specific and limited to our approach. It is
FIG. 3. The first six Regge poles f&r=1.0, 1.5, 2.0, 2.5, 3.0in  also manifest in the method of Germann and K&is which
the CAM space for a Lennard-Jones potential with 15 andK is suitedonly for the calculation of the Regge poles and not
=1.8. the associated residues. However, since the calculation of the

022719-8
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residues requires thereliminary knowledge of the precise *
location of the Regge poles, any suitable method like that of ePH, (x)= Z W, m( B)H (X)),
Sukumar and Bardsldy] or Connoret al.[21] can be used. m=0
In conclusion, the motivation of this paper has been the
need to provide an accurate and efficianalytical method ~ Where
to augment the relatively few existing methods, which are _ .
mostly numerical, for calculating Regge-pole positions. Be- sz ! n+mm'n(m’”) 2 1
sides the traditional rainbow scattering problem that involvesWnm(/8) =€ 55 gzo 52] KI(n—K)!1(m—Kk)! "’
Regge-pole calculations for the singular Lennard-Jones po- B
tential, there are other important physical problems that ca

be treated. Such an example is the Bose-Einstein condensI Is easy 1o see that the functitli,(5) is a polynomial in

. 2 .
tion and superfluidity ofHe at extremely low temperatures. B times the even factoe”. The lowest power of3 in the
The possibility of forming dimer resonances in the He-HePolynomial is [n—m| becausem-+n—2min(mn)=|m-n|.
collision problem has been investigatg2] using the two Also, the polynomial has only even or odd powers f
versions of the Aziz potentidR3,24. The problem has been depending on whether the starting povjerm| is even or
solved within the framework of the singular potential methododd, respectively. These properties are inherited by the Tay-
because of the inadequacy of the regular potentials methodsr expansion oW, (8) since the factoe?* is an entire
for this case. even function ing.
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APPENDIX A: MATRIX ELEMENTS FOR  e#* tion of the Taylor series does not work very well, and most

of the times does not work at all. A way to obtain a better
approximation is to use the rational or Paajgproximation
Un(X)= 7T_1/4e_XZ/2Hn(X) for the given_ function. This is done_ i_n two steps. In the first
' step, a continued fractiofof the Stiltjes or more powerful
whereH,, are Hermite polynomial with the generating func- Jacobi type, depending around what point the expansion is
tion known) is constructed from the set of Taylor coefficients. In
the second step, a truncation of the infinite continued fraction

The eigenfunctions for the harmonic oscillator are

72 L defines the rational approximtion, as a ratio of two polyno-
e =n§0 ~rHax. mials or using the residue-pole representation

The goal of this section is to give the expansion in powers of _ % Px
B for the matrix elemenW, (B) of e’ F(Z)”k:1 1-az’ (B1)

AU, (X)= 2, Wi B)Um(X). A more refined approximg_tion can be Qeveloped by using

m=0 the Borel Transforni20]. Writing the function as
The generating function fog®*H,,(x), %
- F(z)=2, (—")n!z”
z" n=0 !
exp( Bx+2zx—2%)= >, meBanx, (A1)
n=0 Il

and the factorial as
can also be written as

exp( B214+ Bz)exp2(z+ BI2)x— (z+ BI2)?) n!= Jo t"e~tdt,
o1
—ef 1Y Weﬁz(ZJr BI12)™Hn(X). (A2)  the following result is obtained:
m=0 .
Equating the coefficients of thepowers from Eqs(Al) and F(z)= jme“f:(tz)dt
(A2), one gets the following expansion; 0 ’
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the Taylor coefficients defined bfj,=f,/n!. Writing the &2)=—T| 03

z
rational approximation of thé in the residue-pole form
(B1), one gets

where the Borel transformefé of the original functionF has el” ( 1)

and the incomplet&' function has the definition
N

F(z>~kgl p&(a2),

. F(a,z)=f t2~le dt.
where the functiorf is z
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